Что такое фаза в электричестве. Фаза в электричестве: что это такое и как работает

Что такое фаза в электрической сети. Чем фаза отличается от нуля. Как устроена однофазная и трехфазная система. Каковы особенности определения фазы и нуля в домашней проводке. Как безопасно работать с электричеством.

Содержание

Что такое фаза в электричестве

Фаза в электричестве — это проводник, по которому электрический ток поступает к потребителю. В обычной бытовой сети переменного тока фаза представляет собой провод, на котором периодически меняется напряжение от +220 В до -220 В с частотой 50 Гц.

Основные характеристики фазы в электрической сети:

  • Напряжение относительно нуля — 220 В
  • Частота переменного тока — 50 Гц
  • Форма сигнала — синусоида
  • Цвет изоляции провода — обычно коричневый или черный

Фазный провод всегда находится под напряжением, когда подключен к электросети. Именно через него подается электроэнергия к потребителям.

Чем отличается фаза от нуля

Основные отличия фазы от нулевого провода:

  • На фазе всегда есть напряжение 220 В относительно земли
  • Нулевой провод соединен с землей в трансформаторной подстанции
  • Через фазу ток поступает к потребителю, через ноль — возвращается обратно
  • Фаза опасна при прикосновении, нулевой провод обычно безопасен
  • Цвет изоляции фазы — коричневый/черный, нуля — синий

При этом нулевой и заземляющий провода выполняют разные функции и не являются взаимозаменяемыми.


Однофазная и трехфазная система

В бытовых электросетях используются два типа систем:

Однофазная система

Состоит из двух проводов:

  • Фазный провод (220 В)
  • Нулевой провод (0 В)

Используется в большинстве квартир и домов для питания бытовых приборов.

Трехфазная система

Включает 4 провода:

  • Три фазных провода (по 220 В каждый, сдвинуты на 120°)
  • Один нулевой провод

Применяется для питания мощных потребителей в промышленности, многоквартирных домах.

Как определить фазу и ноль в домашней проводке

Существует несколько способов определения фазы и нуля в бытовой электропроводке:

1. Индикаторная отвертка

Самый простой способ — использовать индикаторную отвертку:

  • Прикоснитесь жалом отвертки к контакту
  • Если лампочка загорелась — это фаза
  • Если не загорелась — это ноль или заземление

Важно: индикаторная отвертка не всегда дает точный результат, используйте дополнительные методы проверки.

2. Мультиметр

Более надежный способ — измерение напряжения мультиметром:

  • Установите мультиметр на измерение переменного напряжения ~250 В
  • Черный щуп подключите к заведомо заземленной поверхности
  • Красным щупом касайтесь проверяемых проводов
  • На фазе будет напряжение около 220 В
  • На нуле и заземлении — 0 В

3. Проверка светодиодом

Можно использовать светодиод с резистором:


  • Подключите резистор 10-20 кОм к аноду светодиода
  • Свободный вывод резистора — к проверяемому проводу
  • Катод светодиода — к заземлению
  • Светодиод загорится на фазном проводе

Основные правила электробезопасности

При работе с электропроводкой необходимо соблюдать следующие правила безопасности:

  • Отключайте напряжение перед любыми работами
  • Используйте инструменты с изолированными ручками
  • Проверяйте отсутствие напряжения перед касанием проводов
  • Не работайте с электричеством в одиночку
  • При любых сомнениях обращайтесь к профессиональным электрикам

Помните, что неправильное обращение с электричеством может быть смертельно опасно. Всегда соблюдайте осторожность и технику безопасности.

Особенности трехфазной системы

Трехфазная система имеет ряд преимуществ по сравнению с однофазной:

  • Более высокая мощность — до 15-20 кВт на квартиру
  • Равномерное распределение нагрузки между фазами
  • Возможность питания мощных трехфазных электродвигателей
  • Меньшие потери при передаче электроэнергии

Однако трехфазная проводка сложнее в монтаже и обслуживании. Для бытовых потребителей обычно достаточно однофазной системы.


Как работает переменный ток

В бытовой электросети используется переменный ток частотой 50 Гц. Это означает, что направление тока меняется 50 раз в секунду. Преимущества переменного тока:

  • Легко трансформируется для передачи на большие расстояния
  • Проще в генерации на электростанциях
  • Безопаснее постоянного тока при одинаковом напряжении
  • Позволяет использовать простые асинхронные электродвигатели

Именно поэтому переменный ток используется в большинстве электросетей по всему миру.


Что такое фаза и ноль в электричестве

Почти ежедневно мы пользуемся электричеством и многие знают, что в обыкновенной бытовой розетке один из контактов ‒ фаза, а другой ‒ ноль. В то же время, что такое фаза в электричестве, особенно для новичка, известно немногим. Всем привычней «плюс» и «минус», а вот фаза – ноль как бы совсем другое электричество. На самом деле все очень просто ‒ привычный «плюс» и «минус» меняются по очереди 50 раз за секунду на одном контакте, который и называется фазой.

Содержание

  • 1 Фаза
  • 2 Ноль
  • 3 Рождение
  • 4 Трансформация тока
  • 5 Как определяется фаза
  • 6 Маркировка проводов

Фаза

Если говорить более профессионально, то в обычной сети переменное напряжение частотой 50 Гц, а фаза ‒ период этого напряжения, протекающий за 1/50 секунды. В общем понятии определение ‒ что такое фаза в электричестве, звучит как «повторяющийся период изменения напряжения за единицу времени». Выглядит период следующим образом.

