Что такое активная и реактивная нагрузка: Понятия активной и реактивной нагрузки, использование формул

Содержание

Типы электрических потребителей. Активная и реактивная нагрузка, активно-индуктивная и активно-емкостная, в чем различия?

Какие типы электрических потребителей бывают? Активная и реактивная нагрузка, активно-индуктивная и активно-емкостная, в чем различия?

В повседневной жизни и общениях с клиентами интернет-магазина Электрокапризам-НЕТ! мы выясняем множество технических вопросов и максимально точно подбираем оборудование под  инженерные задачи. Имея большой опыт работ и выбора технических решений  специалистами компании НТС-ГРУПП (ТМ Электрокапризам-НЕТ!) была собрана масса полезной информации, которую мы попытались структурировать и  в сжатом виде донести нашим клиентам путем публикации на сайте.  Ниже приведена своеобразная  классификация типа нагрузок с небольшими комментариями, а в следующей статье будут описаны особенности выбора мощности, запаса мощности и варианты использования источников бесперебойного питания, стабилизаторов напряжения и электрогенераторов в сетях с несбалансированным распределением потребителей, с различными видами активной и реактивной нагрузкок и др.

Применительно к выбору оборудования классифицируем типы нагрузок следующим образом

1. По типу электрического потребления нагрузки делятся на:

АКТИВНУЮ:  — Активная (или еще известную, как резистивная) нагрузка. В этом случае закон Ома выполняется в каждый момент времени и аналогичен закону Ома для схем постоянного тока. В качестве примеров : электрическая лампочка накаливания, нагревательный элемент (ТЭН), электрическая плита, бойлер и т.п.

РЕАКТИВНУЮ, которая также разделяется на такие:

—  Индуктивная нагрузка — нагрузка, через которую ток отстает от напряжения и нагрузка потребляет реактивную мощность. Примеры: асинхронные двигатели, электромагниты, катушки дросселей, трансформаторы, выпрямители, преобразователи построенные на тиристорах. Индуктивная (реактивная) нагрузка преобразует в течение одной половины полупериода энергию электрического тока в магнитное поле, а течении следующей половины преобразует энергию магнитного поля в электрический ток. При этом в индуктивной нагрузке кривая тока отстаёт от кривой напряжения на ту же половину полупериода. Примером для данного вида нагрузок может быть дроссель или катушка индуктивности.

—  Ёмкостная (реактивная) нагрузка преобразует в течение одной половины полупериода энергию электрического тока в электрическое поле, а течении следующей половины преобразует энергию электрического поля в электрический ток. При этом в ёмкостной нагрузке кривая тока опережает кривую напряжения на ту же половину полупериода. Примером данного вида нагрузок может быть конденсатор.

На практике  чистые реактивные нагрузки в электротехнике не встречаются. Вся электротехника работает с коэфициентом полезного действия ниже 100% вследствие рассеяния части энергии в виде тепловых потерь, потерь при излучении и др. побочных явлений. Таким образом в практической электротехнике применяется понятие активно-реактивной нагрузки. Активно-реактивная нагрузка также подразделяется на две: активно-индуктивная и активно-емкостная.

Активно-индуктивная нагрузка может рассматриваться как последовательное или параллельное соединение активного сопротивления и идеальной индуктивности. Примером таких нагрузок может быть обмоточный электромагнитный трансформатор, электродвигатель, электромагнитное пускорегулирующее устройство для люминесцентных ламп, катушка зажигания в автомобиле. Для этого вида нагрузок характерен бросок напряжения в момент размыкания электрической цепи.

Активно-ёмкостная нагрузка может рассматриваться как последовательное или параллельное соединение активного сопротивления и идеальной ёмкости. Примером таких нагрузок может быть конденсатор, электронные блоки питания галогенных или люминесцентных ламп. Для этих нагрузок характерен бросок тока в момент замыкания электрической цепи, особенно если он произошёл в тот момент, когда напряжение в сети максимально, или близко к максимальному.

При протекании тока через активно-реактивную нагрузку часть тока будет протекать через прибор, не производя никакой полезной работы. При этом максимумы и минимумы тока и напряжения будут достигаться в разное время, а кривые изменения по времени тока и напряжения будут не совпадать – оставаясь, при этом, периодическими функциями. Происходит сдвиг тока и напряжения по фазе.  Для обозначения зависимости такого сдвига применяется понятие Косинус угла между током и напряжением, и обозначается как cos(ϕ). Этот параметр является очень важным в электротехнике, которым не стоит пренебрегать при расчетах и выборе стабилизаторов напряжения, источников бесперебойного питания и электрогенераторов.

2. Фазность электропотребителей:

— однофазные –потребители рассчитанные на электропитание от 220/230В по схеме фаза-ноль-земля.

— трехфазные – потребители для которых необходимо подать напряжение 380В/400В в схеме с нейтралью и землей.

3. По способу распределения нагрузки (для трехфазных схем)

— Сбалансированные – сбалансированными считают такое распределение постребителей, когда на каждой фазе в трехфазной схеме мощности нагрузок распределены равномерно (с перекосом не более +/-20%). В качестве примера можно привести коттедж с трехфазным вводом электроснабжения, в котором при проектировании и монтаже электрических потребителей  15 кВт мощности равномерно распределили  по 5 кВт на каждую  фазу. Еще одним примером можно выделить промышленный цех, в котором преобладают трехфазные потребители и таким образом все три фазы будут нагружены равномерно.

— Несбалансированные – характеризуются как хаотично-нагруженные фазы, где нагруженность фаз может отличаться на 100% между собой. Примером может служить частный трехэтажный дом в котором на каждый этаж отводится одна фаза. Как показывает практика первый этаж дома (т.е. одна из фаз) обычно перегружена в силу того, что на первом этаже размещаются:  кухня, бойлерная и комната отдыха, а на остальных этажах спальни с бытовой техникой. В итоге одна фаза может быть  нагружена на 100%, а другие используются редко или не сильно нагружены. 

Что такое активная и реактивная электроэнергия на счетчике

С одной стороны, работу тока можно легко посчитать, зная силу тока, напряжение и сопротивление нагрузки. До боли знакомые формулы из курса школьной физики выглядят так.

Рис. 1. Формулы

 

И здесь нет ни слова про реактивную составляющую.

С другой стороны, ряд физических процессов на самом деле накладывают свои особенности на эти расчёты. Речь идёт о реактивной энергии. Проблемы с пониманием реактивных процессов приходят вместе со счетами за электроэнергию в крупных предприятиях, ведь в бытовых сетях мы платим только за активную энергию (размеры потребления реактивной энергии настолько малы, что ими просто пренебрегают).

 

Определения

Чтобы понять суть физических процессов начнём с определений.

Активная электроэнергия – это полностью преобразуемая энергия, поступающая в цепь от источника питания. Преобразование может происходить в тепло или в другой вид энергии, но суть остаётся одна – принятая энергия не возвращается обратно в источник.

Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной.

Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока. То есть ранее полученный и учтённый счётчиком ток, не совершив работы, возвращается. Помимо прочего ток совершает скачок (на короткое время нагрузка сильно возрастает).

Тут без примеров сложно понять процесс.

Самый наглядный – работа конденсатора. Сам по себе конденсатор не преобразует электроэнергию в полезную работу, он её накапливает и отдаёт. Конечно, если часть энергии всё-таки уходит на нагрев элемента, то её можно считать активной. Реактивная же выглядит так:

1.При питании ёмкости переменным напряжением, вместе с увеличением U растёт и заряд конденсатора.

2.В момент начала падения напряжения (второй четвертьпериод на синусоиде) напряжение на конденсаторе оказывается выше, чем у источника. И поэтому конденсатор начинает разряжаться, отдавая энергию обратно в цепь питания (ток течёт в обратном направлении).

3.В следующих двух четвертьпериодах ситуация полностью повторяется, то только напряжение меняется на противоположное.

Ввиду того, что сам конденсатор работы не совершает, принимаемое напряжение достигает своего максимального амплитудного значения (то есть в √2=1,414 раза больше действующего 220В, или 220·1,414=311В).

При работе с индуктивными элементами (катушки, трансформаторы, электродвигатели и т.п.) ситуация аналогична. График показателей можно увидеть на изображении ниже.

Рис. 2. Графики показателей

 

Ввиду того, что современные бытовые приборы состоят из множества разных элементов с «реактивным» эффектом питания и без него, то реактивный ток, протекая в обратном направлении, совершает вполне реальную работу по нагреву активных элементов. Таким образом, реактивная мощность цепи – по сути выражается в побочных потерях и скачках напряжения.

Очень сложно отделить один показатель мощности от другого при расчётах. А система качественного и эффективного учёта стоит дорого, что, собственно, и привело к отказу от измерения объёма потребления реактивных токов в быту.

В крупных коммерческих объектах наоборот, объем потребления реактивной энергии намного больше (из-за обилия силовой техники, снабжаемой мощными электродвигателями, трансформаторами и другими элементами, порождающими реактивный ток), поэтому для них вводится раздельный учёт.

 

Как считается активная и реактивная электроэнергия

Большинство производителей счётчиков электроэнергии для предприятий реализуют простой алгоритм.

Q=(S— P2)1/2

Здесь из полной мощности S отнимается активная мощность P (в облегчённом для понимания виде).

Таким образом, производителю не обязательно организовывать полностью раздельный учёт.

 

Что такое cosϕ (косинус фи)

Ввиду того, что большой объем фактически паразитных реактивных токов нагружает сети поставщика электроэнергии, последние стимулируют потребителей снижать реактивную мощность.

Для числового выражения соотношения активной и реактивной мощностей применяется специальный коэффициент – косинус фи.

Вычисляется он по формуле.

cosϕ = Pакт/Pполн

Где полная мощность – это сумма активной и реактивной.

Чем ближе показатель к единице, тем меньше паразитной нагрузки на сеть.

Такой же коэффициент указывается на шильдиках электроинструмента, оснащённого двигателями. В этом случае cosϕ используется для оценки пиковой потребляемой мощности. Например, номинальная мощность прибора составляет 600 Вт, а cosϕ = 0,7 (средний показатель для подавляющего большинства электроинструмента), тогда пиковая мощность, необходимая для старта электродвигателя будет считаться как Pномин / cosϕ, = 600 Вт / 0,7 = 857 ВА (реактивная мощность выражается в вольт-амперах).

 

Применение компенсаторов реактивной мощности

Чтобы стимулировать потребителей эксплуатировать электросеть без реактивной нагрузки, поставщики электроэнергии вводят дополнительный оплачиваемый тариф на реактивную мощность, но оплату взимают только если среднемесячное потребление превысит определённый коэффициент, например, при соотношении полной и активной мощностей составит свыше 0,9, счёт на оплату реактивной мощности не выставляется.

Для того, чтобы снизить расходы, предприятия ставят специальное оборудование – компенсаторы. Они могут быть двух видов (в соответствии с принципом работы):

  • Ёмкостные;
  • Индуктивные.

Автор: RadioRadar

Соотношение активной и реактивной мощности. Активная мощность цепи переменного тока

Чтобы правильно рассчитать нагрузку потребителей по мощности необходимо знать: какие бывают приемники напряжения. Что такое активная, реактивная и линейная нагрузка? Треугольник мощностей. Что такое пусковой ток? Все это разберем по порядку.

К приемникам напряжения относятся все устройства, которые подключаются к источникам напряжения. К ним относятся: электровентилятор, электроплита, стиральная машина, компьютер, телевизор, электродвигатель, бытовой электроинструмент и другие электропотребители.
В цепях переменного тока нагрузки разделяются на активные, реактивные и нелинейные. В цепях постоянного тока деления на типы нагрузок нет.

Активная нагрузка

К устройствам с активной нагрузкой причисляются нагревательные приборы (утюги, электроплиты, лампы накаливания, электрические чайники). Подобные приборы вырабатывают тепло и свет. Они не содержат индуктивности и емкости. Активная нагрузка преобразовывает электроэнергию в свет и тепло.

Реактивная нагрузка содержит емкость и индуктивность. Данные параметры имеют качество собирать энергию, а потом отдавать ее в сеть. Примером может служить электродвигатель, электрическая мясорубка, бытовой инструмент (пылесос, кухонный комбайн). То есть, все устройства, которые содержат электродвигатели.

Треугольник мощностей

Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.

где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;

Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;

S – полная мощность используется для расчета электрических цепей.

Для расчета полной мощности применяем теорему Пифагора: S 2 =P 2 +Q 2 . Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.

Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.

Нелинейная нагрузка

Имеет особенность в том, что напряжение и ток не пропорциональны. К нелинейной нагрузке относятся телевизоры, музыкальные центры, настольные электронные часы, компьютеры и его компоненты. Сама нелинейность обусловлена тем, что данное электронное устройство использует импульсные блоки питания. Для подзарядки конденсатора, которые стоят в импульсном блоке питания, достаточно вершины синусоиды.

В остальное время энергию из сети конденсатор не потребляет. В этом случае ток имеет импульсное качество. К чему это все приводит? Это приводит к тому, что синусоида искажается. Но не все электронные устройства работают с искаженной синусоидой. Эта проблема решается за счет применения стабилизаторов двойного преобразования, где сетевое питание преобразуется в постоянное. Затем из постоянного преобразуется в переменное нужной формы и амплитуды.

Пусковой ток

При расчете необходимо учитывать и пусковые токи устройства. Например, сопротивление нити накаливания в лампочке в момент включения в 10 раз меньше, чем в рабочем режиме. Следовательно, пусковой ток этой лампочки в 10 раз больше. Через некоторое время она начнет потреблять ту мощность, которая записана в данных этой лампочки. Поэтому, при включении она перегорает за счет больших пусковых токов.

В радиоэлектронной аппаратуре пока не зарядится конденсатор в блоке питания, также образуется пусковой ток.

В электродвигателях тоже образуется пусковой ток, пока двигатель не наберет номинальные обороты.

В нагревательных приборах пусковой ток образуется, пока спираль не нагреется до дежурной температуры.

Содержание:

В электротехнике среди множества определений довольно часто используются такие понятия, как активная, реактивная и полная мощность. Эти параметры напрямую связаны с током и напряжением , когда включены какие-либо потребители. Для проведения вычислений применяются различные формулы, среди которых основной является произведение напряжения и силы тока. Прежде всего это касается постоянного напряжения. Однако в цепях переменного разделяется на несколько составляющих, отмеченных выше. Вычисление каждой из них также осуществляется с помощью формул, благодаря которым можно получить точные результаты.

Формулы активной, реактивной и полной мощности

Основной составляющей считается активная мощность. Она представляет собой величину, характеризующую процесс преобразования электрической энергии в другие виды энергии. То есть по-другому является скоростью, с какой . Именно это значение отображается на электросчетчике и оплачивается потребителями. Вычисление активной мощности выполняется по формуле : P = U x I x cosф.

В отличие от активной, которая относится к той энергии, которая непосредственно потребляется электроприборами и преобразуется в другие виды энергии — тепловую, световую, механическую и т.д., реактивная мощность является своеобразным невидимым помощником. С ее участием создаются электромагнитные поля, потребляемые электродвигателями. Прежде всего она определяет характер нагрузки, и может не только генерироваться, но и потребляться.

Расчеты реактивной мощности производятся по формуле : Q = U x I x sinф.

Полной мощностью является величина, состоящая из активной и реактивной составляющих. Именно она обеспечивает потребителям необходимое количество электроэнергии и поддерживает их в рабочем состоянии. Для ее расчетов применяется формула: S = .

Как найти активную, реактивную и полную мощность

Активная мощность относится к энергии, которая необратимо расходуется источником за единицу времени для выполнения потребителем какой-либо полезной работы. В процессе потребления, как уже было отмечено, она преобразуется в другие виды энергии.

В цепи переменного тока значение активной мощности определяется, как средний показатель мгновенной мощности за установленный период времени. Следовательно, среднее значение за этот период будет зависеть от угла сдвига фаз между током и напряжением и не будет равной нулю, при условии присутствия на данном участке цепи активного сопротивления. Последний фактор и определяет название активной мощности. Именно через активное сопротивление электроэнергия необратимо преобразуется в другие виды энергии.

При выполнении расчетов электрических цепей широко используется понятие реактивной мощности. С ее участием происходят такие процессы, как обмен энергией между источниками и реактивными элементами цепи. Данный параметр численно будет равен амплитуде, которой обладает переменная составляющая мгновенной мощности цепи.

Существует определенная зависимость реактивной мощности от знака угла ф, отображенного на рисунке. В связи с этим, она будет иметь положительное или отрицательное значение. В отличие от активной мощности, измеряемой в , реактивная мощность измеряется в вар — вольт-амперах реактивных. Итоговое значение реактивной мощности в разветвленных электрических цепях представляет собой алгебраическую сумму таких же мощностей у каждого элемента цепи с учетом их индивидуальных характеристик.

Основной составляющей полной мощности является максимально возможная активная мощность при заранее известных токе и напряжении. При этом, cosф равен 1, когда отсутствует сдвиг фаз между током и напряжением. В состав полной мощности входит и реактивная составляющая, что хорошо видно из формулы, представленной выше. Единицей измерения данного параметра служит вольт-ампер (ВА).

Специфика сети переменного тока приводит к тому, что в фиксированный момент времени синусоиды напряжения и тока на приемнике совпадают только в случае так называемой активной нагрузки, полностью переводящей ток в тепло или механическую работу. Практически это всевозможные электронагревательные приборы, лампы накаливания, в каком-то приближении электродвигатели и электромагниты под нагрузкой и звуковоспроизводящая аппаратура. Ситуация полностью меняется, если нагрузка, не создающая механической работы, обладает большой индуктивностью при малом сопротивлении. Это характерный случай электродвигателя или трансформатора на холостом ходу.

Подключение подобного потребителя к источнику постоянного тока привело бы к , здесь же ничего особенного с сетью не случится, но мгновенный ток будет отставать от мгновенного напряжения примерно на четверть периода. В случае же чисто емкостной нагрузки (если в розетку вставить конденсатор), ток на нем будет, наоборот, на ту же четверть периода опережать напряжение.

Реактивные токи

Практически такое несовпадение тока и напряжения, не производя на приемнике полезной работы, создает в проводах дополнительные, или, как принято их называть, реактивные токи, которые в особо неблагоприятных случаях могут привести к разрушительным последствиям. При меньшей величине это явление все равно требует расходовать излишний металл на более толстую проводку, повышать мощность питающих генераторов и трансформаторов электроэнергии. Поэтому экономически оправдано устранять в сети реактивную мощность всеми возможными способами. При этом следует учитывать суммарную реактивную мощность всей сети, при том, что отдельные элементы могут обладать значительными значениями реактивной мощности.

Реактивная электроэнергия

С количественной стороны влияние реактивной электроэнергии на работу сети оценивается косинусом угла потерь, который равен отношению активной мощности к полной. Полная мощность считается как векторная величина, которая зависит от сдвига фаз между током и напряжением на всех элементах сети. В отличие от активной мощности, которую, как и механическую измеряют в ваттах, полную мощность измеряют в вольт-амперах, так как эта величина присутствует только в электрической цепи. Таким образом, чем ближе косинус угла потерь к единице, тем полнее используется и мощность, вырабатываемая генератором.

Основные пути снижения реактивной мощности — взаимная компенсация сдвигов фаз, создаваемых индуктивными и емкостными приемниками и использование приемников с малым углом потерь.

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами.

Рассмотрим, сколько мощности потребляют некоторые из них:

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.


Обозначение реактивной составляющей:

Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.


Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

Q L = U L I = I 2 x L

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P 2 + Q 2 , и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: x L = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL – QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит :

  • Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  • У сигнальных и радиоустройств уменьшаются помехи;
  • На порядок уменьшаются гармоники в электрической сети.
  • В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

    Активная мощность (P)

    Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

    потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

    Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

    В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

    Формулы для активной мощности

    P = U I — в цепях постоянного тока

    P = U I cosθ — в однофазных цепях переменного тока

    P = √3 U L I L cosθ — в трёхфазных цепях переменного тока

    P = 3 U Ph I Ph cosθ

    P = √ (S 2 – Q 2) или

    P =√ (ВА 2 – вар 2) или

    Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2) или

    кВт = √ (кВА 2 – квар 2)

    Реактивная мощность (Q)

    Также её мощно было бы назвать бесполезной или безваттной мощностью.

    Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

    Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

    Реактивная мощность определяется, как

    и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

    Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

    Формулы для реактивной мощности

    Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2)

    вар =√ (ВА 2 – P 2)

    квар = √ (кВА 2 – кВт 2)

    Полная мощность (S)

    Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

    Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

    Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

    Формула для полной мощности

    Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2)

    kUA = √(kW 2 + kUAR 2)

    Следует заметить, что:

    • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
    • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
    • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

    Активная и реактивная мощность генератора

    Потребители, приобретая ДГУ, зачастую не задумываются о многих технических характеристиках оборудования. Касается это и такого понятия, как коэффициент мощности генератора. Параметр является важным, поскольку самым серьезным образом влияет на подачу электроэнергии.

    Что представляет собой мощность генератора?

    Электроприборы, подключенные к генератору, потребляют активную и реактивную мощность, которые в сумме образуют общую мощность.

    1. Активная мощность используется для работы всех приборов. Ее называют «полезной».
    2. Реактивная мощность, называемая «пустой», возникает вследствие особенности оборудования и законов физики. Мощность циркулирует между источником электроснабжения и подключенными потребителями.

    Каждый генератор имеет свой коэффициент мощности, демонстрирующий количество активной мощности от полной. При выборе ДГУ для собственных нужд важно обратить внимание на этот параметр, убедившись в том, что оборудование справится с возложенными на него задачами.

    Оптимальным коэффициентом мощности можно считать показатель 0.8. Это значит, что электроприборы получают 80% активной мощности от 100% общей мощности, вырабатываемой генератором.

    Что такое компенсация реактивной мощности?

    Чрезмерное большое количество реактивной мощности ухудшает работу всей электросети. Так, генератор потребляет слишком много топлива, быстро изнашивается и в электросети требуется задействовать провода с увеличенным сечением.

    Закажите дизельный генератор в ООО «ЭК Прометей» оформив заявку онлайн или позвонив по контактному телефону:

    +7(812) 748-27-22

    Для снижения реактивной мощности используется компенсация. Она может быть нескольких видов:

    • Индивидуальная. В данном случае задействуются конденсаторные установки для определенных потребителей.
    • Групповая. Применение общей конденсаторной установки позволяет компенсировать реактивную мощность сразу для нескольких приборов.
    • Централизованная. Это наиболее удобный способ компенсации, применяемый для широкого диапазона изменений мощности.

    Главное преимущество компенсации реактивной мощности в том, что таким образом удается значительно сократить расходы топлива. Также это позволяет снизить нагрузку на оборудование.

    Способ компенсации мощности в электросети следует подбирать грамотно. В некоторых случаях может потребоваться комплексное решение, включающее улучшение тока при помощи фильтров гармоник.

    Особенно важная компенсация реактивной мощности на промышленных предприятиях. Она необходима для эффективного использования существующего электроснабжения.

    Что такое активная и реактивная нагрузки?

    Что такое активная и реактивная нагрузки?

    Активная нагрузка преобразовывает электроэнергию в свет и тепло. Реактивная нагрузка содержит емкость и индуктивность. Данные параметры имеют качество собирать энергию, а потом отдавать ее в сеть. Примером может служить электродвигатель, электрическая мясорубка, бытовой инструмент (пылесос, кухонный комбайн).

    Как узнать коэффициент мощности?

    Определение коэффициента мощности PF = P (кВт)/S (кВА), где: P = активная мощность; S = полная мощность. Коэффициент мощности нагрузки, которая может являться электроприемником (ЭП) или совокупностью таких ЭП (например, вся система), задается отношением P/S, т.

    Зачем нужно повышать коэффициент мощности?

    Повышение коэффициента мощности позволяет уменьшить номинальные значения мощности трансформаторов, распределительных устройств, кабелей, а также сократить потери мощности и ограничить потери напряжения.

    Что такое тангенс в энергетике?

    Тангенс фи – характеристика потерь Рассмотрев треугольник сопротивлений, можно понять смысл термина «тангенс фи». Это отношение между реактивной и активной составляющими нагрузки. … Тангенс угла потерь также используется в электроэнергетике, но более привычным является показатель cos(φ).

    Как рассчитать TG фи?

    Как найти тангенс фи, если известен косинус фи формула: tg φ = (√(1-cos²φ))/cos φ

    Что такое полная мощность?

    Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. … Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

    Что такое полная мощность трансформатора?

    Полная мощность (S) Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной. Комбинация реактивной и активной мощностей называется полной мощностью.

    Активная и реактивная мощность различия. Что такое активная, реактивная и полная мощность — простое объяснение. Выражение для активной мощности

    ЧТО ТАКОЕ ПОЛНАЯ, АКТИВНАЯ И РЕАКТИВНАЯ МОЩНОСТЬ? ОТ СЛОЖНОГО К ПРОСТОМУ.

    В повседневной жизни практически каждый сталкивается с понятием «электрическая мощность», «потребляемая мощность» или «сколько эта штука «кушает» электричества». В данной подборке мы раскроем понятие электрической мощности переменного тока для технически подкованных специалистов и покажем на картинке электрическую мощность в виде «сколько эта штука кушает электричества» для людей с гуманитарным складом ума:-). Мы раскрываем наиболее практичное и применимое понятие электрической мощности и намеренно уходим от описания дифференциальных выражений электрической мощности.

    ЧТО ТАКОЕ МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА?

    В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для практических расчётов бесполезна. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

    Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

    Активная мощность (Real Power)

    Единица измерения — ватт (русское обозначение: Вт, киловатт — кВт; международное: ватт -W, киловатт — kW).

    Среднее за период Τ значение мгновенной мощности называется активной мощностью, и

    выражается формулой:

    В цепях однофазного синусоидального тока , где υ и Ι это среднеквадратичные значения напряжения и тока, а φ — угол сдвига фаз между ними.

    Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S, активная связана соотношением .

    В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

    Реактивная мощность (Reactive Power)

    Единица измерения — вольт-ампер реактивный (русское обозначение: вар, кВАР; международное: var).

    Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними:

    (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью P соотношением: .

    Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

    Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до минус 90° является отрицательной величиной. В соответствии с формулой

    реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например,асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

    Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

    Мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например,асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

    Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

    Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения

    Полная мощность (Apparent Power)

    Единица полной электрической мощности — вольт-ампер (русское обозначение: В·А, ВА, кВА-кило-вольт-ампер; международное: V·A, kVA).

    Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: ; соотношение полной мощности с активной и реактивной мощностями выражается в следующем виде: где P — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q›0, а при ёмкостной Q‹0).

    Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

    Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

    Визуально и интуитивно-понятно все вышеперечисленные формульные и текстовые описания полной, реактивной и активной мощностей передает следующий рисунок:-)

    Специалисты компании НТС-групп (ТМ Электрокапризам-НЕТ) имеют огромный опыт подбора специализированного оборудования для построения систем обеспечения жизненно важных объектов бесперебойным электропитанием. Мы умеем максимально качественно учитывать множество электрических и эксплуатационных параметров, которые позволяют выбрать экономически обоснованный вариант построения системы бесперебойного электропитанияс применением , топливных электростанций, и др. сопутствующего оборудования.

    © Материал подготовлен специалистами компании НТС-групп (ТМ Электрокапризам-НЕТ) с использованием информации из открытых источников, в т.ч. из свободной энциклопедии ВикипедиЯ https://ru.wikipedia.org

    Активная мощность (P)

    Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

    потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

    Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

    В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

    Формулы для активной мощности

    P = U I — в цепях постоянного тока

    P = U I cosθ — в однофазных цепях переменного тока

    P = √3 U L I L cosθ — в трёхфазных цепях переменного тока

    P = 3 U Ph I Ph cosθ

    P = √ (S 2 – Q 2) или

    P =√ (ВА 2 – вар 2) или

    Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2) или

    кВт = √ (кВА 2 – квар 2)

    Реактивная мощность (Q)

    Также её мощно было бы назвать бесполезной или безваттной мощностью.

    Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

    Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

    Реактивная мощность определяется, как

    и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

    Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

    Формулы для реактивной мощности

    Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2)

    вар =√ (ВА 2 – P 2)

    квар = √ (кВА 2 – кВт 2)

    Полная мощность (S)

    Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

    Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

    Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

    Формула для полной мощности

    Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2)

    kUA = √(kW 2 + kUAR 2)

    Следует заметить, что:

    • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
    • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
    • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.
    Наверняка многие из вас слышали о реактивной электроэнергии. Зная, насколько сложен для понимания этот термин, давайте разберём детально отличия реактивной и активной энергии. Важно осознать тот факт, что реактивную электроэнергию мы можем наблюдать только в переменном токе. Там, где течёт постоянный ток, реактивная энергия не присутствует. Обусловлено это природой появления реактивной энергии .

    Через несколько понижающих трансформаторов к потребителю поступает переменный ток, конструкция которых разделяет обмотки низкого и высокого напряжения. То есть получается так, что в трансформаторе отсутствует физический контакт между двумя обмотками, при этом ток всё равно течёт. Объяснить это довольно просто. Электроэнергия всегда передаётся через воздух, который является прекрасным диэлектриком, при помощи электромагнитного поля, составляющая которого – переменное магнитное поле. Оно регулярно пересекает обмотку, появляясь в другой, и не имеет с первой электрического контакта, наводя электродвижущую силу. Коэффициент полезного действия у современных трансформаторов достаточно велик, отсюда потеря электроэнергии сводиться к минимуму, и потому вся мощь переменного тока, который протекает в первичной обмотке, оказывается в цепи вторичной обмотки. Тоже самое происходит в конденсаторе, правда, уже за счёт электрического поля. Ёмкость и индуктивность вместе порождают реактивную энергию. Активная энергия (которой мешает возврат реактивной энергии) преобразовывается в тепловую, механическую и другую.


    Реактивная составляющая электрического тока возникает только в цепях, содержащих реактивные элементы (индуктивности и ёмкости) и расходуется обычно на бесполезный нагрев проводников, из которых составлена эта цепь. Примером таких реактивных нагрузок являются электродвигатели различного типа, переносные электроинструменты (электродрели, «болгарки», штроборезы и т.п.), а также различная бытовая электронная техника. Полная мощность этих приборов, измеряемая в вольт-амперах, и активная мощность (в ваттах) соотносятся между собой через коэффициент мощности cosφ, который может принимать значение от 0,5 до 0,9. На этих приборах указывается обычно активная мощность в ваттах и значение коэффициента cosφ. Для определения полной потребляемой мощности в ВА, необходимо величину активной мощности (Вт) разделить на коэффициент cosφ.

    Пример : если на электродрели указана величина мощности в 800 Вт и cosφ = 0,8, то отсюда следует, что потребляемая инструментом полная мощность составляет 800/0,8=1000 ВА. При отсутствии данных по cosφ можно брать его приблизительное значение, которое для домашнего электроинструмента составляет примерно 0,7.

    Реактивный тип нагрузки характеризуется тем, что сначала, неторое время, в нём происходит накопление энергии, поставляемой источником питания. Затем запасённая энергия отдаётся обратно в этот источник. К подобным нагрузкам относятся такие элементы электрических цепей, как конденсаторы и катушки индуктивности, а также устройства, содержащие их. При этом в такой нагрузке между напряжением и током присутствует сдвиг фаз, равный 90 градусам. Поскольку основной целью существующих систем электроснабжения является полезная доставка электроэнергии от производителя непосредственно к потребителю — реактивная составляющая мощности обычно считается вредной характеристикой цепи.


    Для того, чтобы компенсировать противодействие реактивной энергии, применяются специальные устанавливаемые конденсаторы. Это заставляет свести к минимуму появляющееся негативное влияние реактивной энергии. Мы уже отмечали, что реактивная мощность существенно влияет на потерю электрической энергии в сети. Потому получается, что величину той самой негативной энергии приходиться постоянно держать под контролем, и лучший для этого способ – организовать её учёт.

    Там, где озабочены этой проблемой (различные промышленные предприятия) довольно часто ставят отдельные специальные приборы, которые ведут учёт не только самой реактивной энергии, но и активной её части. Учёт ведётся в трёхфазных сетях по индуктивной и ёмкостной составляющей. Обычно такие счётчики, это не что иное, как аналого-цифровое устройство, которое преобразует мощность в аналоговый сигнал, который превращается в частоту следования электро-импульсов. Сложив их, мы можем судить о количестве потребляемой энергии. Обычно счётчик сделан из пластмассового корпуса, где установлены 3 трансформатора и блок учёта на печатной плате. На внешней стороне располагается ЖК экран или светодиоды.


    Предприятия в настоящее время всё чаще ставят универсальные счётчики учёта электроэнергии, которые измеряют количество как активной, так и реактивной энергии. Более того, такие приборы могут совмещать функции от двух, а иногда и более устройств, что позволяет снижать затраты на обслуживание и позволяет сэкономить во время покупки. Такие устройство способны вычислять реактивную и активную мощность, а также измерять мгновенные значения напряжений. Счётчик фиксирует, каков уровень потребления энергии и показывает всю информацию на дисплее 3-мя сменяющимися кадрами (индуктивная составляющая, ёмкостная составляющая, а также объём активной энергии). Современные модели позволяют передавать данные по ИК цифровому каналу, защищены от магнитных полей, хищения энергии. Более того, мы получаем более точные измерения и малое энергопотребление, что выгодно отличает новые модели от предшественников.

    Главная цель при передаче электроэнергии – повышение эффективности работы сетей. Следовательно, необходимо уменьшение потерь. Основной причиной потерь является реактивная мощность, компенсация которой значительно повышает качество электроэнергии.

    Реактивная мощность вызывает ненужный нагрев проводов, перегружаются электроподстанции. Трансформаторная мощность и кабельные сечения вынужденно подвергаются завышениям, сетевое напряжение снижается.

    Понятие о реактивной мощности

    Для выяснения, что же такое реактивная мощность, надо определить другие возможные виды мощности. При существовании в контуре активной нагрузки (резистора) происходит потребление исключительно активной мощности, полностью расходуемой на энергопреобразование. Значит, можно сформулировать, что такое активная мощность, – та, при которой ток совершает эффективную работу.

    На постоянном токе происходит потребление исключительно активной мощности, рассчитываемой соответственно формуле:

    Измеряется в ваттах (Вт).

    В электроцепях с переменным током при наличии активной и реактивной нагрузки мощностной показатель суммируется из двух составных частей: активной и реактивной мощности.

    1. Емкостная (конденсаторы). Характеризуется фазовым опережением тока по сравнению с напряжением;
    2. Индуктивная (катушки). Характеризуется фазовым отставанием тока по отношению к напряжению.

    Если рассмотреть контур с переменным током и подсоединенной активной нагрузкой (обогреватели, чайники, лампочки с накаливающейся спиралью), ток и напряжение будут синфазными, а полная мощность, взятая в определенную временную отсечку, вычисляется путем перемножения показателей напряжения и тока.

    Однако когда схема содержит реактивные компоненты, показатели напряжения и тока не будут синфазными, а будут различаться на определенную величину, определяемую углом сдвига «φ». Пользуясь простым языком, говорится, что реактивная нагрузка возвращает столько энергии в электроцепь, сколько потребляет. В результате получится, что для активной мощности потребления показатель будет нулевой. Одновременно по цепи протекает реактивный ток, не выполняющий никакую эффективную работу. Следовательно, потребляется реактивная мощность.

    Реактивная мощность – часть энергии, которая позволяет устанавливать электромагнитные поля, требуемые оборудованием переменного тока.

    Расчет реактивной мощности ведется по формуле:

    Q = U x I x sin φ.

    В качестве единицы измерения реактивной мощности служит ВАр (вольтампер реактивный).

    Выражение для активной мощности:

    P = U x I x cos φ.

    Взаимосвязь активной, реактивной и полной мощности для синусоидального тока переменных значений представляется геометрически тремя сторонами прямоугольного треугольника, называемого треугольником мощностей. Электроцепи переменного тока потребляют две разновидности энергии: активную мощность и реактивную. Кроме того, значение активной мощности никогда не является отрицательным, тогда как для реактивной энергии возможна либо положительная величина (при индуктивной нагрузке), либо отрицательная (при емкостной нагрузке).

    Важно! Из треугольника мощностей видно, что всегда полезно снизить реактивную составляющую, чтобы повысить эффективность системы.

    Полная мощность не находится как алгебраическая сумма активного и реактивного мощностного значения, это векторная сумма P и Q. Ее количественное значение вычисляется извлечением квадратного корня из суммы квадратов мощностных показателей: активного и реактивного. Измеряться полная мощность может в ВА (вольтампер) или производных от него: кВА, мВА.

    Чтобы была рассчитана полная мощность, необходимо знать разность фаз между синусоидальными значениям U и I.

    Коэффициент мощности

    Пользуясь геометрически представленной векторной картиной, можно найти отношение сторон треугольника, соответствующих полезной и полной мощности, что будет равно косинусу фи или мощностному коэффициенту:

    Данный коэффициент находит эффективность работы сети.

    Количество потребляемых ватт – то же самое, что и количество потребляемых вольтампер при мощностном коэффициенте, равном 1 или 100%.

    Важно! Полная мощность тем ближе к показателю активной, чем больше cos φ, или чем меньше угол сдвига синусоидальных величин тока и напряжения.

    Если, к примеру, имеется катушка, для которой:

    • Р = 80 Вт;
    • Q = 130 ВАр;
    • тогда S = 152,6 BA как среднеквадратичный показатель;
    • cos φ = P/S = 0,52 или 52%

    Можно сказать, что катушка требует 130 ВАр полной мощности для выполнения полезной работы 80 Вт.

    Коррекция cos φ

    Для коррекции cos φ применяется тот факт, что при емкостной и индуктивной нагрузке вектора реактивной энергии располагаются в противофазе. Так как большинство нагрузок является индуктивными, подключив емкость, можно добиться увеличения cos φ.

    Главные потребители реактивной энергии:

    1. Трансформаторы. Представляют собой обмотки, имеющие индуктивную связь и посредством магнитных полей преобразуюшие токи и напряжения. Эти аппараты являются основным элементом электросетей, передающих электроэнергию. Особенно увеличиваются потери при работе на холостом ходу и при низкой нагрузке. Широко используются трансформаторы в производстве и в быту;
    2. Индукционные печи, в которых расплавляются металлы путем создания в них вихревых токов;
    3. Асинхронные двигатели. Крупнейший потребитель реактивной энергии. Вращающий момент в них создается посредством переменного магнитного поля статора;
    4. Преобразователи электроэнергии, такие как силовые выпрямители, используемые для питания контактной сети железнодорожного транспорта и другие.

    Конденсаторные батареи подсоединяются на электроподстанциях для того, чтобы контролировать напряжение в пределах установленных уровней. Нагрузка меняется в течение дня с утренними и вечерними пиками, а также на протяжении недели, снижаясь в выходные, что изменяет показатели напряжения. Подключением и отключением конденсаторов варьируется его уровень. Это делается от руки и с помощью автоматики.

    Как и где измеряют cos φ

    Реактивная мощность проверяется по изменению cos φ специальным прибором – фазометром. Его шкала проградуирована в количественных значениях cos φ от нуля до единицы в индуктивном и емкостном секторе. Полностью скомпенсировать негативное влияние индуктивности не удастся, но возможно приближение к желаемому показателю – 0,95 в индуктивной зоне.

    Фазометры применяются при работе с установками, способными повлиять на режим работы электросети через регулирование cos φ.

    1. Так как при финансовых расчетах за потребленную энергию учитывается и ее реактивная составляющая, то на производствах устанавливаются автоматические компенсаторы на конденсаторах, емкость которых может меняться. В сетях, как правило, используются статические конденсаторы;
    2. При регулировании cos φ у синхронных генераторов путем изменения возбуждающего тока необходимо его отслеживать визуально в ручных рабочих режимах;
    3. Синхронные компенсаторы, представляющие собой синхронные двигатели, работающие без нагрузки, в режиме перевозбуждения выдают в сеть энергию, которая компенсирует индуктивную составляющую. Для регулирования возбуждающего тока наблюдают за показаниями cos φ по фазометру.

    Коррекция коэффициента мощности – одна из эффективнейших инвестиций для сокращения затрат на электроэнергию. Одновременно улучшается качество получаемой энергии.

    Видео

    Из письма клиента:
    Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
    Алексей. 21 июнь 2007

    В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

    Мощность не всех приборов указана в Вт, например:

    • Мощность трансформаторов указывается в ВА:
      http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
      http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
    • Мощность конденсаторов указывается в Варах:
      http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
      http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
    • Примеры других нагрузок — см. приложения ниже.

    Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

    Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

    Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

    Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

    Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

    1. Активная мощность: обозначение P , единица измерения: Ватт
    2. Реактивная мощность: обозначение Q , единица измерения: ВАр (Вольт Ампер реактивный)
    3. Полная мощность: обозначение S , единица измерения: ВА (Вольт Ампер)
    4. Коэффициент мощности: обозначение k или cosФ , единица измерения: безразмерная величина

    Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S

    Также cosФ называется коэффициентом мощности (Power Factor PF )

    Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

    Например, электромоторы, лампы (разрядные) — в тех. данных указаны P[кВт] и cosФ:
    http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
    http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
    (примеры технических данных разных нагрузок см. приложение ниже)

    То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

    Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

    См. учебники по электротехнике, например:

    1. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

    2. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

    3. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

    Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
    (перевод: http://electron287.narod.ru/pages/page1.html)

    Приложение

    Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)


    АОСН-2-220-82
    Латр 1.25 АОСН-4-220-82
    Латр 2.5 АОСН-8-220-82





    АОСН-20-220



    АОМН-40-220




    http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

    Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)


    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

    Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

    Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. — в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности).

    http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
    (комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

    http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

    Дополнение 1

    Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

    Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

    Дополнение 2

    Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.

    Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

    Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

    В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

    Дополнение 4

    Наглядные примеры чистой активной и чистой реактивных нагрузок:

    • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
    • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
    Дополнение 5

    Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

    + (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

    — (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

    Дополнение 6

    Дополнительные вопросы

    Вопрос 1:
    Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

    Ответ:
    Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными .

    Замечание:
    Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

    1. Полное сопротивление (импеданс) Z=R+iX
    2. Полная мощность S=P+iQ
    3. Диэлектрическая проницаемость e=e»+ie»
    4. Магнитная проницаемость m=m»+im»
    5. и др.

    Вопрос 2:

    На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

    Ответ:
    Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

    Вопрос 3:
    Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

    Ответ:
    Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

    См. дополнительную литературу, например:

    Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

    Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

    Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

    AC power, Power factor, Electrical resistance, Reactance
    http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

    Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

    Электроэнергия | Центр энергоэффективности Министерства образования и науки РФ

    Установка частотного регулируемого привода для насосов систем ГВС

     

    Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.

    Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора.

     

    Компенсация реактивной мощности

     

    Физика процесса и практика применения установок компенсации реактивной мощности

     

    Чтобы разобраться с понятием реактивной мощности, вспомним сначала, что такое электрическая мощность. Электрическая мощность – это физическая величина, характеризующая скорость генерации, передачи или потребления электрической энергии в единицу времени.

    Чем больше мощность, тем большую работу может совершить электроустановка в единицу времени. Измеряется мощность в ваттах (произведение Вольт х Ампер). Мгновенная мощность – это произведение мгновенных значений напряжения и силы тока на каком-то участке электрической цепи.

     

    Физика процесса

     

    В цепях постоянного тока значение мгновенной и средней мощности за какой-то промежуток времени совпадают, а понятие реактивной мощности отсутствует. В цепях переменного тока так происходит только в том случае, если нагрузка чисто активная. Это, например, электронагреватель или лампа накаливания. При такой нагрузке в цепи переменного тока фаза напряжения и фаза тока совпадают и вся мощность передается в нагрузку.

    Если нагрузка индуктивная (трансформаторы, электродвигатели), то ток отстает по фазе от напряжения, если нагрузка емкостная (различные электронные устройства), то ток по фазе опережает напряжение. Поскольку ток и напряжение не совпадают по фазе (реактивная нагрузка), то в нагрузку (потребителю) передается только часть мощности (полной мощности), которая могла бы быть передана в нагрузку, если бы сдвиг фаз был равен нулю (активная нагрузка).

     

    Активная и реактивная мощности

     

    Часть полной мощности, которую удалось передать в нагрузку за период переменного тока, называется активной мощностью. Она равна произведению действующих значений тока и напряжения на косинус угла сдвига фаз между ними (cos φ ).

    Мощность, которая не была передана в нагрузку, а привела к потерям на нагрев и излучение, называется реактивной мощностью. Она равна произведению действующих значений тока и напряжения на синус угла сдвига фаз между ними (sin φ).

    Таким образом, реактивная мощность является величиной характеризующей нагрузку. Она измеряется в вольт амперах реактивных (вар, var). На практике чаще встречается понятие косинус фи, как величины характеризующей качество электроустановке с точки зрения экономии электроэнергии. Действительно, чем выше cos φ , тем больше энергии, подаваемой от источника, попадает в нагрузку. Значит можно использовать менее мощный источник и меньше энергии пропадает зря.

    Способы компенсации реактивной мощности

    Из сказанного выше вытекает, если нагрузка индуктивная, то следует компенсировать ее с помощью емкостей (конденсаторов) и наоборот емкостную нагрузку компенсируют с помощью индуктивностей (дросселей и реакторов). Это помогает увеличить косинус фи (cos φ) до приемлемых значений 0.7-0.9. Этот процесс называется компенсацией реактивной мощности.

    Экономический эффект от компенсации реактивной мощности

    Экономический эффект от внедрения установок компенсации реактивной мощности может быть очень большим. По статистике он составляет от 12 до 50% от оплаты электроэнергии в различных регионах России. Установка компенсации реактивной мощности окупается не более чем за год.

    Выводы

    Итак, установки по компенсации реактивной мощности приносят ощутимые финансовые выгоды. Они также позволяют дольше сохранять оборудование в рабочем состоянии.

    Вот несколько причин, по которым это происходит.

    • Уменьшение нагрузки на силовые трансформаторы, увеличение в связи с этим срока их службы.
    • Уменьшение нагрузки на провода и кабели, возможность использования кабелей меньшего сечения.
    • Улучшение качества электроэнергии у электроприемников.
    • Ликвидация возможности штрафов за снижение cos φ.
    • Уменьшение уровня высших гармоник в сети.
    • Снижение уровня потребления электроэнергии.

     

    Управление коэффициентом мощности, балансировка активной и реактивной мощности

    Что такое управление активной и реактивной мощностью и какое отношение оно имеет к солнечным фотоэлектрическим установкам?

    Активная мощность (Вт) — это активная мощность или полезная мощность, которая может использоваться для работы и питания нагрузок (бытовых приборов, ламп и т. Д.). Реактивная мощность (VAR) — это мнимая мощность или кажущаяся мощность, которая не выполняет никакой полезной работы, но оказывает значительное влияние на производительность системы, ее компоненты, стабильность и общую экономичность системы.

    При увеличении потребности в мощности ток, потребляемый из линии передачи, высокий, что, в свою очередь, снижает напряжения на стороне нагрузки. Когда потребность в мощности низкая, уровень напряжения питания на стороне нагрузки очень высок. Каждый из этих случаев вызовет дисбаланс в системе.

    Управление реактивной мощностью является важной частью управления уровнями напряжения в системе электроснабжения. Фактически, реактивная мощность может регулироваться как средство повышения уровней напряжения или поглощаться как средство понижения уровней напряжения.

    Солнечная фотоэлектрическая установка — это источник переменного тока, зависящий от колебания солнечного света в районе, где она установлена. Большинство установленных инверторов настроены только на выработку реальной мощности. Это может быть проблемой для коммерческих сайтов с низким коэффициентом мощности. Если солнечный фотоэлектрический инвертор подает только реальную мощность, то коэффициент мощности на месте может значительно упасть. Это не только вызывает проблемы с регулированием напряжения на объекте, но также может повлечь за собой штрафы или доплаты.

    Уравновешивание активной и реактивной мощности вместе с контролем коэффициента мощности обеспечивает большую гибкость эксплуатации и повышенную надежность системы.Контроль коэффициента мощности может принести пользу владельцам и операторам солнечных электростанций за счет увеличения нагрузочной способности и снижения потерь мощности, повышения напряжения и отсрочки модернизации.

    Как Solar-Log® может обеспечить управление активной и реактивной мощностью посредством управления коэффициентом мощности для солнечных фотоэлектрических установок?

    Операторы установки могут устанавливать внутренние параметры на уровне инвертора, которые позволяют инвертору работать с фиксированным коэффициентом мощности или изменять реактивную мощность. Изменяющаяся реактивная мощность будет зависеть от уровня генерации или напряжения на клеммах инвертора.

    Управление активной мощностью и регулирование реактивной мощности обычно представляет собой серьезную техническую проблему. Большинство инверторов не могут автоматически динамически подавать или поглощать реактивную мощность в ответ на локальные измерения напряжения.

    Эта техническая задача решается с помощью Solar-Log®. Solar-Log® 1900 PM + и Solar-Log 2000 PM + упростили эту задачу благодаря портам ввода / вывода, которые могут принимать и отправлять широкий спектр сигналов от различных операторов сети. Solar-Log® 1900 PM + и Solar-Log 2000 PM + можно комбинировать с измерителем Solar-Log® для измерения таких значений, как активная мощность, реактивная мощность, напряжение и токи.Используя информацию, предоставленную счетчиком, Solar-Log® может контролировать реактивную мощность в точке питания.

    Solar-Log® создает гибкое решение для операторов энергоснабжения, предоставляя динамическую платформу, способную вводить или поглощать реактивную мощность в ответ на локальные измерения напряжения. Система может поддерживать уровни напряжения в пределах их нормальных диапазонов и повышать эффективность за счет добавления входов / выходов и реле энергии. Solar-Log® позволяет операторам сети контролировать активную и реактивную мощность в зависимости от выработки, нагрузки и собственного потребления.

    Это решение, в свою очередь, уравновешивает поток мощности (активную и реактивную мощность) и обеспечивает контроль коэффициента мощности во время высокого пикового потребления. Другие функции, такие как фиксированное значение, коэффициент сдвига cos phi или функции cos phi, связанные с производительностью, могут быть реализованы без дополнительных измерений с помощью предоставленного решения.

    Мгновенная активная и реактивная мощность — обзор

    3.2.1 0,

    α, β Координаты

    В этом подразделе формулировка так называемой исходной мгновенной реактивной мощности будет представлена ​​в координатах 0, α , β .В четырехпроводных трехфазных системах исходная формулировка определяет две мгновенные действительные мощности p 0 и p αβ и мгновенную воображаемую мощность q αβ , как описано в (3.6)

    (3.6) p0pαβqαβ = u0000uαuβ0 − uβuα i0iαiβ

    Матричное уравнение (3.6) предполагает, что p 0 (= v 0 i 0 ) включает мгновенную действительную мощность в фазной цепи нулевой последовательности, и, с другой стороны, продукты v α i α и v β i β также соответствуют мгновенным мощностям, поскольку они определяются как произведение мгновенное напряжение в фазе мгновенным током в той же фазе.Таким образом, p αβ считается мгновенной активной мощностью в фазной цепи α — и β с размерами ватт, Вт. Напротив, изделия v α i β и v β i α не являются мгновенными мощностями, поскольку они определяются как произведение мгновенного напряжения и мгновенного фазного тока в другой фазе. Соответственно, q αβ , в цепях фаз α, — и β — это не мгновенная активная мощность, а новая переменная мощность, определенная в исходной формулировке, и единица измерения указана в [25] как мнимые ватты, IW.

    Поскольку в (3.6) трехфазные напряжения u 0 , u α , u β представляют собой набор трех форм сигналов, налагаемых источником питания, уравнение (3.6 ) можно интерпретировать как геометрическое преобразование (иногда используется термин «отображение») трехмерного вектора текущего пространства в трехмерный вектор пространства мощности, и наоборот [24,25]. Хотя многие из этих матриц «сопоставления» возможны с теоретической точки зрения, лишь немногие из них могут предложить четкое значение с практической точки зрения; действительно, матрица, приведенная в (3.6) оказался полезным при управлении фильтрами активной мощности.

    Матрица преобразования (3.6), впервые описанная в 1983 году, поддерживает обратное преобразование,

    (3.7) i0iαiβ = 1u0⁡uαβ2 uαβ2000u0⁡uα − u0uβ0u0uβu0⁡uα p0pαβqαβ

    , где

    u2β2 .

    Из (3.7) получаются члены составляющих мгновенных токов 0– α β координаты

    (3.9) i0 = 1u0p0ia = 1uaβ2uapaβ + 1uaβ2 − uβqaβ = iap + iaqiβ = 1uaβ2uββpaq + iβp + iβq

    , где i 0 — мгновенный ток нулевой последовательности, i αp — мгновенный активный ток фазы α , i βp — мгновенный активный ток фазы β , i αq — мгновенный реактивный ток фазы α , i αq — мгновенный реактивный ток фазы β .

    Вывод уравнения (3.9) из (3.7) возможен всякий раз, когда u 0 ≠ 0, поскольку иначе было бы невозможно вычислить обратную матрицу. Однако i α и i β в (3.9) не зависят от u 0 , даже если оно не равно нулю. Это означает, что исходная формулировка рассматривает цепь нулевой последовательности как однофазную цепь, независимую от цепей α, и β ; следовательно, можно заменить u 0 = 0, когда исходная формулировка применяется к четырехпроводным трехфазным системам без напряжения нулевой последовательности.

    Из уравнений (3.6) и (3.9) следуют отношения степенных членов, (3.10) — (3.11):

    (3.10) p (t) = p0 (t) + pa (t) + pβ (t ) = p0 (t) + pap (t) + pβp (t) + paq (t) + pβq (t) = u0i0 + ua2uaβ2paβ + uβ2uaβ2paβ + −uauβuaβ2qaβ + uauβuaβ2qaβ.

    (3.11) 0 = uaiaq + uβiβq = ua1uaβ2 (−uβqaβ) + uβ1uaβ2uaqaβ = paq + pβq

    Мгновенная активная и реактивная мощность в каждой фазе обозначается следующим образом:

    p u 0 i 0 : мгновенная мощность нулевой последовательности

    p αp = u α i αp : α- мгновенная активная мощность фазы

    p βp = u β i βp : β- мгновенная активная мощность фазы

    p αq = u α i αq : α- мгновенная реактивная мощность фазы

    90 034 p βq = u β i βq : β- мгновенная реактивная мощность фазы

    Рисунок 3.3a и b описывают поток мощности, основанный на исходной формулировке четырехпроводной трехфазной системы. В исходной схеме схема нулевой последовательности мгновенной реактивной мощности рассматривается как отдельная однофазная цепь фазной цепи α, — и β- .

    Рисунок 3.3. Поток мощности основан на формулировке исходной мгновенной реактивной мощности.

    Этот подход заимствован из метода симметричных компонентов, который делит четырехпроводную трехфазную цепь на схему нулевой последовательности, схему прямой последовательности и схему обратной последовательности; цепь нулевой последовательности рассматривается как независимая однофазная цепь от других цепей последовательности фаз.

    Уравнение (3.11) означает, что сумма мгновенной реактивной мощности фазы α- , p αq и β мгновенной реактивной мощности фазы, p βq , всегда равна нуль. Это предполагает, что оба они не участвуют в передаче энергии между источником и нагрузкой в ​​фазовой цепи α – β- . Однако p αq участвует в передаче энергии в фазовой цепи α- , так же, как p βq в фазовой цепи β- , увеличивая значение тока, протекающего через каждую из фаз.Таким образом, исходная формулировка, введенная стороной q αβ как мгновенная мнимая мощность, которая определяет p αq и p βq , а вторая определяет два независимых мгновенных действительных значения. мощности p 0 и p αβ ; три степенных переменных образуют трехмерное силовое пространство.

    Пример 3.1

    Определение переменных мощности для реактивной сбалансированной трехфазной нагрузки на Рисунке 3.4, который питается от сбалансированной трехфазной системы напряжения (3.12).

    (3.12) u1 (t) = 2 VF cos ωtu2 (t) = 2 VF cos (ωt — 120) u3 (t) = 2 VF cos (ωt + 120)

    Рисунок 3.4. Сбалансированная трехфазная нагрузка звездой, состоящая из трех индуктивностей.

    Линейные токи, циркулирующие в индуктивной сбалансированной трехфазной нагрузке, имеют вид (3.13)

    (3.13) i1 (t) = 2 IF cos (ωt − φ) i2 (t) = 2 IF cos (ωt − 120 −φ) i3 (t) = 2 IF cos (ωt + 120 − φ)

    , где φ для нагрузки на Рисунке 3.4 — 90 °. Из (3.1) составляющие напряжения находятся в плоскости α, β .

    (3,14) uα = 3VF cos ωt; uβ = 3VF sin ωt

    Аналогично (3.2) составляющие тока, полученные в плоскости α, β , равны

    (3.15) iα = 3IF sin ωt; iβ = −3IF cos ωt

    Из (3.6) получаются три переменные мощности:

    (3.16) p0 = 0pαβ = 0qαβ = −3VFIF sin90

    Сбалансированная трехфазная нагрузка, показанная на рисунке 3.4, питаемая сбалансированной синусоидальной тройкой. -фазное напряжение фаз прямой последовательности поглощает мгновенную активную мощность, равную активной мощности (средней мощности).Активная мощность для чисто реактивной нагрузки равна нулю; в результате (3.16) становится (3.17),

    (3.17) p (t) = p0 (t) + paβ (t) = P = 0

    С другой стороны, (3.16) показывает, что мгновенная мнимая мощность для нагрузка на рис. 3.4 для условий этого упражнения представляет собой среднее значение реактивной мощности противоположного знака,

    (3.18) qaβ = −3VFIF = −Q

    Из этого примера вытекают два наблюдения. Во-первых, описание потока энергии между источником и нагрузкой невозможно с помощью только мгновенной переменной реальной мощности, как это происходит в случае однофазных систем.Для трехфазной системы, рассматриваемой как глобальная система, необходимо определить новую переменную мощности. Формулировка исходной мгновенной реактивной мощности вводит мгновенную воображаемую мощность, чтобы завершить описание процесса передачи энергии между источником и нагрузкой. Во-вторых, определение, данное в (3.6), вводит мгновенную мнимую мощность, среднее значение которой является средней реактивной мощностью противоположного знака. Эта ситуация будет преодолена в разделе 3.2.2, где мгновенная мнимая мощность вводится с противоположным знаком; ну, его среднее значение принимает положительное значение для положительной последовательности фаз и отрицательное значение для отрицательной последовательности фаз.Эта модификация кажется более совместимой с условностями стандартного знака.

    Следовательно, в этом примере линейные токи включают только мгновенную составляющую реактивного тока.

    Формулировка мгновенной реактивной мощности устанавливается с помощью того, что мы называем матрицей отображения, как было продемонстрировано при разработке этого подраздела, однако возможно развитие вектора. Фактически, как было заявлено в [17, 21], в трехмерном пространстве, определяемом осями 0 αβ, , вектор пространства трех напряжений может быть определен как

    (3.19) uαβ = 0uαuβ; u0 = u000; u − βα = 0 − uβuα

    Пространственный вектор u αβ — это проекция пространственного вектора напряжения u 0 αβ в плоскости αβ , вектор u 0 следует направлению оси 0 и вектора u βα , называемого вектором ортогонального напряжения, так как u αβ также расположен в плоскости αβ .

    Три вектора перпендикулярны друг другу, поэтому скалярное произведение между любыми двумя из них равно нулю. В частности, проверяются следующие соотношения:

    (3.20) u0αβ = u0uαuβt = uαβ + u0

    (3.21) u − βα⋅u0αβ = 0

    Текущий пространственный вектор i (3.22)

    (3.22) ) i = i0iαiβt

    можно разделить на три составляющие, которые являются проекциями вектора тока на три вектора напряжения (3.19). Фактически

    (3.23) i = pαβ (t) uαβ⋅uαβuαβ + qαβ (t) u − βα⋅u − βαu − βα + p0 (t) u0⋅u0u0

    В числителе каждого текущего члена появляется степенная переменная (3.6), мгновенная активная мощность в фазе αβ-

    (3,24) pαβ (t) = uαβ. i

    мгновенная активная мощность нулевой последовательности

    (3,25) p0 (t) = u0. i

    и мгновенная мнимая мощность в плоскости αβ- ,

    (3,26) qαβ (t) = u − βα. i

    В знаменателях каждой составляющей мгновенного тока фигурируют квадраты норм каждого вектора напряжения,

    (3.27) uαβ. uαβ = uαβ2; u0. u0 = u02; u − βα. u − βα = u − βα2

    , проверяя соотношения, приведенные в (3.28),

    (3.28) u0αβ2 = u02 + uαβ2; uαβ2 = u − βα2

    В (3.23) три составляющие тока четко определены таким же образом, как (3.9),

    (3.29) i0iαiβ = pαβuαβ20uαuβ + p0u02u000 + qαβuαβ20u − βuα

    Матрица преобразования (обратная матрица 3.1) или (3.2) даны в (3.30),

    (3.30) T − 1 = 23121012−123212−12−32

    Матрица (3.30) для извлечения компонентов фазы 1, 2, 3 из 0– α β компонентов.

    Что такое активная, реактивная и полная мощность?

    Активная мощность

    Мощность, потребляемая нагрузкой для выполнения работы, называется истинной мощностью, или активной мощностью, или реальной мощностью. Когда электрическая энергия подается на нагрузку, электрическая энергия преобразуется в другие формы энергии, такие как тепловая, механическая или химическая. Таким образом, мощность, фактически потребляемая электрической нагрузкой, называется активной мощностью. Нагреватель на 220 вольт, 400 ватт потребляет 400 ватт, когда на его резистивный элемент подается 220 вольт.Мощность в 400 Вт, потребляемая нагревателем, является реальной мощностью или активной мощностью. Активная мощность измеряется в киловаттах (кВт) или МВт. Для расчета активной мощности рассчитывается ток, протекающий синфазно с приложенным напряжением.

    Произведение напряжения и тока по фазе с напряжением дает реальную мощность или активную мощность.

    Реактивная мощность

    Мощность, которая течет от источника к нагрузке и от нагрузки к источнику, называется реактивной энергией.Реактивная энергия течет в обоих направлениях. Реактивная мощность измеряется в киловольт-амперах реактивной мощности (кВАр) или в МВАр.

    Индуктивная нагрузка вызывает ток реактивного сопротивления и, следовательно, ток отстает от приложенного напряжения. Емкостная нагрузка вызывает реактивное сопротивление приложенному напряжению, и, таким образом, ток опережает приложенное напряжение. Сдвиг фаз между напряжением и током всегда существует, если нагрузка емкостного или реактивного типа.

    Импеданс, создаваемый емкостной и индуктивной нагрузкой, вызывает поток энергии назад и вперед от источника к нагрузке и от нагрузки к источнику.В индуктивной цепи с коротким замыканием ток отстает от напряжения на 90 электрических градусов. В чисто емкостной цепи ток опережает напряжение на 90 электрических градусов.

    Активная мощность в случае чисто индуктивной и емкостной цепи VICosΦ = VI Cos90 = 0. Реактивная мощность в случае чисто индуктивной и емкостной цепи VISinΦ = VI Sin90 = VI.

    Полная мощность Если нагрузка не является ни резистивной, ни чисто реактивной, ток, потребляемый нагрузкой, имеет две составляющие тока. Активная составляющая тока:

    Ток, который находится в фазе с приложенным напряжением, называется активной составляющей тока. Активная или реальная потребляемая мощность нагрузки зависит от активной составляющей тока цепи.

    Реактивная составляющая тока:

    Ток, который на 90 градусов не совпадает по фазе с приложенным напряжением, называется реактивной составляющей тока или током без мощности. Реактивная составляющая тока вносит вклад в реактивную мощность.

    Нагрузка, потребляет ли активный или реактивный ток, общий ток системы будет увеличиваться. Следовательно, мощность электрической системы выражается в полной мощности, кВА или МВА. Система должна обрабатывать как активный, так и реактивный ток, поэтому система разработана с учетом полной мощности. Пусть электрическая индуктивная нагрузка потребляет ток I и сдвиг фаз между напряжением и током равен Φ.

    Активную, реактивную и полную мощность, потребляемую индуктивной нагрузкой, можно рассчитать следующим образом.

    Активная составляющая тока в фазе с напряжением — это ICosΦ, а реактивная составляющая тока, не совпадающая по фазе с напряжением, — ISinΦ.

    Активная мощность однофазной нагрузки

    Активная мощность (P)

    = Напряжение x Ток в фазе с напряжением

    = V x ICos Φ

    = V I Cos Φ

    Активная мощность трехфазной нагрузки

    Активная мощность (P)

    = Напряжение x Ток в фазе с напряжением

    = √3 Vx ICos Φ

    = √3 В I CosΦ

    Реактивная мощность однофазной нагрузки

    Реактивная мощность (Q)

    Q = Напряжение x Ток не в фазе с напряжением

    = V x ISin Φ

    = V I Sin Φ

    Реактивная мощность трехфазной нагрузки

    Реактивная мощность (Q)

    Q = Напряжение x Ток в противофазе с напряжением

    = √3V x ISinΦ

    = √3 В I Sin Φ


    Полная мощность — это векторная сумма активной и реактивной мощности.


    Для однофазной системы питания полная потребляемая мощность кулачка может быть выражена следующим математическим выражением.

    Для трехфазной нагрузки полная мощность составляет;

    Похожие сообщения:

    1. Что такое треугольник силы?
    2. В чем разница между кВт и кВА?

    Следите за нами и ставьте лайки:

    Треугольник мощности

    : реальная мощность против полной мощности против реактивной мощности

    В сеть электроэнергия подается по сигналу переменного тока.В идеальном состоянии нагрузка была бы чисто резистивной, но из-за двигателей на заводах и в частных домах нагрузка фактически индуктивная.

    Разница фаз между мощностью в сети и мощностью в нагрузке. Его можно рассматривать как простую цепь RL, и, как показано на рисунке 1, называются различные мощности: активная мощность, реактивная мощность и полная мощность:

    1) Реальная мощность

    2) Реактивная мощность

    3) Полная мощность


    Рисунок 1: Изображение треугольника мощности

    Виды электроэнергии

    Реактивная мощность представляет собой электрическую энергию, запасенную в катушке, которая затем возвращается в сеть.Идеальные катушки не потребляют никакой электроэнергии, но создают значительный электрический ток. Реальная мощность — это мощность, фактически потребляемая из-за резистивной нагрузки, а полная мощность — это мощность, которую сеть должна выдерживать. Единица измерения реальной мощности — ватт, а полной мощности — ВА (вольт-ампер)

    .

    Сравнение реальной, реактивной и полной мощности

    Известная аналогия проводится со стаканом пива и пивной пеной.Настоящая сила, если то, что вы в конечном итоге выпьете. Стекло имеет кажущуюся мощность и должно быть достаточно большим, чтобы вместить жидкость и пену.

    Проблема реактивной мощности имеет не только технический характер, но и имеет потенциально большие экономические последствия. Действительно, коммунальная компания должна построить сеть, способную передавать видимую энергию, но выставлять счета только за реальную мощность. Если бы разница была слишком большой, она была бы неустойчивой. Соотношение между активной и полной мощностью известно как коэффициент мощности. Коэффициент мощности должен быть как можно ближе к единице.Компоненты электроники, называемые корректорами коэффициента мощности (PFC), помогают в этой задаче. Правительства регулярно принимают новые правила для электронных устройств, которые должны соответствовать более строгим нормам, чтобы получить хорошую энергетическую маркировку.

    Посмотреть похожие продукты
    L6562D
    STMicroelectronics Коррекция коэффициента мощности Вид

    В обычных преобразователях переменного тока в постоянный обычно используется двухполупериодный выпрямительный мост с простым конденсаторным фильтром для получения энергии из линии переменного тока.Следовательно, форма волны линейного тока представляет собой узкий импульс, а коэффициент мощности низкий (0,5–0,6) из-за высоких гармонических искажений тока (см. Рисунок 3).


    Рисунок 2: Уравнение преобразователя переменного тока в постоянный

    Существуют различные методы улучшения корректора коэффициента мощности. Для малой мощности часто бывает достаточно пассивного решения с дискретными компонентами. Как было сказано ранее, нагрузка в большинстве случаев является индуктивной, и включение конденсатора в параллель улучшит коэффициент мощности.Когда приложениям требуется несколько десятков ватт, необходима активная коррекция коэффициента мощности. Наиболее распространенной топологией является топология повышения, которую можно разделить на 2 подкатегории:

    — переходный режим (TM) или режим критической проводимости (CrM) от нескольких десятков до сотен ватт

    — Режим непрерывной проводимости (CCM) от нескольких сотен до нескольких тысяч ватт.

    На рисунке 3 показано, что каскад PFC реализован перед конденсатором большой емкости в виде схемы повышающего преобразователя.


    Рисунок 3: PFC — каскад корректора коэффициента мощности

    Цель состоит в том, чтобы сформировать входной ток синусоидальным образом, синфазно с входным синусоидальным напряжением. Создается внутреннее синусоидальное задание. Это задание сравнивается с внешним сигналом, и когда ошибка слишком велика, полевой МОП-транзистор выключается. Затем, когда ток достигает нуля, MOSFET снова включается. Переходный режим имеет фиксированный период времени включения и имеет кривую, как на рисунке 4.

    Посмотреть похожие продукты


    Рисунок 4: Синхронизация полевого МОП-транзистора и форма кривой тока катушки индуктивности — переходный режим

    Система работает (не совсем, но очень близко) к границе между непрерывным и прерывистым режимами тока, поэтому эта система называется PFC переходного режима. Ток имеет большие амплитуды, а пиковый ток в два раза превышает средний ток.Следовательно, для высокой мощности необходимо, чтобы ток был ближе к синусоидальной кривой. Режим непрерывной проводимости — это решение, использующее фиксированную частоту, которая ограничивает изменения тока, как показано на рисунке 5. Это наиболее сложная конструкция, но достижимый коэффициент мощности 0,99.


    Рисунок 5: Синхронизация полевого МОП-транзистора и временная диаграмма тока катушки индуктивности — режим непрерывной проводимости

    Существуют и другие методы, такие как время фиксированного времени выключения (FOT), когда модуляция происходит во время включения.В некоторых условиях он может предоставлять результаты, аналогичные текущему непрерывному режиму, но с реализацией, аналогичной переходному режиму. Когда мощность должна быть увеличена, а одного переходного режима уже недостаточно, решением может стать чередующийся PFC. В таких решениях используется больше компонентов, но их гораздо проще спроектировать.

    «Управление активной и реактивной мощностью гибких нагрузок для распределения-L», Jingyuan Wang

    Название степени

    Доктор философии по электротехнике (PhD)

    Административно-бытовой отдел

    Кафедра электротехники и вычислительной техники

    Аннотация

    Зарядка / разрядка электромобилей (EV) может происходить в любых квадрантах P-Q, что означает, что электромобили могут обеспечивать реактивную мощность при любом состоянии заряда (SOC).В этой диссертации показана работа электромобилей в четырех квадрантах и ​​агрегирование электромобилей для поддержки работы сети.

    Во-первых, в этой работе разрабатываются иерархические структуры координации для оптимального управления распределением активной и реактивной мощности ряда пространственно распределенных электромобилей с учетом ограничений на уровне распределительной сети. Эта работа демонстрирует преимущества скоординированного распределения активной и реактивной мощности от электромобилей с использованием 33-узлового распределительного фидера с большим количеством электромобилей (более 5000).Тематические исследования демонстрируют, что в распределительных сетях с ограничениями скоординированная зарядка снижает среднюю стоимость зарядки электромобилей, если зарядка происходит в режиме с коэффициентом мощности, отличным от единицы, по сравнению с коэффициентом мощности, равным единице. Аналогичным образом, результаты также демонстрируют, что распределительные сети могут обеспечивать зарядку увеличенного количества электромобилей, если зарядка электромобилей происходит в режиме с коэффициентом мощности, отличным от единицы, по сравнению с коэффициентом мощности, равным единице.

    Далее, в этой работе используется подробная модель аккумуляторной батареи электромобиля, которую можно использовать для четырехквадрантных операций.Затем разработанная работа координирует работу электромобилей и распределительного фидера для поддержки профиля напряжения в сети в режиме реального времени. Проблема уровня сети разработана как модель оптимального распределения мощности для вычисления сигнала регулирования напряжения для распределения заданных значений активной / реактивной мощности отдельных электромобилей. Эффективность разработанных моделей демонстрируется с использованием вторичного фидера НН, где показано, что электромобили, работающие во всех четырех квадрантах, компенсируют колебания напряжения фидера, вызванные ежедневным изменением во времени бытовых нагрузок, при соблюдении других эксплуатационных ограничений фидера.

    Кроме того, разработано новое сетевое приложение, называемое виртуальной электростанцией (VPP). Традиционные задачи нелинейного потока мощности невыпуклые, поэтому их решение требует много времени. Для использования в моделировании в реальном времени в VPP разработана эффективная линеаризованная модель оптимального потока мощности. Этот метод линеаризации используется для решения системы питания с 534 шинами и 3 VPP в реальном времени. Эта работа также реализует планирование VPP в режиме реального времени с использованием симулятора OPAL-RT в аппаратном цикле (HIL), где нагрузки эмулируются с помощью устройств микроконтроллера.

    Рекомендуемое цитирование

    Ван, Цзинюань, «Управление активной и реактивной мощностью гибких нагрузок для сетевых служб распределительного уровня», диссертация открытого доступа, Мичиганский технологический университет, 2018.

    https://doi.org/10.37099/mtu.dc.etdr/757

    Активная, реактивная и полная мощность | Самое простое объяснение


    Инженер-электрик должен знать активную, реактивную и полную мощность. Но большую часть времени мы в конечном итоге запутались во всех этих силах.И, следовательно, если вы хотите получить кристально ясное объяснение активной, реактивной и полной мощности, я бы порекомендовал вам посмотреть это руководство.

    В этом руководстве мы узнаем о
    1. Мгновенная мощность
    2. Активная мощность
    3. Реактивная мощность
    4. Различие между активной и реактивной мощностью
    5. Полная мощность
    6. Коэффициент мощности

    В конце этого руководства мы также получим информацию о коэффициенте мощности, поэтому убедитесь, что вы дочитали до конца.Прежде чем мы начнем с объяснения, обратите внимание, что концепция активной, реактивной и полной мощности применима только для систем переменного тока . Концепция активной, реактивной и полной мощности не применима для систем постоянного тока.
    Чтобы понять, что такое активная, реактивная и полная мощность, мы сначала должны знать, что такое мгновенная мощность.


    Мгновенная мощность

    Чтобы понять мгновенную мощность, рассмотрим следующий пример. Резистивная нагрузка подключена к источнику переменного тока 230 В.

    Теперь предположим, что я хочу вычислить мощность в момент «t», и для этого мне нужно умножить напряжение и ток в момент «t». Это даст нам мощность в конкретный момент «t». Эта мощность называется мгновенной мощностью . Почему мгновенно? Потому что мы измерили его в конкретный момент.

    Эта мгновенная мощность может быть положительной или отрицательной. Теперь вы можете спросить, что такое положительная сила или отрицательная сила? Итак, давайте разберемся с концепцией положительной силы и отрицательной силы.

    Положительная мощность

    Мощность называется положительной мощностью, когда она течет от источника к нагрузке. В приведенном выше примере мощность положительная, если она течет от источника 230 В переменного тока к нагрузке.

    Отрицательная сила

    Когда сила перетекает от лорда к источнику, эта сила называется отрицательной силой. В приведенном выше примере мощность отрицательная, если она течет от нагрузки к источнику питания 230 В переменного тока.

    Теперь вопрос в том, как может передаваться мощность от нагрузки к источнику? И в каком случае это происходит? Мы увидим это через несколько минут.

    Перейти к содержанию


    Активная мощность (P)

    Чтобы понять активную мощность, снова рассмотрим схему, показанную ниже. В приведенной ниже схеме мы подключили источник переменного тока 230 В к чисто резистивной нагрузке.

    Как известно, в чисто резистивной цепи напряжение и ток совпадают по фазе. В фазе означает,

    • напряжение и ток одновременно достигают своего положительного пика
    • Они одновременно становятся нулевыми
    • Также они одновременно достигают своего отрицательного пика.

    Если вы изобразите кривую напряжения и тока резистивной цепи, она будет выглядеть следующим образом.

    Чтобы вычислить мощность в этой цепи, вы можете в любой момент умножить напряжение и ток, и вы обнаружите, что результирующая мощность — это только положительная мощность.

    И такая мощность, которая всегда остается положительной, называется активной мощностью.

    Характеристики активной мощности


    Реактивная мощность (Q)

    Чтобы понять, что такое реактивная мощность, в нашем примере мы заменим резистивную нагрузку чисто емкостной нагрузкой, как показано на рисунке ниже.

    Если вы нарисуете форму напряжения и тока для этой схемы, она будет выглядеть следующим образом.

    Как видите, ток имеет преимущество перед напряжением. Или просто ток опережает напряжение. Это указывает на то, что напряжение и ток в этой цепи не совпадают по фазе. Не в фазе означает,

    • Напряжение и ток не достигают своего положительного пика одновременно
    • Они не становятся равными нулю одновременно
    • И они также не достигают своего отрицательного пика одновременно.

    Итак, если вы рассчитываете мощность в момент, показанный на рисунке ниже, вы получите положительную мощность, потому что и напряжение, и ток положительны.

    Если вы рассчитываете мощность в момент, показанный ниже, вы получите отрицательную мощность, потому что напряжение положительно, а ток отрицателен. Отрицательное умножение на положительное — Отрицательное .

    На что указывает эта отрицательная сила? Это говорит нам о том, что мощность течет от нагрузки к источнику.
    Если вы продолжите вычислять мощность в цепи, форма волны будет продолжаться.

    Эта мощность движется вперед и возвращается назад, как маятник, не выполняя никакой полезной работы в системе. И этот вид мощности называется реактивной мощностью.

    Конденсатор, катушка индуктивности и любое устройство без облицовки может вводить / поглощать реактивную мощность в систему.

    Почему мощность течет от нагрузки к источнику?

    Когда питание положительное, конденсатор заряжается или накапливает в нем энергию.Когда мощность становится отрицательной, конденсатор разряжается или высвобождает накопленную энергию. И это причина того, почему мощность перетекает от нагрузки к источнику.

    Характеристики реактивной мощности

    1. Эта мощность может быть как положительной, так и отрицательной.
    2. Это только сила, которая движется вперед и назад, не выполняя никакой полезной работы.
    3. Обозначается буквой «Q» и измеряется в ВАР (вольт-ампер, реактивный).
    4. Конденсатор, катушка индуктивности и любое устройство без облицовки может вводить / поглощать реактивную мощность в систему

    Различие между активной и реактивной мощностью

    1. Мы не можем преобразовать активную мощность в реактивную, а реактивную мощность в активную.
    2. Активная мощность — это отдельная величина, а реактивная мощность — это отдельная величина.
    3. Обе силы ложатся бременем на линию передачи.
    4. Активная мощность производит тепло, механическую энергию, свет и т. Д.
    5. Реактивная мощность представляет собой только мощность, которая колеблется взад и вперед.

    Вы также можете посмотреть подробное руководство по разнице между активной и реактивной мощностью.

    Перейти к содержимому.


    Полная мощность (S)

    В системе у вас будут все типы нагрузок одновременно.У вас может быть резистивная нагрузка, вы также можете иметь индуктивную нагрузку или емкостную нагрузку или, возможно, комбинацию всех типов нагрузок. Рассмотрим приведенный ниже пример, в котором резистивная нагрузка и индуктивная нагрузка подключены к одному источнику.

    Резистивная нагрузка потребляет активную мощность, а индуктивная нагрузка потребляет реактивную мощность. Теперь мы не можем сказать, что схема потребляет активную мощность или реактивную мощность, потому что она потребляет обе мощности. Следовательно, нам нужно другое название для комбинации активной и реактивной мощности.Таким образом, такое сочетание обеих мощностей называется кажущейся мощностью.

    Сочетание активной мощности и реактивной мощности называется полной мощностью .

    Мы можем рассчитать полную мощность по,

    Полная мощность обозначается буквой « S » и измеряется в ВА / кВА / МВА. Трансформаторы указаны в ВА / кВА / МВА.

    Перейти к содержимому.


    Коэффициент мощности

    Коэффициент мощности очень тесно связан с активной, реактивной и полной мощностью, поэтому я кратко изложу его здесь.Если вы хотите подробно узнать о коэффициенте мощности, у меня есть отдельный плейлист, который вы можете посмотреть здесь.

    Если вы попросите любого инженера-электрика определить коэффициент мощности, он / она ответит: «Коэффициент мощности — это угол между напряжением и током». Это может быть правильное определение, но это неправильный способ определения коэффициента мощности.
    Правильное определение коэффициента мощности:

    «Отношение активной мощности к полной мощности называется коэффициентом мощности».

    Когда кто-то говорит, что коэффициент мощности системы равен 0.8, что это значит? Это просто означает, что при 100% мощности 80% — это активная мощность, а 20% — реактивная мощность.

    Коэффициент мощности показывает, сколько активной мощности потребляет система / оборудование.

    Перейти к содержимому.

    Разница между активной и реактивной мощностью

    Основное существенное различие между активной и реактивной мощностью состоит в том, что активная мощность — это фактическая мощность, которая рассеивается в цепи, тогда как реактивная мощность — это мощность, которая течет только между источником и нагрузкой.Позвольте нам глубже понять разницу между активной и реактивной мощностью в этой статье.


    Определение активной мощности:

    Фактическое количество мощности, рассеиваемой или выполняющей полезную работу в цепи, называется активной мощностью или истинной мощностью. Он измеряется в ваттах, на практике он должен измеряться в кВт и МВт в энергосистеме.


    Определение реактивной мощности:

    Среднее значение второго члена в полученном выше выражении равно нулю, поэтому мощность, вносимая этими членами, равна нулю.Составляющая, пропорциональная VI sin, называется реактивной мощностью и определяется как Q.

    Разница между активной и реактивной мощностью:

    • Активная мощность — это реальная мощность, потребляемая нагрузкой, тогда как реактивная мощность — это бесполезная мощность.
    • Активная мощность — это активная мощность, которая измеряется в ваттах, а реактивная мощность — в вар.
    • Активная мощность — это произведение напряжения, тока и косинуса угла между ними, с другой стороны, реактивная мощность — это произведение напряжения, тока и синуса угла между ними.
    • Активная мощность отображается в виде заглавной буквы «P», а реактивная мощность — в виде Q.
    • Ваттметр измеряет активную мощность, а VAR-метр используется для измерения полной мощности.
    • Крутящий момент, который развивается в двигателе, тепло, рассеиваемое в нагревателе, и свет, излучаемый лампами, — все это из-за активной мощности. Реактивная мощность определяет коэффициент мощности схемы.
    • Активная мощность должна быть рассчитана в виде P = V * I * COS∅, а реактивная мощность должна быть рассчитана в форме Q = V * I * SIN∅.

    Дополнительная информация:

    Основное существенное различие между активной и реактивной мощностью состоит в том, что активная мощность — это фактическая мощность, которая рассеивается в цепи, тогда как реактивная мощность — это мощность, которая течет только между источником и нагрузкой. Позвольте нам глубже понять разницу между активной и реактивной мощностью в этой статье.


    Определение активной мощности:

    Фактическое количество мощности, рассеиваемой или выполняющей полезную работу в цепи, называется активной мощностью или истинной мощностью.Он измеряется в ваттах, на практике он должен измеряться в кВт и МВт в энергосистеме.


    Определение реактивной мощности:

    Среднее значение второго члена в полученном выше выражении равно нулю, поэтому мощность, вносимая этими членами, равна нулю. Составляющая, пропорциональная VI sin, называется реактивной мощностью и определяется как Q.

    Разница между активной и реактивной мощностью:

    • Активная мощность — это реальная мощность, потребляемая нагрузкой, тогда как реактивная мощность — это бесполезная мощность.
    • Активная мощность — это активная мощность, которая измеряется в ваттах, а реактивная мощность — в вар.
    • Активная мощность — это произведение напряжения, тока и косинуса угла между ними, с другой стороны, реактивная мощность — это произведение напряжения, тока и синуса угла между ними.
    • Активная мощность отображается в виде заглавной буквы «P», а реактивная мощность — в виде Q.
    • Ваттметр измеряет активную мощность, а VAR-метр используется для измерения полной мощности.
    • Крутящий момент, который развивается в двигателе, тепло, рассеиваемое в нагревателе, и свет, излучаемый лампами, — все это из-за активной мощности. Реактивная мощность определяет коэффициент мощности схемы.
    • Активная мощность должна быть рассчитана в виде P = V * I * COS∅, а реактивная мощность должна быть рассчитана в форме Q = V * I * SIN∅.

    Дополнительная информация:

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.