Что такое освещенность. Освещенность: основные характеристики, измерение и нормы

Что такое освещенность и как она измеряется. Какие факторы влияют на освещенность помещений. Как правильно организовать освещение рабочего места. Какие нормы освещенности существуют для различных помещений.

Содержание

Что такое освещенность и как она измеряется

Освещенность — это физическая величина, характеризующая количество светового потока, падающего на единицу площади поверхности. Измеряется в люксах (лк). Один люкс равен световому потоку в 1 люмен, равномерно распределенному по поверхности площадью 1 м².

Освещенность определяется по формуле:

E = Ф / S

где Ф — световой поток в люменах, S — площадь освещаемой поверхности в квадратных метрах.

Для измерения освещенности используются специальные приборы — люксметры. Принцип их работы основан на преобразовании светового потока в электрический сигнал с помощью фотоэлемента.

Факторы, влияющие на освещенность помещений

На уровень освещенности в помещении влияют следующие основные факторы:


  • Мощность и количество источников света
  • Расстояние от источников света до освещаемой поверхности
  • Угол падения световых лучей
  • Отражающие свойства поверхностей (стен, потолка, мебели)
  • Загрязненность светильников и окон
  • Наличие затеняющих предметов

При проектировании освещения важно учитывать все эти факторы, чтобы обеспечить нормируемый уровень освещенности.

Нормы освещенности для различных помещений

Существуют санитарные нормы, регламентирующие минимально допустимые уровни освещенности для разных типов помещений и видов работ. Вот некоторые примеры:

  • Жилые комнаты — 150-300 лк
  • Кухня — 200-400 лк
  • Офисные помещения — 300-500 лк
  • Учебные классы — 300-500 лк
  • Операционные — 500-1000 лк
  • Производственные цеха — 200-750 лк (зависит от точности работ)

При этом важно не только обеспечить нужный уровень освещенности, но и избегать слепящего действия света и резких теней.

Правила организации освещения рабочего места

При организации освещения рабочего места следует придерживаться следующих основных правил:


  1. Обеспечить достаточный уровень общего освещения помещения
  2. Использовать комбинированное освещение (общее + местное)
  3. Располагать источники света так, чтобы исключить попадание прямого света и бликов в глаза
  4. Избегать резких перепадов яркости в поле зрения
  5. Учитывать отражающие свойства рабочих поверхностей
  6. Использовать светильники с рассеивателями для смягчения света
  7. Поддерживать чистоту светильников и окон

Правильная организация освещения поможет снизить утомляемость, повысить производительность труда и сохранить здоровье глаз.

Влияние освещенности на здоровье и работоспособность

Недостаточная или избыточная освещенность негативно влияет на здоровье и работоспособность человека. Основные последствия неправильного освещения:

  • Повышенная утомляемость глаз
  • Снижение остроты зрения
  • Головные боли
  • Снижение концентрации внимания
  • Ухудшение психоэмоционального состояния
  • Нарушения биоритмов
  • Снижение производительности труда

Поэтому важно создавать комфортную световую среду, соответствующую санитарным нормам и особенностям зрительной работы.


Способы повышения освещенности помещений

Если уровень освещенности в помещении недостаточен, его можно повысить следующими способами:

  • Увеличить мощность или количество источников света
  • Заменить лампы на более эффективные (например, светодиодные)
  • Установить дополнительные светильники местного освещения
  • Использовать светлые отделочные материалы
  • Установить зеркала и другие отражающие поверхности
  • Очистить окна и светильники от загрязнений
  • Обеспечить регулярную замену перегоревших ламп

При этом важно не допускать избыточной освещенности, которая также вредна для глаз.

Современные технологии управления освещением

Современные системы освещения позволяют гибко управлять световым потоком и создавать комфортную среду. Основные технологии:

  • Диммирование — плавная регулировка яркости
  • Датчики движения и присутствия
  • Датчики естественного освещения
  • Системы автоматического управления освещением
  • Цветодинамическое освещение
  • Биодинамическое освещение, имитирующее естественный свет

Такие системы позволяют оптимизировать уровень освещенности в зависимости от времени суток, вида деятельности и индивидуальных предпочтений.



Освещенность — это… Что такое Освещенность?

Освещённость — физическая величина, численно равная световому потоку, падающему на единицу поверхности:

E=\frac{d\Phi}{d\sigma}

Единицей измерения освещенности в системе СИ служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС — фот (один фот равен 10 000 люксов). В отличие от освещённости, выражение количества света, отражённого поверхностью, называется яркостью.

Освещённость прямо пропорциональна силе света источника света. При удалении его от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (Закон обратных квадратов).

Когда лучи света падают наклонно к освещаемой поверхности, освещённость уменьшается пропорционально косинусу угла падения лучей.

Освещенность E\! от точечного источника находят по формуле:

E={I \over r^2}\cos i

где I\! — сила света в канделах; r\! — расстояние до источника света; i\! — угол падения лучей света относительно нормали к поверхности.

Освещённость в фототехнике определяют с помощью экспонометров и экспозиметров, в фотометрии — с помощью люксметров.

Примеры

ОписаниеОсвещённость, лк
Солнечными лучами в полдень100 000
При киносъёмке в студии10 000
На открытом месте в пасмурный день1000
В светлой комнате вблизи окна100
На рабочем столе для тонких работ400–500
На экране кинотеатра85–120
Необходимое для чтения30–50
От полной луны0,2
От ночного неба в безлунную ночь0,0003

Литература

Яштолд-Говорко В. А. Фотосъёмка и обработка. Съемка, формулы, термины, рецепты. Изд. 4-е, сокр. М., «Искусство», 1977.

Wikimedia Foundation. 2010.

Освещенность. Характеристики освещения и способы их улучшения.

   Любой источник света является источником светового потока, и чем больший световой поток попадает на поверхность освещаемого предмета, тем лучше этот предмет видно. А физическая величина, численно равная световому потоку, падающему на единицу площади освещаемой поверхности, именуется освещенность.

   Освещенность обозначают символом Е, и находят ее значение по формуле Е = F/S, где F — световой поток, а S – площадь освещаемой поверхности. В системе СИ освещенность измеряется в Люксах (Лк), и один Люкс — это такая освещенность, при которой световой поток, попадающий на один квадратный метр освещаемого тела, равен одному Люмену. То есть 1 Люкс = 1 Люмен / 1 Кв.м.

Для примера приведем некоторые типичные значения освещенности
  • Солнечный день в средних широтах — 100000 Лк;
  • Пасмурный день в средних широтах — 1000 Лк;
  • Светлая комната, освещенная лучами солнца — 100 Лк;
  • Искусственное освещение на улице — до 4 Лк;
  • Свет ночью при полной луне — 0,2 Лк;
  • Свет звездного неба темной безлунной ночью — 0,0003 Лк.

   Представьте, что вы сидите в темной комнате с фонариком, и пытаетесь прочесть книгу. Для чтения нужна освещенность не меньше 30 Лк. Что вы сделаете?

  • Во-первых, вы приблизите фонарик к книге, значит освещенность связана с расстоянием от источника света до освещаемого предмета.
  • Во-вторых, вы расположите фонарик под прямым углом к тексту, значит освещенность зависит и от угла, под которым данная поверхность освещается.
  • В-третьих, вы можете просто достать более мощный фонарик, поскольку очевидно, что освещенность больше, если выше сила света источника.

   Допустим, световой поток попадает на какой-то экран, расположенный на каком-то расстоянии от источника света. Увеличим это расстояние вдвое, тогда освещаемая часть поверхности увеличится по площади в 4 раза. Так как Е = F/S, то и освещенность уменьшится в целых 4 раза. То есть освещенность обратно пропорциональна квадрату расстояния от точечного источника света до освещаемого предмета.

   Освещенность вычисляют по формуле

   Когда пучок света падает под прямым углом к поверхности, световой поток распределен на наименьшей площади, если же угол увеличивать, то увеличится площадь, соответственно, уменьшится освещенность. Как было отмечено выше, освещенность напрямую связана и с силой света, и чем больше сила света, тем больше и освещенность. Экспериментально давно установлено, что освещенность прямо пропорциональна силе света источника.

   Конечно, освещенность уменьшается, если свету препятствует туман, дым или частички пыли, но если освещаемая поверхность расположена под прямым углом к свету источника, и свет при этом распространяется через чистый, прозрачный воздух, то освещенность определяется непосредственно по формуле Е = I / R2 , где I – сила света, а R – расстояние от источника света до освещаемого предмета.

   В процессе ежедневной работы осветительных установок, возможен спад освещенности, поэтому для компенсации данного недостатка, еще на стадии проектирования осветительных установок вводят специальный коэффициент запаса. Он учитывает понижение освещенности и яркости в процессе эксплуатации осветительных приборов из-за загрязнений, утраты отражающих и пропускающих свойств отражающих, оптических, и других элементов приборов искусственного освещения. Загрязнения поверхностей, выход из строя ламп, все эти факторы учитываются. Для естественного освещения вводят коэффициент снижения КЕО (коэффициента естественной освещенности), ведь со временем могут загрязнится светопрозрачные заполнители световых проемов, и загрязниться отражающие поверхности помещений.

   Европейский стандарт определяет нормы освещенности для разных условий, так например, если в офисе не требуется рассматривать мелкие детали, то достаточно 300 Лк, если люди работают за компьютером — рекомендуется 500 Лк, если изготавливаются и читаются чертежи — 750 Лк.

Измерение освещённости

   Освещенность измеряют портативным прибором — люксметром. Его принцип работы аналогичен фотометру. Свет попадает на фотоэлемент, стимулируя ток в полупроводнике, и величина получаемого тока как раз пропорциональна освещенности. Есть аналоговые и цифровые люксметры. Часто измерительная часть соединена с прибором гибким спиральным проводом, чтобы можно было проводить измерения в самых труднодоступных, при этом важных местах. К прибору прилагается набор светофильтров, чтобы регулировать пределы измерений с учетом коэффициентов. Согласно ГОСТу, погрешность прибора должна быть не более 10%.