Напряжение возрастает от нуля вольт до +220 V, потом падает обратно до нуля и растет уже в отрицательную сторону до ‒220 V, и снова падает на ноль. Затем период повторяется 50 раз за каждую секунду. Если выразить фазу графически, где ось абсцисс будет шкалой времени, а ось ординат шкалой напряжения, то получится синусоида – волна, состоящая из гребня и впадины. Именно поэтому переменный ток еще называют «синусоидальным».

Ноль

С нулем все намного проще. «Ноль» – это ноль вольт (0 V), то есть нулевой потенциал. Он служит своеобразным коллектором, принимающим электрический ток, прошедший через нагрузку, например, через лампочку. Если ноль отключить, то электрический ток остановится и лампочка, оставаясь под напряжением, все равно светить не будет.

Теперь, когда вы знаете что такое фаза и ноль в электричестве, вполне логично задать вопрос ‒ зачем все так усложнять и почему в розетке не «плюс» и «минус»? Чтобы это объяснить предлагаем совершить маленькое путешествие вместе с переменным током, посмотрев для чего это нужно.

Рождение

«Колыбелью» электрического тока, которым мы повседневно пользуемся, является электростанция. Несколько огромных генераторов мощностью в десятки мегаватт. В статоре генератора расположены 3 обмотки. Ротор вращается, создавая переменное магнитное поле, которое возбуждает в обмотках переменный ток. Как видите, ток уже появляется переменным. Дальше его нужно передать на тысячи километров, но есть «загвоздка». Учитывая огромную мощность, ток измеряется в миллионах ампер. Ток всего 0,25 А раскаляет нить лампочки до свечения, а что же произойдет с проводами при нескольких миллионах? Они попросту сгорят за долю секунды.

Чтобы снизить ток, нужно поднять напряжение. Это можно сравнить с потоком воды по трубе. Если перекачивать десятки литров в секунду по тонкой трубке, то напор будет настолько сильный, что ее скорей всего порвет. Но если применить толстую трубу, то все пройдет без сбоев. Математически это выглядит так: I = P/U, то есть ток равен потребляемая мощность деленная на напряжение. Из формулы видно, что чем больше U (напряжение), тем меньше I (ток), именно поэтому напряжение и повышают до 100 – 200 тыс. вольт.

Трансформация тока

Повышают напряжение на трансформаторной станции. Для повышения напряжения, ток сначала нужно преобразовать в магнитное поле, а затем снова в ток. Процесс происходит в трансформаторе. Здесь опять переменный ток «выигрывает», ведь постоянный не трансформируется. Чтобы возбудить ток во вторичной обмотке трансформатора нужно переменное электромагнитное поле, которое индуцируется только переменным током.

В большинстве электробытовых приборов (телевизор, компьютер, блок питания) происходит аналогичный процесс трансформации, только напряжение наоборот понижается. Если бы в сети был постоянный ток, то его пришлось бы сначала преобразовывать в переменный.

На своем пути ток проходит еще много трансформаторных станций, понижая напряжение на каждом ответвлении. В конечном итоге ток напряжением 10 кВ попадает на последнюю ТП и там, понижаясь до 250 V на каждой фазе, отправляется к конечному потребителю лампочки, телевизоры, утюги и другую технику.

Как определяется фаза

Когда включаем в розетку вилку, то где фаза и ноль неважно, но при подключении некоторого оборудования это имеет значение. Например, кнопка звонка подключается на разрыв нуля, а выключатель света ‒ на фазу. Для определения электрической фазы существует очень простой прибор – индикатор, похожий на отвертку. Хотя есть другие, например, ПИН-50 или варианты индикаторов с ЖК- дисплеем, где, кроме индикации, отображается напряжение. Также существуют приборы, определяющие наличие напряжения через изоляцию. Если при касании щупом контакта лампочка загорается, то это фаза, если нет ‒ «ноль» или «земля». Индикацию фазы производят с целью определения, а также чтобы убедиться в отсутствии напряжения перед началом работ на линии.

Маркировка проводов

В 1-фазной внутриквартирной электрической сети проводка осуществляется трехжильным проводом, где каждая жила имеет изоляцию определенного цвета. Цвета электрических проводов обозначают, где земля, фаза, ноль.

  • Ноль – синий или голубой.
  • Земля – желто-зеленый.
  • Фаза – белый, черный или коричневый.

Хотя в старых домах, где проводку осуществляли проводом АПВ, цветовая маркировка не практиковалась. Знать каким цветом фаза и ноль маркируются в электричестве нужно для упрощения ремонтно-монтажных работ, хотя 100% доверять не стоит, ведь монтажники могли ошибиться.

Читайте также:

  • Действие электрического тока на организм человека
  • Электрический ток в металлах
  • Зачем и как изолируют электрические провода

Ноль и фаза, что это такое?

Итак, для начала простыми словами расскажем, что собой представляют фазный и нулевой провод, а также заземление. Фаза — это проводник, по которому ток приходит к потребителю. Соответственно ноль служит для того, чтобы электрический ток двигался в обратном направлении к нулевому контуру.

Такой вопрос иногда возникает у начинающих электриков или владельцев квартир, которые хорошо владеют набором ремонтных инструментов, но раньше особо не вникали в устройство электропроводки.

И вот наступил момент, когда перестала работать розетка или светиться лампочка в люстре, а звать электрика не хочется и есть огромное желание сделать все самому.

В этом случае первоочередная задача домашнего мастера заключается не в устранении возникшей неисправности, как кажется на первый взгляд, а в соблюдении правил электробезопасности, исключения возможности попасть под действие электрического тока. Почему-то об этом многие забывают, пренебрегая своим здоровьем.

