Как рассчитать номинал предохранителя в зависимости от сечения провода. Какие факторы влияют на выбор предохранителя. Как не ошибиться при подборе защиты для электропроводки. Таблицы соответствия сечения кабеля и номинала предохранителя.
Основные принципы подбора предохранителя по сечению кабеля
При выборе предохранителя для защиты электропроводки необходимо учитывать несколько ключевых факторов:
- Сечение защищаемого кабеля
- Длина кабельной линии
- Материал жил кабеля (медь или алюминий)
- Тип изоляции кабеля
- Условия прокладки кабеля
- Ток нагрузки
Главный принцип: номинальный ток предохранителя должен быть меньше длительно допустимого тока кабеля. Это обеспечит своевременное срабатывание защиты при перегрузке, не допуская повреждения изоляции проводов.
Расчет номинала предохранителя по сечению провода
Для расчета подходящего номинала предохранителя можно использовать следующую формулу:
Iпред = k * Iдоп
где:
- Iпред — номинальный ток предохранителя
- k — коэффициент запаса (обычно принимается 0,8-0,9)
- Iдоп — длительно допустимый ток кабеля
Длительно допустимый ток кабеля определяется по справочным таблицам в зависимости от сечения, материала жил и условий прокладки.
Таблица соответствия сечения кабеля и номинала предохранителя
Для удобства выбора можно воспользоваться готовыми таблицами соответствия:
Сечение медного кабеля, мм² | Номинал предохранителя, А |
---|---|
1,5 | 10 |
2,5 | 16 |
4 | 25 |
6 | 32 |
10 | 50 |
16 | 63 |
25 | 80 |
35 | 100 |
Для алюминиевых кабелей номиналы предохранителей следует уменьшить на 20-30%.
Влияние длины кабеля на выбор предохранителя
С увеличением длины кабельной линии возрастает ее сопротивление. Это приводит к падению напряжения и увеличению нагрева проводников. Поэтому для длинных линий рекомендуется выбирать предохранители с меньшим номинальным током.
Можно использовать следующие поправочные коэффициенты:
- Для линий до 100 м — коэффициент 1
- 100-140 м — 0,9
- 140-180 м — 0,8
- Свыше 180 м — 0,7
Номинал предохранителя умножается на соответствующий коэффициент.
Как учесть тип изоляции кабеля при выборе защиты
Тип изоляции влияет на допустимую температуру нагрева жил кабеля. Наиболее распространенные варианты:
- ПВХ-изоляция — до 70°C
- Резиновая изоляция — до 65°C
- Изоляция из сшитого полиэтилена — до 90°C
Чем выше допустимая температура, тем больший ток может пропускать кабель. Соответственно, для кабелей с термостойкой изоляцией можно выбирать предохранители с более высоким номиналом.
Особенности выбора предохранителей для силовых цепей
При защите мощных потребителей и силовых цепей необходимо учитывать следующие нюансы:
- Пусковые токи электродвигателей могут в 5-7 раз превышать номинальные
- Необходимо обеспечить селективность срабатывания защиты
- Требуется высокая отключающая способность предохранителей
Для защиты двигателей часто применяют предохранители с характеристикой gG или aM, рассчитанные на кратковременные перегрузки при пуске.
Подбор предохранителей для бытовой электропроводки
В жилых помещениях наиболее часто используются следующие номиналы автоматических выключателей и предохранителей:
- Освещение — 6-10 А
- Розеточные группы — 16 А
- Электроплита — 25-32 А
- Водонагреватель — 16-25 А
- Кондиционер — 16-20 А
При этом сечение проводов должно соответствовать выбранным номиналам защитных устройств.
Ошибки при подборе предохранителей
Наиболее распространенные ошибки, которые могут привести к проблемам:
- Выбор предохранителя с завышенным номиналом
- Игнорирование длины кабельной линии
- Неправильный учет условий прокладки кабеля
- Применение предохранителей с низкой отключающей способностью
- Нарушение селективности срабатывания защит
Важно тщательно анализировать все параметры электроустановки при выборе защитных устройств.
Современные типы предохранителей
В настоящее время для защиты электрических цепей применяются:
- Плавкие предохранители
- Автоматические выключатели
- Устройства защитного отключения (УЗО)
- Дифференциальные автоматы
Каждый тип имеет свои особенности и область применения. Для бытовых сетей оптимальным вариантом часто являются дифавтоматы, сочетающие функции автомата и УЗО.
Как проверить правильность выбора предохранителя
После установки защитных устройств рекомендуется выполнить следующие проверки:
- Измерить фактический ток в защищаемой цепи
- Проверить время срабатывания защиты при перегрузке
- Убедиться в отсутствии ложных срабатываний
- Проконтролировать нагрев проводников
- Провести тепловизионное обследование (при возможности)
При обнаружении отклонений необходимо скорректировать номинал или тип защитного устройства.
Заключение
Правильный выбор предохранителей и автоматических выключателей — важнейшее условие безопасной и надежной работы электроустановок. Необходимо учитывать множество факторов, включая сечение и длину кабеля, условия эксплуатации, характер нагрузки. При возникновении сомнений рекомендуется обратиться к квалифицированным специалистам для проведения точных расчетов.
Сообщества › Автозвук › Блог › Выбор предохранителей и выбор сечения провода. ВАЖНО!
С безопасностью не шутят, поэтому постараюсь изложить кратко, емко и доступно. Без заумностей, кому они нужны — лезем в спец литературу.
1. Любой силовой провод, даже слаботочная сопля ДОЛЖЕН БЫТЬ ЗАЩИЩЕН ПРЕДОХРАНИТЕЛЕМ! Даже я, со своим маниакальным отношениям к проводке и немалым опытом горел разок именно из-за слаботочной проводки, которую впопыхах криво подключил!
2. Пред защищает ВСЕ, что идет ЗА НИМ до следующего предохранителя, поэтому если за предом провод разделяется на несколько меньших и в точке разделения НЕТ предохранителя, номинал предохранителя выбирается ПО МЕНЬШЕМУ сечению провода. Иными словами — предохранитель должен сгореть РАНЬШЕ, чем ЛЮБОЙ из проводков ЗА НИМ!
3. Не забываем о том, что помимо защищаемого + провода, у нас есть еще и — провод! Если сечение — провода МЕНЬШЕ сечения +, номинал предохранителя выбирается исходя из МЕНЬШЕГО сечения!
4. Также не забываем дублировать штатную развязку массы АКБ проводом того же номинала, что и — нагрузки, даже если — провод подключен не на кузов, а напрямую от АКБ, т.к. в случае его обрыва, ток пойдет по штатной массе, номинал которой не велик.
5. Подбор номинала провода осуществляется исходя из его длины и нагрузки (ее можно получить путем сложения номиналов предов на усилителях) по таблице
Подбор сечения кабеля исходя из длины и нагрузки. Видимо автор не знал номиналов больше 0AWG В области больших токов и длин (правый нижний угол) подправлю ее позже
6. Подбор номинала предохранителя осуществляется исходя из длины и сечения защищаемого кабеля (в случае нескольких кабелей — наименьшего, см. п2) В условиях автомобиля, при длине проводов до 8м (условно), максимальный ток, который может пропустить провод узнаем из таблицы.
Подбор предохранителя исходя из сечения кабеля
Предохранитель выбирается НЕ БОЛЕЕ ближайшего МЕНЬШЕГО номинала. Например, имея провод 4 AWG, видим макс ток 105,7А, соответственно пред — не более 100А
Рекомендуемые МАКСИМАЛЬНЫЕ номиналы предохранителей ЕММА. Могут быть меньше расчетных, но на соревнованиях судятся по ЭТОЙ табличке
Примечание: Все цифры приведены для медных проводов. Если провод аллюминевый, то пред нужно выбирать на 40% меньшим номиналом. Если провод КГ, где оплетка не терпима к температурам, то пред нужно выбирать на 15% меньшим номиналом.
ЗЫ В некоторых соревновательных лигах подбор предохранителя осуществляется по другим принципам, но для общей пожаробезопасности — этих таблиц достаточно, поэтому здесь я другие варианты не рассматривал.
ЗЫЫ Поправки-дополнения приветствуются. Я давно не практиковался, мог что-то упустить.
www.drive2.ru
Плавкий предохранитель – расчет и выбор проволоки для ремонта
Плавкий предохранитель – это установочное изделие, предназначенное для защиты электроприборов путем отключения подачи на них электроэнергии при превышении допустимой величины тока способом расплавления установленной в предохранителе калиброванной проволоки.
Для защиты электрической проводки и дорогостоящей радиоаппаратуры от короткого замыкания, бросков тока в питающей сети и обеспечения безопасной эксплуатации электроприборов широко используются плавкие вставки – предохранители. Они выпускаются разных конструкций, типоразмеров и на любые токи защиты.
Рассмотренная технология ремонта предохранителей при соблюдении всех условий обеспечит его защитную функцию. Но не каждый имеет опыт работы с паяльником и измерения диаметра проволоки. Да и в любом случае предохранитель промышленного изготовления будет работать надежнее.
Квартирную электропроводку раньше тоже защищали исключительно с помощью плавких предохранителей, установленных в пробки. В настоящее время для защиты электропроводки применяются более надежные многоразовые приборы защиты от коротких замыканий – автоматические выключатели. В электроприборах же, более лучшей защиты от коротких замыканий, чем плавкий предохранитель пока ничего не придумали. Особенно актуально применение плавких предохранителей в автомобилях, так как они являются единственным надежным и дешевым средством защиты от короткого замыкания.
Условное графическое обозначение
плавкого предохранителя
Условное графическое обозначение плавкого предохранителя на схемах похоже на обозначения сопротивления, и отличается только тем, что через середину прямоугольника линия проходит не разрываясь. Рядом с условным обозначением обычно пишется и буквенное обозначение Пр. или F. Иногда на схемах просто пишут thermal fuse или fuse. После буквы часто указывают ток защиты предохранителя, например F 1 А, обозначает, что в схеме установлен предохранитель на ток защиты 1 ампер.
При эксплуатации предохранители выходят из строя, и их приходится заменять новыми. Считается, что предохранители ремонту не подлежат. Но если к делу ремонта подойти грамотно, то практически любой предохранитель можно с успехом отремонтировать и использовать повторно. Ведь корпус предохранителя остается целым, а перегорает только тонкая калиброванная проволока, размещенная внутри корпуса. Если перегоревшую проволоку заменить на такую же, то предохранитель сможет служить дальше.
Принцип работы предохранителя на видеоролике
При прохождении электрического тока меньше предельно допустимого, калиброванная проволока, соединяющая контакты предохранителя, нагревается до температуры около 70˚С. В случае превышения тока номинала предохранителя, проволока начинает нагреваться сильнее и при достижении температуры плавления металла, из которого она сделана – расплавляется, электрическая цепь разрывается, и течение тока прекращается.
Поэтому предохранитель и назвали плавким или плавкой вставкой. Видеоролик представлен в замедленном виде, для того, чтобы было хорошо видно, как происходит перегорание провода в предохранителе. В реальных условиях провод в предохранителе перегорает практически мгновенно.
Всего просмотров: 118217
Предохранитель защищает от превышения тока в цепи и, не имеет значения напряжение питающей сети, в которой он установлен, это может быть батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу – при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.
Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.
Многие думают, что предохранитель ремонту не подлежит. Но это не совсем так. В экстренной ситуации, когда под рукой нет запасного и, например, из-за отказавшегося работать авто в пути или усилителя, и срывается музыкальное сопровождение школьного бала или свадьбы, а все магазины уже закрыты, выбирать не приходится.
При грамотном подходе можно с успехом восстановить для временного использования до замены новым перегоревший предохранитель, сохранив его защитные функции. Зачастую такие проблемы решают банальным замыканием контактов держателя предохранит
ydoma.info
Таблица сечений кабеля, предохранителей
Рекомендации по монтажу проводов питания (12В) изделий1. Основные ограничения1.1. Максимально-допустимое падение напряжения на проводах на участке от блока питания до любого изделия — 1В.
1.2. Для подключения питания непосредственно к клеммам изделий рекомендуется использовать провод сечением не более 1,5 мм2.
2. Справочные данные
Сопротивление 100м медного провода (двойного):
а) для провода сечением 0,35мм2 — 10,3 Ом,
б) для провода сечением 9,0мм2 — 0,4 Ом.
В промежутке между этими значениями — обратно пропорционально сечению провода.
3. Минимально-допустимое сечение провода в зависимости от суммарного тока нагрузки и длины провода питания
Для случая монтажа линии питания проводом единого сечения последовательным обходом всех изделий существует следующее общее выражение:
Smin = 0,035 * (i1*L1+ i2*L2+… + ik*Lk), где
L1, L2, … Lk , — значения длины участка провода питания от блока питания до каждого из изделий, м;
i1, i2, ik -токи потребления изделий, включая токи нагрузок, которые питаются через клеммы изделия (замки, сирены, считыватели и т.д.), А;
Smin — минимально-допустимое сечение провода, мм2.
Если токи потребления изделий равны и составляют iср , то выражение упрощается и принимает следующий вид
Smin=0,035 * iср * (L1+ L2+… +Lk).
Ниже приведена таблица значений сечения провода для случая, когда вся нагрузка сосредоточена на конце провода питания.
При равномерном распределении изделий по длине провода питания его сечение может быть уменьшено по отношению к приведенным в таблице в 2 раза.
При неравномерном распределении изделий или при неодинаковых токах потребления для расчета сечения провода следует пользоваться вышеприведенными формулами.
Если для монтажа цепей питания требуется провод сечением больше, чем 1,5 мм2, то рекомендуется разделить нагрузки на группы таким образом, чтобы к каждой группе можно было подвести питание отдельным лучом проводом сечением не более 1,5 мм2.
Если монтаж цепей питания проведен проводом сечением больше, чем 1,5 мм2, то для непосредственного подключения цепи к плате изделий необходимо применять отводы из провода 0,75-1,5 мм2 длиной не более 2м.
************************************************
Подбор сечения силового кабеля.
Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под
давлением. Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени
через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в роцессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.
1 Ом = 1 Вольт /1 Ампер
Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
что с увеличением длины проводника сопротивление растет.
Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета
сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
35 Вт х 4 = 140 Вт. (средняя мощность)
Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
140 Вт х 2 ~ 280 Вт. (максимальная мощность)
Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
Ампер = Ватт/Вольт.
Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
280 Вт /13 В = 21.53 A
Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов.
******************************************************
СОВЕТ
Memory 12V+
В современных авто магнитолах применяется несколько проводов питания: для питания усилителя мощности, для включения подсветки при включении габаритов автомобиля, для питания памяти и т.д. провод, питающий усилитель мощности, имеет обычно толстое сечение и на нем установлен мощный предохранитель — это основное питание авто магнитолы.(обычно красный) провод меньшего сечения, часто имеющий предохранитель с малым током сгорания , необходим для питания памяти автомагнитолы . Обычно это аппаратура среднего и высокого класса, имеющие цифровую шкалу настройки и память, куда заносится информация о настройке радиоприемника на станции, что позволяет вести бес поисковый прием станций набрав только номер станции (кнопка). Еще один вариант , где применяется дополнительный провод это приемники с возможностью кодирования и чтобы не вносить код доступа при каждом включении применяется микросхема памяти, питающаяся от аккумулятора отдельным проводом.(может быть желтого цвета или красный, но малого сечения). Из этого следует: чтобы авто магнитола работала правильно надо тонкий провод питания подключать напрямую (без каких-либо коммутаций) это и есть провод «Memory 12V+ » к аккумулятору, а толстый провод можно подключать через коммутирующие элементы как замок зажигания или дополнительный выключатель.
источник АвтоАудиоЦентр — ФОРУМ ПО АВТОЗВУКУ :: Просмотр темы — Питание аудио системы
magnitola.org
Подбор предохранителя по сечению кабеля
Бац, бух и хорошо, что не пожар… Выясняет, что всего лишь сгорел предохранитель. Здесь же можно взять, да и не мучиться,- впаять что-то серьезное, то есть провод потолще. Однако сами понимаете, что позже, вместо вот этого провода – предохранителя, теперь может сгореть нечто более существенное. Тогда ремонт не обойдется так легко. Вначале придется искать серьезную поломку, а затем еще покупать более дорогостоящую деталь и менять ее. Поэтому есть все же смысл подобрать медную проволоку такого диаметра, чтобы она заменила сгоревший предохранитель. То есть необходимо понять, какая существует зависимость между диаметром, сечением медного провода и максимальным током, когда он перегорает. Здесь важно заметить, что это не номинальный ток, а именно максимальный! Ведь при этом токе предохранитель должен срабатывать, то есть перегорать, а не работать без проблем. О подборе медного провода для проводки писал уже в другой статье, в этой же статье именно о критическом токе, когда проволока будет перегорать и работать как предохранитель.
Как определить номинал предохранителя по корпусу и на плате
Прежде чем поменять что-то испортившееся, необходимо понять, что же все-таки испортилось. В нашем случае перегорело. Надеяться здесь стоит только на надписи на самой плате или на предохранителе, ибо другие методы узнать какой же это был номинал предохранителя весьма зыбки и безосновательны. Ведь исправный предохранитель ничего и не покажет как нулевое сопротивление, а неисправный обрыв. При этом не отдавать же его на анализ в лабораторию, дабы узнать какой это был материал. Смотрим примеры обозначения предохранителей на плате и SMD элементов. Кстати, иногда вместо предохранителя могут использовать даже резистор.
Расчет и подбор медной проволоки под плавкий предохранитель
Ну хорошо, с номиналом разобрались, теперь бы подобрать такую проволоку, которая могла бы заменить сгоревший предохранитель. Этот вариант приоритетен в тех случаях, когда просто нет под замену аналогичного плавкого предохранителя.
Для того чтобы подобрать проволоку нужного диаметра, необходимо обратиться к форме ниже. В этом случае вы сможете сориентироваться с тем током и диаметром проволоки, в зависимости от материала, что пойдет именно вам.
Ток защиты предохранителя, Ампер | 0,25 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 7.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Диаметр проволоки, мм | Медной | 0.02 | 0.03 | 0.05 | 0.09 | 0.11 | 0.16 | 0.20 | 0.25 | 0.33 | 0.40 | 0.46 | 0.52 | 0.58 | 0.63 | 0.68 |
Алюминиевой | – | – | 0.07 | 0.10 | 0.14 | 0.19 | 0.25 | 0.30 | 0.40 | 0.48 | 0.56 | 0.64 | 0.70 | 0.77 | 0.83 | |
Стальной | – | – | 0.32 | 0.20 | 0.25 | 0.35 | 0.45 | 0.55 | 0.72 | 0.87 | 1.00 | 1.15 | 1.26 | 1.38 | 1.50 | |
Оловянной | – | – | 0.18 | 0.28 | 0.38 | 0.53 | 0.66 | 0.85 | 1.02 | 1.33 | 1.56 | 1.77 | 1.95 | 2.14 | 2.30 |
Однако это все справочные материалы. А вот для того чтобы сделать подбор проволоки универсальным, можно воспользоваться формулой.
где
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.
Обратите внимание, что она верна для меди! Если у вас нет такого диаметра, то придется собирать проводник из нескольких меньших. Здесь надо понимать, что каждый из проводников будет работать параллельно, а значит ток будет падать соизмеримо количеству взятых проводников. Чтобы было легче прикинуть ток, диаметр и количество проводников, можно воспользоваться калькулятором.
Онлайн калькулятор для расчета диаметра медной проволоки в зависимости от тока | |
---|---|
Введите величину максимального тока, A: |
Теперь же пару слов о типовых номиналах предохранителей и случае, если номинал предохранителя первоначально не удалось установить.
Номиналы предохранителей ориентировочные
Номинал предохранителя на микроволновке порядка 12 А (2 Квт)
Номинал предохранителя в блоке питания компьютера 400 Вт – 2,5 А, 600 Вт-4, 800 Вт – 5 А.
В целом примерно рассчитать предохранитель можно по мощности потребляемого устройства. То есть мощность делим на напряжение и получаем ток. Именно этот ток с небольшим запасом и станет номиналом нашего предохранителя.
Надо понимать, что даже предохранитель для защиты имеет небольшой запас по мощности порядка 10 процентов. Это связано с пусковыми индукционными токами при прохождении через индуктивность и при зарядке конденсаторов большой емкости.
В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.
Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей
Таблица 1 – Технические характеристики двигателей 4АМ
Обозначение на схеме | Тип двигателя | Номинальная мощность Р, кВт | КПД η,% | Коэффициент мощности, cos φ | Iп/Iн |
---|---|---|---|---|---|
1Д | 4АМ112М2 | 7,5 | 87,5 | 0,88 | 7,5 |
2Д | 4АМ100L2 | 5,5 | 87,5 | 0,91 | 7,5 |
3Д | 4АМ160S2 | 15 | 88 | 0,91 | 7,5 |
4Д | 4АМ90L2 | 3 | 84,5 | 0,88 | 6,5 |
5Д | 4АМ180S2 | 15 | 88 | 0,91 | 7,5 |
1. Определяем номинальный ток для двигателя 1Д:
2. Определяем пусковой ток для двигателя 1Д:
3. Определяем номинальный ток плавкой вставки предохранителя FU2:
Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;
где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».
Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.
Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.
Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.
Обозначение на схеме | Тип двигателя | Ном.ток, А | Пусковой ток, А | Номинальный ток плавкой вставки, А | Ном. ток предохранит., А | |
---|---|---|---|---|---|---|
Расчетный | Выбранный | |||||
1Д | 4АМ112М2 | 14,82 | 111,15 | 44,46 | 50 | 50 |
2Д | 4АМ100L2 | 10,5 | 78,8 | 31,52 | 40 | 40 |
3Д | 4АМ160S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4Д | 4АМ90L2 | 6,14 | 39,9 | 15,96 | 20 | 20 |
5Д | 4АМ180S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4. Выбираем плавкую вставку предохранителя FU1.
4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:
4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.
Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.
Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.
Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».
Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.
Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.
Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.
Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).
Таблица 4 – Результаты расчетов
Обозначение на схеме | Номинальный ток плавкой вставки, А | Iк.з.(3), А | Iк.з.(1), А | Максимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, A | Примечание |
---|---|---|---|---|---|
FU1 | 125 | 2468 | — | — | |
FU2 | 50 | — | 326 | 281 | Условие выполняется |
FU3 | 40 | — | 222 | 195 | Условие выполняется |
FU4 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
FU5 | 20 | — | 122 | 86 | Условие выполняется |
FU6 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.
Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).
Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.
Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).
Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.
Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.
Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды
На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).
Повторно использовать плавкие вставки можно, но осторожно…
Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.
Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.
В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.
Поистине универсальное приспособление
Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.
Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t
+70˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.
Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.
Как правильно выбрать предохранитель
Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.
Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:
Inom = Pmax / U
- I nom – номинальный ток защиты, A.
- P max – максимальная мощность, W.
- U – напряжение питания, V.
Хотя лучше пользоваться специально созданными для этой цели таблицами.
Приведем некоторые данные из них:
- Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
- 50W – 0,25A.
- 100W – 0,5A.
- 150W – 1A.
- 250W – 2A.
- 500W – 3A.
- 800W – 4A.
- 1kW – 5A.
- 1,2kW – 6A.
- 1,6kW – 8A.
- 2kW – 10A.
- 2,5kW – 12A.
- 3kW – 15A.
- 4kW – 20A.
- 6kW – 30A.
- 8kW – 40A.
- 10kW – 50A.
Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.
Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.
Кулибиным на заметку
При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.
Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.
Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.
Обратимся к справочнику:
- Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
- 2A – 0,09 мм – 0,10 мм.
- 3A – 0,11мм – 0,14 мм.
- 5A – 0,16 мм – 0,19 мм.
- 7A – 0,20 мм – 0,25 мм.
- 10A – 0,25 мм – 0,30 мм.
- 15A – 0,33 мм – 0,40 мм.
- 20A – 0,40 мм – 0,48 мм.
- 25A – 0,46 мм – 0,56 мм.
- 30A – 0,52 мм – 0,64 мм.
- 35A – 0,58 мм – 0,70 мм.
- 40A – 0.63 мм – 0,77 мм.
- 45A – 0,68 мм – 0,83 мм.
- 50A – 0,73 мм – 0,89 мм.
Таким образом, данная проволока сгодится для предохранителя на 30A.
Имеется 3 способа ремонта трубчатого предохранителя:
- Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и прибегнуть к нему можно исключительно в качестве временной меры.
- Пайка также не требуется. Колпачки по очереди прогреваются на открытом огне, после чего снимаются и зачищаются ради хорошего контакта. Очищенный провод пропускается через цилиндр, концы загибаются на кромках, после чего колпачки надеваются на место. Но все равно это такой же «жучок», как и в первом случае, только менее примитивный.
- Напоминает оба предыдущих, и радикально отличается от них. Отремонтированный в результате предохранитель фактически невозможно отличить от нового, ибо восстанавливается он согласно заводской технологии, с пайкой.
Описанную технологию можно успешно использовать для ремонта любых типов вставок.
womaninred.ru
Как Подобрать Диаметр Провода Предохранителя: Инструкция
Выбираем диаметр провода, который необходим для замены плавкой вставки предохранителя
Самодельный предохранитель из медной проволоки может стать отличным временным способом заменить перегоревший предохранитель. Но если вы решились на такое, то крайне важно правильно подобрать сечение того самого проводника, который вы будете использовать. Почему это важно, каковы причины перегорания предохранителей и способы временного устранения этого неудобства мы и рассмотрим в нашей статье.
Причины перегорания предохранителей
Начнем с самого важного — с причин перегорания предохранителей. Ведь просто так нечего не происходит и прежде чем ставить «жучек», необходимо определиться с причинами поломки предохранителя.
Их может быть несколько:
Перегорание предохранителя от короткого замыкания | Самая банальная и распространенная причина перегорания предохранителя – это короткое замыкание. В результате данного события ток резко возрастает, на что и реагирует плавкая вставка в предохранителе, перегорая. |
Перегруз так же ведет к перегоранию предохранителя | Так же достаточно частым явлением является перегорание проводника при заклинивании приводного механизма питающей цепи. В этом случае предохранитель действует как защита от перегрузки. |
Зависимость силы тока от напряжения | Следующей возможной причиной того что вам потребуется искать провод для предохранителя может быть скачек напряжения. При резком и главное длительном снижении напряжения, ток, согласно закону Ома, пропорционально возрастает. Это может привести к перегоранию предохранителя. При непродолжительных по времени скачках такое происходит крайне редко. |
Работа предохранителя на грани срабатывания | Еще один возможный вариант, это частая работа предохранителя на грани срабатывания. Когда ток, протекающий через него, близок к номинальному, проволока для предохранителей сильно нагревается. Затем остывает, и опять нагревается. Такой режим изменяет структуру металла, из-за чего предохранитель может перегореть при значительно более низких значениях тока. |
Наиболее частые причины перегорания предохранителей в процентном соотношении | Именно для исключения таких случаев качественные предохранители выпускают из максимально чистых металлов. У них изменение структуры при частых перепадах температур минимизировано. |
Выбор диаметра проволоки и ремонт предохранителя
Ну, а теперь давайте перейдет к основному вопросу нашей статьи – выбору диаметра и непосредственно ремонту. Начнем с первого.
Выбор диаметра проводника
Диаметр проводника в предохранителях четко рассчитан. Если вы выполняете замену, то должны установить проводник такого же диаметра. Иначе ваш предохранитель не будет выполнять свою функцию по защите электрической сети.
Диаметр провода в зависимости от номинального тока предохранителя
- Сделать это можно несколькими способами. Наиболее простой взять сечение провода для предохранителя, и таблица стандартных значений позволит осуществить вам выбор. Для этого достаточно измерить диаметр провода.
Измерение диаметра провода
- Диаметр провода можно измерить с помощью штангенциркуля или даже обычной линейки. Если диаметр проволоки для предохранителя слишком мал, то измерения можно произвести следующим образом. Проволоку наматываем на любой небольшой предмет – зажигалку, карандаш, ручку.
Измерение диаметра проволоки при помощи линейки или штангенциркуля
- Желательно сделать 10-20 витков, для большей точности измерения. Витки делаем максимально плотными, для исключения пространства межу ними. Затем измеряем диаметр всех витков. Полученное значение делим на количество витков. Вот вам и диаметр провода для предохранителя.
Обратите внимание! При данном способе измерения диаметра у вас наверняка будет небольшая погрешность, связанная с недостаточной плотностью витков. Поэтому полученное число округляем для ближайшего меньшего.
- Расчет предохранителя из медной проволоки можно произвести и для значений, не указанных в таблице. Для этого нам необходимо знать требуемый ток плавкой вставки и материал проволоки.
- Для того чтобы вычислить диаметр медной проволоки для предохранителя до 7А, нам следует воспользоваться приведенной ниже формулой. В этой формуле d – рассчитываемый диаметр, Iпл – требуемый ток плавкой вставки, k – коэффициент учитывающий материал проволоки. Для меди он составляет 0,034.
На фото формула расчета диаметра провода
- Если вы хотите своими руками вычислить диаметр проволоки для вставки на номинал выше 7А, то вам следует воспользоваться формулой, приведенной ниже. В этой формуле m – коэффициент учитывающий материал проволоки. Для меди он равен 80.
Формула расчета диаметра провода
- Если толщина провода для предохранителя в результате расчета или выбора по таблице получилась таковой, какой нет в наличии. То можно добиться требуемого диаметра за счет соединения нескольких проволок разного сечения. Хотя этот вариант и несколько хуже.
Поправочные коэффициенты для формул в зависимости от материала провода
Ремонт предохранителей
Установка вместо калиброванной плавкой вставки в предохранитель проволоки в простонародье называется установкой «жучка». Любой «жучек», согласно нормам ПУЭ, недопустим, так как не всегда способен качественно защитить электроустановку.
Тем не менее к такому способу ремонта предохранителей прибегают достаточно часто. Особенно когда под рукой нет запасного предохранителя.
- Установка «жучка» вместо предохранителя зависит от его типа. Если это трубчатый предохранитель на большой номинальный ток, то такие изделия обычно имеют разборную конструкцию как на видео.
Съёмные плавкие вставки
- То есть, предохранитель можно раскрутить. Изъять перегоревшую плавкую вставку и вместо нее установить предохранитель из медного провода.
- С изделиями меньших номиналов все немного сложнее. Обычно они изготавливаются неразборными, в связи с чем придётся повозиться.
Ремонт трубчатого предохранителя
- Если перед вами трубчатый предохранитель стеклянного или керамического типа, то они обычно имеют металлические оконцовки. Для установки «жучка» их необходимо просверлить с двух сторон и в полученную полость вставить наш проводник. Отверстие вместе с проводником желательно затем запаять.
- С ножевыми предохранителями выполнить ремонт своими руками несколько сложнее. Тут просверлить отверстие не получится, так как крепить провод необходимо к ножам, которые скрыты под корпусом. В этом случае сечение провода предохранителя на 10 А или другого номинала крепят непосредственно на ножи перед корпусом. А затем устанавливают предохранитель.
«Жучок» на ножевой предохранитель
Обратите внимание! Такой способ намного опаснее. Так как при перегорании провода возможно его разбрызгивание по соседнему оборудованию. К пожару это может и не привести, но повредить оборудование может.
Расплавленные брызги металла на корпусе предохранителя
- Именно, исходя из этих причин, наша инструкция не советует наматывать проволоку непосредственно на контакты-держатели предохранителей. Это же касается намотки провода поверху корпуса трубчатого предохранителя.
Установка «жучка» поверх предохранителя
- Отдельный вопрос — предохранители с наполнителем. Наполнитель необходим для более быстрого погасания электрической дуги. Обычно такие изделия имеют разборную конструкцию и для них необходима такая же толщина проволоки для предохранителя, как и для других трубчатых изделий. Песок же, который находится внутри изделия, сначала ссыпаем, а затем опять засыпаем в предохранитель.
Вывод
Диаметр провода для предохранителей зависит от номинального тока изделия и от материала используемого провода. Подобрать или рассчитать этот диаметр не так уж сложно. Но такая починка является лишь временной мерой.
ПУЭ не зря требует использования лишь калиброванных вставок, а что касается неразборных предохранителей с небольшим номинальным током, то их цена не столь высока, чтобы рисковать дорогостоящим оборудованием. Поэтому при первой возможности обязательно замените «жучок» на нормальный предохранитель или калиброванную вставку.
elektrik-a.su
Подбор предохранителя по сечению кабеля
Бац, бух и хорошо, что не пожар… Выясняет, что всего лишь сгорел предохранитель. Здесь же можно взять, да и не мучиться,- впаять что-то серьезное, то есть провод потолще. Однако сами понимаете, что позже, вместо вот этого провода – предохранителя, теперь может сгореть нечто более существенное. Тогда ремонт не обойдется так легко. Вначале придется искать серьезную поломку, а затем еще покупать более дорогостоящую деталь и менять ее. Поэтому есть все же смысл подобрать медную проволоку такого диаметра, чтобы она заменила сгоревший предохранитель. То есть необходимо понять, какая существует зависимость между диаметром, сечением медного провода и максимальным током, когда он перегорает. Здесь важно заметить, что это не номинальный ток, а именно максимальный! Ведь при этом токе предохранитель должен срабатывать, то есть перегорать, а не работать без проблем. О подборе медного провода для проводки писал уже в другой статье, в этой же статье именно о критическом токе, когда проволока будет перегорать и работать как предохранитель.
Как определить номинал предохранителя по корпусу и на плате
Прежде чем поменять что-то испортившееся, необходимо понять, что же все-таки испортилось. В нашем случае перегорело. Надеяться здесь стоит только на надписи на самой плате или на предохранителе, ибо другие методы узнать какой же это был номинал предохранителя весьма зыбки и безосновательны. Ведь исправный предохранитель ничего и не покажет как нулевое сопротивление, а неисправный обрыв. При этом не отдавать же его на анализ в лабораторию, дабы узнать какой это был материал. Смотрим примеры обозначения предохранителей на плате и SMD элементов. Кстати, иногда вместо предохранителя могут использовать даже резистор.
Расчет и подбор медной проволоки под плавкий предохранитель
Ну хорошо, с номиналом разобрались, теперь бы подобрать такую проволоку, которая могла бы заменить сгоревший предохранитель. Этот вариант приоритетен в тех случаях, когда просто нет под замену аналогичного плавкого предохранителя.
Для того чтобы подобрать проволоку нужного диаметра, необходимо обратиться к форме ниже. В этом случае вы сможете сориентироваться с тем током и диаметром проволоки, в зависимости от материала, что пойдет именно вам.
Ток защиты предохранителя, Ампер | 0,25 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 7.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Диаметр проволоки, мм | Медной | 0.02 | 0.03 | 0.05 | 0.09 | 0.11 | 0.16 | 0.20 | 0.25 | 0.33 | 0.40 | 0.46 | 0.52 | 0.58 | 0.63 | 0.68 |
Алюминиевой | — | — | 0.07 | 0.10 | 0.14 | 0.19 | 0.25 | 0.30 | 0.40 | 0.48 | 0.56 | 0.64 | 0.70 | 0.77 | 0.83 | |
Стальной | — | — | 0.32 | 0.20 | 0.25 | 0.35 | 0.45 | 0.55 | 0.72 | 0.87 | 1.00 | 1.15 | 1.26 | 1.38 | 1.50 | |
Оловянной | — | — | 0.18 | 0.28 | 0.38 | 0.53 | 0.66 | 0.85 | 1.02 | 1.33 | 1.56 | 1.77 | 1.95 | 2.14 | 2.30 |
Однако это все справочные материалы. А вот для того чтобы сделать подбор проволоки универсальным, можно воспользоваться формулой.
где
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.
Обратите внимание, что она верна для меди! Если у вас нет такого диаметра, то придется собирать проводник из нескольких меньших. Здесь надо понимать, что каждый из проводников будет работать параллельно, а значит ток будет падать соизмеримо количеству взятых проводников. Чтобы было легче прикинуть ток, диаметр и количество проводников, можно воспользоваться калькулятором.
Онлайн калькулятор для расчета диаметра медной проволоки в зависимости от тока | |
---|---|
Введите величину максимального тока, A: |
Теперь же пару слов о типовых номиналах предохранителей и случае, если номинал предохранителя первоначально не удалось установить.
Номиналы предохранителей ориентировочные
Номинал предохранителя на микроволновке порядка 12 А (2 Квт)
Номинал предохранителя в блоке питания компьютера 400 Вт – 2,5 А, 600 Вт-4, 800 Вт – 5 А.
В целом примерно рассчитать предохранитель можно по мощности потребляемого устройства. То есть мощность делим на напряжение и получаем ток. Именно этот ток с небольшим запасом и станет номиналом нашего предохранителя.
Надо понимать, что даже предохранитель для защиты имеет небольшой запас по мощности порядка 10 процентов. Это связано с пусковыми индукционными токами при прохождении через индуктивность и при зарядке конденсаторов большой емкости.
В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.
Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей
Таблица 1 – Технические характеристики двигателей 4АМ
Обозначение на схеме | Тип двигателя | Номинальная мощность Р, кВт | КПД η,% | Коэффициент мощности, cos φ | Iп/Iн |
---|---|---|---|---|---|
1Д | 4АМ112М2 | 7,5 | 87,5 | 0,88 | 7,5 |
2Д | 4АМ100L2 | 5,5 | 87,5 | 0,91 | 7,5 |
3Д | 4АМ160S2 | 15 | 88 | 0,91 | 7,5 |
4Д | 4АМ90L2 | 3 | 84,5 | 0,88 | 6,5 |
5Д | 4АМ180S2 | 15 | 88 | 0,91 | 7,5 |
1. Определяем номинальный ток для двигателя 1Д:
2. Определяем пусковой ток для двигателя 1Д:
3. Определяем номинальный ток плавкой вставки предохранителя FU2:
Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;
где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».
Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.
Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.
Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.
Обозначение на схеме | Тип двигателя | Ном.ток, А | Пусковой ток, А | Номинальный ток плавкой вставки, А | Ном. ток предохранит., А | |
---|---|---|---|---|---|---|
Расчетный | Выбранный | |||||
1Д | 4АМ112М2 | 14,82 | 111,15 | 44,46 | 50 | 50 |
2Д | 4АМ100L2 | 10,5 | 78,8 | 31,52 | 40 | 40 |
3Д | 4АМ160S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4Д | 4АМ90L2 | 6,14 | 39,9 | 15,96 | 20 | 20 |
5Д | 4АМ180S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4. Выбираем плавкую вставку предохранителя FU1.
4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:
4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.
Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.
Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.
Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».
Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.
Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.
Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.
Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).
Таблица 4 – Результаты расчетов
Обозначение на схеме | Номинальный ток плавкой вставки, А | Iк.з.(3), А | Iк.з.(1), А | Максимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, A | Примечание |
---|---|---|---|---|---|
FU1 | 125 | 2468 | — | — | |
FU2 | 50 | — | 326 | 281 | Условие выполняется |
FU3 | 40 | — | 222 | 195 | Условие выполняется |
FU4 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
FU5 | 20 | — | 122 | 86 | Условие выполняется |
FU6 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.
Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).
Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.
Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).
Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.
Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.
Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды
На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).
Повторно использовать плавкие вставки можно, но осторожно…
Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.
Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.
В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.
Поистине универсальное приспособление
Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.
Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t
+70˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.
Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.
Как правильно выбрать предохранитель
Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.
Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:
Inom = Pmax / U
- I nom – номинальный ток защиты, A.
- P max – максимальная мощность, W.
- U – напряжение питания, V.
Хотя лучше пользоваться специально созданными для этой цели таблицами.
Приведем некоторые данные из них:
- Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
- 50W – 0,25A.
- 100W – 0,5A.
- 150W – 1A.
- 250W – 2A.
- 500W – 3A.
- 800W – 4A.
- 1kW – 5A.
- 1,2kW – 6A.
- 1,6kW – 8A.
- 2kW – 10A.
- 2,5kW – 12A.
- 3kW – 15A.
- 4kW – 20A.
- 6kW – 30A.
- 8kW – 40A.
- 10kW – 50A.
Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.
Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.
Кулибиным на заметку
При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.
Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.
Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.
Обратимся к справочнику:
- Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
- 2A – 0,09 мм – 0,10 мм.
- 3A – 0,11мм – 0,14 мм.
- 5A – 0,16 мм – 0,19 мм.
- 7A – 0,20 мм – 0,25 мм.
- 10A – 0,25 мм – 0,30 мм.
- 15A – 0,33 мм – 0,40 мм.
- 20A – 0,40 мм – 0,48 мм.
- 25A – 0,46 мм – 0,56 мм.
- 30A – 0,52 мм – 0,64 мм.
- 35A – 0,58 мм – 0,70 мм.
- 40A – 0.63 мм – 0,77 мм.
- 45A – 0,68 мм – 0,83 мм.
- 50A – 0,73 мм – 0,89 мм.
Таким образом, данная проволока сгодится для предохранителя на 30A.
Имеется 3 способа ремонта трубчатого предохранителя:
- Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и
automotogid.ru
Выбор предохранителя по сечению кабеля
Задача 10.От трансформаторной подстанции с номинальным напряжением на низкой стороне 380/220В проложена электрическая сеть на строительную площадку (рис.3). Электродвигатели, указанные на схеме и в таблице 2 – короткозамкнутые, асинхронные, осветительная нагрузка – симметричная. Сеть предполагается выполнить:
1) от шин ТП до щитка РЩ-1 четырёхжильным кабелем с медными жилами, проложенным по стене.
2) от щитка РЩ-1 до щитка РЩ-2 медным изолированным проводом в газовых трубах;
3) все остальные сети – изолированным медным проводом на роликах по стенам (открытая проводка).
Нагрузка осветительной линии 1 составляет 20кВт, линии 2 – 30 кВт. Требуется подобрать плавкие вставки предохранителей и выбрать необходимые сечения проводов и кабелей. При расчёте необходимо учесть, что электродвигатель 1 может быть перегружен.
Таблица 2. Характеристики асинхронных короткозамкнутых электродвигателей.
Характеристики | Номер электродвигателя | ||
Мощность Pн, кВт Кратность пускового тока К К.П.Д. h Коэффициент мощности Сosj Коэффициент загрузки Кз | 7,00 5,50 0,82 0,90 1,00 | 14,00 5,00 0,85 0,88 0,80 | 10,00 5,50 0,87 0,92 0,90 |
Электродвигатель 1. Находим номинальный ток двигателя:
Определяем ток плавкой вставки:
Принимаем стандартную плавкую вставку на ток Iп.вст=32А. (см. Приложение 3). Ввиду того что электродвигатель 1 подвержен перегрузкам, проводка к нему должна быть защищена от токов перегрузки. Тогда Iдоп ³ 1,25×Iп.вст = 40А. По Приложению 1 выбираем сечение медного провода марки ПР: S=6мм 2 , Iдоп=41А.
Проверяем на наличие защиты от ТКЗ:
.
Электродвигатель 2. Находим номинальный ток двигателя и ток плавкой вставки:
С учётом коэффициента загрузки Iпотр=0,8×IN=0,8×28,3=22,6А.
Ток ближайшей стандартной плавкой вставки Iп.вст.=60А.
По потребляемому току Iпотр. (см. таблицу Приложения 1) определяем сечение медных изолированных проводов S=2,5мм 2 . Для этого сечения Iдоп=30А.
Проверяем выбранное сечение на защиту от токов короткого замыкания:
; .
Электродвигатель 3. Определяем номинальный ток, потребляемый ток и ток плавкой вставки:
Выбираем S=1,5мм 2 , Iдоп=23А.
Проверяем провод на защиту от ТКЗ: 60/23 2 ; Iдоп=41А.
Проверка на защиту от ТКЗ даёт значение 35/41 2 , а нейтральный провод сечением 2,5 мм 2 .
Осветительная линия 2. Имеем следующие значения параметров:
Проверка на защиту от токов короткого замыкания даёт значение 60/50 2 , а нейтральный провод сечением 4мм 2 .
Бац, бух и хорошо, что не пожар… Выясняет, что всего лишь сгорел предохранитель. Здесь же можно взять, да и не мучиться,- впаять что-то серьезное, то есть провод потолще. Однако сами понимаете, что позже, вместо вот этого провода – предохранителя, теперь может сгореть нечто более существенное. Тогда ремонт не обойдется так легко. Вначале придется искать серьезную поломку, а затем еще покупать более дорогостоящую деталь и менять ее. Поэтому есть все же смысл подобрать медную проволоку такого диаметра, чтобы она заменила сгоревший предохранитель. То есть необходимо понять, какая существует зависимость между диаметром, сечением медного провода и максимальным током, когда он перегорает. Здесь важно заметить, что это не номинальный ток, а именно максимальный! Ведь при этом токе предохранитель должен срабатывать, то есть перегорать, а не работать без проблем. О подборе медного провода для проводки писал уже в другой статье, в этой же статье именно о критическом токе, когда проволока будет перегорать и работать как предохранитель.
Как определить номинал предохранителя по корпусу и на плате
Прежде чем поменять что-то испортившееся, необходимо понять, что же все-таки испортилось. В нашем случае перегорело. Надеяться здесь стоит только на надписи на самой плате или на предохранителе, ибо другие методы узнать какой же это был номинал предохранителя весьма зыбки и безосновательны. Ведь исправный предохранитель ничего и не покажет как нулевое сопротивление, а неисправный обрыв. При этом не отдавать же его на анализ в лабораторию, дабы узнать какой это был материал. Смотрим примеры обозначения предохранителей на плате и SMD элементов. Кстати, иногда вместо предохранителя могут использовать даже резистор.
Расчет и подбор медной проволоки под плавкий предохранитель
Ну хорошо, с номиналом разобрались, теперь бы подобрать такую проволоку, которая могла бы заменить сгоревший предохранитель. Этот вариант приоритетен в тех случаях, когда просто нет под замену аналогичного плавкого предохранителя.
Для того чтобы подобрать проволоку нужного диаметра, необходимо обратиться к форме ниже. В этом случае вы сможете сориентироваться с тем током и диаметром проволоки, в зависимости от материала, что пойдет именно вам.
Ток защиты предохранителя, Ампер | 0,25 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 7.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Диаметр проволоки, мм | Медной | 0.02 | 0.03 | 0.05 | 0.09 | 0.11 | 0.16 | 0.20 | 0.25 | 0.33 | 0.40 | 0.46 | 0.52 | 0.58 | 0.63 | 0.68 |
Алюминиевой | — | — | 0.07 | 0.10 | 0.14 | 0.19 | 0.25 | 0.30 | 0.40 | 0.48 | 0.56 | 0.64 | 0.70 | 0.77 | 0.83 | |
Стальной | — | — | 0.32 | 0.20 | 0.25 | 0.35 | 0.45 | 0.55 | 0.72 | 0.87 | 1.00 | 1.15 | 1.26 | 1.38 | 1.50 | |
Оловянной | — | — | 0.18 | 0.28 | 0.38 | 0.53 | 0.66 | 0.85 | 1.02 | 1.33 | 1.56 | 1.77 | 1.95 | 2.14 | 2.30 |
Однако это все справочные материалы. А вот для того чтобы сделать подбор проволоки универсальным, можно воспользоваться формулой.
где
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.
Обратите внимание, что она верна для меди! Если у вас нет такого диаметра, то придется собирать проводник из нескольких меньших. Здесь надо понимать, что каждый из проводников будет работать параллельно, а значит ток будет падать соизмеримо количеству взятых проводников. Чтобы было легче прикинуть ток, диаметр и количество проводников, можно воспользоваться калькулятором.
Онлайн калькулятор для расчета диаметра медной проволоки в зависимости от тока | |
---|---|
Введите величину максимального тока, A: |
Теперь же пару слов о типовых номиналах предохранителей и случае, если номинал предохранителя первоначально не удалось установить.
Номиналы предохранителей ориентировочные
Номинал предохранителя на микроволновке порядка 12 А (2 Квт)
Номинал предохранителя в блоке питания компьютера 400 Вт – 2,5 А, 600 Вт-4, 800 Вт – 5 А.
В целом примерно рассчитать предохранитель можно по мощности потребляемого устройства. То есть мощность делим на напряжение и получаем ток. Именно этот ток с небольшим запасом и станет номиналом нашего предохранителя.
Надо понимать, что даже предохранитель для защиты имеет небольшой запас по мощности порядка 10 процентов. Это связано с пусковыми индукционными токами при прохождении через индуктивность и при зарядке конденсаторов большой емкости.
Фильтр
Опции темы
Поиск по теме
Отображение
- Линейный вид
- Комбинированный вид
- Древовидный вид
расчёт силового кабеля и предохранителя
У многих возникают вопросы по подбору силового кабеля и предохранителя под свою музыкальную систему. Выкладываю таблицу для проведения таких расчётов и некоторую полезную информацию.
Данные в колонке «Мощность» приведены для среднего усилителя с КПД 50%. При использовании усилителей с другим КПД обращайте внимание только на силу тока.
Если падение напряжения превышает указанное в таблице, пользуйтесь следующей формулой:
L = (0,5 x 57 x A) / (2,5 x I)
где: L= длина кабеля, м
0,5 = падение напряжения
А = площадь сечения кабеля, мм2
57 = коэффициент для медного кабеля
I = сила тока, А при эффективном сопротивлении 4 Ом
2,5 = коэффициент потерь
Для начала хочу сказать, что если в цепи питания усилителей проложены два кабеля от аккумулятора, питающий (+) и заземление (-), и при этом размер кабеля рассчитан правильно (с учётом таблицы приведённой выше), это уже большой плюс. Замечу, что + и — должны быть одинакового сечения.
1 Шаг. Рассчитываем размер кабеля исходя из требования – максимальное падение напряжения питания не должно превышать 0,5 Вольт (международное требование), будем считать, что все сделано правильно, размер кабеля 2 GA при длине 4,5 метра нас устраивает. Падение напряжение при максимальной нагрузке не превысит 0,5 Вольт.
2 Шаг. Расстояние от плюсовой клеммы аккумулятора до потребителя превышает 40 сантиметров, факт, поэтому устанавливаем защитный предохранитель, естественно не далее 40 сантиметров от аккумуляторной клеммы, а лучше устанавливать главный предохранитель возможно ближе к плюсовой клемме аккумулятора. Его назначение, защитить питающий кабель от возгорания, например в случае аварии автомобиля (ДТП). Повреждение автомобиля может быть пустяковым, но пережатый питающий кабель приведет к короткому замыканию, возгоранию и уничтожению автомобиля. Номинал главного предохранителя определяется МАКСИМАЛЬНО возможным номиналом предохранителя для данного сечения кабеля. Для кабеля сечением 2 GA МАКСИМАЛЬНО возможный номинал предохранителя составляет 150 Ампер. А можно поставить предохранитель номиналом, допустим 100 Ампер, 80Ампер или 50 Ампер? До можно! Можно поставить любой предохранитель, при одном условии, что он НЕ БУДЕТ превышать номинал 150 Ампер (иначе смысл этого предохранителя пропадает). Общий максимальный ток, который может быть потреблен к примеру двумя усилителями (моноблок 80А и двухканальник 30А), составляет 110 Ампер, так что если поставить главный предохранитель номиналом 100 Ампер, существует вероятность того, что он будет срабатывать на пиках максимальной громкости, хотя правила не запрещают поставить предохранитель 100 Ампер. Исходя из вышеизложенного, я рекомендую выбрать предохранитель номиналом 150 Ампер, правила разрешают это делать, в случае нештатной ситуации он сработает.
3 Шаг. Питающий кабель доходит до дистрибьютора, здесь питание делится на две линии ( в некоторых случаях и больше). Первая питает моноблок (с внутренней защитой 40 х 2 = 80 Ампер). Вторая питает двухканальный усилитель (с внутренней защитой 30 Ампер). Для чего нужны предохранители внутри усилителя? Для того, чтобы защитить усилитель от перегрузки и для того чтобы защитить автомобиль от возгорания в случае короткого замыкания внутри усилителя. Выбор размера кабеля определяется максимальным падением напряжения на клеммах усилителя, чем меньше будет падение напряжения на питающих клеммах усилителя, тем лучше. Для питания моноблока возможен выбор двух размеров кабеля – 2 GA и 4 GA, если конечно он проходит по допуску падения напряжения, с большой долей вероятности (небольшая длинна кабеля от дистрибьютора до усилителя) можно сказать что пройдет. По правилам ЕММА, МАКСИМАЛЬНЫЙ номинал предохранителя определяется сечением кабеля. Если мы выбрали от дистрибьютора до усилителя кабель размером 2 GA, МАКСИМАЛЬНЫЙ номинал предохранителя не может превышать 150 Ампер – мы защищаем кабель на случай короткого замыкания, а не усилитель. А можно выбрать номинал предохранителя, например 80 Ампер? Без проблем, вниз можно идти куда угодно, хоть до 1 ампера, но логика подсказывает, что смысла ставить предохранитель меньше 80 ампер нет, потому, что в цепи усилителя стоит предохранитель 80 Ампер. Если выберем питающий кабель от дистрибьютора до усилителя 4 GA, МАКСИМАЛЬНЫЙ номинал предохранителя не должен превышать 100 Ампер, меньше, пожалуйста, логика подсказывает, что смысла ставить предохранитель меньше 80 ампер нет, потому, что в цепи усилителя стоит предохранитель 80 Ампер. А вот кабель размером 8 GA, использовать нельзя, даже если от дистрибьютора до усилителя 10 сантиметров, согласно правилам при использовании кабеля размером 8 GA, МАКСИМАЛЬНЫЙ номинал предохранителя не должен превышать 50 Ампер. Это означает, что если нас угораздит проложить кабель размером 8 GA, необходимо в дистрибьюторе установить предохранитель НЕ БОЛЕЕ 50 Ампер. Судьи к такой инсталляции отнесутся спокойно и даже не снизят оценку, формально все верно, но если чуть добавить драйва, будет сгорать предохранитель в дистрибьюторе. Правила IASCA, пошли другим путем. Размер кабеля определяется по таблице исходя из возможного падения напряжения, а номинал предохранителя определяется из ПРИНЦИПА, что номинал предохранителя не может превышать номинал предохранителя более чем на 20%, для нашего случая максимальный номинал предохранителя не может быть более 96 Ампер. Такого номинала нет, поэтому идем вниз до ближайшего значения 80 Ампер. Для двух соревновательных форматов устроит выбор размера кабеля (от дистрибьютора до усилителя) 2 GA или 4 GA и предохранитель 80 ампер. Выбор второго предохранителя определяется аналогично.
Будут вопросы, пишите в личку, буду дополнять пост.
Последний раз редактировалось Eterskov; 08.01.2010 в 14:58 .
litezona.ru