   Измеряем освещённость люксметром

   При измерении соблюдают правило, согласно которому прибор должен располагаться горизонтально. Его устанавливают поочередно в каждую необходимую точку, согласно схеме ГОСТа. В ГОСТе, кроме прочего, учитываются охранное освещение, аварийное освещение, эвакуационное освещение и полуцилиндрическая освещенность, там также описан метод проведения измерений. Измерения по искусственному и естественному освещению проводятся отдельно, при этом важно чтобы на прибор не попадала случайная тень. На основе полученных результатов, с использованием специальных формул делается общая оценка, и принимается решение, нужно ли что-то корректировать, или освещенность помещения и территории достаточна.

Освещенность рабочего места 

   Освещение исключительно важно для человека. С помощью зрения человек получает большую часть информации (около 90 %), поступающей из окружающего мира. Свет- это ключевой элемент нашей способности видеть, оценивать форму, цвет и перспективу окружающих нас предметов. Освещение влияет не только на функционирование зрительного аппарата, то есть определяет зрительную работоспособность, но и на психику человека, его эмоциональное состояние. Исследователями накоплено значительное количество данных по биологическому действию видимого света на организм. Сравнительная оценка естественного и искусственного освещения по его влиянию на работоспособность показывает преимущество естественного света. Ведущим фактором, определяющим биологическую неадекватность естественного и искусственного света, является разница в спектральном составе излучения, а также динамичность естественного света в течение дня. 

   Освещенность рабочего места 

   Работая при освещении плохого качества или низких уровней, люди могут ощущать усталость глаз и переутомление, что приводит к снижению работоспособности. В ряде случаев это может привести к головным болям. Причинами во многих случаях являются слишком низкие уровни освещенности, слепящее действие источников света и соотношение яркостей, которое недостаточно хорошо сбалансировано на рабочих местах. Головные боли также могут быть вызваны пульсацией освещения, что в основном является результатом использования электромагнитных пуско-регулирующих аппаратов (ПРА) для газоразрядных ламп, работающих на частоте 50 Гц. С точки зрения безопасности труда зрительная способность и зрительный комфорт чрезвычайно важны. 

   Для того чтобы обеспечить условия, необходимые для зрительного комфорта, в системе освещения должны быть реализованы следующие предварительные требования:

  • достаточное и равномерное освещение
  • оптимальная яркость
  • отсутствие бликов и ослепленности
  • соответствующий контраст
  • правильная цветовая гамма
  • отсутствие стробоскопического эффекта или пульсации света

   Каждый вид деятельности требует определенного уровня освещенности на том участке, где эта деятельность осуществляется. Обычно, чем сильнее затруднено зрительное восприятие, тем выше должен быть средний уровень освещенности. Важно рассматривать свет на рабочем месте, руководствуясь не только количественными, но и качественными критериями.

Можно выделить следующие качественные характеристики освещения и способы их улучшения

Прямая блескость

   Находящиеся в поле зрения человека поверхности высокой яркости могут производить неприятное, дискомфортное ощущение или вызывать состояние ослепленности. В результате резко снижается зрительная работоспособность. Источниками прямой блескости являются осветительные установки и источники света.

Уменьшение прямой блескости может быть достигнуто:

  • увеличением высоты установки светильников
  • уменьшением яркости светильников путем закрытия источников света светорассеивающими стеклами
  • ограничением силы света в направлениях, образующих большие углы с вертикалью, например, применением светильников с необходимым защитным углом
  • уменьшением мощности каждого отдельного светильника за счет соответствующего увеличения их числа
Отраженная блескость

   Возникает при больших коэффициентах отражения поверхностей, попадающих в поле зрения. Наибольшая опасность возникает при освещении поверхностей, не являющихся диффузными, когда свет падает на рабочие поверхности таким образом, что глаза находятся на направлении зеркального отражения лучей. В этом случае человек видит либо зеркальное отражение источника света, либо размытое, но очень яркое световое пятно. В обоих случаях может возникнуть состояние ослепленности, но чаще уменьшается эффективный контраст между деталью и фоном. Устранение отраженной блескости достигается правильной организацией местного и локализованного освещения и таким расположением светильников, чтобы зеркально отраженные поверхностью лучи не попадали в глаза. Для этого лучше всего делать боковое или заднебоковое направление света.

Контраст между объектом и фоном 

   Чем больше яркость объекта, тем больший световой поток от него поступает в глаз и тем сильнее сигнал, поступающий от глаза в зрительный центр. Таким образом, казалось бы, чем больше яркость, тем лучше человек видит объект. Однако это не совсем так. Если поверхность (фон), на которой располагается объект, имеет близкую к объекту по величине яркость (например, линия бледно-желтого цвета на белом листе), то интенсивность засветки участков сетчатки световым потоком, поступающим от фона и объекта, одинакова (или слабо различается), величина поступающих в мозг сигналов одинакова, и объект на фоне становится неразличимым.

   Чтобы объект был хорошо виден, яркости объекта и фона должны различаться. Разница между яркостями объекта и фона, отнесенная к яркости фона, называется контрастом. Контраст между деталями и фоном, который в наибольшей степени определяет видимость объекта, не всегда является заданным и может быть увеличен или уменьшен средствами освещения и созданием световой среды. Одним из эффективных средств для повышения контраста является искусственный фон (чаще всего светлый, если объект темный, или темный, если объект светлый). Разновидностью искусственных фонов являются световые столы, на которых поверхности просматриваются в проходящем свете.

Тени

   Различаются собственные тени, образованные рельефом поверхности, и тени, падающие от предметов, находящихся вне рабочей поверхности — оборудования, мебели, тела и рук человека и т. д. Собственные тени в большинстве случаев полезны, так как позволяют лучше различать конфигурацию детали. Падающие тени почти всегда вредны. Их вред заключается в том, что они искажают контраст, отвлекают внимание и т. д. Особенно вредны движущиеся тени. Устранение или ограничение вредных теней осуществляется правильным выбором направления света. Например, когда человек пишет правой рукой, он смотрит на рабочую точку слева и с этой же стороны должен падать свет. Тени размазываются при увеличении размеров осветительных установок, смягчаются при достаточно высокой яркости стен и потолков и почти исчезают при отраженном освещении.

Насыщенность помещения светом

   Для создания комфортных зрительных условий для человека важна не только освещенность какой бы то ни было поверхности, на которой осуществляется работа, но и впечатление насыщенности помещения светом, которое получает человек. При достаточной яркости рабочей поверхности одновременное присутствие в поле зрения темных поверхностей (например, стен, потолков, мебели, оборудования) создает затруднения при адаптации зрения. От яркости этих поверхностей зависит впечатление насыщенности помещения светом. Если в помещении установлены подвесные светильники прямого света, верхняя зона помещения останется темной. Это производит неприятное эстетическое и психологическое впечатление. Поэтому лучше применять светлую окраску стен и потолков, а для освещения применять светильники, излучающие некоторую (желательно не менее 15 %) часть светового потока в верхнюю полусферу.

Постоянство освещенности во времени

   Изменения освещенности по времени можно подразделить на медленные и плавные, частые колебания и пульсации. Медленные изменения вызываются постепенными изменениями сетевого напряжения и факторами, изменяющими освещенность в процессе эксплуатации (загрязнением источников света, снижением светоотдачи и т. д.). Если освещенность при этом сохраняется на уровне не ниже нормативного значения, эти изменения не являются вредными. Причиной частых колебаний являются перемещения светильников, их раскачивание движением воздуха (ветер, сквозняк, вентиляционная установка и т. д.) и колебания напряжения в сети, порождаемые изменением нагрузки.

Пульсации

   Пульсации освещенности обусловлены малой инерционностью излучения газоразрядных ламп, световой поток пульсирует при переменном токе промышленной частоты (50 Гц) с удвоенной частотой — 100 Гц. Эти пульсации неразличимы при наблюдении глазом неподвижной поверхности, но легко обнаруживаются при рассматривании движущихся предметов. Если при пульсирующем освещении быстро махать карандашом на контрастирующем фоне, то карандаш приобретает ясно видимые контуры. Это явление носит название стробоскопического эффекта — явление искажения восприятия движущихся или вращающихся объектов наблюдения. Практическая опасность стробоскопического эффекта состоит в том, что вращающиеся части механизмов могут показаться неподвижными, вращающимися с более медленной скоростью, чем в действительности, или в противоположном направлении. Это может стать причинной травматизма. Однако пульсации освещенности вредны и при работе с неподвижными поверхностями, вызывая утомление зрения и головную боль.

   К пульсациям наиболее чувствительно периферическое зрение и поэтому они опасны при общем освещении. Выявлено также неблагоприятное влияние колебаний света на фоторецепторные элементы сетчатки, а также на функциональное состояние нервной системы, что связано с развитием тормозных процессов и снижением лабильности нервных процессов. Воздействие пульсации возрастает с увеличением её глубины и уменьшается при повышении частоты. Большинство исследователей отмечает отрицательное влияние пульсации освещённости на работоспособность человека как при длительном пребывании в условиях пульсирующего освещения, так и при кратковременном.

   Ограничение пульсаций достигается чередованием питания ламп от разных фаз трехфазной сети. В ряде случаев применяется питание ламп током повышенной частоты, что достигается укомплектовыванием светильников электронными пуско-регулирующими аппаратами (ЭПРА).

Вывод

   Таким образом, становится очевидно, что неправильное освещение представляет значительную угрозу для здоровья работников. Правильная организация освещения на рабочем месте- залог здоровья, высокой производительности труда, комфортного эмоционального и психологического состояния человека. Правильная организация освещения предусматривает не только соблюдение нормативных требований по уровню освещенности и ряду других показателей, но и учет ряда качественных показателей- световой насыщенности, равномерности и однородности освещения, тенеобразования, цветовой гаммы световой среды и пр.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Что такое освещенность?

Физическая величина, численно равная световому потоку, падающему на единицу площади освещаемой поверхности, называется освещенностью.
Освещенность обозначают символом Е, и находят ее значение по формуле Е = Ф/S, где Ф — световой поток, а S – площадь освещаемой поверхности.
Снимокw.PNG


Для примера приведем некоторые типичные значения освещенности:

  • Солнечный день в средних широтах — 100000 Лк;
  • Пасмурный день в средних широтах — 1000 Лк;
  • Светлая комната, освещенная лучами солнца — 100 Лк;
  • Искусственное освещение на улице — до 4 Лк;
  • Свет ночью при полной луне — 0,2 Лк;
  • Свет звездного неба темной безлунной ночью — 0,0003 Лк
Представьте, что вы сидите в темной комнате с фонариком, и пытаетесь прочесть книгу. Для чтения нужна освещенность не меньше 30 Лк. Что вы сделаете? Во-первых, вы приблизите фонарик к книге, значит освещенность связана с расстоянием от источника света до освещаемого предмета. Во-вторых, вы расположите фонарик под прямым углом к тексту, значит освещенность зависит и от угла, под которым данная поверхность освещается. В-третьих, вы можете просто достать более мощный фонарик, поскольку очевидно, что освещенность тем больше, чем выше сила света источника.
Когда пучок света падает под прямым углом к поверхности, световой поток распределен на наименьшей площади, если же угол увеличивать, то увеличится площадь, соответственно, уменьшится освещенность.
Освещенность напрямую связана и с силой света, и чем больше сила света, тем больше и освещенность. Экспериментально давно установлено, что освещенность прямо пропорциональна силе света источника.
В Америке и Англии используют единицу измерения освещенности Люмен на квадратный Фут или Фут-Кандела, в качестве единицы освещенности от источника, обладающего силой света в одну канделу, и расположенного на расстоянии в один фут от освещаемой поверхности.

Исследователи доказали, что через сетчатку человеческого глаза, свет воздействует на процессы, протекающие в мозге. По этой причине недостаточная освещенность вызывает сонливость, угнетает трудоспособность, а избыточное освещение — наоборот, возбуждает, помогает включить дополнительные ресурсы организма, однако, изнашивая их, если это происходит неоправданно.

В процессе ежедневной работы осветительных установок, возможен спад освещенности, поэтому для компенсации данного недостатка, еще на стадии проектирования осветительных установок вводят специальный коэффициент запаса.

Для естественного освещения вводят коэффициент снижения КЕО (коэффициента естественной освещенности), ведь со временем могут загрязнится светопрозрачные заполнители световых проемов, и загрязниться отражающие поверхности помещений.

Освещенность измеряют портативным прибором — люксметром. Его принцип работы аналогичен фотометру. Свет попадает на фотоэлемент, стимулируя ток в полупроводнике, и величина получаемого тока как раз пропорциональна освещенности. Есть аналоговые и цифровые люксметры.


Поделиться записью

Что такое освещенность, цветовая температура и яркость света

Трудно встретить человека, который не разбирался бы в мерах длины, площади, объема, веса. Не вызывает сложностей исчисление времени, определение температуры. Но вот если спросить кого-нибудь о фотометрических величинах, то в большинстве случаев внятного ответа ожидать не приходится. А между тем, с освещением, естественным или искусственным, мы живём в постоянном контакте. Значит, надо научиться и его оценивать каким-то образом.

Освещенность это…Освещенность это…

Безусловно, такая оценка производится всегда и всеми, но чаще всего – чисто на уровне субъективного восприятия: достаточно света или нет. Однако, подобная «градация» именно что субъективная, и может давать существенные ошибки. Последствия таких некорректных оценок нельзя недооценивать — и недостаточность освещения, и его избыточность негативно влияют и на органы зрения человека, и на его психоэмоциональное состояние.

А между тем, существует специальная величина – освещенность, значение которой регламентируется законодательными актами в области строительства и санитарии. То есть освещенность это как раз тот критерий качества, позволяющий правильно оценить организацию системы освещения помещений. В этой статье мы как раз и поговорим об этом параметре и связанными с ним другими фотометрическими величинами, посмотрим, как это можно использовать в практическом приложении.

Какие фотометрические величины используются при расчетах освещения

По укоренившейся привычке многие продолжают считать, что оценку освещенности помещения можно производить в единицах измерения энергии – ваттах. Такое заблуждение легко объяснимо – в наследство от времен полного господства ламп накаливания нам остался этот устойчивый стереотип.

Лампы накаливания выпускались различной потребляемой мощности – 15, 25, 40, 60, 75, 100, 150 и более ватт. И каждый хозяин дома или квартиры на собственном опыте знал, что для нормального освещения в гостиной, например, он должен ввернуть в люстру три лампочки по 60 ватт, для настольной лампы достаточно будет «сороковки», в кухню нужно приобрести стоваттную и т.д.

Кстати, явным наследием этого до сих пор остаётся практика, применяемая производителями ламп – указывать на их упаковке, кроме потребляемой мощности, светоотдачу, выраженную в эквиваленте мощности старых ламп накаливания.

Такие аналогии с лампами накаливания той или иной мощности помогают простому человеку мысленно оценить ожидаемую светоотдачу. Но никакой прямой связи здесь нет.Такие аналогии с лампами накаливания той или иной мощности помогают простому человеку мысленно оценить ожидаемую светоотдачу. Но никакой прямой связи здесь нет.

Так что запомним первое – в ваттах ни световой поток, излучаемый лампой, ни получающаяся от нее освещенность поверхности не измеряются. Указанные на корпусе прибора ватты – это количество потребленной лампой электроэнергии, которая путем тех или иных физических преобразований превращается в видимый свет.

Некоторые люди старшего поколения вообще уверены, что световая отдача осветительного прибора измеряется в свечах. Кстати, это не столь далеко от истины, а почему – станет понятно ниже. Но это опять же – никак не освещенность.

Так что имеет смысл рассмотреть основные фотометрические величины по порядку, от источника света к освещаемой поверхности. Сразу оговоримся – тема эта довольно сложная для восприятия неподготовленным человеком. Поэтому постараемся максимально упростить изложение, не будем его перегружать громоздкими формулами. Так, чтобы просто сложилось общее понимание вопроса.

Световой поток

Свет, как известно, имеет волновую природу. В определённом диапазоне длин волн электромагнитное излучение воспринимается органами зрения человека, то есть становится видимым. Примерные границы этого диапазона – от 400÷450 нм (красная часть спектра) до 630÷650 (фиолетовая область).

Помните, как в нас в детстве учили запоминать цвета радуги – «Каждый охотник…» и т.д.? А ведь радуга – это наглядный природный пример спектрального разложения света.
Помните, как в нас в детстве учили запоминать цвета радуги – «Каждый охотник…» и т.д.? А ведь радуга – это наглядный природный пример спектрального разложения света.

Электромагнитные волны являются переносчиком энергии – именно энергия Солнца обеспечивает жизнь на Земле. Но отвлечёмся от астрономических категорий, вернемся к обычным источникам света.

Итак, раз источник излучает свет, то это означает излучение и перенос определённой энергии. Количество этой лучистой энергии (We), перенесенной в единицу времени, носит название лучистого потока (Фе). И измеряется он в ваттах.

Однако, речь идет об освещении, то есть восприятии цвета человеческим зрением. И оценить количество энергии «на глаз» — это сразу заложить большую погрешность. Например, два источника, обладающих равной мощностью излучения, но с разным цветом свечения, будут восприниматься глазом тоже по-разному.

Чтобы унифицировать этот параметр, введена специальная физическая величина – световой поток (Ф). Это тоже показатель мощности лучистого потока, но только той его части, что воспринимается среднестатистическим здоровым человеческим глазом.

Измеряться световой поток  также может в ваттах (это, скорее, энергетический показатель), или в люменах (световой показатель). На практике обычно применяются люмены.

Для точного значения одного люмена в качества эталона взято излучение из центральной, зеленой части видимого спектра, длиной 555 нм.

Итак, принято, что лучистый поток с длиной волны 555 нм величиной 1 ватт соответствует 683 люменам. Почему такой странный коэффициент? Просто окончательное утверждение этой единицы в системе СИ состоялось в 1979 году, а первые опыты по фотометрии с введением показателя светового потока начали производиться задолго до этого. В ту пору, когда электрического освещения еще не существовало, и более-менее стабильным, «эталонным» источником света служила обычная свеча. И сложившееся соотношение энергетического ватта и светового люмена было со временем пересчитано  и перешло до наших дней.

Еще раз напомним — упомянутые выше ватты, которыми также может измеряться световой поток, не имеют никакого отношения к тем, что указаны на упаковке лампы. Там показывается потребление светильника, то есть то количество энергии, которое он «заберет» из сети. Нас же должна больше волновать его энергетическая световая отдача – какое количество видимой лучистой энергии он «выдаст». Так что гораздо правильнее будет при выборе лампы обращать внимание не на эфемерные сравнительные аналогии в ваттах, а на четко указанное значение светового потока в люменах.

Ищите на упаковке лампы значение ее светового потока в люменах.Ищите на упаковке лампы значение ее светового потока в люменах.

Световая отдача

Это – очень интересная в практическом плане величина, так как она, по сути, характеризует эффективность источника света. Важно выбирать лампу не исходя из ее потребляемой электрической мощности, а из того, как эта мощность расходуется при преобразовании в световую энергию.

Итак, величина светоотдачи показывает, какой световой поток вырабатывается лампой при преобразовании одного ватта затраченной энергии. Понятно, что и измеряется она в люменах на ватт (лм/Вт).

Преобразование одного вида энергии в другой производится по-разному. Например, в привычных лампах накаливания применен резистивный принцип – свечение вызывает раскаленная спираль с большим электрическим сопротивлением. Понятно, что это сопровождается огромными тепловыми потерями. Более эффективными являются современные осветительные приборы, основанные на принципах свечения полупроводниковых матриц при пропускании тока или специально подобранных газовых смесей при их ионизации. Здесь на ненужный нагрев расходуется значительно меньше затраченной энергии.

Принципы преобразования электрической энергии в световой поток у разных ламп – различные. Отсюда и разница в их энергоэффективности, то есть в показателях светоотдачи.Принципы преобразования электрической энергии в световой поток у разных ламп – различные. Отсюда и разница в их энергоэффективности, то есть в показателях светоотдачи.

Выше уже говорилось, что пик нормального восприятия света человеческим глазом приходится на длину волны в 555 нм. И в идеальных условиях, при полном преобразовании электрической энергии в монохроматический световой поток указанной длины волны, то есть при совершенном отсутствии потерь, теоретически возможно добиться светоотдачи в 683 лм/Вт. Это называется идеальным источником света, которого в природе, увы, не существует.

В таблице ниже приведены сравнительные характеристики для наиболее применяемых в быту ламп – накаливания, люминесцентных и светодиодных. Хорошо видно, насколько экономичнее становится использование современных источников света, то есть как возрастает показатель светоотдачи.

(Значения в таблице указаны примерные. В любой из категории ламп могут быть отклонения в ту или иную сторону – это зависит от качества конкретной модели. Но общую картину таблица представляет довольно наглядно).

Световой поток, ЛмЛампы накаливанияЛюминесцентные лампыСветодиодные лампы
Потребляемая
мощность, Вт
Светоотдача,
лм/Вт
Потребляемая
мощность, Вт
Светоотдача,
лм/Вт
Потребляемая
мощность, Вт
Светоотдача,
лм/Вт
2502012.55÷741.72÷3100
400401010÷1336.44÷588.9
7006011.715÷1645.26÷1087.5
900751218÷2047.410÷1281.8
12001001225÷3043.612÷1588.9
18001501240÷504018÷2094.7
250020012.560÷8038.525÷3090.9

Конкретное значение светоотдачи не всегда, но все же указывается некоторыми производителями ламп на их упаковке. Это может быть надпись «светоотдача» или же «Lighting effect». Если нет, то его несложно определить и самому, разделив паспортный световой поток на указанную потребляемую мощность.

На упаковках некоторых ламп производитель сразу указывает и световую отдачу прибора.На упаковках некоторых ламп производитель сразу указывает и световую отдачу прибора.

Совершенно очевидно, что из всех ламп, применяемых в бытовых условиях, наилучшими показателями светоотдачи обладают светодиодные приборы – у них этот показатель доходит до 100 лм/Вт, и даже может быть несколько выше. Но прогресс не стоит на месте, и разработчики заявляют о скором выходе в серийное производства ламп со светоотдачей порядка 200 лм/Вт. Но до идеального источника еще ой как далеко…

Кстати, ученым удалось оценить световую отдачу Солнца, и она – не столь высока: примерно 93 лм/Вт.

Про световую отдачу источников света различного типа рассказывается и в предлагаемом видеосюжете:

Видео: Что такое световая отдача, и каково практическое применение этого параметра?

Сила света

В физике есть понятие точечного источника света – он распространяет излучение совершенно одинаково во всех направлениях. На практике такое если и бывает, то крайне редко, да и то – с некоторым упрощением понятий. На деле световой поток в разные стороны бывает неравномерен. И чтобы оценить, скажем так, его пространственную плотность, оперируют величиной силы света. А чтобы разобраться, что это такое, придется вспомнить еще и понятие телесного угла.

Начнем именно с геометрии. Итак, телесный угол – это часть пространства, объединяющая все лучи, исходящие из одной точки и пересекающую определенную поверхность (ее называют стягивающей поверхностью). В фотометрии, понятно, это освещаемая поверхность. Измеряется этот угол в особых величинах – стерадианах (ср), и обычно в формулах обозначается символом Ω.

Схема, помогающая понять, что же такое телесный угол.Схема, помогающая понять, что же такое телесный угол.

Величина телесного угла – это отношение площади стягивающей поверхности к радиусу сферы.

Ω = S/R²

То есть если взять, к примеру, сферу с радиусом один метр, то телесный угол в один стерадиан «вырежет» на ее поверхности пятно площадью один квадратный метр.

Для чего это знать? Дело в том, что понятие силы света напрямую связано с телесным углом. А конкретно – световой поток в один люмен, распространяющийся в пространстве, ограниченном телесным углом в один стерадиан, обладает силой света в одну канделу. Математически эта зависимость выглядит так:

I = Ф/ Ω

А если говорить об энергетической силе света, равной одной канделе, то это 1/683 Вт/ср.

Кстати, кандела – это одна из семи основных величин системы СИ.

Кандела в буквальном переводе с латинского означает свечу. Это как раз тот «пережиток прошлого», о котором уже говорилось выше, но зато он очень наглядно показывает всю взаимосвязь величин.

Поясним на рисунке:

Рисунок, хорошо демонстрирующий взаимосвязь основных фотометрических величинРисунок, хорошо демонстрирующий взаимосвязь основных фотометрических величин

Итак, имеется точечный источник света – свеча. Ее горящий фитиль излучает свет силой в одну канделу (поз. 1).

В пространстве, ограниченном телесным углом, равным одному стерадиану (поз. 2), будет при этом распространяться световой поток (поз. 3), равным одному люмену. На некотором расстоянии от источника (радиусе сферы – поз. 4) этот поток освещает поверхность определённой площади (поз. 5). Забегая вперёд сразу скажем, если площадь равна одному квадратному метру, то что при таких условиях в этом «световом пятне» обеспечивается освещенность, равная одному люксу (лк).

Если вернуться к свече, как к эталонному источнику света, то несложно рассчитать и ее общий световой поток. Полная сфера имеет телесный угол, равный 4π, то есть, с небольшим округлением, он равен 12.56 стерадиан. А это значит, что свеча, излучающая во все стороны свет силой в одну канделу, дает общий световой поток, равный 12.56 люмен.

Интересно, что еще не столь давно излучающую способность источников света и оценивали «в свечах». Например, говорили – нужна «лампочка на шестьдесят свечей». Продавцы и покупатели прекрасно понимали друг друга – приобреталась лампочка накаливания на 60 Вт, хотя, по сути, эти величины никак между собой в данном случае, с точки зрения физики, не связаны. И что забавно – это было близко к истине.

Давайте посмотрим – 60 свечей по 12,56 люмен дадут в сумме 753,6 люмена. Заглянем в таблицу выше – лампа накаливания с потреблением 60 ватт обладает световым потоком в примерно в 700 люмен. Совсем рядышком!

Но, повторимся, правильна оценка источников света все же должна осуществляться в люменах.

Яркость света

Стоит рассмотреть еще один параметр – это яркость источника света. Дело в том, что с точечными источниками дело иметь практически не приходится. То есть большинство источников обладает какой-то определенной излучающей поверхностью. И при равном световом потоке, но отличающейся площади излучения света, зрением это будет восприниматься по-разному.

 

Два источника света с равными показателями излучаемой силы света и светового потока, расположенные на одинаковом расстоянии от человека, но имеющие разные размеры, будут восприниматься зрением как более яркий и более тусклый.Два источника света с равными показателями излучаемой силы света и светового потока, расположенные на одинаковом расстоянии от человека, но имеющие разные размеры, будут восприниматься зрением как более яркий и более тусклый.

То есть, по сути, яркость – эта сила света, излучаемого с определенной единицы площади видимой поверхности источника света.

L = I/S

Понятно, что единицей яркости будет кандела на квадратный метр.

Это важная величина, так как органы зрения, если смотреть на источник света, реагируют, скорее, не на силу света как таковую, а именно на яркость. При большой ее величине (свыше 160 тыс. кандел на квадратный метр) свет может вызвать раздражение глаз, болезненные ощущения, слезливость. Поэтому производители осветительных приборов и выпускают лампы с матовыми колбами. Практически без потери светового потока, излучение идет не конкретно от волоска накаливания или светодиода с их небольшими площадями, а с куда большей по площади поверхности колбы. Такое свечение значительно безопаснее для сетчатки глаза, воспринимается зрением намного комфортнее.

Освещенность поверхности

Вот, наконец, добрались мы и до освещенности. Эту величину можно считать самой прикладной, так как именно освещенностью того или иного участка оценивается общая работа осветительных приборов.

Образно выражаясь, освещенность (Е) – это поверхностная плотность светового потока (Ф), распределенного на той или иной площади (S). Если подходить с некоторым упрощением, то это можно выразить такой формулой:

Е = Ф/ S

Как мы видели выше, один люмен светового потока на площади в один квадратный метр создает освещенность, равную одному люксу (лк).

Зависит освещенность от целого ряда факторов, если даже не принимать во внимание собственные характеристики источника света.

  • Во-первых, чем дальше расположен источник от освещаемой поверхности, тем больше площадь «светового пятна» (вспоминаем конус телесного угла). То есть световой поток распределяется по большему участку. Причём, как мы помним, эта зависимость – квадратичная. То есть при изменении расстояния вдвое, освещённость снизится в четыре раза, втрое – в девять раз, и т.п.

Если рассматривать точечный источник, то можно применить формулу Кеплера:

Е = I / r²

О значении входящих в формулу величин повторяться не будем – они приведены выше.

  • Во-вторых, показанная выше формула Кеплера справедлива лишь для поверхности, перпендикулярной направлению светового потока. На деле, безусловно, так бывает нечасто. То есть в том случае, когда освещаемая плоскость расположена под каким-то углом α к направлению потока, приходится делать поправку и на это:

Е = (I / r²) × cos α.

Вспомните – когда вам необходимо максимально ярко осветить поверхность, вы направляете фонарь перпендикулярно к ней. Но если его расположить под углом – освещенность резко упадет, так как свет как будто «размазывается» по поверхности.

  • В-третьих, освещенность конкретного участка зависит еще и от его, так сказать, окружения. Дело в том, что большинство поверхностей не поглощают весь попадающий на них свет, а в значительной степени отражают его. И тем самым сами становятся своеобразными источниками света.
Подсвеченные поверхности потолка или стен сами начинают выступать в роли источников светаПодсвеченные поверхности потолка или стен сами начинают выступать в роли источников света

Вспомним что говорилось в разделе про яркость свечения. Да, действительно, яркость таких подсвеченных участков бывает не особо высока. Но зато излучение идет с приличной площади, и в итоге создается весьма значимый световой поток.

А яркость такой подсвеченной поверхности зависит и от ее освещенности, и от диффузно-отражающей способности, которая имеет отдельное название – альбедо. Чем выше это альбедо, тем ярче свечение. А раз ярче – то и больше изучаемый «вторичный» цветовой поток.

Несколько наглядных примеров отраженного света. Лист белой бумаги при освещённости всего в 50 люкс будет иметь яркость в 15 кд/м². Свечение полной луны (а это, как мы знаем – отраженный от ее поверхности солнечный свет) характеризуется яркостью в 2500 кд/м². А поверхность чистого белого снега в солнечный день достигает яркости до 3000 кд/м². Немало!

Это явление очень широко используется при организации освещения и в дизайнерском оформлении комнат. Выпускаются целые модельные линейки светильников, специально рассчитанных на направленность в сторону стен или потолка, то есть «в работу» по общему освещению помещения включаются именно подсвеченные участки. Этот же эффект применяется при создании многоярусных потолочных конструкций со светодиодной ленточной подсветкой.

Несложно догадаться, что освещенность помещения будет зависеть и от выбранного стиля его отделки. Одна и та же лампочка, скажем, в белой комнате даст куда большую освещенность, чем в выкрашенной в темных тонах.

Так как конечным ожидаемым результатом работы осветительных приборов является создание комфортных и безопасных для здоровья показателей освещения в помещении, именно значение освещенности поверхностей и подлежит регламентации. В законодательных актах (СНиП и СанПиН) указывается, какая освещенность должна достигаться в различных помещениях, в зависимости от их предназначения.

Так, действующим СНиП 23-05-95 в его актуализированной редакции (Свод Правил СП 52.13330.2011 ) указанные следующие нормативные показатели освещенности для жилых домов:

Тип (предназначение) помещенияНормы освещенности в соответствии с действующими СНиП, люкс
Жилые комнаты150
Детские комнаты200
Кабинет, мастерская или библиотека300
Кабинет для выполнения точных чертежных работ500
Кухня150
Душевая, санузел раздельный или совмещенный, ванная комната50
Сауна, раздевалка, бассейн100
Прихожая, коридор, холл50
Вестибюль проходной30
Лестницы и лестничные площадки20
Гардеробная75
Спортивный (тренажерный) зал150
Биллиардная300
Кладовая для колясок или велосипедов30
Технические помещения – котельная, насосная, электрощитовая и т.п.20
Вспомогательные проходы, в том числе на чердаках и в подвалах20
Площадка у основного входа в дом (крыльцо)6
Площадка у запасного или технического входа4
Пешеходная дорожка у входа в дом на протяжении 4 метров4

При этом оценка освещенности должна вестись на горизонтальной плоскости на высоте пола. Для лестниц – как на высоте пола, так и на переходных площадках и ступенях.

Для оценки уровня освещенности применяются специальные приборы – люксметры. Они состоят из фотоприемника со сферической поверхностью датчика, и блока-преобразователя с аналоговой (стрелочной) или цифровой индикацией показаний.

Компактный люксметр – прибор для измерения освещенностиКомпактный люксметр – прибор для измерения освещенности

Понятно, что люксметр – это узкопрофессиональный дорогостоящий прибор, которым пользуются специалисты, и иметь который дома совершенно не требуется. Но разбираться в вопросах основных фотометрических величин – не помешает любому хозяину дома или квартиры.

Зачем? — могут спросить многие. Да хотя бы для того, чтобы суметь самостоятельно спланировать использование тех или иных источников света, чтобы добиться нужной освещённости. Ведь от нее напрямую зависит здоровье и общее настроение всех членов семьи.

О практическом положении этих знаний как раз пойдет речь в следующем разделе публикации.

Цветовая температура

Чтобы закончить разговор об основных характеристиках источников света, необходимо остановиться и на их цветовой температуре.

При совершенно равных показателях излучаемого светового потока одна лампочка может давать тёплый желтоватый цвет, другая – белый нейтральный, а третья, например – светиться холодным оттенком синевы. Как их различить по этому параметру? Для этого разработана специальная шкала цветовой температуры.

Сразу оговоримся – здесь нет никакой связи между температурой воздуха в помещении или температурой нагрева самого источника света. Просто в качестве эталона взято свечение физического тела, разогретого до больших температур.

Любое тело, если его температура выше абсолютного нуля, само по себе является источником инфракрасного излучения. По мере роста температуры, длина волны этого излучения меняется, и в определенный момент доходит до видимого участка спектра.

Это, наблюдал, наверное, каждый – металлический пруток при нагревании сначала краснеет, затем начинает светиться ярко-красным светом, можно его раскалить, как говорят, и «добела». А при выполнении электросварочных работ, когда температура дуги достигает очень высоких показателей, плавящийся метал может приобрести и голубой оттенок.

Именно эта градация и положена в основу шкалы цветовой температуры. Она указывается в Кельвинах – а по шкале можно увидеть, какое свечение будет излучать лампа.

Графических изображений температурной цветовой шкалы – очень много. Например, довольно наглядным видится вот такое.Графических изображений температурной цветовой шкалы – очень много. Например, довольно наглядным видится вот такое.

Эта цветовая температура обычно указывается в маркировке ламп. Иногда она сопровождается и текстовым пояснением, или даже миниатюрной шкалой, показывающей, в какой области видимого спектра будет светиться лампа.

На упаковке лампы или в нанесенной на цоколе или колбе маркировке должна указываться цветовая температура излучаемого света.На упаковке лампы или в нанесенной на цоколе или колбе маркировке должна указываться цветовая температура излучаемого света.

Выбор ламп по их цветовой температуре зависит от того, какую обстановку планируется поддерживать в помещении. Безусловно, здесь будет играть немалую роль и субъективный фактор – то есть предпочтения хозяев. И готовых «рецептов» на этот счет нет. Но в таблице ниже приведен рекомендательный обзор ламп по их свечению. Возможно, это кому-то поможет при выборе.

Цветовая температураЗрительное восприятиеВозможные определения создаваемой атмосферыХарактерные области применения
2700 КТеплый светОткрытая, теплая, дружеская, уютная, расслабляющаяЖилые комнаты, вестибюли гостиниц, небольшие бутики, рестораны, кафе
3000 КБелый светИнтимнаая, дружеская, располагающая к общениюЖилые комнаты, библиотеки, магазины, офисы
3700 КНейтральный светДружеская, располагающая к общению, дающая ощущение безопасности, повышающая внимательностьМузеи и выставочные залы, книжные магазины, офисы
4100 КХолодный светСпособствующая концентрации вниимания, чистая, ясная, продуктивнаяУчебные помещения, конструкторские бюро, офисы, больгицы, крупные магазины, вокзалы
5000 — 6500 КХолодный дневной светТревожная, излишне яркая, подчеркивающае цвета, стерильная, со временем — утомляющаяМузеи, ювелирные магазины, некоторые кабинеты в медицинских учреждениях

Проведение самостоятельных расчетов.

Как и было обещано, в этом разделе публикации будет рассмотрен алгоритм проведения расчета освещенности. Точнее, если быть более корректным, расчет имеет как раз обратную направленность. То есть нормальное значение освещенности нам уже известно. И вычисления должны нас привести к результату, сколько ламп и с каким световым потоком потребуется для его обеспечения.

Общая формула для проведения расчетов

Итак, начнем с той формулы, которая будет у нас служить основой расчетов.

Fл = (Ен × Sп × k × q) / (Nc × n × η)

— это световой поток лампы, которую требуется установить в светильник. То есть эта та самая величина, которая поставлена целью проведения вычислений.

Ен — нормативная освещённость поверхностей, в зависимости от типа помещения. Она соответствует параметрам, установленным СНиП и приведенным выше в таблице.то есть отталкиваемся именно от нормативного значения.

Sп — площадь освещаемой поверхности. Обычно здесь фигурирует площадь комнаты, если рассчитывается общее освещение. Но если целью ставится расчет освещенности локального участка (например, рабочей зоны), то подставляется именно площадь этой зоны.

k — корректирующий коэффициент, который часто называют коэффициентом запаса. Его введением учитывается сразу несколько обстоятельств, влияющих на световую отдачу ламп. Во-первых, многие лампы со временем начинают растрачивать свой излучающий потенциал, попросту говоря – тускнеть. Во-вторых, на излучающую способность могут влиять и некоторые внешнее факторы – это запыленность помещения или, скажем, высокая концентрация пара, препятствующая свободному распространению световых лучей.

Коль речь у нас идет о жилых помещениях, где плотный пар стоять не должен, а пыль удаляется регулярными уборками, то вторую группу факторов можно сбросить со счетов. А по постепенной потере излучающей способности коэффициент для разных типов ламп можно принять следующим:

— лампы люминесцентные (газоразрядные): 1.2;

— обычные лампы накаливания и «галогенки»: 1.1;

— лампы светодиодные: 1.0.

q — коэффициент, учитывающий неравномерность свечения некоторых типов ламп. Он принимается равным:

— для ламп накаливания и газоразрядных ртутных ламп: 1.2;

— для компактных люминесцентных ламп накаливания и светодиодных источников света: 1.1.

Переходим к знаменателю дроби.

Nc — количество осветительных приборов, планируемых к установке в помещении или в отдельной зоне, для которой проводится расчет.

n — количество рожков в планируемом к установке светильнике.

Наверное, понятно, что произведение последних двух величин показывает, какое же количество ламп планируется к установке. Например, устанавливается одна пятирожковая люстра. Тогда Nc =1, а n =5. Или планируется осветить помещение двумя приборами, каждый по три лампочки: Nc =2, а n =3, Но если освещение будет осуществляться одним прибором с одной лампой, что обе эти величины будут равны единице.

η — коэффициент использования светового потока. Эта поправочная величина учитывает множество факторов, касающихся как особенностей помещения, так и специфики планируемых к установке осветительных приборов.