Все токоведущие части проводки должны быть надежно заизолированы, а контакты розеток спрятаны вглубь корпуса так, чтобы к ним не было возможности случайного прикосновения открытыми участками тела. Даже механическая конструкция вилки, вставляемой в розетку, продумана таким образом, что держаться рукой за оба контакта и попасть под действие электрического тока довольно проблематично.

В обыденной жизни мы этого не замечаем и в сознании уже сложилась привычка не обращать внимания на электричество, которая может пагубно сказаться при проведении ремонтных работ с электроприборами. Поэтому изучите основные правила безопасности и будьте внимательны при обращении с электричеством.

Как устроена бытовая электропроводка

Электроэнергия в жилой дом приходит от трансформаторной подстанции, которая преобразует высоковольтное напряжение промышленной электросети в 380 вольт. Вторичные обмотки трансформатора соединены по схеме «звезда», когда выполнено подключение трех выводов к одной общей точке «0», а три оставшихся выведены на клеммы «А», «В», «С» (для увеличения нажмите на рисунок).

Соединенные вместе концы «0» подключены к контуру заземления подстанции. Здесь же выполнено расщепление нуля на;

  • рабочий ноль, показанный на картинке синим цветом;
  • защитный РЕ-проводник (желто-зеленая линия).

По этой схеме создаются все вновь строящиеся дома. Она называется системой TN-S. У нее на вход внутри распределительный щита дома подводятся три фазных провода и оба перечисленных нуля.

В зданиях старой постройки еще часто встречаются случаи отсутствия РЕ-проводника и четырех-, а не пятипроводная схема, которую обозначают индексом TN-C.

Фазы и ноли с выходной обмотки ТП воздушными проводами или подземными кабелями подводятся к вводному щиту многоэтажного дома, образуя трехфазную систему напряжения 380/220 вольт. Она разводится по подъездным щиткам. Внутрь жилой квартиры поступает напряжение одной фазы 220 вольт (на картинке выделены провода «А» и «О») и защитный проводник РЕ.

Последний элемент может отсутствовать, если не проведена реконструкция старой электропроводки здания.

Таким образом, «нулем» в квартире называют проводник, соединенный с контуром земли в трансформаторной подстанции и используемый для создания нагрузки от «фазы», подключенной к противоположному потенциальному концу обмотки на ТП. Защитный ноль, называемый еще РЕ-проводником, исключен из схемы электропитания и предназначен для ликвидации последствий возможных неисправностей и аварийных ситуаций с целью отвода возникающих токов повреждений.

Нагрузки в такой схеме распределяются равномерно за счет того, что на каждом этаже и стояках выполнена разводка и подключение определенных квартирных щитков к конкретным линиям 220 вольт внутри подъездного распределительного щита.

Система подводимых напряжений к дому и подъезду представляет собой равномерную «звезду», повторяющую все векторные характеристики ТП.

Когда в квартире выключены все электроприборы, а в розетках нет потребителей и напряжение к щитку подведено, то ток в этой цепи протекать не будет.

Сумма токов трехфазной сети складывается по законам векторной графики в нулевом проводе, возвращаясь к обмоткам трансформаторной подстанции величиной I0, или как еще ее называют 3I0.

Это рабочая, оптимальная и отработанная длительными годами система электроснабжения. Но, в ней тоже, как и в любом техническом устройстве, могут возникать поломки и неисправности. Чаще всего они связаны с низким качеством контактных соединений или же полным обрывом проводников в различных местах схемы.

Чем сопровождается обрыв провода в нуле или фазе

Оторвать или просто забыть подключить проводник к какому-нибудь устройству внутри квартиры не сложно. Такие случаи происходят так же часто, как и отгорания металлических тоководов при плохом электрическом контакте и повышенных нагрузках.

Если внутри квартирной проводки пропало соединение любого электроприемника с квартирным щитком, то этот прибор не будет работать. И абсолютно не важно, что разорвано: цепь нуля или фазы.

Такая же картина проявляется в случае, когда происходит обрыв проводника любой фазы, питающей внутридомовой или подъездный электрощит. Все квартиры, подключенные к этой линии с возникшей неисправностью, перестанут получать электроэнергию.

При этом в двух других цепочках все электроприборы будут функционировать нормально, а ток рабочего нулевого проводника I0 суммируется из двух оставшихся составляющих и будет соответствовать их величине.

Как видим, все перечисленные обрывы проводов связаны с отключением электропитания с квартиры. Они не вызывают повреждения бытовых приборов. Самая же опасная ситуация возникает при исчезновении соединения между контуром заземления трансформаторной подстанции и средней точкой подключения нагрузок внутридомового или подъездного электрощита.

Такая ситуация может возникнуть по разным причинам, но чаще всего она проявляется при работе бригад электриков, владеющих смежной специальностью дегустаторов…

В этом случае пропадает путь прохождения токов по рабочему нулю к контуру заземления (А0, В0, С0). Они начинают двигаться по внешним контурам АВ, ВС, СА к которым подключено суммарное напряжение 380 вольт.

На правой части картинки показано, что ток IАВ возник при подключении линейного напряжения к последовательно соединенным нагрузкам Ra и Rв двух квартир. В этой ситуации один хозяин может экономно отключить все электроприборы, а другой — использовать их по максимуму.

В результате действия закона Ома U=I∙R на одном квартирном щитке может оказаться очень маленькая величина напряжения, а на втором — близкая к линейному значению 380 вольт. Оно вызовет повреждение изоляции, работу электрооборудования при нерасчетных токах, повышенный нагрев и поломки.

Для предотвращения подобных случаев служат защиты от повышения напряжения, которые монтируются внутри квартирного щитка или дорогостоящих электроприборов: холодильников, морозильников и подобных устройств известных мировых производителей.

Как определить ноль и фазу в домашней проводке

При возникновении неисправностей в электрической сети чаще всего домашние мастера используют дешевую отвертку-индикатор напряжения китайского производства, показанную на верхней части картинки.

Она работает по принципу прохождения емкостного тока через тело оператора. Для этого внутри диэлектрического корпуса размещены:

  • оголенный наконечник в виде отвертки для присоединения к потенциалу фазы;
  • токоограничивающий резистор, снижающий амплитуду проходящего тока до безопасной величины;
  • неоновая лампочка, свечение которой при протекании тока свидетельствует о наличии потенциала фазы на проверяемом участке;
  • контактная площадка для создания цепи тока сквозь тело человека на потенциал земли.

Квалифицированные электрики используют для проверки наличия фазы более дорогостоящие многофункциональные индикаторы в форме отверток со светодиодом, свечением которого управляет транзисторная схема, питаемая от двух встроенных батареек, создающих напряжение 3 вольта.

Такие индикаторы кроме определения потенциала фазы способны выполнять другие дополнительные задачи. У них нет контактной площадки, к которой необходимо прикасаться при замерах.

Способ проверки наличия и отсутствия напряжения в гнездах обыкновенной розетки простым индикатором показан на фотографиях ниже.

На левом снимке хорошо видно, что свечение индикаторной лампочки при дневном свете плохо заметно, поэтому требует повышенного внимания при работе.

Контакт, на котором индикатор засвечивается, является фазой. На рабочем и защитном нуле неоновая лампочка не должна светиться. Любое обратное действие индикатора свидетельствует о неисправностях в схеме подключения.

При эксплуатации такой отвертки необходимо обращать внимание на целостность изоляции и не прикасаться к оголенному выводу индикатора, находящемуся под напряжением.

На следующих фотографиях показан способ определения напряжения в той же розетке с помощью старого тестера, работающего в режиме вольтметра.

Стрелка прибора показывает:

  • 220 вольт между фазой и рабочим нулем;
  • отсутствие разницы потенциалов между рабочим и защитным нулем;
  • отсутствие напряжения между фазой и защитным нулем.

Последний случай является исключением. Стрелка в нормальной схеме должна тоже показывать напряжение 220 вольт. Но оно в нашей розетке отсутствует по той причине, что здание старой постройки еще не прошло этап реконструкции электропроводки, а хозяин квартиры, выполнивший последний ремонт, сделал разводку РЕ-проводника в своих помещениях, но не подключил его к заземляющим контактам розеток и шинке РЕ-проводника квартирного щитка.

Эта операция будет проводиться после перевода здания с системы TN-C на TN-C-S. Когда он завершится, стрелка вольтметра будет находиться в положении, отмеченном красной линией, показывать 220 вольт.

Особенности поиска неисправностей

Простое определение наличия или отсутствия напряжения не всегда позволяет точно определить состояние схемы. Наличие различных положений выключателей может ввести мастера в заблуждение. Например, на картинке ниже показан типичный случай, когда при отключенном выключателе на фазном проводе светильника в точке «К» не будет напряжения даже при исправной схеме.

Поэтому при проведении замеров и поисках неисправностей следует внимательно анализировать все возможные случаи.

Ранее ЭлектроВести писали, что в Энергодаре Запорожской области на тепловой электростанции была авария, в результате которой город и еще несколько населенных пунктов находились без света.

По материалам: electrik.info.

Что такое фаза в электричестве? | Что такое однофазные и трехфазные соединения? | Однофазное питание

Важный момент

1

Что такое фаза в электричестве?

Обычно фазная мощность представляет собой ток или напряжение между нейтральным кабелем и нейтральным кабелем. Фаза означает распределение нагрузки, если используется один провод, то на него будет дополнительная нагрузка, а если три провода, то нагрузка будет разделена между ними. Это можно назвать меньшей мощностью для однофазной и большей мощностью для трехфазной.

Если это однофазная система, то она включает два провода, а если это трехфазная система, то она состоит из трех (или) четырех проводов. Оба используют мощность переменного тока для питания систем, таких как однофазные и трехфазные устройства. Потому что ток с использованием переменного тока всегда в направлении переменного. Основное различие между этими двумя поставщиками заключается в надежности распределения.

Также прочтите: Что такое трехфазный генератор? | Как работают трехфазные генераторы переменного тока? | Однофазный генератор VS. Описание трехфазного генератора

Что такое однофазные и трехфазные соединения?

Большинство из нас знает, что в мире электричества токи по проводам переносят электричество, которое зажигает наши лампочки и приводит в действие наши приборы. Тип тока, подаваемого из электрической сети, представляет собой переменный ток (или AC). При однофазном питании одиночный переменный ток подается по одному проводу, тогда как в трехфазной системе по трем проводам идет переменный ток с фиксированным временным сдвигом между осциллограммами напряжения.

Однофазное питание в Индии — это питание 230 В по двум проводам (один называется фазным, а другое — нейтральным), а трехфазное питание — это питание 415 В по 4 проводам, а в доме линия называется 230В (по выбору) можно разделить на отдачу либо одной фазы, а другой нейтрали) по отдельным точкам.

Основное различие между ними заключается в том, что трехфазное соединение может выдерживать большие нагрузки, а однофазное – нет. Чтобы привести аналогии, которые помогут вам понять различия, давайте возьмем пример с шоссе. Если шоссе однополосное, то по нему параллельно могут двигаться только несколько двухколесных транспортных средств, или, если мы попытаемся втиснуться, у нас могут быть две машины, движущиеся параллельно.

Но дальше этого дело не пойдет, а если у нас будет 3-х полосное шоссе, то много машин может двигаться параллельно. Количество транспортных средств, курсирующих по однофазной магистрали, также зависит от размера транспортных средств. Легковой автомобиль и двухколесный транспорт могут легко двигаться параллельно по однополосному шоссе, но грузовик, возможно, придется оставить в покое.

Аналогично, однофазное шоссе можно рассматривать как однополосное, а трехфазное — как многополосное. Существует предел нагрузки, которую может выдержать одна фаза, и это число обычно устанавливается на уровне 7,5 кВт (или 7500 Вт или десять лошадиных сил) (но варьируется от штата к штату).

Итак, если сумма мощностей всех используемых вами устройств превышает 7,5 кВт, вам необходимо трехфазное подключение. А если у вас одновременно работают три полуторатонных кондиционера и один водонагреватель, то можно получить 7,5 кВт. Или у вас есть машина с двигателем мощностью более 10 л.с. Если нагрузка меньше 7,5 кВт, однофазное подключение справится легко.

Также прочтите: Что такое биогаз? | Генератор биогаза | Кто может использовать генератор биогаза?

Однофазное питание:

Во всем электрическом поле однофазное питание — это подача электроэнергии переменного тока системой, в которой все напряжения питания изменяются одновременно. Эти типы разделения энергоснабжения используются, когда нагрузки (бытовые приборы) обычно включают тепло и электроэнергию с гигантскими электродвигателями.

Когда однофазный источник питания подключен к двигателю переменного тока, он не создает вращающееся магнитное поле; вместо этого однофазные двигатели требуют для работы дополнительных цепей, но такие электродвигатели встречаются редко. Имеет номинальную мощность 10 кВт. В каждом цикле напряжение однофазной сети достигает удвоенного пикового значения; Прямая мощность непостоянна.

Однофазная нагрузка может питаться от трехфазных разделяющих трансформаторов двумя способами. Один с соединениями между двумя фазами или один с соединением между фазой и нейтралью. Оба они будут давать другое напряжение, чем данный источник питания.

Этот тип фазного питания обеспечивает выходное напряжение около 230 В. Применение этого источника питания используется для питания небольших бытовых приборов, таких как кондиционеры, вентиляторы, обогреватели и многое другое.

№1. Преимущества однофазного питания

  • Преимущества выбора однофазного питания обусловлены следующими причинами. Дизайн менее сложен.
  • Низкая стоимость проектирования
  • Повышенная эффективность, обеспечивающая около 1000 Вт переменного тока
  • Мощность до 1000 Вт.
  • Сотрудники в самых разных отраслях промышленности и приложений

#2. Применение однофазного питания

Применение однофазных источников питания включает следующее.

  • Этот блок питания подходит как для дома, так и для бизнеса.
  • Он используется для снабжения электроэнергией жилых домов, а также непромышленных предприятий.
  • Этого источника питания достаточно для питания двигателей мощностью примерно до пяти лошадиных сил (л.с.).

Также прочтите: что такое генератор постоянного тока? | Строительство генератора постоянного тока | Принцип работы генератора постоянного тока | Детали генератора постоянного тока

Трехфазное питание:

Трехфазное питание состоит из четырех проводов с тремя жилами, ведущими к нейтрали. Три проводника удалены от фазы и пространства и имеют фазовый угол 120º друг от друга. Трехфазный источник питания используется как однофазный источник переменного тока.

Для работы с небольшой нагрузкой можно выбрать как нейтраль, так и однофазный источник питания переменного тока из трехфазной системы электропитания переменного тока. Этот запас постоянен и не будет сброшен до нуля.

Мощность этих систем можно охарактеризовать в двух конфигурациях, а именно, соединение звездой (или треугольником). Соединение по схеме «звезда» используется для дальней связи, поскольку оно включает нейтральный кабель для тока ошибки.

№1. Преимущества трехфазного питания

Преимущества трехфазного питания перед однофазным объясняются следующими причинами:

  • Для трехфазного питания требуется меньше меди
  • Показывает минимальный риск для сотрудников, работающих с этой системой.
  • Высокая эффективность проводника.
  • Рабочие, работающие в этой системе, также получают заработную плату.
  • Он также может работать с широким диапазоном силовых нагрузок.

#2. Применение трехфазного питания

Применения трехфазного питания включают следующее.

  • Этот тип питания используется в электросетях, мобильных вышках, центрах обработки данных, самолетах, кораблях, беспилотных системах, а также в других электронных нагрузках мощностью более 1000 Вт.
  • Это относится к промышленным, производственным и крупным предприятиям.
  • Они также использовались в энергоемких центрах обработки данных с высокой плотностью размещения.

Также прочтите: Как работает генератор? | Как генераторы производят электричество? | Части Генератора

Основные различия между однофазным и трехфазным питанием:

Основные различия между 1-й фазой и 3-й фазой включают следующее.

Особенность Однофазный Трехфазный
Определение Однофазные источники питания работают с использованием одного проводника Трехфазные источники питания работают с использованием трех проводников
Волновые циклы Имеет только один определенный волновой цикл Имеет три различных волновых цикла
Соединения цепей Для подключения к цепи нужен только один провод Для подключения силового каскада к цепи требуется три провода.
Выходы Уровни напряжения Около 230В. Обеспечивает уровень напряжения Около 415 В. Обеспечивает уровень напряжения
Фазы Название Имя фазы одной фазы — разделенная фаза. Этот этап не имеет специального названия
Способности к передаче энергии Имеет минимальную мощность для передачи электроэнергии Эта ступень имеет максимальную мощность для передачи электроэнергии.
Сложность цепей Однофазные источники питания могут быть сконструированы просто Его конструкция сложная
Возникновение сбоев питания Частые отключения электроэнергии сбоев питания не происходит
Потеря Максимальная потеря в одной ступени Потери в трехфазном режиме минимальны
Эффективность Минимальная эффективность имеет максимальную эффективность
Затраты Не дороже трехфазного блока питания Немного дороже однофазного
Приложения Используется для домашнего использования Трехфазные источники питания используются в крупных отраслях промышленности для работы с большими нагрузками.

Также прочтите: Как работает парогенератор? | Что такое парогенератор? | Что такое паровой котел?

Как преобразовать одну фазу в три фазы?

Поскольку это наиболее важная концепция, которую необходимо знать, следующие пункты объясняют преобразование одного шага в три шага. Когда имеется крупный компрессор без трехфазного источника питания, подходящего для системы, построенной на местной электросети, существует ряд способов решить эту проблему и обеспечить соответствующую мощность для компрессора.

Основным решением является преобразование трехфазного двигателя в однофазный. Для этого преобразования существуют в основном три типа трехфазных преобразователей.

№1. Статический преобразователь

Когда трехфазный двигатель не запускается с 1-фазным питанием, он может работать на 1-фазном ведущем после запуска. Это делается с опорами конденсаторов. Но этот метод не имеет такой большой эффективности, да и времени меньше.

№2. Вращающийся преобразователь фазы

Он действует как объединение генератора и трехфазного двигателя. Он состоит из двигателя холостого хода, который вырабатывает мощность во время движения, и благодаря этому вся установка может надлежащим образом возбуждать трехфазную систему.

#3. Преобразователь частотно-регулируемого привода

Он работает с использованием инверторов, которые генерируют переменный ток на любом уровне частоты и воспроизводят почти все условия внутри трехфазного двигателя. Таким образом, это все о различиях между однофазными и трехфазными блоками питания и сравнительной таблице.

В заключение, из приведенной выше информации, мы можем сделать вывод, что при правильном подходе к проектированию частей блока питания, проектировщики могут дать полезные советы для достижения максимальной эффективности и экономии затрат вашего проекта.

Также прочтите: что такое генератор переменного тока? | Что такое генератор? | переменный ток против постоянного тока | На что обращать внимание в генераторе | Генератор переменного тока VS Генератор

Вывод:

Как правило, для подключения к жилому дому не требуется трехфазное подключение, поскольку для большинства бытовых приборов такое подключение не требуется.

Но если в доме много тяжелой техники, то коммунальщики могут предложить перейти на трехфазное подключение. Трехфазное подключение требует дополнительных затрат, поэтому его обязательно нужно оценить, действительно ли оно необходимо.

Также прочтите: Низкий заряд батареи дистанционного управления без ключа | Когда замена батареи брелока замена? | Как заменить батарею дистанционного управления без ключа


Часто задаваемые вопросы (FAQ)

Что такое фаза в электричестве?

Что такое фаза в электричестве? Как правило, фазное электричество — это ток или напряжение между существующим проводом, а также нейтральным кабелем. Фаза означает распределение нагрузки, если используется один провод, на нем будет дополнительная нагрузка, а если используются три провода, то нагрузки будут разделены между ними.

Фаза электричества

Обычно фазная мощность представляет собой ток или напряжение между нейтральным кабелем и нейтральным кабелем. Фаза означает распределение нагрузки, если используется один провод, то на него будет дополнительная нагрузка, а если три провода, то нагрузка будет разделена между ними.

Разница между однофазным и трехфазным питанием

В однофазном соединении поток электричества проходит по одному проводнику. С другой стороны, трехфазное соединение состоит из трех отдельных проводников, которые необходимы для передачи электроэнергии. В однофазной системе электроснабжения напряжение может достигать 230 Вольт.

Трехфазное подключение

При трехфазном подключении системе требуется один нулевой провод и трехфазные провода для завершения цепи. Максимальная мощность передается по трехфазному соединению по сравнению с однофазным источником питания. Однофазное соединение состоит из двух проводов, образующих простую сеть.

Трехфазный источник питания «треугольник» обеспечивает

Трехфазный источник питания «треугольник» обеспечивает напряжение 240 В между опорами. Трансформатор использует этот электрический принцип для увеличения или уменьшения напряжения без движущихся частей или контактов.

Фаза Электричество

Обычно фазная мощность представляет собой ток или напряжение между нейтральным кабелем и нейтральным кабелем. Фаза означает распределение нагрузки, если используется один провод, то на него будет дополнительная нагрузка, а если три провода, то нагрузка будет разделена между ними.

Трехфазное питание Объяснение

Трехфазное питание можно определить как распространенный метод производства, передачи и распределения электроэнергии переменного тока. Это тип многофазной системы, который является наиболее распространенным методом, используемым электрическими сетями во всем мире для передачи электроэнергии.

Как получить трехфазное питание?

Первым шагом является подключение 3-фазных счетчиков электроэнергии, чтобы убедиться, что они размещены в нужных точках во избежание сбоев. Во-вторых, важно подключить автоматический выключатель (в литом корпусе). Это работает как главный выключатель на другие фазы от трехфазного счетчика.

Как получить трехфазное питание?

Как начать установку трехфазного питания? Первым шагом является подключение трехфазных счетчиков энергии, чтобы убедиться, что они размещены в нужных точках, чтобы избежать неисправностей. Во-вторых, важно подключить автоматический выключатель (в литом корпусе). Это работает как главный выключатель на другие фазы от трехфазного счетчика.

Что такое фаза в электричестве?

Фаза – это ток или напряжение между существующим проводом и нейтральным кабелем. Его форма электронных сигналов будет анализироваться осциллографом, цифровым устройством, которое рисует график, показывающий мгновенное напряжение сигнала как функцию времени.

Как отличить одну фазу от трехфазной?

Самый простой способ — подойти к счетчику, открыть его и посмотреть. Если у вас есть три главных выключателя или три патрона предохранителей, у вас есть трехфазное питание. Если у вас есть только один, у вас есть однофазное подключение.

Разница между однофазным и трехфазным двигателем

Одно из ключевых различий между однофазным и трехфазным двигателем заключается в том, что трехфазный источник питания лучше выдерживает более высокие нагрузки. Однофазные источники питания чаще всего используются, когда типичными нагрузками являются освещение или отопление, а не большие электродвигатели. Однофазные системы могут быть получены из трехфазных систем.

Что такое фаза в электричестве?

В электротехнике «фаза» относится к временным соотношениям между двумя переменными электрическими величинами, такими как напряжение или ток. Эти величины обычно синусоидальны по своей природе и имеют одинаковую частоту, но могут различаться по амплитуде и фазе.

Фаза обычно измеряется в градусах или радианах и представляет собой угловое смещение между двумя сигналами в данный момент времени. Например, если два сигнала имеют разность фаз 90 градусов, один сигнал достигнет своего максимального значения, когда другой сигнал будет равен нулю.

В системах электроснабжения «однофазная» относится к системе, имеющей только одну форму волны, а «трехфазная» относится к системе, имеющей три формы волны с разницей фаз между ними в 120 градусов. Трехфазное питание обычно используется в промышленных и коммерческих целях, поскольку оно обеспечивает более эффективную передачу мощности и более плавную работу электродвигателей.

Фазы электричества

Электропитание переменного тока можно разделить на однофазное (1-фазное) и трехфазное (3-фазное). Как правило, однофазное питание используется там, где потребность в электроэнергии невелика. Короче говоря, это для запуска небольшой техники. Трехфазное питание несет большую нагрузку и может работать на большом оборудовании на заводах.

Однофазный источник питания

Однофазный источник питания представляет собой двухпроводную цепь питания переменного тока. Как правило, имеется один силовой провод — фазный провод — и один нейтральный провод, при этом ток течет между силовым проводом (через нагрузку) и нейтральным проводом.

Что означает фаза в электротехнике?

В электронной сигнализации фаза — это положение волны в момент времени (момент) в цикле формы волны. Он обеспечивает измерение точного положения волны в пределах своего цикла, используя либо градусы (0-360), либо радианы (0-2π). Один радиан фазы равен примерно 57,3 градусам.

3-фазное соединение

Трехфазное питание представляет собой трехпроводную цепь питания переменного тока, в которой сигнал каждой фазы переменного тока разнесен на 120 электрических градусов. Жилые дома обычно обслуживаются однофазным источником питания, в то время как коммерческие и промышленные объекты обычно используют трехфазное питание.

Что такое однофазный?

Однофазный тип передачи электроэнергии, при котором электроэнергия передается в виде одной волны переменного тока (AC). В однофазных системах существует только одна форма волны напряжения, которая колеблется синусоидально, и эту форму волны можно описать как имеющую положительный полупериод и отрицательный полупериод.

Подключение однофазного питания к трехфазному

По сути, все, что вам нужно сделать, это подключить однофазное питание к входной стороне вашего преобразователя частоты, а затем подключить трехфазное питание вашего двигателя к выходной секции привода. Вот и все!

Однофазная или трехфазная

Однофазная и трехфазная электроэнергия — это два типа передачи электроэнергии переменного тока, которые различаются количеством используемых форм напряжения.

Однофазные системы питания имеют только одну форму волны напряжения и обычно используются для приложений с низким энергопотреблением, таких как жилые дома, небольшие офисы и предприятия малого бизнеса. Однофазное питание относительно простое и экономичное, но имеет некоторые ограничения с точки зрения количества энергии, которое оно может передавать, и типов нагрузок, которые оно может эффективно питать.

В фазе Значение в электрике

Если у вас есть два разных электрических генератора, даже если они работают на одной частоте, например, 60 Гц, если вы соедините их вместе, вам нужно убедиться, что они находятся в фазе. Проще говоря, это просто означает, что напряжения должны расти и падать вместе.

Сколько фаз в электричестве?

Жилые дома обычно снабжаются однофазным источником питания, в то время как коммерческие и промышленные объекты обычно используют трехфазное питание. Одно ключевое различие между однофазным и трехфазным питанием заключается в том, что трехфазный источник питания лучше выдерживает более высокие нагрузки.


3-фазное электричество – как это работает

3-фазное электричество – как это работает. Мы продемонстрируем, как работает трехфазное электричество, сначала объяснив, как оно генерируется и чем оно отличается от однофазного электричества. Мы также расскажем, где трехфазное питание используется в промышленных и коммерческих зданиях.

Чтобы посмотреть БЕСПЛАТНУЮ версию этой презентации на YouTube, прокрутите вниз.

Как производится трехфазное электричество?

Если начать с источника трехфазной выработки электроэнергии, мы должны начать с электростанции, будь то атомная энергия, ископаемое топливо или другой источник. Преобразование генераторов переменного тока механическая энергия  в  электрическая энергия , в то время как двигатель переменного тока делает обратное, он преобразует электрическую энергию в механическую, например, при вращении вала двигателя насоса или вентилятора.

3-фазный генератор переменного тока преобразует механическую энергию в электрическую

Генератор переменного тока может представлять собой паровую турбину, работающую от котла, работающего на угле, газе, нефти или другом источнике, таком как ядерная энергия или плотина гидроэлектростанции. Пар или потенциальная энергия вращает генератор, который производит 3 фазы, которые мы сейчас обсудим. Позже мы покажем вам угольную электростанцию, которая преобразует уголь в электричество.

Майкл Фарадей – Электромагнитная индукция и электромагнетизм

Прежде всего, мы должны воздать должное Майклу Фарадею, английскому ученому, внесшему вклад в изучение электромагнетизма и принципов, лежащих в основе электромагнитной индукции. Генераторы и двигатели переменного тока используют электромагнитную индукцию, как мы сейчас объясним.

Электромагнитная индукция

Магнитное поле может быть создано в проводнике путем пропускания через него электричества, или электрический ток может быть наведен в проводнике путем прохождения магнитного поля мимо проводника. Мы можем добиться этого с помощью трех предметов: проводника, электромагнитов и движения между ними.

Существует множество версий генератора переменного тока, одна из таких версий использует вращающийся электромагнит для создания магнитного поля, через которое проходят проводники, тем самым создавая электродвижущую силу и индуцируя ток, протекающий в проводниках. В другой версии проводники движутся, а электромагниты неподвижны. Общим является электромагнит, который создает магнитное поле, и проводник, который вводится в это магнитное поле.

3-фазная магнитная индукция

Когда северный полюс электромагнита проходит через обмотки электрического проводника, он индуцирует ток в проводе.

Когда магнит находится под углом 90 градусов к виткам проводника, ток в проводе не течет.

3-фазное электричество Магнитная индукция – ток отсутствует

Поскольку южный полюс электромагнита проходит через обмотки проводника, это заставляет ток течь в направлении, противоположном направлению, вызванному северным полюсом магнита. Это приводит к тому, что ток меняет направление, как показано формой волны.

3-фазное электричество, генерируемое электромагнетизмом

Есть три катушки 3-фазного электричества с углом 120 градусов между ними.

3-фазное электричество – частота в герцах

Что такое 3-фазное электричество

Используя то, что мы узнали ранее, теперь мы можем собрать простой 3-фазный генератор, добавив три набора обмоток, по одной на каждую фазу. Предыдущую одиночную обмотку можно считать однофазным генератором. Нужно будет поместить эти обмотки в корпус, чтобы скрепить все вместе.

Вот как может выглядеть простой однофазный генератор.

Однофазное электричество

Теперь, когда электромагнит вращается внутри статора, его магнитное поле прорезает проводники, заставляя ток течь попеременно туда и обратно. Используя только один проводник, мы получаем однофазную систему.

Добавив еще два проводника, мы получаем трехфазное электричество. Магнитное поле электромагнита теперь проникает в три проводника, индуцируя ток, протекающий во всех трех проводниках. Мы получаем три отдельные фазы, отстоящие друг от друга на 120 градусов, что дает нам наиболее эффективную схему использования энергии.

3-фазное электричество с использованием электромагнита

Когда магнитное поле северного полюса магнита достигает ближайшей точки одного из проводников, оно заставляет электроны и ток течь в одном направлении. Затем, когда южный полюс электромагнитного поля достигает того же самого проводника, это заставляет электроны или ток течь в обратном направлении. Это движение вперед и назад электронов или тока в трех отдельных обмотках — это то, как создается трехфазная мощность.

В то время как один проводник или обмотка максимально нагружены, обращены к северному полюсу магнита, другие находятся на расстоянии 120 и 240 градусов, ожидая своей очереди под воздействием северного полюса магнита. Это происходит 60 раз в секунду, что дает нам 60 герц, или, если вы находитесь в стране, где используется 50 герц, это будет происходить 50 раз в секунду.

Полный оборот всех трех фаз равен одному циклу, а в системе на 60 герц это будет означать 60 циклов или оборотов ротора внутри корпуса статора каждую секунду, для системы на 50 герц — 50 циклов в секунду. Число циклов в секунду называется частотой и составляет 50 или 60 герц. Помните, что двигатели с частотно-регулируемым приводом могут работать очень сильно, и если вы не знакомы с этой концепцией, посмотрите наше видео о частотно-регулируемых приводах с частотно-регулируемым приводом.

Электростанция, работающая на угле

Трехфазное электричество вырабатывается здесь с использованием грязного угля. Уголь отправляется в котел, где он сжигается для создания пара, который вращает турбину в генераторе, производящем электричество. Электроэнергия передается по высоковольтным линиям к месту, где она будет потребляться. Электричество высокого напряжения будет преобразовано в более низкое напряжение, пропуская его через трансформатор.

Производство электроэнергии на угле

Эти трансформаторы могут быть расположены на промышленной или коммерческой территории, где напряжение будет снижено до уровня, необходимого для оборудования, которое они питают.

В зависимости от конфигурации трансформатора его можно настроить как трансформатор типа «треугольник» или «звезда», обеспечивающий все различные напряжения, необходимые в здании. От этого трехфазного электричества все в здании может быть запитано независимо от того, требуется ли однофазное или трехфазное электричество. Освещение в вашем доме будет использовать 115 вольт или что-то подобное, в то время как коммерческое здание может использовать 277 вольт, однофазное для своих осветительных приборов, поскольку 277 вольт распределяется более эффективно.

Вашему дому потребуется только однофазное электричество, в то время как коммерческие и промышленные здания могут использовать более эффективное и мощное трехфазное питание для своего оборудования, такого как насосы, вентиляторы, чиллеры, лифты, больничное оборудование и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *