Что такое электрическое напряжение. Как оно возникает и измеряется. Какие виды напряжения существуют. В каких единицах измеряется напряжение. Как напряжение связано с током и сопротивлением.
Что такое электрическое напряжение
Электрическое напряжение — это физическая величина, характеризующая разность потенциалов между двумя точками электрического поля. Проще говоря, напряжение показывает, насколько сильно электроны «стремятся» перейти из одной точки в другую.
Напряжение возникает из-за разницы в концентрации электронов между двумя точками. Чем больше эта разница, тем выше напряжение. Когда электроны начинают двигаться под действием этой разницы потенциалов, возникает электрический ток.
Как измеряется электрическое напряжение
Для измерения напряжения используется специальный прибор — вольтметр. Он подключается параллельно участку цепи, на котором нужно измерить напряжение.
Единицей измерения напряжения в Международной системе единиц (СИ) является вольт (В). Один вольт — это напряжение, при котором заряд в 1 кулон совершает работу в 1 джоуль при перемещении между двумя точками электрического поля.
Другие единицы измерения напряжения:
- Киловольт (кВ) = 1000 В
- Милливольт (мВ) = 0,001 В
- Микровольт (мкВ) = 0,000001 В
Виды электрического напряжения
Существует несколько основных видов электрического напряжения:
1. Постоянное напряжение
Это напряжение, которое не изменяется во времени. Его создают источники постоянного тока, например, гальванические элементы или аккумуляторы. Постоянное напряжение обозначается символом U=.
2. Переменное напряжение
Напряжение, периодически изменяющееся во времени. Самый распространенный вид — синусоидальное переменное напряжение, используемое в бытовых электросетях. Обозначается символом U~.
3. Импульсное напряжение
Это кратковременные всплески напряжения. Используется в электронике для передачи сигналов и в устройствах импульсного питания.
4. Пульсирующее напряжение
Напряжение, меняющееся во времени, но не меняющее знак. Часто возникает при выпрямлении переменного тока.
Характеристики переменного напряжения
Для переменного напряжения выделяют следующие основные характеристики:
- Амплитуда — максимальное значение напряжения
- Частота — число полных колебаний в секунду
- Период — время одного полного колебания
- Действующее значение — эквивалентное постоянное напряжение
Связь напряжения, тока и сопротивления
Напряжение, ток и сопротивление связаны между собой законом Ома:
U = I * R
где U — напряжение, I — сила тока, R — сопротивление.
Эта формула показывает, что:
- При постоянном сопротивлении увеличение напряжения ведет к увеличению тока
- При постоянном токе увеличение сопротивления требует увеличения напряжения
- При постоянном напряжении увеличение сопротивления ведет к уменьшению тока
Источники электрического напряжения
Существует множество источников электрического напряжения. Основные из них:
- Гальванические элементы и аккумуляторы
- Электрические генераторы
- Солнечные батареи
- Термопары
- Пьезоэлектрические преобразователи
Каждый из этих источников использует различные физические эффекты для создания разности потенциалов.
Применение электрического напряжения
Электрическое напряжение используется практически во всех областях современной жизни:
- Энергетика — передача электроэнергии на большие расстояния
- Электроника — питание электронных устройств
- Промышленность — работа электродвигателей и другого оборудования
- Транспорт — электромобили, электропоезда
- Бытовая техника — все электроприборы в наших домах
Безопасность при работе с электрическим напряжением
Электрическое напряжение может быть опасно для человека. Основные правила безопасности:
- Не прикасаться к оголенным проводам
- Использовать изолирующие материалы при работе с электричеством
- Не работать с электрическими приборами влажными руками
- Использовать устройства защитного отключения (УЗО)
- При любых работах с электричеством отключать питание
Напряжение в бытовой электросети
В большинстве стран мира в бытовых электросетях используется переменное напряжение. Однако его параметры могут отличаться:
- В России и большинстве стран Европы: 220-230 В, 50 Гц
- В США и ряде других стран: 110-120 В, 60 Гц
- В Японии: 100 В, 50/60 Гц (зависит от региона)
Эти различия необходимо учитывать при использовании электроприборов в разных странах.
Влияние напряжения на работу электроприборов
Напряжение напрямую влияет на работу электроприборов:
- Пониженное напряжение может привести к некорректной работе или отключению устройства
- Повышенное напряжение может вызвать перегрев и выход из строя прибора
- Колебания напряжения могут сократить срок службы электроники
Поэтому для защиты дорогостоящей техники часто используются стабилизаторы напряжения.
Заключение
Электрическое напряжение — фундаментальное понятие в электротехнике и электронике. Понимание его природы, видов и характеристик необходимо для работы с любыми электрическими устройствами. От бытовых приборов до промышленных установок — везде важно правильно учитывать и использовать электрическое напряжение.
НАПРЯЖЕНИЕ — это… Что такое НАПРЯЖЕНИЕ?
Напряжение — Напряжение: В Викисловаре есть статья «напряжение» Электрическое напряжение между точками A и B отношение работы электрического поля при переносе пробного заряда из точки A в B к величине этого пробного заряда. Номинальное напряжение… … Википедия
напряжение — См … Словарь синонимов
НАПРЯЖЕНИЕ — НАПРЯЖЕНИЕ, напряжения, ср. 1. только ед. Действие по гл. напрячь напрягать. Напряжение мышц. Напряжение внимания. 2. только ед. Состояние подъема, повышенных усилий в осуществлении чего нибудь, сосредоточение всех сил, внимания на чем нибудь. С… … Толковый словарь Ушакова
Напряжение — – характеристика силового воздействия на элемент, определяемого как доля усилия на единицу площади поверхности. [Полякова, Т.Ю. Автодорожные мосты: учебный англо русский и русско английский терминологический словарь минимум / Т.Ю. Полякова … Энциклопедия терминов, определений и пояснений строительных материалов
НАПРЯЖЕНИЕ — механическое, мера внутренних сил, возникающих в деформируемом теле под влиянием внешнего воздействия. Напряжение определяется с помощью косвенных экспериментов (оптических и тензометрических) по создаваемой им деформации … Современная энциклопедия
Напряжение s — Напряжение, определяемое отношением осевого растягивающего усилия Р к начальной площади поперечного сечения рабочей части образца F0 Источник: ГОСТ 1497 84: Металлы. Методы испытаний на растяжение оригинал документа … Словарь-справочник терминов нормативно-технической документации
Напряжение — механическое, мера внутренних сил, возникающих в деформируемом теле под влиянием внешнего воздействия. Напряжение определяется с помощью косвенных экспериментов (оптических и тензометрических) по создаваемой им деформации. … Иллюстрированный энциклопедический словарь
НАПРЯЖЕНИЕ — механическое внутренние силы, возникающие в деформируемом теле под влиянием внешних воздействий … Большой Энциклопедический словарь
НАПРЯЖЕНИЕ
— электрическое то же, что разность потенциалов между 2 точками электрической цепи; на участке цепи, не содержащей электродвижущую силу, равно произведению силы тока на сопротивление участка … Большой Энциклопедический словарьНапряжение — ситуация в управлении, характеризуемая повышенной психической или физиологической напряженностью … Словарь терминов антикризисного управления
Электрическое напряжение: объяснение простыми словами
Электрическое напряжение: объяснение простыми словами
Электрическим напряжением обозначается физическая величина, равная разности потенциалов между двумя точками электрического поля при перемещении единичного заряда. Для простых пользователь такое обозначение не всегда понятно. Поэтому в этой статье мы попытаемся простым, доступным языком рассказать, что собой представляет электрическое напряжение, как оно измеряется и для чего это нужно.
Что такое разность потенциалов?
Для начала проанализируем рисунок:
В первой бутылке вода находится на уровне 300 мм, а во второй – на отметке 150 мм. Разница между уровнями воды в обоих емкостях составляет 150 мм. Если рассматривать это с точки зрения науки об электричестве, это и есть разность потенциалов.
Однако, что будет, если соединить обе бутылки шлангом, а внутрь поместить обычный пластиковый шарик?
Из школьного урока физики о принципе соединяющихся сосудах знаем, что из бутылки, где уровень воды больше, жидкость постепенно перетечет в бутылку с более низким уровнем. Под воздействием потока воды шарик внутри соединяющего шланга будет перемещаться. Процесс перетекания завершится после того, как в обоих бутылках уровень жидкости уравновесится, станет одинаковым.
Иными словами, в ситуации, когда в соединенных между собой емкостях уровень жидкости станет одинаковым, результатом разности потенциалов станет ноль. Шарик останется на месте за счет электродвижущей силы, которая, по итогам эксперимента, равна нулю.
Что такое электродвижущая сила?
Аналогично напряжению, единицей измерения электродвижущей силы (ЭДС) является Вольт.
Для проведения следующего эксперимента понадобится вольтметр (прибор, измеряющий вольты) и обычная батарейка.
При исходном замере прибор покажет 1.5 В (Вольта). Однако это не является напряжением – значение указывает на величину электродвижущей силы.
На следующем этапе эксперимента к батарейке подключаются две лампочки. А напряжение измеряется в разных участках электроцепи.
Внимание следует уделить следующим показателям: напряжение для одной лампочки составляет 1 Вольт, для другой же это значение 0.3 Вольта.
Напряжение в используемых нами осветительных устройствах напрямую зависит от их мощности, измеряемой в Ваттах.
Мощность=Напряжение*ток (Р=U*I)
Из этого следует, что чем больше будет значение мощности лампы, тем большее напряжение будет на ней.
Однако, как же получается: если мощность батарейки 1.5 Вольта, к которой подключены лампочки, разделена на 1 Вольт и 0.3 Вольта, куда направились еще 0.2 Вольта? Дело в том, что каждая батарейка наделена своим внутренним сопротивлением, поэтому недостающие 0.2 Вольта были направлены именно сюда.
Резюме
Электродвижущей силой определена физическая величина, характеризующая в источниках тока работу сторонних силовых ресурсов. Посредством электродвижущей силы мы можем определять, как переносится заряд от источника тока по всей электрической цепи. Напряжение показывает этот процесс лишь на отдельном участке этой цепи. Если проще: напряжение – это внешнее силовое воздействие, способствующее перемещению шарика в шланге, соединяющим сосуды из выше приведенного примера. В электричестве напряжение обозначено силой, которая обеспечивает перемещение электронов между атомами.
Рассмотрим еще один пример
Представьте, что вам по силам будет поднять камень, вес которого составляет 40 кг. Это означает, что вы обладаете подъемной силой, равной 40 кг – в электричестве это обозначается как электродвижущая сила. Вы следуете и на своем пути вам попадается камень весом 20 кг. Вы его также берете и переносите на расстояние 10 метров. Для осуществления этого действия вам понадобилось определенное количество энергии, что в электричестве представляется как напряжение. Далее вам попадается камень весом в 30 кг. Следовательно, для его переноса из одного места в другое вам понадобится больше энергии, чем для камня, масса которого не превышала 20 кг. Однако подъемная сила (в электричестве ЭДС), независимо от веса переносимого вами камня, остается всегда одинаковой. При этом, вес камня определяет количество энергии, которая тратится на проведение этого действия (в электричестве это обозначено напряжением). Таким образом, на каждом отрезке вашего пути вы будете испытывать разное напряжение в зависимости от веса камня, который вы намерены перенести.
Ток зависит от напряжения
Закон Ома:
Исходя из приведенной формулы следует: ток является прямо пропорциональным напряжению и обратно пропорциональным сопротивлению. Иными словами, чем больше величина электрического тока, тем больше напряжение, и наоборот.
как они используются на практике
Напряжение и ток — это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.
Напряжение (условное обозначение: U). Напряжение между двумя точками — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой (э. д. с). Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах (1 кВ = 103 В), милливольтах (1 мВ = 10-3 В) или микровольтах (1 мкВ = 10-6 В). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно 6*1018 электронов.) Напряжение, измеряемое в нановольтах (1 нВ = 10-9 В) или в мегавольтах (1 МВ = 106 В) встречается редко.
Ток (условное обозначение: I). Ток — это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10-3 А), микроамперах (1 мкА = 10-6 А), наноамперах (1 нА = 10-9 А) и иногда в пикоамперах (1 пкА = 10-12 А). Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.
Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-либо элемент схемы.
Говорить «напряжение в резисторе» нельзя — это неграмотно. Однако часто говорят о напряжении в какойлибо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землей», то есть такой точкой схемы, потенциал которой всем известен. Скоро вы привыкнете к такому способу измерения напряжения.
Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т. п. Ток мы получаем, прикладывая напряжение между точками схемы.
Здесь, пожалуй, может возникнуть вопрос: а что же такое напряжение и ток на самом деле, как они выглядят? Для того чтобы ответить на этот вопрос, лучше всего воспользоваться таким электронным прибором, как осциллограф. С его помощью можно наблюдать напряжение (а иногда и ток) как функцию, изменяющуюся во времени.
В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо. Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как ее схематическое изображение, так как провода можно соединять поразному.
Запомните несколько простых правил, касающихся тока и напряжения:
Сумма токов, втекающих в точку, равна сумме токов, вытекающих из нее (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединенных этими концами один с другим) ток во всех точках одинаков.
При параллельном соединении элементов (рис. 1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.
Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом:
Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд)*(заряд/ед. времени). Если напряжение U измерено в вольтах, а ток I — в амперах, то мощность Р будет выражена в ваттах. Мощность величиной 1 ватт — это работа в 1 джоуль, совершенная за 1 с (1 Вт=1 Дж/с).
Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, нередатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).
В дальнейшем при изучении периодически изменяющихся токов и напряжений мы обобщим простое выражение Р=UI. В таком виде оно справедливо для определения мгновенного значения мощности. Кстати, запомните, что не нужно называть ток силой тока — это неграмотно.
Статья из Интернета Похожие материалы:
В электротехнике для описания процессов, протекающих внутри электрических цепей, используются термины «ток», «напряжение» и «сопротивление». Каждый из них имеет собственное назначение со специфическими характеристиками.
Электрический ток
Слово используется для характеристики движения заряженных частиц (электроны, дырки, катионы и анионы) через определенную среду вещества. Направление и количество носителей заряда определяет тип и силу тока.
Основные характеристики тока, влияющие на его практическое применение
Обязательным требованием для протекания зарядов является наличие цепи или, другим словами, замкнутого контура, создающего условия для их передвижения. Если внутри движущихся частиц образуется разрыв, то их направленное перемещение сразу прекращается.
На этом принципе работают все выключатели и защиты, используемые в электрике. Они создают разделение подвижными контактами токопроводящих частей между собой и этим действием прерывают протекание электрического тока, отключая прибор.
В энергетике наибольшее распространение получил метод создания электрического тока за счет передвижения электронов внутри металлов, изготовленных в виде проводов, шин или других токопроводящих частей.
Кроме этого способа также используется создание тока внутри:
1. газов и жидкостей-электролитов за счет движения электронов или катионов и анионов — ионов с положительными и отрицательными знаками заряда;
2. среды из вакуума, воздуха и газов при условии передвижения электронов, вызванного явлением термоэлектронной эмиссии;
3. полупроводниковых материалов вследствие перемещения электронов и дырок.
Электрический ток может возникнуть при:
приложении к заряженным частицам внешней разности электрических потенциалов;
нагреве проводников, не являющихся в данный момент сверхпроводниками;
протекании химических реакций, связанных с выделением новых веществ;
воздействии приложенного на проводник магнитного поля.
Форма сигнала электрического тока может быть:
1. постоянной в виде прямой линии на временно́м графике;
2. переменной синусоидальной гармоникой, хорошо описываемой основными тригонометрическими соотношениями;
3. меандром, грубо напоминающим синусоиду, но с резкими, ярко выраженными углами, которые в отдельных случаях могут быть хорошо сглажены;
4. пульсирующей, когда направление остается одним и тем же без изменения, а амплитуда колеблется периодически от нулевого до максимального значения по вполне определенному закону.
Электрический ток может совершать полезную для человека работу, когда он:
преобразуется в световое излучение;
создает нагрев тепловых элементов;
совершает механическую работу за счет притяжения или отталкивания подвижных якорей либо вращения роторов с приводами, закрепленных в подшипниках;
формирует электромагнитное излучение и в некоторых других случаях.
При прохождении электрического тока по проводам может создаваться вред, вызываемый:
излишним нагревом токонесущих цепей и контактов;
образованием в магнитопроводах электрических машин;
излучением электроэнергии в окружающую среду и некоторыми подобными явлениями.
Конструкторы электрических приборов и разработчики различных схем учитывают перечисленные возможности электрического тока в своих устройствах. Например, вредное воздействие вихревых токов в трансформаторах, двигателях и генераторах уменьшается за счет шихтовки сердечников, используемых для пропускания магнитных потоков. В то же время вихревой ток успешно применяют для разогрева среды внутри электрических печей и микроволновок, работающих на индукционном принципе.
Переменный электрический ток с синусоидальной формой сигнала может иметь разную частоту колебаний в единицу времени — секунду. Промышленная частота электроустановок в разных странах стандартизирована числами 50 или 60 герц. Для других целей электротехники и радиодела применяются сигналы:
низкочастотные, имеющие меньшие значения;
высокочастотные, значительно превышающие спектр промышленных устройств.
Обычно принято, что электрический ток создается движением заряженных частиц внутри определенной макроскопической среды и его называют током проводимости . Однако, может возникнуть и другой вид тока, называемый конвекционным, когда передвигаются макроскопические заряженные тела, например, дождевые капли.
Как образуется электрический ток в металлах
Перемещение электронов под действием постоянно приложенной к ним силы вполне можно сравнить со снижением парашютиста с раскрытым куполом. В обоих случаях происходит равноускоренное движение.
Парашютист движется за счет притяжения к земле силой тяжести, которой противостоит сила сопротивления воздуха. На электроны воздействует приложенная к ним сила , а мешают его движению непрерывные соударения с другими частицами — ионами кристаллических решеток, за счет чего гасится часть воздействия приложенной силы.
В обоих случаях средняя скорость парашютиста и перемещения электронов достигает постоянной величины.
При этом создается довольно уникальная ситуация, когда скорость:
собственного передвижения одного электрона определяется величиной порядка 0,1 миллиметра в секунду;
протекание электрического тока соответствует значительно большей величине — скорости распространения световых волн: около 300 тысяч километров в секунду.
Таким образом, создается в том месте, где к электронам приложено напряжение, и в результате оно начинает перемещаться со скоростью света внутри токопроводящей среды.
При движении электронов внутри кристаллической решетки металла возникает еще одна интересная закономерность: его сталкивание происходит примерно с каждым десятым встречным ионом. То есть, около 90% столкновений с ионами он успешно избегает.
Объяснить это явление помогают законы не только фундаментальной классической физики, как принято понимать большинством людей, а действующие дополнительные закономерности, описанные теорией квантовой механики.
Если кратко выразить их действие, то можно представить, что передвижению электронов внутри металлов мешают тяжелые «качающиеся» большие ионы, которые оказывают дополнительное сопротивление.
Особенно этот эффект хорошо заметен при нагреве металлов, когда «качания» тяжелых ионов увеличиваются и снижают электрическую проводимость кристаллических решеток проводников.
Поэтому при нагреве металлов у них всегда повышается электрическое сопротивление, а при охлаждении — увеличивается проводимость. Когда температура металла снижается до критических значений, приближенных к величине абсолютного нуля, во многих из них возникает явление сверхпроводимости.
Электрический ток, в зависимости от своей величины, способен совершать различную работу. Для количественной оценки его возможностей принята величина, называемая силой тока. Ее размерностью в международной системе измерений является 1 ампер. Для обозначения силы тока в технической литературе принят индекс «I».
Электрическое напряжение
Этот термин используется как характеристика физической величины, выражающей затраченную работу по переносу пробного единичного электрического заряда из одной точки в другую без изменения характеров размещения остальных зарядов на действующих источниках полей.
Поскольку начальная и конечная точки обладают различными потенциалами энергии, то работа на перемещение заряда, или напряжение, совпадает с соотношением разности этих потенциалов.
В зависимости от протекающих токов используются различные термины и способы вычисления напряжения. Оно может быть:
1. постоянным — в цепях электростатики и постоянного тока;
2. переменным — в схемах с переменными и синусоидальными токами.
Для второго случая используются такие дополнительные характеристики и разновидности напряжения, как:
амплитуда — наибольшее отклонение от нулевого положения оси абсцисс;
мгновенная величина, которая выражается в конкретный момент времени;
действующее, эффективное или, называемое по-другому, среднеквадратичное значение, определяемое по совершаемой активной работе одного полупериода;
средневыпрямленное, рассчитываемое по модулю выпрямленного значения одного периода гармоники.
Для количественной оценки напряжения введена международная единица 1 вольт, а ее обозначением стал символ «U».
При транспортировке электрической энергии по проводам воздушных линий конструкция опор и их габариты зависят от значения используемого напряжения. Его величину между проводами фаз называют линейной, а относительно каждого провода и землей — фазной.
Это правило применяется ко всем видам воздушных линий.
В бытовых электрических сетях нашей страны стандартом принято трехфазное напряжение 380/220 вольт.
Электрическое сопротивление
Термин применяется для характеристики свойств вещества ослаблять прохождение через него электрического тока. При этом могут выбираться разные среды, изменяться температура вещества или его габариты.
У цепей постоянного тока сопротивление совершает активную работу, поэтому его называют активным. Оно для любого участка прямо пропорционально приложенному напряжению и обратно пропорционально — проходящему току.
В цепях переменного тока введены понятия:
Электрический импеданс по-другому называют комплексным или полным сопротивлением с составляющими частями:
активной;
реактивной.
Реактивное сопротивление, в свою очередь, может быть:
емкостным;
индуктивным.
Соотношения между составляющими импеданса описываются треугольником сопротивлений
.
При проведении расчетов электродинамики волновое сопротивление ЛЭП определяется соотношением напряжения от падающей волны к величине тока, проходящей по линии волны.
Величиной сопротивления принята международная единица измерения в 1 Ом.
Взаимосвязь тока, напряжения, сопротивления
Классическим примеров выражения соотношений между этими характеристиками является сравнение с гидравлической схемой, в которой сила движения потока жизни (аналог — величина тока) зависит от значения приложенной к поршню силы (созданного напряжения) и характера магистралей потока, выполненных сужениями (сопротивлением).
Амперметр замеряет ток, проходящий по цепи. Поскольку на всем замкнутом участке он не изменяется, то амперметр врезают в любом месте между источником напряжения и потребителем, создавая прохождение зарядов через измерительную головку прибора.
Вольтметром измеряют напряжение на клеммах подключенного к источнику тока потребителя.
Замеры сопротивления омметром могут выполняться только на обесточенном потребителе. Это объясняется тем, что омметр выдает калиброванное напряжение и замеряет ток, проходящий по измерительной головке, который переводится в Омы за счет деления напряжения на полученное значение тока.
Любое подключение маломощного постороннего напряжения при выполнении измерения создаст дополнительные токи и исказит результат. Учитывая, что внутренние цепи омметра изготавливаются маломощными, то при ошибочных замерах сопротивления при поданном постороннем напряжении довольно часто прибор выходит из строя за счет того, что у него выгорает внутренняя схема.
Знание основных характеристик тока, напряжения, сопротивления и зависимостей между ними позволяет электрикам успешно выполнять свою работу и надежно эксплуатировать электрические системы, а допускаемые ошибки очень часто заканчиваются несчастными случаями и травмами.
Напряжение: В Викисловаре есть статья «напряжение» Электрическое напряжение между точками A и B отношение работы электрического поля при переносе пробного заряда из точки A в B к величине этого пробного заряда. Номинальное напряжение… … Википедия
См … Словарь синонимов
Напряжение — – характеристика силового воздействия на элемент, определяемого как доля усилия на единицу площади поверхности. [Полякова, Т.Ю. Автодорожные мосты: учебный англо русский и русско английский терминологический словарь минимум / Т.Ю. Полякова … Энциклопедия терминов, определений и пояснений строительных материалов
Механическое, мера внутренних сил, возникающих в деформируемом теле под влиянием внешнего воздействия. Напряжение определяется с помощью косвенных экспериментов (оптических и тензометрических) по создаваемой им деформации … Современная энциклопедия
НАПРЯЖЕНИЕ, измерение РАЗНОСТИ ПОТЕНЦИАЛОВ между двумя точками цепи. Разность потенциалов составляет 1 вольт, если ЭЛЕКТРИЧЕСКИЙ ЗАРЯД в 1 кулон, протекая между двумя точками, производит работу в 1 джоуль. Напряжение также вычисляется умножением… … Научно-технический энциклопедический словарь
Напряжение s — Напряжение, определяемое отношением осевого растягивающего усилия Р к начальной площади поперечного сечения рабочей части образца F0 Источник: ГОСТ 1497 84: Металлы. Методы испытаний на растяжение оригинал документа … Словарь-справочник терминов нормативно-технической документации
Напряжение — механическое, мера внутренних сил, возникающих в деформируемом теле под влиянием внешнего воздействия. Напряжение определяется с помощью косвенных экспериментов (оптических и тензометрических) по создаваемой им деформации. … Иллюстрированный энциклопедический словарь
Механическое внутренние силы, возникающие в деформируемом теле под влиянием внешних воздействий …
Электрическое то же, что разность потенциалов между 2 точками электрической цепи; на участке цепи, не содержащей электродвижущую силу, равно произведению силы тока на сопротивление участка … Большой Энциклопедический словарь
Ситуация в управлении, характеризуемая повышенной психической или физиологической напряженностью … Словарь терминов антикризисного управления
Книги
- Напряжение , Островский, Андрей Львович. В книгу известного петербуржского литератора Андрея Львовича Островского (1926-2001) вошли три его остросюжетные повести «Ночь не скроет», «Звонкий месяц апрель» и «Напряжение» о работе…
- Напряжение , Островский А.Л.. В книгу известного петербуржского литератора Андрея Львовича Островского (1926-2001) вошли три его остросюжетные повести 171;Ночь не скроет 187;, 171;Звонкий месяц апрель 187;и…
Что такое Электрическое напряжение — Определение, измерение
Большинство людей в быту могут оперировать таким понятием как электрическое напряжение. Практически все знают, что бытовая розетка находится под напряжением 220В, а пальчиковая батарейка выдает напряжение всего в 1.5В. При этом далеко не каждый человек, окончивший среднюю школу или даже технический ВУЗ в состоянии ответить, что же все-таки означает термин электрическое напряжение. В этом материале мы постараемся ответить на этот вопрос, по возможности не прибегая к сложной математике.
Определение электрического напряжения
В учебниках по физике и электротехнике можно встретить разные определения электрического напряжения. Одно из них звучит следующим образом: электрическое напряжение между двумя точками пространства равно разности потенциалов электрического поля в этих точках. Математически это записывается так:
U=φ_a-φ_b (1).
Где U – электрическое напряжение, а φ_a и φ_b потенциалы электрического поля в точках A и B соответственно.
Если мы не знаем что такое потенциал электрического поля в точке, то приведенное выше определение мало проясняет вопрос, что же такое электрическое напряжение. Под потенциалом электрического поля в точке понимают работу, по перемещению единичного заряда совершаемую электрическим полем из данной точки в точку с нулевым потенциалом. На первый взгляд определение электрического потенциала кажется довольно сложным. Например, не совсем понятно, где находится точка с нулевым потенциалом.
Для начала нужно запомнить, что электрический потенциал это работа по переносу единичного заряда. Если обратиться к формуле (1) то станет ясно, что электрическое напряжение не что иное, как разность двух работ. То есть электрическое напряжение, тоже есть работа. Отсюда мы приходим ко второму определению. Электрическое напряжение численно равно работе по переносу единичного электрического заряда из точки А в точку В. При этом φ_a и φ_b это потенциальная энергия которой обладает единичный заряд в точках А и В соответственно.
Для лучшего понимания изложенного выше можно привести следующую аналогию. Любое тело, находящееся на некотором расстоянии от Земли обладает потенциальной энергией. Для того чтобы поднять тело выше придется выполнить некоторую работу. Величина этой работы будет равна разности потенциальных энергий, которыми обладает тело на разной высоте. Похожую картину мы наблюдаем, когда мы имеем дело с электрическим полем.
Что касается точки пространства, в которой электрический заряд обладает нулевым электрическим потенциалом, то в теории электричества эту точку можно выбрать произвольно. Связанно это с тем, что электрическое поле «потенциально». Чтобы прояснить этот термин придется прибегнуть к высшей математике, а мы решили этого избежать. На практике специалисты в области электротехники в качестве точек с нулевым потенциалом часто выбирают поверхность Земли. И многие измерения выполняют относительно нее.
Электрические поля могут быть постоянными (неизменными во времени) и переменными. Переменные электрические поля могут изменяться по различным математическим законам. В технике чаще всего используются переменные электрические поля, которые изменяются по закону синуса. В случае переменного электрического поля мгновенное значение разности потенциалов между двумя точками можно вычислить по следующей формуле:
u(t)=U_m sin〖(ωt)〗 (2).
Здесь u – мгновенное значение напряжения; Um – максимальное значение напряжения; ω – частота, t – время.
Измерение электрического напряжения
Электрическое напряжение измеряют с помощью вольтметров. Для измерения напряжения (разности потенциалов) на участке электрической цепи щупы вольтметра подключают к концам этого участка и по шкале считывают показания прибора.
Существует множество типов вольтметров. Мы остановимся на аналоговых вольтметрах с магнитоэлектрическими измерительными механизмами. Эти механизмы довольно часто применяют в щитовых вольтметрах и многофункциональных измерительных приборах – мультиметрах. Магнитоэлектрический электрический механизм представляет собой проволочную катушку, размещенную между полюсами магнита. Катушка подвешивается на спиральных пружинах обеспечивающих высокую чувствительность прибора. С катушкой связана указательная стрелка, с помощью которой осуществляется отсчет показаний на шкале прибора. Ниже на рисунке показано устройство магнитоэлектрического механизма.
Магнитоэлектрические измерительные механизмы имеют высокую чувствительность. С их помощью можно измерить напряжения составляющие сотые доли вольта. Для расширения пределов измерения последовательно с измерительным механизмом включают добавочные сопротивления. Схема простейшего вольтметра постоянного тока показана на рисунке.
Одним из важнейших параметром вольтметра является его внутреннее сопротивление. Чем больше значение внутреннего сопротивления вольтметра, тем меньшую погрешность можно получить в процессе измерения. Для аналоговых вольтметров внутреннее сопротивление обычно составляет 20кОм на вольт. Если необходимо получить большее значение сопротивления для измерений применяют электронные вольтметры, цифровые или аналоговые.
Для измерения переменного напряжения в конструкцию вольтметров включают выпрямители, которые преобразуют переменное напряжение в постоянное. Шкалы вольтметров для измерения переменного напряжения обычно градуируют в действующих (эффективных) значениях напряжения. Действующее значение переменного тока связано с максимальным следующим соотношением.
U=1/√2 U_m=0,707U_m (3)
Действующее значение удобно применять при вычислении мощности электрической цепи. Когда мы говорим, что в электрической розетке присутствует напряжение 220В, речь идет именно о действующем значении напряжения.
В коротком материале трудно рассказать обо всех нюансах связанных с электрическим напряжением и способах его измерения. Но мы надеемся, что текст окажется полезен читателю.Что такое напряжение и ток | Начинающим
Что такое напряжение и ток
Напряжение и ток — это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.
Напряжение (условное обозначение: U, иногда Е). Напряжение между двумя точками — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой (э. д. с). Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах (1 кВ = 103 В), милливольтах (1 мВ = 10-3 В) или микровольтах (1 мкВ = 10-6 В). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно 6*1018 электронов.) Напряжение, измеряемое в нановольтах (1 нВ = 10-9 В) или в мегавольтах (1 МВ = 106 В) встречается редко.
Ток (условное обозначение: I). Ток — это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10-3 А), микроамперах (1 мкА = 10-6 А), наноамперах (1 нА = 10-9 А) и иногда в пикоамперах (1 пкА = 10-12 А). Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.
Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-либо элемент схемы.
Говорить «напряжение в резисторе» нельзя — это неграмотно. Однако часто говорят о напряжении в какойлибо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землей», то есть такой точкой схемы, потенциал которой всем известен. Скоро вы привыкнете к такому способу измерения напряжения.
Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т. п. Ток мы получаем, прикладывая напряжение между точками схемы.
Здесь, пожалуй, может возникнуть вопрос: а что же такое напряжение и ток на самом деле, как они выглядят? Для того чтобы ответить на этот вопрос, лучше всего воспользоваться таким электронным прибором, как осциллограф. С его помощью можно наблюдать напряжение (а иногда и ток) как функцию, изменяющуюся во времени.
В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо. Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как ее схематическое изображение, так как провода можно соединять поразному.
Запомните несколько простых правил, касающихся тока и напряжения:
-
Сумма токов, втекающих в точку, равна сумме токов, вытекающих из нее (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединенных этими концами один с другим) ток во всех точках одинаков.
-
При параллельном соединении элементов (рис. 1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.
-
Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом:
P = UI
Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд)*(заряд/ед. времени). Если напряжение U измерено в вольтах, а ток I — в амперах, то мощность Р будет выражена в ваттах. Мощность величиной 1 ватт — это работа в 1 джоуль, совершенная за 1 с (1 Вт=1 Дж/с).
Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, нередатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).
В дальнейшем при изучении периодически изменяющихся токов и напряжений мы обобщим простое выражение Р=UI. В таком виде оно справедливо для определения мгновенного значения мощности. Кстати, запомните, что не нужно называть ток силой тока — это неграмотно.
Электрическое напряжение — урок. Физика, 8 класс.
Электрический ток — упорядоченное движение заряженных частиц.
Электрический ток протекает в проводниках электричества. Например, в металлах электрический ток создают свободные электроны, в жидкостях — положительные и отрицательные ионы.
Чтобы мог образоваться электрический ток, необходимо наличие в веществе электрически заряженных частиц, которые могут свободно перемещаться.
Свободные электроны и ионы сами по себе не могут перемещаться, необходима сила, воздействующая на них. Эту силу создаёт источник тока, который характеризуется электрическим напряжением.
Что такое электрическое напряжение, поможет выяснить его сравнение с течением реки. Течение — это тоже поток. Оно образуется только потому, что вода течёт с высокого места в низкое. Существует разница высот между истоком и устьем. Эта разница обеспечивает течение реки по всей её длине. Можно сказать, разница высот между истоком и устьем реки — своего рода напряжение.
Подобно действуют источники электрического тока, например, батарейка. У батарейки есть два полюса: плюс (+) и минус (-). В отрицательном полюсе накапливаются свободные электроны, а в положительном полюсе электронов меньше. Поэтому существует разница в концентрации зарядов. Эта разница между обоими полюсами батарейки создаёт электрическое напряжение.
В каждом источнике тока совершается работа, чтобы отделить положительные и отрицательные заряды, которые накапливаются в полюсах источника тока.
Например, в батарейках и аккумуляторах эта работа совершается в результате химических реакций, в фотоэлементах она совершается за счёт энергии света.
Электрическое напряжение характеризует возможность электрического поля совершать работу.
В электрической цепи протекает ток, если в ней имеется источник тока. Чем выше электрическое напряжение источника тока, тем большую работу может совершить поток электронов.
Электрическое напряжение обозначается буквой U, единицей напряжения является вольт (В). Напряжение измеряется вольтметром.
ток или напряжение, и почему это происходит?
Опасность электричества не миф, хуже того, несмотря на всеобщую осведомленность об этом факте, практически каждый человек может сказать, что ему доводилось при каких-то обстоятельствах ощутить на собственной шкуре электрический удар. Исход подобного воздействия не обязательно плачевен, однако, опасность летального исхода – это неотъемлемый спутник халатного обращения с электричеством.
Именно поэтому на электроустановках устанавливают предупреждающие плакаты, например, «Высокое напряжение! Опасно для жизни!» или «Не влезай! Убьет!». В связи с чем у многих возникает путаница, что убивает ток или напряжение, чего же им стоит опасаться.
В чем отличие между током и напряжением?
Если рассмотреть физический процесс, то электрическая энергия имеет множество различных характеристик, среди которых наиболее часто рассматриваются напряжение и ток. Сразу заметим, что это не одно и то же, но обе они взаимосвязаны.
В каждом веществе присутствует несчетное количество мельчайших атомов, в которых происходит электромагнитное взаимодействие между положительно заряженным ядром и отрицательно заряженными электронами, вращающимися вокруг ядра. В нормальном состоянии элементарные частицы находятся в балансе – заряд ядра полностью скомпенсирован зарядами электронов. Но, воздействие электромагнитного поля на атомы приводит наиболее удаленные электроны в движение, и атомы выходят из равновесия – получают определенный заряд.
Рис. 1. Строение атомаПод напряжением следует понимать разницу между двумя зарядами – в одной точке энергии больше, а в другой меньше. Можно провести аналогию с сообщающимися сосудами, если воды в одной трубке больше, а во второй меньше, то при их соединении вода из первой будет перетекать во вторую. Так же и с напряжением – потенциально в каждой точке имеется определенный заряд энергии, созданный электромагнитным полем, но до тех пор, пока эти точки не соединятся электрической цепью, заряженные частицы не начнут направленного движения.
Рис. 2. Что такое напряжениеНо, с появлением связующей цепи, напряжение между двумя точками приведет к направленному движению заряженных частиц. Это явление получило название электрического тока.
В зависимости от особенностей источника электрической энергии напряжение и ток могут носить:
- постоянный характер – не зависимо от наличия или отсутствия нагрузки, величина напряжения не меняется, относится к источникам неограниченной мощности;
- изменяться в зависимости от величины нагрузки – относятся к источника с ограниченной мощностью, где величина питающего напряжения снижается при замыкании цепи;
- временный – при подключении нагрузки к источнику питания заряд полностью рассеивается через короткий промежуток времени, это конденсаторы, в некоторых ситуациях наведенное напряжение.
Поэтому ток не может протекать без наличия напряжения на участке цепи, но именно ток определяет интенсивность воздействия электрической энергии на человека.
Воздействие тока и напряжения на организм
Чтобы определить степень воздействия на человека, следует отметить, что тело представляет собой проводник электрической энергии, через который может свободно протекать электрический ток. Однако, согласно закону Ома, сила тока на любом участке электрической цепи прямо пропорциональна напряжению, приложенному к этому участку и обратно пропорциональна сопротивлению:
I = U/R;
где
- I – сила тока;
- U – величина приложенного напряжения;
- R – сопротивление тела человека.
Как можно судить из вышеприведенного выражения, чем больше омическое сопротивление, тем меньше ток, протекающий через человека. Напряжение электрической сети – величина постоянная и мало зависящая от того, что к ней подключено.
А вот на сопротивление человека влияют многие факторы:
- состояние кожных покровов в местах прикосновения к токоведущим частям;
- увлажненность кожи;
- общее физиологическое состояние организма;
- состав крови.
Помимо этого прохождение тока будет зависеть и от состава напольного покрытия, если цепь замкнется через ноги. В среднем, сопротивление человека принимается равным 1000 Ом, сухая кожа может иметь сопротивление в 100 000 Ом, но рассчитывать на такой показатель не стоит. Если рассмотреть ситуацию, когда 220 вольт приложено к человеку с сопротивлением 1000 Ом, то удар током достигнет 0,22А или 220 мА, а это опасная величина.
Чтобы представлять себе всю картину, нужно знать следующее:
- при 1 – 10 мА удар электрическим током не ощущается, человек свободно отпустит токоведущий элемент без угрозы для собственной жизни;
- от 15 – 50 мА воздействие электричества вызывает сокращения мышц и болезненные ощущения, самостоятельное освобождение человека может оказаться затруднительным;
- от 50 – 100 мА воздействие электрического тока затрагивает сердце, поэтому становится опасным для жизни;
- от 100 – 200 мА поражение электрической энергией может нанести летальный урон организму.
Вышеприведенные данные справедливы для переменного тока частотой 50 Гц, это обуславливается наличием амплитудных составляющих и пикового значения, как в положительную, так и в отрицательную сторону. При постоянном токе опасное для жизни значение считается от 300 мА и выше.
Более детально о воздействии электрического тока на организм человека было изложено в нашей статье: https://www.asutpp.ru/dejstvie-elektricheskogo-toka-na-organizm-cheloveka.html
Подводя итоги
Как видите, токовая составляющая, воздействующая на человека, и определяет, какие ситуации считаются опасными, а какие нет. Но, в то же время, без разности потенциалов электрический ток вообще протекать через человека не будет. Прямой тому пример – выполнение работ под напряжением, когда человек свободно касается проводов, а смертельно опасное электричество его не бьет. Проблема решается изолирующей вставкой между землей и ногами человека, которая разрывает электрическую цепь.
Рис. 4. Работа под напряжением с изолированной вышкиПомимо этого существует целый разряд электроустановок, которые относятся к безопасным за счет питания низким напряжением. Так, потенциально безопасными можно назвать уровни не более 42 В переменного и 100 В постоянного, а все остальные относятся к опасному или высокому напряжению. Но не испытывайте судьбу, лучше перестраховаться и воспользоваться средствами индивидуальной защиты, а в любой непонятной ситуации воздержаться от взаимодействия с электроустановкой, оборванными проводами или корпусом поломанного бытового прибора, включенного в сеть.
Видео пояснение
Что такое напряжение? | Хиоки
Что такое напряжение? Эта страница предлагает легкое для понимания объяснение того, как напряжение отличается от тока, единицы измерения, в которых оно измеряется, и другую информацию.
Обзор
Перед тем, как начать использовать электронные устройства, вам необходимо хорошо разбираться в токе, сопротивлении, напряжении и связанных с ними темах. Если вы, как и большинство людей, знакомы со словами, но не имеете детального понимания основных понятий.Эта страница представляет собой легкое для понимания введение, в котором исследуется, как определяются напряжение и другие термины, как различаются ток и электрический потенциал и как можно измерить напряжение.
Что такое напряжение?
Напряжение описывает «давление», которое толкает электричество. Величина напряжения указывается единицей, известной как вольт (В), а более высокие напряжения заставляют больше электричества течь к электронному устройству. Однако электронные устройства предназначены для работы при определенных напряжениях; чрезмерное напряжение может повредить их схему.
Напротив, слишком низкое напряжение также может вызвать проблемы, не позволяя схемам работать и делая устройства, построенные вокруг них, бесполезными. Понимание напряжения и способов устранения связанных проблем необходимо для надлежащего обращения с электронными устройствами и выявления основных проблем при их возникновении.
Разница между напряжением и током
Как было сказано выше, простым описанием напряжения будет «способность вызывать прохождение электричества.«Если вы похожи на большинство людей, вам трудно представить себе, что такое напряжение, поскольку вы не можете увидеть его прямо своими глазами. Чтобы понять напряжение, вы должны сначала понять электричество.
Электричество течет как ток. Вы можете представить это как поток воды, как в реке. Вода в реках течет с гор вверх по течению к океану вниз по течению. Другими словами, вода течет из мест с большой высотой воды в места с низкой высотой воды. Электричество действует аналогично: понятие высоты воды аналогично электрическому потенциалу, и электричество течет из мест с высоким электрическим потенциалом в места с низким электрическим потенциалом.
Электричество напоминает поток воды.
Разность потенциалов между двумя точками может быть выражена как напряжение. Напряжение — это как бы «давление», заставляющее течь электричество. В физике напряжение можно рассчитать с помощью закона Ома, который гласит, что напряжение равно сопротивлению, умноженному на ток.
Сопротивление указывает на трудности, с которыми течет электричество. Представьте себе водопровод. По мере того, как труба становится меньше, сопротивление увеличивается, и воде становится все труднее течь; при этом увеличивается сила потока.Напротив, по мере увеличения трубы вода течет легче, но сила потока уменьшается. Аналогичная ситуация и с током. Сопротивление и ток пропорциональны напряжению, а это означает, что при увеличении любого из них будет увеличиваться и напряжение.
Метод измерения напряжения
Мультиметры (мультитестеры) используются для измерения напряжения. Помимо напряжения, мультиметры могут выполнять проверку целостности цепи и измерять такие параметры, как ток, сопротивление, температуру и емкость.Мультиметры бывают как в аналоговом, так и в цифровом вариантах, но цифровые модели проще всего использовать без ошибочного считывания значений, поскольку они отображают значения напрямую.
Для измерения напряжения мультиметром вы подключаете положительный и отрицательный измерительные провода и выбираете диапазон измерения напряжения. Затем вы подключаете провода к обоим концам цепи, которую хотите измерить. При использовании аналогового тестера вы начинаете с самого большого диапазона измерения напряжения.
Если прибор не отвечает, попробуйте постепенно уменьшать диапазоны измерения, пока не достигнете диапазона, позволяющего измерять напряжение в цепи.При использовании цифрового тестера многие модели упрощают процесс измерения, автоматически регулируя диапазон измерения.
Разница между постоянным и переменным током
Возможно, вы знаете, что существует два вида тока: постоянный или постоянный и переменный или переменный. Постоянный ток течет без изменения направления, величины тока или величины напряжения. Знакомым примером этого типа тока может быть батарея. Батареи производят напряжение и ток в одном направлении.
Если вы подключите миниатюрную лампочку к батарее, она будет генерировать равномерное количество света до тех пор, пока в батарее остается заряд, и это характеристика постоянного тока. Постоянный ток течет в виде плоской или пульсирующей формы волны.
Пример сигналов постоянного тока
Напротив, переменный ток характеризуется напряжением и током, направление и величина которых периодически меняются относительно нулевого положения. Типичным примером может служить ток, подаваемый в бытовые электрические розетки.Напряжение и ток изменяются в заданном ритме в виде синусоидальной, треугольной или пульсовой волны.
Пример сигналов переменного тока
Цепь постоянного тока должна быть подключена к положительной и отрицательной клеммам аккумулятора надлежащим образом. Некоторые схемы не будут работать должным образом, если аккумулятор подключен наоборот.
Но с бытовой электрической розеткой электричество будет течь, даже если вы перевернете левый и правый контакты вилки. Поскольку электричество в переменном токе течет в обоих направлениях, величина электричества меняется момент за моментом.Эти значения известны как мгновенные значения, и их можно описать такими значениями, как максимальное значение, минимальное значение, среднее значение, размах колебаний и среднеквадратичное значение.
Используйте мультиметр, когда вам нужно измерить напряжение.
Напряжение — это показатель способности перемещать электричество. Эта концепция тесно связана с другими концепциями, такими как разность потенциалов, ток и сопротивление, поэтому важно развить общее понимание предмета. Для измерения напряжения вам понадобится мультиметр.Мультиметры просты в использовании, поэтому обязательно используйте их, когда вам нужно измерить напряжение.
Как использовать
Сопутствующие товары
Узнать больше
Что такое напряжение »Примечания к электронике
Напряжение является одним из основных параметров, описывающих электрические условия в цепи, а вольт, который является единицей напряжения, является одним из ключевых параметров для любой электрической или электронной схемы.
Напряжение включает:
Что такое напряжение
Электрическое поле
Делитель напряжения / потенциала
Электродвижущая сила
Напряжение — это один из основных параметров, связанных с любой электрической или электронной схемой.Напряжение широко используется в спецификациях множества электрических элементов, от батарей до радиоприемников, от лампочек до бритв, и, кроме того, это ключевой параметр, который также измеряется в схемах и используется в расчетах проектирования электронных схем.
Единицей измерения напряжения или разности потенциалов является вольт, и он широко используется во всех аспектах электрических и электронных схем и проектирования электронных схем. Наряду с током и сопротивлением единица измерения напряжения важна при проектировании и реализации любой схемы.
Рабочее напряжение элемента оборудования очень важно — необходимо подключить электрические и электронные устройства к источникам питания с правильным напряжением. Подключите лампочку на 240 В к батарее на 12 В, и она не загорится, но подключите небольшое USB-устройство на 5 В к источнику питания 240 В, и будет течь слишком большой ток, и она сгорит и будет непоправимо повреждена.
Кроме того, уровни напряжения в цепи дают ключ к ее работе — если присутствует неправильное напряжение, то это может указывать на причину неисправности.Кроме того, многие электрические и электронные компоненты имеют максимальное рабочее напряжение, поэтому очень важно соблюдать их спецификации.
По этим и многим причинам электрическое напряжение является ключевым параметром, и знание его значения может быть ключевым требованием в любых обстоятельствах.
Основы напряжения
Напряжение можно рассматривать как давление, которое заставляет заряженные электроны течь в электрической цепи. Этот поток электронов представляет собой электрический ток, который течет
Напряжение, показанное в простой схемеЕсли положительный потенциал помещен на один конец проводника, то он будет притягивать к нему отрицательные заряды, потому что разные заряды притягиваются.Чем выше потенциал притяжения зарядов, тем сильнее притяжение и больше ток.
Чем выше разность потенциалов напряжения, тем больше притяжение электронов и больше ток.По сути, напряжение — это электрическое давление, и оно измеряется в вольтах, что может быть представлено буквой V.
Обычно буква V используется для обозначения вольт в уравнении, подобном закону Ома, но иногда может использоваться буква E — это означает ЭДС или электродвижущую силу.
Чтобы получить представление о том, что такое напряжение и как оно влияет на электрические и электронные схемы, часто полезно в качестве основной аналогии подумать о воде в трубе, возможно, даже о водопроводной системе в доме. Резервуар для воды расположен высоко, чтобы обеспечить давление (напряжение), чтобы заставить воду течь (ток) по трубам. Чем больше давление, тем выше расход воды.
Алессандро Вольта
Единицей измерения напряжения или электрического потенциала является вольт, названный в честь Алессандро Вольта, итальянского физика, жившего между 1745 и 1827 годами.
Записка на Алессандро Вольта:
Алессандро Вольта был одним из пионеров динамического электричества. Исследуя основные свойства электричества, он изобрел первую батарею и продвинул понимание электричества.
Подробнее о Алессандро Вольта.
Разница потенциалов
Электрический потенциал или напряжение — это мера электрического давления, которое может заставить ток в цепи.Полезным сравнением для этих целей является простая система, содержащая воду, такую как резервуар для воды с присоединенной трубой и вода, проходящая через полуоткрытый кран. Чем выше уровень воды над краном, тем больше давление нагнетает воду через трубу и через полуоткрытый кран. Чем выше давление воды, тем больше воды будет проходить через систему при заданном уровне сопротивления в системе.
Чем выше уровень воды, тем больше давление, заставляющее воду проходить через систему.Аналогично электрической системе, чем выше электрическое давление или разность потенциалов в секции системы, тем большее количество воды пройдет через систему в течение заданный уровень электрического сопротивления.
Чем выше электрическое давление или напряжение, тем выше ток для данного уровня сопротивления. Можно видеть, что повышение давления воды увеличивает поток. Для электрической цепи повышение электрического потенциала или напряжения увеличивает протекающий ток.
Рассматривая аналогию с водяной системой как объяснение разности потенциалов, стоит помнить, что это только базовая аналогия, и между резервуаром для воды и электрической цепью есть некоторые фундаментальные различия, особенно с точки зрения того факта, что что электрическая цепь именно такая, а система водоснабжения — нет.Однако он служит хорошей иллюстрацией концепции давления и электрического потенциала в понятной манере.
Что такое вольт: единица напряжения
Основной единицей измерения напряжения является вольт, названный в честь итальянского ученого Алессандро Вольта, который сделал несколько первых батарей и провел множество других экспериментов с электричеством.
Определение напряжения:
Стандартная единица измерения напряжения или разности потенциалов и электродвижущей силы в Международной системе единиц (СИ) формально определяется как разность электрических потенциалов между двумя точками проводника, по которому проходит постоянный ток в один ампер, когда мощность рассеивается. между этими точками равен одному ватту.
Чтобы получить представление о возможных напряжениях, радиостанция CB обычно работает от источника питания около 12 В (12 В). Элементы, используемые в бытовых батареях, имеют напряжение около 1,5 вольт. Перезаряжаемые никель-кадмиевые элементы имеют немного меньшее напряжение 1,2 В, но обычно могут использоваться взаимозаменяемо с неперезаряжаемыми типами.
В других областях могут встречаться напряжения намного меньшие и намного большие, чем это. Входной сигнал аудиоусилителя будет меньше указанного, а напряжения часто будут измеряться в милливольтах (мВ) или тысячных долях вольта.Сигналы на входе в радиоприемник даже меньше этого и часто измеряются в микровольтах (мкВ) или миллионных долях вольта.
С другой стороны, можно услышать о гораздо более высоких напряжениях. Электронно-лучевые трубки в телевизионных или компьютерных мониторах требуют напряжения в несколько киловольт (кВ) или тысяч вольт, а даже большие напряжения в миллионы вольт или мегавольт (MV) можно услышать в связи с такими темами, как молния.
ЭДС и ПД
При работе с напряжениями часто встречаются два термина: электродвижущая сила, ЭДС и разность потенциалов, PD.Эти термины имеют много общего, но также имеют некоторые ключевые и очень важные различия.
И ЭДС, и напряжение используют одну и ту же единицу — вольт, но термины обозначают разные.
Как измерить напряжение
Одним из ключевых параметров, которые необходимо знать в любой электрической или электронной схеме, является напряжение. Существует несколько способов измерения напряжения, но одним из наиболее распространенных является использование мультиметра. Можно использовать как аналоговые, так и цифровые мультиметры, но в наши дни чаще всего используются цифровые мультиметры, поскольку они более точны и доступны по очень разумным ценам.
Примечание по измерению напряжения мультиметром:
Напряжение — один из ключевых параметров, который необходимо знать в любой электрической или электронной схеме. Напряжение можно легко измерить с помощью аналогового или цифрового мультиметра, где очень легко снять точные показания.
Подробнее о как измерить напряжение.
Напряжение — это одна из трех основных электрических единиц наряду с током и сопротивлением.Напряжение играет ключевую роль в процессе проектирования электронных схем, а также любых электрических цепей. Соответственно, он используется практически во всех процессах проектирования и является параметром, связанным с очень многими электрическими и электронными компонентами.
Дополнительные концепции и руководства по основам электроники:
Voltage
Текущий
Власть
Сопротивление
Емкость
Индуктивность
Трансформеры
Децибел, дБ
Законы Кирхгофа
Q, добротность
РЧ шум
Вернуться в меню «Основные понятия электроники».. .
Что такое напряжение?
Напряжение — это электродвижущая сила или разность энергии электрического потенциала между двумя точками (часто в контексте электрической цепи) на единицу заряда, выраженная в вольтах (В). Напряжение, наряду с током и сопротивлением , описывает поведение электронов. Отношения наблюдаются посредством применения закона Ома и законов цепи Кирхгофа.
Общественное достояние через Wikimedia CommonsНапряжение: пример концепции
Понятия напряжения, заряда, тока и сопротивления можно объяснить с помощью ведра с водой и шланга, прикрепленного ко дну.Вода представляет собой заряд (и движение электронов). Поток воды через шланг представляет собой ток. Ширина шланга представляет сопротивление; тонкий шланг будет иметь меньший поток, чем более широкий шланг. Величина давления, создаваемого водой на конце шланга, представляет собой напряжение.
Если бы вы налили в ведро один галлон воды, прикрывая конец шланга большим пальцем, давление, которое вы ощущаете на большом пальце, аналогично действию напряжения. Разница в потенциальной энергии между двумя точками — верхом водопровода и концом шланга — составляет всего один галлон воды.Теперь предположим, что вы нашли ведро, достаточно большое, чтобы его можно было наполнить 450 галлонами воды (примерно достаточно, чтобы заполнить гидромассажную ванну на шесть человек). Представьте, какое давление может почувствовать ваш большой палец, пытаясь удержать такое количество воды.
Собираем все вместе
Напряжение (причина) — это то, что вызывает ток (следствие); без какого-либо толчка напряжения, заставляющего его, не было бы потока электронов. Количество электронного потока, создаваемого напряжением, важно для работы, которую необходимо выполнить.Несколько батареек AA на 1,5 В — все, что вам нужно для питания небольшой игрушки с дистанционным управлением. Но вы не ожидаете, что те же самые батареи смогут работать с основным устройством, требующим 120 В, таким как холодильник или сушилка для одежды. Учитывайте характеристики напряжения с электроникой, особенно при сравнении характеристик защиты от перенапряжения.
Например, электрическая сеть США работает при напряжении 120 В (60 Гц), что означает, что вы можете использовать стереоприемник на 120 В с парой динамиков.Но для того, чтобы тот самый стереоресивер, работающий при 240 В (при 50 Гц), безопасно работал в Австралии, вам понадобится преобразователь питания и переходник.
FAQ
Какое определение для высокого напряжения?
Международная электротехническая комиссия (МЭК) определяет высокое напряжение как более 1000 вольт (В) переменного тока (AC) и более 1500 В постоянного тока (DC). Однако Управление по охране труда (OSHA) считает все напряжения выше 50 вольт опасными.
Что такое падение напряжения?
Падение напряжения — это потеря напряжения из-за сопротивления. Чрезмерное падение напряжения может привести к неправильной, неустойчивой работе или отключению электрического оборудования. Предотвратить падение напряжения можно с помощью регулятора напряжения.
Спасибо, что сообщили нам!
Расскажите, почему!
Другой Недостаточно подробностей Трудно понятьОпределение напряжения по Merriam-Webster
вольт · возраст | \ ˈVōl-tij \ 1 : электрический потенциал или разность потенциалов, выраженная в вольтах.фактов о напряжении для детей | KidzSearch.com
Подключение высоковольтного кабеляНапряжение заставляет электрические заряды двигаться. Это «толчок», который заставляет заряды двигаться в проводе или другом электрическом проводнике. Это можно рассматривать как силу, толкающую заряды, но это не сила. Напряжение может вызывать перемещение зарядов, а поскольку движущиеся заряды представляют собой ток, напряжение может вызывать ток.
Разница электрических потенциалов — это научный термин, который обычно называют напряжением. Неформально, разность напряжений или электрических потенциалов иногда называют «разностью потенциалов».В некоторых случаях напряжение также называют электродвижущей силой (ЭДС).
Напряжение — это разность электрических потенциалов, разность электрических потенциалов между двумя точками. Единицей измерения разности электрических потенциалов или напряжения является вольт. Вольт назван в память об Алессандро Вольта. Один вольт равен одному джоулю на кулон. Символ единицы вольт пишется с заглавной буквы V, как в (9V). Согласно правилам Международной системы единиц, символ единицы с названием, производным от имени собственного лица, пишется в верхнем регистре.
Обратите внимание, что вольт и напряжение — это две разные вещи. Вольт — это единица измерения, с помощью которой мы что-то измеряем. И электрический потенциал, и напряжение — это то, что мы измеряем, и вольт является единицей измерения для обоих. Обозначение единицы вольт пишется через V (9 В или 9 В). Когда в формуле используется напряжение, оно может быть набрано курсивом, например [math] V = 9 \, \ text {V} [/ math], или написано курсивом. Если идет только однобуквенный символ, можно использовать строчную букву v, e.g., [математика] \ текст {напряжение} = \ текст {ток} \ раз \ текст {сопротивление} [/ математика] или [математика] \ текст {v} = \ текст {ir} [/ математика]. Инженеры-электрики используют символ [math] e [/ math] для обозначения напряжения, например, [math] e = ir [/ math], чтобы четко различать напряжение и вольт.
Технически, напряжение — это разность электрических потенциалов между двумя точками и всегда измеряется между двумя точками. например между положительным и отрицательным концами батареи, между проводом и землей или между проводом или точкой цепи и точкой в другой части цепи.В повседневном использовании с бытовым электричеством в США напряжение чаще всего составляет 120 В. Это напряжение измеряется от электрического провода до земли.
Обратите внимание, что для передачи мощности (энергии) должны присутствовать как напряжение , так и ток . Например, на проводе может быть высокое напряжение, но если он не подключен, ничего не произойдет. Птицы могут приземлиться на высоковольтные линии, такие как 12 кВ и 16 кВ, и не погибнуть, потому что ток не проходит через птицу.
Существует два типа напряжения: постоянное и переменное.Напряжение постоянного тока (напряжение постоянного тока) всегда имеет одинаковую полярность (положительную или отрицательную), например, в батарее. Напряжение переменного тока (напряжение переменного тока) меняется между положительным и отрицательным. Например, напряжение в сетевой розетке меняет полярность 60 раз в секунду (в Америке) или 50 раз в секунду (в Великобритании и Европе). Постоянный ток обычно используется для электроники, а переменный ток — для двигателей.
Определение
Напряжение — это изменение электрического потенциала между двумя точками.
или изменение электрической потенциальной энергии на кулон между двумя точками.
- [математика] V = \ Delta (EPE / q) = (EPE / q) _2 — (EPE / q) _1 [/ math]
Где V = напряжение, EPE = электрическая потенциальная энергия, q = заряд, ∆ = разница в.
Напряжение заземления
Напряжение всегда измеряется между двумя точками, и одну из них часто называют «землей» или точкой нулевого напряжения (0 В). В большинстве электрических установок переменного тока есть заземление. Подключение к реальной земле осуществляется через водопроводную трубу, заземляющий стержень, закопанный или вбитый в землю, или удобный металлический провод (не газовая труба), закопанный под землей.Это соединение выполняется в точке входа электрической системы в здание, на каждом полюсе, где есть трансформатор на улице (часто на электрическом столбе), и в других местах в системе. Вся планета Земля используется как точка отсчета для измерения напряжения. В здании это заземление подводится к каждому электрическому устройству по двум проводам. Один из них — это «заземляющий провод» (зеленый или неизолированный провод), который используется в качестве защитного заземления для соединения металлических частей оборудования с землей.Другой используется в качестве одного из электрических проводников в цепях системы и называется «нейтральным проводником». Этот провод, имеющий потенциал земли, замыкает все цепи, передавая ток от любого электрического оборудования обратно к точке входа системы в здания, а затем к трансформатору, обычно на улице. Во многих местах за пределами зданий отпадает необходимость в проводе для замыкания цепей и передачи тока от зданий к генераторам.Обратный путь, по которому проходит весь ток, — это сама земля.
В цепях постоянного тока отрицательный конец генератора или батареи часто называют «землей» или точкой нулевого напряжения (0 В), даже если соединение с землей может быть, а может и не быть. На одной печатной плате (PCB) может быть несколько заземлений, например, с чувствительными аналоговыми цепями, эта часть схемы может использовать «аналоговое заземление», а цифровая часть — «цифровое заземление».
В электрическом оборудовании точкой 0 В может быть металлическое шасси, называемое заземлением шасси, или соединение с фактическим заземлением, называемое заземлением, каждое из которых имеет свой собственный символ, используемый в электрических схемах (схемах).
Инструменты измерительные
Некоторые из инструментов для измерения напряжения — вольтметр и осциллограф.
Вольтметр измеряет напряжение между двумя точками и может быть установлен в режим постоянного или переменного тока. Вольтметр может измерять, например, напряжение постоянного тока батареи (обычно 1,5 В или 9 В) или напряжение переменного тока от сетевой розетки на стене (обычно 120 В).
Для более сложных сигналов можно использовать осциллограф для измерения постоянного и / или переменного напряжения, например, для измерения напряжения на динамике.
Разница потенциалов
Напряжение или разность потенциалов от точки a до точки b — это количество энергии в джоулях (в результате действия электрического поля), необходимое для перемещения 1 кулон положительного заряда из точки a в точку b. Отрицательное напряжение между точками a и b — это напряжение, при котором для перемещения отрицательного заряда из точки a в b требуется 1 кулон энергии. Если вокруг заряженного объекта существует однородное электрическое поле, отрицательно заряженные объекты будут притягиваться к более высоким напряжениям, а положительно заряженные объекты будут притягиваться к более низким напряжениям.Разность потенциалов / напряжение между двумя точками не зависит от пути, пройденного от точки a до b. Таким образом, напряжение от a до b + напряжение от b до c всегда будет равно напряжению от a до c.
Методы производства напряжения — Основное электричество
Если имеется избыток электронов на одном конце проводника и недостаток на другом конце, течет ток. Некоторые устройства создают эту разницу в заряде, поэтому ток течет.Эти устройства являются источниками электродвижущей силы.
EMF определяется как:
Энергия, передаваемая на единицу при преобразовании одного вида энергии в электрическую.
«Потенциальная разница» — это еще один термин, который почти такой же, но имеет небольшую разницу.
Разница потенциалов определяется как:
Энергия, передаваемая на единицу при преобразовании электрической энергии в другой вид энергии.
Мы обсудим это более подробно чуть позже.
Шесть наиболее распространенных типов ЭМП:
- Трение
- Химическая промышленность
- Давление
- Тепло
- Свет
- Магнетизм
ЭДС трения
Когда два разнородных материала трутся друг о друга, один материал может передавать часть своих электронов другому.
Это трибоэлектрический эффект, который подобен тому, что мы обсуждали в главе о структуре атома, когда переносятся электроны, в результате чего один объект становится отрицательно заряженным (избыток электронов), а другой — положительно заряженным (недостаток электронов).Эта ситуация может привести к электростатическому разряду, когда сила притяжения становится настолько большой, что электроны притягиваются к положительно заряженному объекту.
Это притяжение создает дугу, наиболее часто наблюдаемую при молнии. Облака накапливают заряд по мере движения капель воды. Затем заряд притягивается к положительно заряженной земле и ЗАП!
Рисунок 4. Изображение молнии от Griffenstorm. Распространяется по международной лицензии Creative Commons Attribution-Share Alike 4.0.Конечно, гораздо веселее положить кошку в коробку, полную пенополистирола, и наблюдать, как она прилипает.
Рисунок 5. Изображение статического электричества Cat, сделанное Шоном МакГратом. Распространяется по лицензии Creative Commons CC-BY 2.0.Химический EMF
Это принцип работы батарей.
Рисунок 6. БатареиЕсли не углубляться в химию, в основном, батареи работают в процессе ионизации.
Что такое ион? Это частица, к которой добавлен или удален электрон (положительный или отрицательный).
При ионизации добавляются химические вещества, которые имеют частицы с отрицательным зарядом и частицы с положительным зарядом. Добавлены металлические пластины, которые принимают на себя эти заряды. Это допускает разницу и создает ЭДС.
ЭДС давления
Этот процесс также известен как пьезоэлектричество.
Рис. 7. IgnitorПьезоэлектричество — это электрический заряд, который накапливается в определенных твердых материалах в ответ на приложенное механическое напряжение. Слово пьезоэлектричество означает электричество, возникающее в результате давления.
Когда к некоторым объектам прикладывается давление, давление смещает положительные и отрицательные заряды в нейтральном в остальном объекте.
Наиболее известным применением является электрическая прикуриватель: нажатие на кнопку заставляет подпружиненный молоток ударять по пьезоэлектрическому кристаллу, создавая электрический ток достаточно высокого напряжения, который течет через небольшой искровой промежуток, нагревая и воспламеняя газ. Переносные источники зажигания, используемые для зажигания газовых плит, работают таким же образом, и многие типы газовых горелок теперь имеют встроенные пьезоэлектрические системы зажигания.
Другое применение — звукосниматель для микрофона или гитары. Звук попадает в кристалл и генерирует напряжение.
Тепловая ЭДС
Этот процесс известен как термоэлектрический эффект.
Рисунок 8. ТермопараПодводя итог, можно сказать, что когда два разнородных металла находятся при разных температурах и соприкасаются, они создают ЭДС.
Это потому, что электроны с горячей стороны (отрицательной) хотят перейти на холодную сторону (положительную).
Очень распространенное использование этого принципа — термопара в вашей печи
Когда контрольная лампа горит, она генерирует напряжение на термопаре.Это напряжение позволяет реле включаться и пропускать газ, когда этого требует печь. Если контрольная лампа не горит, напряжение отсутствует. Следовательно, реле не будет включаться, и печь может запросить газ, но не получит его.
Свет ЭДС
Это фотоэлектрический эффект. Фотоэлементы (фотоэлементы) используются в качестве источников ЭМП.
Рис. 9. Солнечные панелиФотоэлектрические элементы изготовлены из специальных материалов, называемых полупроводниками, например кремния, который в настоящее время используется наиболее часто.
Сколько валентных электронов в полупроводнике? Четыре.
Добавляется примесь, чтобы получить свободный электрон.
В основном, когда свет попадает на элемент, определенная его часть поглощается полупроводниковым материалом.
Это означает, что энергия поглощенного света передается полупроводнику.
Энергия высвобождает электроны, позволяя им свободно течь.
В наши дни мы видим, что эта технология используется повсеместно, поскольку для получения энергии не требуется ископаемое топливо.
ЭДС магнетизма
Отсюда большая часть нашей энергии. Магниты создают линии магнитного потока. Когда эти силовые линии перерезаются проводником, возникает ЭДС. Паровые турбины, когенерационные установки, ветряные мельницы и плотины гидроэлектростанций используют эту технологию.
Ниже приведен пример плотины гидроэлектростанции.
Все шесть этих источников ЭМП достигают одного и того же:
- Передают энергию электронам.
- Подтолкнуть электроны к электростатическому полю.
- Вызывает избыток электронов на одном выводе источника и недостаток электронов на другом выводе.
Это похоже на сжатие пружины. Энергия, запасенная в сжатой пружине, может быть использована позже для выполнения работы. То же самое и с отдельными зарядами: они накапливают энергию, которую потом можно использовать для работы.
Видео о методах генерации напряжения
Хотя это видео может быть немного старым, это фантастическое объяснение различных методов генерации напряжения.
Атрибуции
ВидеоElectricity-Voltage от PublicResourceOrg находится под лицензией Creative Commons Attribution License.
Вольт | Инжиниринг | Fandom
Вольт (символ: V) — производная единица измерения разности электрических потенциалов в системе СИ. Число вольт — это мера мощности источника электричества в смысле того, сколько мощности вырабатывается при заданном уровне тока. Он назван в честь итальянского физика Алессандро Вольта [1] (1745–1827), который изобрел гальваническую батарею [2], первую химическую батарею.
Международный символ опасности высокого напряжения .
Определение []
Джозефсоновская матричная микросхема, разработанная NIST как стандартное напряжение.
Вольт определяется как разность потенциалов на проводнике, когда ток в один ампер рассеивает один ватт мощности. Следовательно, это базовое представление СИ: m 2 · кг · с −3 · A −1 , которое можно равным образом представить как один джоуль энергии на кулон заряда, Дж / Кл.
- 1 В = 1 Вт / А = 1 м 2 • кг • с –3 • A –1
С 1990 года вольт поддерживается на международном уровне для практических измерений с использованием эффекта Джозефсона [3], где для постоянной Джозефсона [4] используется обычное значение, установленное 18-й Генеральной конференцией по мерам и весам [5] как
- K {J-90} = 0,4835979 ГГц / мкВ.
Пояснение []
Разность электрических потенциалов можно рассматривать как способность перемещать электрический заряд через сопротивление.По сути, вольт измеряет, сколько кинетической энергии несет каждый электрон. Число электронов измеряется зарядом в кулонах. Таким образом, вольт умножается на ток в амперах, что составляет один кулон в секунду, чтобы получить общую электрическую мощность в токе в ваттах. В то время в физике, когда слово сила использовалось свободно, разность потенциалов называлась электродвижущей силой или ЭДС — термин, который все еще используется в определенных контекстах.
Разность электрических потенциалов («напряжение») []
Между двумя точками в электрическом поле, которое существует в электрической цепи, разность потенциалов равна разнице их электрических потенциалов.Эта разница пропорциональна электростатической силе, которая имеет тенденцию толкать электроны или другие носители заряда из одной точки в другую. Разность потенциалов, электрический потенциал и электродвижущая сила измеряются в вольтах, что приводит к обычно используемому термину напряжение и символу В (иногда используется для напряжения).
Напряжение является аддитивным в следующем смысле: напряжение между A и C является суммой напряжения между A и B и напряжением между B и C .Две точки в электрической цепи, соединенные идеальным проводником без сопротивления и без наличия изменяющегося магнитного поля, имеют нулевую разность потенциалов. Но другие пары точек также могут иметь нулевую разность потенциалов. Если две такие точки соединить проводником, ток через соединение не будет протекать. Различные напряжения в цепи можно вычислить, используя законы Кирхгофа.
Напряжение — это свойство электрического поля, а не отдельных электронов.Электрон, движущийся через разность напряжений, испытывает чистое изменение энергии, часто измеряемое в электрон-вольтах. Этот эффект аналогичен падению массы через заданный перепад высот в гравитационном поле.
Гидравлический аналог []
Если представить электрическую цепь по аналогии с водой, циркулирующей в сети труб, приводимой в действие насосами в отсутствие силы тяжести, то разность потенциалов соответствует разнице давления жидкости между двумя точками.Если между двумя точками существует разница давлений, то вода, текущая из первой точки во вторую, сможет выполнять работу, например приводить в движение турбину.
Эта гидравлическая аналогия (см. Подробную информацию в отдельной статье) — полезный метод обучения ряду электрических понятий. В гидравлической системе работа по перемещению воды равна давлению, умноженному на объем перемещенной воды. Точно так же в электрической цепи работа, выполняемая для перемещения электронов или других носителей заряда, равна «электрическому давлению» (старый термин для обозначения напряжения), умноженному на количество перемещенного электрического заряда.Напряжение — удобный способ количественной оценки способности выполнять работу.
Техническое определение []
Разность электрических потенциалов определяется как количество работы на один заряд, необходимое для перемещения электрического заряда из второй точки в первую, или, что эквивалентно, количество работы, которую может выполнить единичный заряд, протекающий из первой точки во вторую. Разность потенциалов между двумя точками a и b является линейным интегралом электрического поля E :
Полезные формулы []
Цепи постоянного тока []
Где V = напряжение, I = ток, R = сопротивление, P = мощность
Цепи переменного тока []
Где V = напряжение, I = ток, R = сопротивление, P = истинная мощность, Z = импеданс, θ = угол фазора
преобразователей переменного тока []
Где Vpk = пиковое напряжение, Vppk = размах напряжения, Vavg = среднее напряжение, Vrms = эффективное напряжение
Общее напряжение []
Источники напряжения и падения последовательно:
Источники напряжения и падения параллельно:
Падения напряжения []
Через резистор (Resistor n):
Через конденсатор (конденсатор n):
Через катушку индуктивности (Inductor n):
Где V = напряжение, I = ток, R = сопротивление, X = реактивное сопротивление
Примеры []
Источники напряжения []
Символическое изображение источника напряжения.
Общие источники ЭДС включают:
- аккумулятор
- динамо (разность потенциалов создается между концами электрического проводника, который движется перпендикулярно магнитному полю)
- Электростатическая индукция (например, когда два разных электроизоляционных материала трутся друг о друга для получения электростатического разряда)
- конденсатор (на самом деле накопитель энергии, вырабатываемой ЭДС из другого источника)
Общие напряжения []
1.Батареи типа C, 5 В
Номинальное напряжение известных источников:
- Потенциал действия нервных клеток: 40 милливольт
- Одноэлементный неперезаряжаемый аккумулятор (например, элементы AAA, AA, C и D): 1,5 В
- Автомобильная электросистема: 12 В
- Бытовая электросеть: 120 В в Северной Америке, 230 В в Европе [6]
- Третий рельс для ускоренного транзита: от 600 до 700 вольт [7]
- ЛЭП высокого напряжения: 110 кВ и выше (1150 кВ — рекорд 2005 г.)
- Молния: 100 мегавольт
Измерительные приборы []
Мультиметр для измерения напряжения.
К приборам для измерения разности потенциалов относятся вольтметр, потенциометр (измерительное устройство) и осциллограф. Вольтметр работает, измеряя ток через постоянный резистор, который, согласно закону Ома, пропорционален разности потенциалов на нем. Потенциометр работает путем уравновешивания неизвестного напряжения с известным напряжением в мостовой схеме. Электронно-лучевой осциллограф работает за счет усиления разности потенциалов и использования ее для отклонения электронного луча от прямого пути, так что отклонение луча пропорционально разности потенциалов.
История напряжения []
В 1800 году в результате профессиональных разногласий по поводу гальванического отклика, предложенного Луиджи Гальвани, Алессандро Вольта разработал так называемую гальваническую батарею, предшественницу батареи, которая вырабатывала постоянный электрический ток.