Так как именно этот коэффициент пока что остается неизвестной величиной, с него и следует начать проведение расчётов.

Находим коэффициент использования светового потока

Эту величину можно назвать табличной эмпирической. Она зависит и от площади помещения, и от расположения светильника, и от основного направления светового потока, и от отделки поверхностей потока, стен и пола.

Прежде всего для входа в таблицу придется определить так называемый индекс помещений. Он учитывает размеры помещения, причём, именно в соотношении длины и ширины, так как в квадратной комнате и в вытянутой прямоугольной световой поток все же будет распространяться по-разному. И второе – он учитывает высоту расположения светильника над освещаемой поверхностью. Как мы помним – по требования СНиП оценка освещенности ведется по горизонтальной плоскости на уровне пола.

Важно – иногда путают высоту потолка в комнате с высотой установки светильника. А это все же не одно и то же! Например, осветительный прибор может быть закреплён на стене (бра), установлен на стойке или размещен на столе или тумбочке (торшер или настольная лампа), подвешен к потоку на определенном расстоянии от потолочной поверхности (люстра).

Формула, наверное, ни о чем не скажет. Лучше предложим воспользоваться для определения этого индекса помещения онлайн-калькулятором.

Калькулятор для определения индекса помещения.

Перейти к расчётам

Итогом расчетов станет какая-то дробная величина. Ее приводят в ближайшую сторону к следующим значениям: 0,5;  0,6;  0,7;  0,8;  0,9;  1,0;  1,1,  1,25;  1,5;  1,75;  2,0;  2,25;  2,5;  3,0;  3,5;  4,0;  5,0. Почему именно к ним? Да, четно говоря, просто потому, что именно такая градация принята в таблицах, расположенных ниже.

Таблицы для определения коэффициента использования светового потока

Для входа в таблицу необходимо будет еще оценить отражающую способность поверхностей в помещении (помните, говорилось о некотором альбедо, способствующим освещенности или, наоборот, приглушающим ее).

Отражающую способность поверхностей, в зависимости от цвета их отделки, можно принять следующую:

Оттенки интерьерной отделкиКоэффициент отражающей способности
Белый цвет70%
Светлые тона50%
Средние тона30%
Темные тона10%
Черный цвет0%

Для пользования таблицей следует сразу оценить отделку комнаты в порядке: потолок – стена – пол в процентах отражающей способности. Понятно, что здесь придётся проявить определённую сообразительность – с белым и черным цветов ясность есть, а вот с остальным необходимо подумать, отнести их больше к светлым, средним или темным тонам. Но для человека с нормальным восприятием цвета это не должно стать проблемой.

Следующим шагом следует определить тип светильника, планируемого к установке – предложено пять различных вариантов. Именно этот критерий поможет выбрать нужную таблицу. (все таблицы размещены в правом столбце. Изображения «кликабельны», то есть увеличатся до нормального размера при клике мышкой).

Ну и уже по этой выбранной  таблице, на основании всех собранных данных, находится коэффициент.

Просто для примера. Планируется к установке на потолочный поверхности подвесной светильник с плафоном, дающим преимущественное распространение света вниз. Находим устраивающую нас таблицу. Вот она:

Пример определения коэффициента использования светового потока по таблицеПример определения коэффициента использования светового потока по таблице

Проведённым ранее расчётом определили индекс помещения. Допустим, он равен 1.0.

По оценке отделки получаем следующее соотношение – 70% (белый потолок), 30% (темно-бежевые стены, которые можно отнести к средним тонам), 10% (темный, близкий к черному пол).

По этим значениям находим пересечение столбцов и строки (пример показан на иллюстрации), и получаем искомое значение коэффициента использования светового потока, равное 0,30.

Всё, теперь у нас есть уже все данные для проведения окончательного расчета. И для него можно, опять же, воспользоваться встроенным онлайн-калькулятором.

Калькулятор расчёта необходимого светового потока источников света

Перейти к расчётам

Полученное значение показывает, какой должен быть световой поток у ламп, которые обеспечат необходимую норму освещенности в помещении.

*  *  *  *  *  *  *

Что можно добавить напоследок?

  • Если расчет ведётся для какой-то ограниченной зоны, например, для подсветки рабочей области в мастерской или гараже, то и значения площади берутся только для нее. И расположение и тип светильников также – только те, которые будут освещать именно этот участок. То есть исходим из принципа автономности – рабочая зона должна быть нормально освещена даже при полностью выключенном общем освещении. Это же касается и других локальных участков – письменного стола, выделенного места для рукоделия в кресле под торшером и т.п.
  • Нормальная освещенность довольно часто в повседневной жизни выглядит избыточной. Например, человеку просто хочется побыть одному в полумраке, или просто для просмотра телепередач яркий свет не требуется. Значит, можно и нужно предусмотреть зональную дополнительную подсветку (на которую уже не будут распространяться санитарные нормы), или установить диммер, с помощью которого можно изменять излучаемый световой поток осветительных приборов.
  • В публикации уже не раз подчеркивалось, и проведение расчета – тому лишнее подтверждение, что определяющим критерием при выборе ламп для обеспечения требуемой освещенности должен являться именно световой поток. Но про потребляемую мощность тоже забывать не следует.

Дело в том, что многие светильники имеют ограничения по этому параметру. Например, в паспорте изделия указано, что максимальная суммарная мощность не должна превышать 60 ватт. Это может быть вызвано ограниченной термостойкостью пластиковых деталей светильника или малым сечением проводов, проложенных в нем. То есть и потребляемую мощность ламп также следует учитывать. Если же она получается выше допустимого значения, значит, придется подыскивать другой светильник.
Может случиться и так, что расчетный световой поток получился столь высоким, что таких ламп в ассортименте магазинов попросту нет. Значит, планируемое количество источников света — недостаточное. Придется рассматривать варианты с увеличением количества светильников, или же со светильниками с большим количеством рожков.

Освещённость — это… Что такое Освещённость?

Освещённость — отношение светового потока, падающего на малый участок поверхности, к его площади.

Определение и свойства

Освещённость численно равна световому потоку, падающему на участок поверхности малой единичной площади:

Единицей измерения освещённости в системе СИ служит люкс (1 люкс = 1 люмену на квадратный метр), в СГС — фот (один фот равен 10 000 люксов). В отличие от освещённости, выражение количества света, отражённого поверхностью, называется светимостью.

Освещённость прямо пропорциональна силе света источника света. При удалении его от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния (Закон обратных квадратов).

Когда лучи света падают наклонно к освещаемой поверхности, освещённость уменьшается пропорционально косинусу угла падения лучей.

Освещённость от точечного источника находят по формуле:

где — сила света в канделах; — расстояние до источника света; — угол падения лучей света относительно нормали к поверхности.

Освещённость в фототехнике определяют с помощью экспонометров и экспозиметров, в фотометрии — с помощью люксметров.

Примеры

ОписаниеОсвещённость, лк
Вне атмосферы на среднем расстоянии Земли от Солнца[1][2]135 000
Солнечными лучами в полдень100 000
При киносъёмке в студии10 000
На футбольном стадионе (искусственное освещение)1200
На открытом месте в пасмурный день1000
В светлой комнате вблизи окна100
На рабочем столе для тонких работ400–500
На экране кинотеатра85–120
Необходимое для чтения30–50
От полной луны0,2
От ночного неба в безлунную ночь0,0003

См. также

Примечания

Литература

Яштолд-Говорко В. А. Фотосъёмка и обработка. Съемка, формулы, термины, рецепты. Изд. 4-е, сокр. М., «Искусство», 1977.

Что такое люксы и люмены, и почему ватты – не главное в светодиодном освещении

Почему одна LED-лампа светит сильнее, чем другая, такой же мощности? Что такое световой поток и чем он отличается от освещенности? Как определиться с количеством ламп, зная их световой поток и размеры помещения. Ответы на эти вопросы вы найдете в нашей новой статье.

Во времена повсеместного распространения ламп накаливания (ЛОН), зная, сколько ватт потребляет лампа, можно было с уверенностью предполагать, сколько света она будет давать. Две лампы одинаковой мощности, произведенные на разных заводах, излучают практически одинаковое количество света, и, приобретая ЛОН, покупателю достаточно было ориентироваться на показатель ее мощности. Сейчас ЛОН в прошлом, но до сих пор многие действуют подобным образом и при покупке светодиодных ламп, хотя с ними дело обстоит несколько иначе.

Световой поток и энергоэффективность

Основным и наиболее значимым параметром любого осветительного прибора является количество света, которое он вырабатывает в единицу времени. Эта величина называется световым потоком источника света, а единицей измерения для него в международной системе СИ официально принят Люмен (Lumen, Лм). Величина светового потока зависит от электрической мощности источника света, но не определяется только мощностью. Особенно это актуально для светодиодных ламп.

В ЛОН количество света, которое она вырабатывает, зависит от материала нити накаливания и ее температуры. Но эти параметры в разных лампах отличаются мало, поэтому и светят ЛОН одной мощности примерно одинаково. В LED-лампах свет вырабатывают светодиоды. Световой поток светодиода, как и лампы накаливания, также зависит от материалов и режима работы полупроводникового кристалла, но, в отличии от ЛОН, эти свойства у разных светодиодов сильно отличаются, и более качественные и современные светодиоды при одной и той же электрической мощности вырабатывают больше света.

Связь между электрической мощностью источника света и его световым потоком характеризуется энергоэффективностью и определяется как отношение величины светового потока к мощности. Энергоэффективность показывает, сколько света вырабатывает источник на 1 ватт затраченной мощности, иными словами это – световой КПД, и чем он больше, тем более экономичным является источник света.

Величину светового потока и мощность выбранной LED-лампы узнать достаточно просто, нужно всего лишь посмотреть на ее упаковку – в соответствии с требованиями стандартов производители светодиодных ламп обязаны указывать значение этих характеристик на упаковке продукции. Энергоэффективность лампы на упаковке приводить не обязательно, поэтому, если этот параметр не указан, покупатель легко может рассчитать его самостоятельно, разделив значение светового потока на мощность.

Рассмотрим конкретный пример:

Примерная величина светового потока бытовой лампы накаливания мощностью в 60 ватт составляет 700 люменов, а 100-ваттной – около 1200 люменов. Таким образом, разделив 700 на 60, получаем энергоэффективность 11,7 лм/Вт – у 60-ваттной лампочки и 12 лм/Вт – у 100-ваттной.

Если со стандартными ЛОН все достаточно просто, то, проведя анализ представленных на украинском рынке светодиодных ламп мощностью, к примеру, 6 Вт, мы увидим, что величина их светового потока находится в диапазоне от 450 до 700 люменов. То есть, их энергоэффективность колеблется от 75 до 117 лм/Вт, и может отличаться даже в рамках одной и той же серии у конкретного производителя. Эффективность LED-ламп зависит, прежде всего, от типа, качества и характеристик использованных при их создании светодиодов, а также технических решений, применяемых изготовителем. Наиболее качественные образцы продаваемых на украинском рынке светодиодных ламп традиционного типа имеют энергоэффективность до 120 Лм/Вт, а лампы на основе филаментной нити  – до 150 Лм/Вт.

Что такое освещенность

Обладая информацией о величине светового потока определенной лампы и размерах освещаемого помещения, можно рассчитать другой важный показатель – освещенность.

Освещенность – это световая величина, отображающая количество света, попадающее на определенный участок площади. В международной системе (СИ) единицей измерения освещенности служит люкс (лк), при этом один люкс равен одному люмену на квадратный метр. Чем больший световой поток попадает на освещаемую поверхность, тем выше уровень ее освещенности.

Человеческий глаз неспособен определить конкретное значение уровня освещенности без вспомогательных средств, поэтому, если требуется получить точную информацию, используют специальный прибор – люксметр.

Насколько ярко следует освещать помещение

Основным критерием правильной организации освещения в любой комнате является, прежде всего, удобство и комфорт людей, которые ею пользуются. Тем не менее, существуют официальные нормы, определяющие оптимальный уровень освещенности комнаты, в зависимости от ее назначения.

Тип помещения

Норма освещенности (лк)

Жилые комнаты, гостиные, спальни, жилые комнаты общежитий

150

Кухни, кухни-столовые (рабочие поверхности)

150

Детские

200

Кабинеты, библиотеки (рабочие поверхности)

300

Внутриквартирные коридоры, холлы, ванные комнаты, уборные, санузлы, душевые

50

Кладовые и подсобные помещения

30

Гардеробные

75

Сауны, раздевалки

100

Тренажерные залы

150

Биллиардные (поверхность стола)

300

Нормы освещенности жилых помещений согласно ДБН В.2.5-28:2018

Расчет уровня освещенности

Профессиональные расчеты уровня освещенности помещений – сложная задача. Существуют специальные методы, а также компьютерные программы (к примеру, Dialux), позволяющие архитекторам и светодизайнерам проектировать и выполнять расчеты освещения.

Компания MAXUS предлагает всем клиентам, осуществляющим покупку в фирменном интернет-магазине, возможность заказать бесплатную услугу профессионального расчета освещения. Если требуется осветить магазин, салон, кафе или другие помещения, предъявляющие высокие требования к качеству освещения, стоит заранее обратиться к специалистам и произвести необходимые расчеты. Это позволит избежать неприятных неожиданностей после завершения ремонта.

Для решения бытовых задач, к примеру, выбора подходящих для домашней люстры светодиодных ламп, приблизительный расчет можно выполнить самостоятельно.

Сделать это можно таким образом: чтобы получить приблизительное значение необходимого светового потока (для стандартной квартиры или дома с высотой потолка до 2,7 м) нужно нормативный показатель освещенности (взятый из таблицы выше) умножить на площадь помещения (м2).

Следует заметить, что в реальных условиях далеко не весь излучаемый свет достигает освещаемых поверхностей: часть света «поглощается» стенами, мебелью и полом, поэтому получившееся значение нужно дополнительно разделить на усредненный поправочный коэффициент – 0,9 для светлых помещений и 0,6 для комнат, оформленных в темной цветовой гамме.

Рассмотрим конкретный пример:

Требуется обеспечить освещение в небольшой гостиной, площадь которой составляет 12 квадратных метров, а стены и мебель – светлые. Из таблицы выясняем рекомендуемую норму освещенности для гостиных – 150 люксов, умножаем ее на 12 и делим на 0,9. Получаем 2000 люменов. Это и есть минимально необходимый световой поток, который должны давать источники основного освещения.

Если бы в рассматриваемой гостиной были темные стены и мебель, то количество люменов, необходимое для обеспечения общего освещения в ней, было бы существенно большим.

Что такое температура света и как она влияет на восприятие освещенности

Единицей измерения цветовой температуры света является Кельвин (К), при этом, чем выше значение показателя – тем более «холодным» воспринимается свет. Так температура света пламени свечи составляет около 1800 К, а обычной 100-ваттной лампы накаливания – 2800 К. Чаще всего производители светодиодных ламп выпускают свою продукцию с температурой света 3000 К (теплый, расслабляющий свет) или 4100 К (нейтральный, приближенный к дневному солнечному).

Выбирая светодиодную лампу, учитывайте, что лампа, излучающая теплый оттенок света визуально светит слабее, чем лампа с таким же световым потоком, но более холодного оттенка. Поэтому, желающим осветить комнату «теплым» светом стоит подобрать более мощные лампочки.

Подведем итоги

  1. При выборе светодиодного источника света обращайте особое внимание на величину светового потока, измеряемую в люменах. Чем выше это значение, тем больше света будет вырабатывать лампа.
  2. Еще один важный параметр – энергоэффективность, он демонстрирует уровень экономичности осветительного прибора. Средний уровень энергоэффективности светодиодных лампочек – 80-85 лм/Вт, в то же время наиболее качественные модели на основе филаментной нити способны отдать до 150 люменов за каждый ватт потребляемой энергии.
  3. Уровень освещенности – величина, показывающая отношение светового потока к освещаемой площади. Существуют специальные нормы, определяющие оптимальный уровень освещенности для пространств разного типа. Зная эти нормы и площадь комнаты можно произвести приблизительный расчет нужного для ее освещения светового потока. Если требуется выполнить точный расчет освещения, стоит обратиться к профессионалам.
  4. Кельвин – единица измерения цветовой температуры света, чем выше это значение, тем «холоднее» выглядит свет. Освещение теплого оттенка для человеческого глаза кажется менее ярким, чем холодного.

Мы надеемся, что эта статья помогла вам лучше разобраться в особенностях организации светодиодного освещения. Если у вас остались вопросы, вы можете задать их в комментариях к этой статье или позвонить по телефону нашим специалистам.

ОСВЕЩЕННОСТЬ — это… Что такое ОСВЕЩЕННОСТЬ?

  • Освещенность Е, — Освещенность Е, лк отношение светового потока, падающего на рассматриваемый малый участок поверхности, к площади этого участка. Источник: ГОСТ 26602.4 99: Блоки оконные и дверные. Метод определения общего коэффициента пропускания света …   Словарь-справочник терминов нормативно-технической документации

  • освещенность — (Eν) Физическая величина, определяемая отношением светового потока, падающего на малый участок поверхности, содержащий рассматриваемую точку, к площади этого участка . [ГОСТ 26148 84] освещенность Отношение светового потока, падающего на… …   Справочник технического переводчика

  • освещенность — свет, осиянность, экспозиция, озаренность Словарь русских синонимов. освещенность сущ., кол во синонимов: 7 • озаренность (3) • освещённость (1) …   Словарь синонимов

  • Освещенность — (E) отношение светового потока к площади освещаемой им поверхности; измеряется в люксах (лк)… Источник: МУ 2.2.4.706 98/МУ ОТ РМ 01 98. 2.2.4. Физические факторы производственной среды. Оценка освещения рабочих мест. Методические указания (утв …   Официальная терминология

  • Освещенность — – освещенность в точке поверхности, одна из световых величин, равная отношению светового потока излучения, падающего на малый элемент поверхности, содержащий рассматриваемую точку, к площади этой поверхности (иначе, освещенность – поверхностная… …   Энциклопедический словарь СМИ

  • ОСВЕЩЕННОСТЬ — величина светового потока, падающего на единицу поверхности, измеряется в люксах …   Большой Энциклопедический словарь

  • Освещенность — количественная мера светового потока, падающий на единицу освещаемой поверхности, выражающаяся в люксах и фотах и измеряемая люксметром …   Психологический словарь

  • Освещенность — поверхностная плотность светового потока, падающего на растения разных ярусов биоценоза. Измеряется лкжсо метрами и выражается в люксах. Экологический словарь. Алма Ата: «Наука». Б.А. Быков. 1983 …   Экологический словарь

  • ОСВЕЩЕННОСТЬ — (англ. illuminance) световой поток, падающий на единицу освещаемой поверхности. О. измеряется люксметром. Основные единицы О. люкс и фот. О. поверхности прямо зависит от яркости источника света; обратно от квадрата расстояния между поверхностью и …   Большая психологическая энциклопедия

  • освещенность — 3.2 освещенность : Отношение светового потока, падающего на элемент поверхности, содержащий рассматриваемую точку, к площади этого элемента, лк. Источник: ГОСТ 26824 2010: Здания и сооружения. Методы измерения яркости оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • определение освещенности в Свободном словаре

    В этот момент таинственное освещение внезапно вспыхнуло до интенсивного, почти ослепительного блеска, смывающего все небо, гасящего звезды и отбрасывающего чудовищную тень самого себя вокруг ландшафта. Освещение Гейдельбергского замка является одной из достопримечательностей Европы. делает его причал светильником Аладдина и кладет его в нем; так, чтобы в самую смелую ночь в черном корпусе корабля все еще находилось освещение. Посмотрите, с какой полной свободой китобой берет свою горсть ламп — часто, но старых бутылок и флаконов — к медному холодильнику на пробных работах и ​​пополняет их там, как кружки пива в бочке.Казалось, что он движется в этом направлении, поэтому я последовал за ним, подъехал к дому, забрался на вершину берега и увидел это необыкновенное освещение с болота с другой стороны. Первое творение Бога, в делах дни были светом чувства; последний был светом разума; и с тех пор его субботняя работа — это озарение его Духа. Как раз в этот кризис, как будто она постигла все это волнение по отношению к себе, луна сияла безмятежным сиянием, затмевая ее интенсивным освещением все окружающие огни.В этом состоянии неопределенности они подружились, а не от внезапного освещения лица мистера. На мгновение лицо существа было повернуто из-за тусклости кормы к этому освещению, и я увидел, что глаза, которые смотрели на меня, светились бледно-зеленый свет. Поскольку я оказался в удивительно крепком и освежающем сне, я не мог представить, почему информация не была отложена до утра, действительно, я чувствовал себя очень склонным впадать в страсть и запихивать уши камердинера ; но, подумав, я тихо встал и, выйдя из дома, не был немного заинтересован движущимся освещением, которое увидел.Викарий, приютившись близко под тенью церковной башни, не бросил ни света огня, ни света свечей на унылую сцену. Освещение осветило все его лицо, когда он увидел ее и присоединился к ней под апельсиновым деревом. забыл и снова жил, и, живя, он видел в ясном свете зверя, которого он делал из себя — не от напитка, а от работы. ,

    Что такое библейское учение об освещении?

    Вопрос: «Что такое библейское учение об освещении?»

    Ответ:

    Проще говоря, озарение в духовном смысле «включает свет» понимания в некоторой области. На протяжении веков люди в каждой культуре и религии требовали какого-то откровения или просвещения от Бога (истинного или нет). Когда это просветление имеет дело с новым знанием или будущим, мы называем это пророчеством. Когда это просветление имеет дело с пониманием и применением уже полученных знаний, мы называем это просветлением.Что касается освещения последнего типа, возникает вопрос: «Как Бог это делает?»

    Самый базовый уровень просветления — это знание греха, и без этого знания все остальное бессмысленно. Псалом 18:28 говорит: «Господи! Зажги лампаду мою; мой Бог превращает мою тьму в свет ». Псалом 119, который является самой длинной главой в Библии, является песней о Божьем Слове. В стихе 130 говорится: «Раскрытие твоих слов дает свет; это дает понимание простому ». Этот стих устанавливает основной метод просвещения Бога.Когда Божье Слово входит в сердце человека, оно дает им свет и понимание. По этой причине нам постоянно говорят изучать Слово Божье. Псалом 118: 11 гласит: «Я скрыл твое слово в своем сердце, чтобы не грешить против тебя». Стихи 98 и 99 говорят: «Твои заповеди делают меня мудрее врагов, потому что они всегда со мной. У меня больше проницательности, чем у всех моих учителей, потому что я размышляю над вашими уставами ».

    Регулярное изучение Слова Божьего даст направление и понимание в вопросах жизни.Это первый метод Божьего просвещения и отправная точка для всех нас. В Псалме 118 мы также находим другой тип Божьего просвещения. В стихе 18 говорится: «Открой мне глаза, чтобы я мог видеть чудесные вещи в твоем законе». Это не новые откровения, а то, что было написано и открыто задолго до этого и только сейчас понято читателем (один из тех моментов «ага!»). Точно так же стих 73 говорит: «Твои руки сотворили меня и образовали меня; дайте мне понимание, чтобы выучить ваши команды ». Призыв к личному пониманию и применению Божьих законов во время их изучения человеком.Пятнадцать раз в этом псалме Бога просят научить или дать понимание относительно Его законов.

    Один отрывок, который иногда вызывает противоречия в отношении озарения, — это Иоанна 14:26: «Но Советник, Святой Дух, которого Отец пошлет от моего имени, научит вас всему и напомнит вам обо всем, что я сказал вам «. Иисус говорил со Своими учениками в верхней комнате, давая им последние наставления перед смертью. Эта особая группа людей должна была нести ответственность за распространение благой вести об Иисусе Христе по всему миру.Они провели с Ним три с половиной года, наблюдая за Его чудесами и слушая Его учения. Они передавали эти вещи остальному миру и нуждались в особой помощи Бога, чтобы помнить эти вещи точно. Иисус сказал, что Святой Дух научит их и напомнит им о том, что было сказано, чтобы они могли передать это другим (включая написание Евангелий). Этот стих не учит, что Дух будет поступать так со всеми верующими (хотя есть и другие стихи, в которых говорится о просветляющей работе Духа).

    Какова просветляющая работа Святого Духа в верующих? Ефесянам 1: 17-18 говорит нам, что Дух дает мудрость и откровение об Иисусе Христе и открывает глаза для понимания, чтобы мы могли знать цели Бога в нашей жизни. В 1 Коринфянам 2: 10-13 Бог открыл Свои планы для нас Своим Духом, который учит нас духовным вещам. Контекст здесь указывает на Слово Божье как на то, что было открыто. Дух Божий всегда будет указывать нам на Слово Божье для нашего наставления.Как Иисус сказал Своим ученикам в Иоанна 16: 12-15, Дух просто повторяет то, что уже сказали Отец и Сын. Это повторение помогает нам вспомнить и полностью услышать то, что Бог уже сказал нам. Иногда нам приходится слышать что-то несколько раз, прежде чем мы их услышим. Вот где Дух входит.

    Одна вещь, которую иногда упускают из виду при обсуждении озарения, это его цель. Чтобы услышать некоторые аргументы, может показаться, что вся цель просветления — точное и академическое понимание Слова Божьего.Нет сомнений в том, что Бог желает, чтобы мы точно понимали, что Он дал нам. Слова имеют значение, и мы должны обратить внимание на детали в этих словах. Однако, если мы на этом остановимся, у нас просто академическое понимание фактов или философий, которые никому не нужны.

    Возвращаясь к Псалму 119, мы находим заявления о цели, связанные со стихами озарения. «Я буду медитировать на твои чудеса» (ст. 27), «Я буду соблюдать твой закон и повиноваться ему всем сердцем» (ст. 34), «чтобы я мог понять твои законы» (ст.125), «чтобы я жил» (ст. 144). Освещение всегда указывает на действие. Почему Бог помогает нам понять Его Слово? Так что мы можем жить в его свете. Первый от Иоанна 1: 6 бросает нам вызов: «Если мы утверждаем, что общаемся с Ним, но ходим во тьме, мы лжем и не живем по истине». Мы могли бы перефразировать это так: «Если мы говорим, что мы просветлены, но все еще ходим во тьме, мы лжем о понимании Слова Божьего». Дух Божий, который просвещает нас слышать и понимать Слово Божье, затем берет это знание и направляет нас в его жизни.В Послании к Римлянам 8:14 говорится: «Ибо так много, как во главе с Духом Божиим, они сыновья Божии». Прозрачная и руководящая работа Святого Духа в нашей жизни является подтверждением того, что мы действительно дети Божьи.

    Что такое библейское освещение?

    Библейское озарение — это процесс, посредством которого Святой Дух помогает человеку понять истину Слова Божьего. Освещение часто обсуждается вместе со связанными понятиями библейского вдохновения и интерпретации. Вдохновение включает в себя то, как Бог открыл духовную истину; интерпретация включает в себя наше изучение духовной истины; просвещение включает в себя наше понимание духовной истины и включает в себя как Писание, так и влияние Святого Духа.

    Во-первых, важно понимать, что Святой Дух обитает или живет в каждом верующем в Иисуса Христа. Римлянам 8: 9 учит: «Вы, однако, не во плоти, но в Духе, если на самом деле Дух Божий обитает в вас. Тот, кто не имеет Духа Христова, не принадлежит ему». Первое послание к Коринфянам 12:13 добавляет: «Ибо в одном Духе мы все были крещены в одно тело — евреи или греки, рабы или свободные — и все были напоены одним Духом».

    Просветление включает в себя то, как Дух Божий помогает нам понять истину Божью.Иоанна 16: 13-14 объясняет: «Когда придет Дух истины, он поведет вас ко всей истине, потому что он не будет говорить от своего имени, но все, что он услышит, он скажет, и он объявит вам грядущие дела. Он прославит меня, потому что возьмет то, что принадлежит мне, и объявит это вам «.

    Святой Дух также использует одаренных людей в обучении или проповеди, чтобы помогать другим в процессе просветления. В Послании к Ефесянам 4: 11-12 говорится: «И он дал апостолам, пророкам, евангелистам, пастырям и учителям подготовить святых для дела служения, для созидания тела Христова».«Римлянам 12: 6-7 добавляет:« Имея дары, которые различаются в зависимости от благодати, данной нам, давайте использовать их… того, кто учит, в его учении ».

    Важно понимать, что наше духовное состояние может влиять процесс Божьего Духа, освещающий текст Писания в нашей жизни. Первый Коринфянам 3: 1-3 приводит негативный пример: «Но я, братья, не мог бы обращаться к вам как к духовным людям, но как к людям плоти, как к младенцам в Христос. Я кормил тебя молоком, а не твердой пищей, потому что ты не был к этому готов.И даже сейчас вы еще не готовы, потому что вы все еще из плоти. Ибо если между вами зависть и раздор, разве вы не из плоти и ведете себя только по-человечески? »

    Мы должны помнить, что« Господь, Бог мой, осветляет мою тьму »(Псалом 18:28). Самая длинная глава в Библии, в Псалме 118, неоднократно подчеркивается, что Божья истина — это наша основа для духовной зрелости. Мы обращаемся к Его Слову за мудростью и просим помощи у Духа Божьего, чтобы понять его через просвещение, чтобы лучше жить в Его целях для нашей жизни.Ефесянам 1: 17-18 объясняет соответствующую цель озарения: «чтобы Бог Господа нашего Иисуса Христа, Отец славы, мог дать вам Дух мудрости и откровения в познании Его, имея глаза вашего сердца просветленный, чтобы вы знали, какова надежда, к которой он призвал вас, каковы богатства его славного наследия в святых «.


    ,

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *