Что такое земля в электричестве. Земля, фаза и ноль в электричестве: подробное объяснение и различия

Что такое земля, фаза и ноль в электричестве. Как появились эти понятия. Чем отличаются земля, фаза и ноль. Для чего нужен каждый из этих проводов. Как устроена система электроснабжения от электростанции до розетки.

Содержание

Что такое фаза, ноль и земля в электричестве

Понятия «фаза», «ноль» и «земля» относятся к различным проводникам в системе электроснабжения:

  • Фаза — проводник, по которому подается переменное напряжение от источника электроэнергии.
  • Ноль (нейтраль) — обратный проводник для протекания рабочего тока.
  • Земля — защитный проводник, соединенный с землей для обеспечения электробезопасности.

Эти три проводника выполняют разные функции в электрической цепи. Давайте разберемся подробнее, как они появились и для чего нужны.

Откуда берется электричество: принцип работы генератора

Чтобы понять суть фазы, нуля и земли, нужно начать с того, как вырабатывается электроэнергия. Основной принцип работы электрогенератора следующий:


  1. Внутри генератора вращается магнит (ротор).
  2. Вокруг ротора расположены неподвижные катушки (статор).
  3. При вращении магнита в катушках возникает переменный электрический ток.

Этот принцип основан на явлении электромагнитной индукции, открытом в XIX веке. Переменное магнитное поле создает в проводнике переменный электрический ток.

Почему используется трехфазная система

На электростанциях применяются трехфазные генераторы, имеющие три одинаковые обмотки, сдвинутые на 120° относительно друг друга. Это позволяет получить три переменных напряжения одинаковой амплитуды, но сдвинутых по фазе.

Преимущества трехфазной системы:

  • Более эффективная передача электроэнергии на большие расстояния
  • Возможность получения двух уровней напряжения (фазного и линейного)
  • Удобство использования для питания трехфазных электродвигателей

Поэтому исторически сложилось, что от электростанций до потребителей энергия передается по трехфазной системе.

Как электроэнергия доставляется потребителям

Путь электроэнергии от электростанции до розетки в доме выглядит следующим образом:


  1. Генератор на электростанции вырабатывает трехфазный ток
  2. Напряжение повышается трансформаторами до сотен киловольт
  3. Электроэнергия передается по высоковольтным ЛЭП
  4. На подстанциях напряжение понижается до 6-10 кВ
  5. В городских трансформаторных подстанциях напряжение снижается до 380/220 В
  6. От подстанции по домам разводится трехфазная сеть 380/220 В

На этом пути появляются понятия фазы, нуля и земли, которые доходят до конечного потребителя.

Что такое фаза в электричестве

Фаза — это провод, по которому подается переменное напряжение от источника. В трехфазной системе имеется три фазных провода, обозначаемых L1, L2, L3.

Основные характеристики фазы:

  • Переменное синусоидальное напряжение
  • Амплитуда 311 В (действующее значение 220 В)
  • Частота 50 Гц
  • Сдвиг по фазе между проводами 120°

Фазное напряжение 220 В используется для питания однофазных потребителей в жилых домах.

Что такое ноль (нейтраль) в электричестве

Ноль или нейтраль — это обратный провод, необходимый для протекания рабочего тока в однофазных цепях. Он образуется путем соединения концов трех фазных обмоток генератора или трансформатора.


Особенности нулевого провода:

  • Имеет нулевой потенциал относительно земли
  • Служит для создания однофазной цепи 220 В вместе с фазой
  • Обеспечивает равномерную нагрузку фаз
  • Обозначается буквой N

Без нулевого провода невозможно использование однофазных потребителей в трехфазной сети.

Что такое заземление (земля) в электричестве

Заземление или земля — это защитный проводник, соединенный с землей. Он не участвует в передаче электроэнергии, а служит для обеспечения электробезопасности.

Функции заземления:

  • Защита от поражения током при пробое изоляции на корпус
  • Отвод статического электричества
  • Выравнивание потенциалов
  • Молниезащита

Заземляющий провод обозначается PE и подключается к корпусам электроприборов.

Чем отличаются фаза, ноль и земля

Основные отличия трех проводников:

ХарактеристикаФазаНольЗемля
НазначениеПодача напряженияОбратный проводЗащита
Напряжение относительно земли220 В0 В0 В
Протекание рабочего токаДаДаНет
Соединение с землейНетДаДа

Таким образом, каждый из проводников выполняет свою роль в системе электроснабжения.


Зачем нужен нулевой провод

Нулевой провод необходим по нескольким причинам:

  1. Для создания однофазной цепи 220 В совместно с фазным проводом.
  2. Для равномерного распределения нагрузки между фазами трехфазной сети.
  3. Для стабилизации напряжения в сети при несимметричной нагрузке фаз.
  4. Для обеспечения работы защитных устройств (УЗО, дифавтоматов).

Без нулевого провода невозможно использование бытовых однофазных электроприборов в трехфазной системе электроснабжения. Его наличие позволяет получить стандартное напряжение 220 В для питания потребителей.

Почему важно правильное заземление

Заземление играет ключевую роль в обеспечении электробезопасности. Его основные функции:

  • Защита от поражения электрическим током при повреждении изоляции
  • Отвод статического электричества
  • Выравнивание электрических потенциалов
  • Обеспечение работы устройств защитного отключения
  • Снижение электромагнитных помех

Правильно выполненное заземление значительно снижает риск поражения током при неисправностях электрооборудования. Поэтому к монтажу и проверке цепей заземления предъявляются строгие требования.


Выводы

Понимание роли фазы, нуля и земли в электрических сетях очень важно для обеспечения безопасности и правильной эксплуатации электроустановок. Каждый из этих проводников выполняет свою функцию:

  • Фаза обеспечивает подачу напряжения
  • Ноль замыкает цепь и выравнивает нагрузку
  • Земля защищает от поражения током

Правильное использование этих проводников позволяет создать надежную и безопасную систему электроснабжения. При выполнении электромонтажных работ крайне важно не путать эти проводники и соблюдать все требования ПУЭ.


Земля в электротехнике — ElectrikTop.ru

Землей называют точку цепи, электрический потенциал которой считается равным нулю. Такую точку можно выбирать условно. Землей ее называют традиционно, поскольку один из проводников электрических генераторов соединяли с землей при помощи зарытого в землю проводника. Электрикам-профессионалам и тем, кто имеет дело с электричеством необходимо знать, что такое фаза и что такое ноль.

Ток в цепи

Электрический ток может протекать только в замкнутом контуре. Электрическая цепь состоит из источника Э. Д. С. – электродвижущей силы и замыкающего этот источник сопротивления нагрузки, которое может быть очень разветвленным. Если говорить о бытовой электросети, то здесь источником ЭДС является вторичная обмотка трансформатора ближайшей подстанции, или еще проще, таким источником является ввод в здание.

Один из проводов источника заземлен, этот провод (или шина) называется нейтралью, N, в современной электротехнике. Потенциал этой шины относительно земли равняется нулю, поэтому этот провод называют землей.

Другие три провода называют фазами. Эти провода находится под переменным потенциалом, который меняется от 311 до -311 Вольт относительно земли в сети 220 В 50 Гц (50 раз в секунду). 220 Вольт – это, так называемое, действующее напряжение. Для тока и напряжения синусоидальной формы это среднеквадратичное значение. Это напряжение называют фазным.

Напряжение между двумя фазами называют линейным и оно выше: 380-400 В. Таким образом, размах напряжения в трехфазной сети может достигать величины 760-800 В. Поэтому электроинструмент должен уверенно выдерживать испытательное напряжение не менее 1 кВ = 1000 Вольт.

При замыкании фазы на ноль через какое-либо сопротивление в цепи течет ток. Еще больший ток через то же сопротивление потечет, если оно будет подключено между двумя фазами. В трехфазной цепи у конечных потребителей обычно действующее напряжение между фазами 380 В, а фаза и ноль образуют пару, напряжение на которой всегда равно напряжению между фазами, деленному на квадратный корень из числа 3. Это один из результатов теоретической электротехники. Отсюда и получается известная всем величина 220.

История заземления

В самых старых системах бытового электроснабжения переменного тока, которых теперь уже не найдешь, у конечного потребителя заземления не было (система TT, заземлялась только нейтраль на подстанции, если вторичная обмотка трансформатора соединялось звездой).

Это была однофазная сеть, распределяющаяся ток от понижающей обмотки трансформатора подстанции. Здесь вопрос о том, что такое фаза или нулевой провод даже не возникал – оба провода по отношению к земле были равноправными. Человек мог стоять на земле и держаться за любой из проводов по отдельности. При этом он ничего не чувствовал.

Наиболее старые трансформаторы, питающие однофазную сеть, имели схему, показанную на следующем рисунке. Первичные обмотки соединялись треугольником, нейтрали не было, и заземлялся только корпус трансформатора на месте установки. Теперь таких уже давно нет или они применяются где-то для полевых условий в сельском хозяйстве.

Поражение током происходило, если человек дотрагивался до двух проводов одновременно или, если один из проводов был кем-либо заземлен, а человек дотрагивался до другого. Старые электроплитки делались с открытой спиралью, люди готовили в металлической посуде и касались токоведущих частей. Старые телевизоры, например, изготавливались с автотрансформатором ради простоты конструкции и человек, дотрагиваясь до металлического шасси такого аппарата, фактически находился под напряжением сети.

Проблема возникла, когда жилой сектор стал снабжаться промышленным способом подключения (как на первом рисунке). Это произошло потому, что мощность, потребляемая частным сектором, значительно выросла, а в городах он фактически был перемешан с промышленностью (дома-хрущевки).

Тогда человек, стоящий на влажном полу, или держащийся за батарею, получал сильное поражение током с вероятностью 50%, в зависимости от того, как он включил вилку электроприбора в розетку. Если фаза тока попадала на шасси такого старого телевизора или радиоприемника, то прикосновение к нему было опасно для жизни.

Промышленность в области ширпотреба быстро перешла на производство нагревательных приборов с закрытым и изолированным нагревательным элементом (ТЭНы), а бытовые радио и телевизионные приборы стали производить исключительно с трансформаторами, где первичная обмотка была полностью изолирована от остальной части прибора, что сделало их безопасными для людей.

Но почему появилось заземление в промышленности? Нам надо рассмотреть и этот вопрос. В принципе, ни для работы потребителей, ни для транспортировки электроэнергии ничего заземлять не требуется.

Трехфазная система переменного тока была принята только потому, что это упрощало конструкцию электродвигателей, так необходимых станкам и машинам в промышленности. По трехфазной схеме в треугольник можно соединять и нагревательные приборы, пример тому – тэны, рассчитанные на 380 В.

Трехфазные системы могут соединяться звездой (первый рисунок). Такое соединение стало очень распространенным, так как оно позволяет без больших проблем питать трехфазные потребители напряжением 380 В, и в то же время, без лишних расходов устроить однофазные сети 220 В. Это хороший способ сэкономить на трансформаторах.

Так появился проводник, который назвали нейтралью (N). Его также называют – нулевой провод. При равном токе по всем фазам ток в нулевом проводе равен нулю. Энергетики стараются распределить нагрузку равномерно. Но это не всегда получается. Вот простой пример. Пусть на заводе был запитан офисный корпус. Для этого была выделена одна фаза.

Затем к этой же фазе подключили жилой дом недалеко. Остальные две фазы оказываются неуравновешены и в нейтрали появляется значительный ток. Это приводит ко всякого рода неопределенностям при измерениях. К тому же, как бы ровно не распределили нагрузку, на корпусах электрооборудования появляются опасные напряжения, если нейтраль оборвана.

Начало TN

В 1913 году немецкий концерн AEG предложил систему с заземленной нейтралью, позже названную TN-C. Здесь электрики стали использовать понятия фаза и ноль. Позже, в 1930-х годах появилась система TN-S, в которой заземление и нейтраль были разделены. Это дополнительно увеличивало безопасность, так как теперь, если нулевой провод оборван с очень высокой вероятностью оставался целым другой проводник. Но такая система оказывалась неоправданно дорогой.

Поэтому, со временем было предложено еще одно решение: нулевой провод от подстанции (PEN – защитная земля и нейтраль) расщеплялся на две части перед вводом в здание. Одна часть шла как нейтраль N, а другая получила название защитной земли PE. Если происходил обрыв нейтрали то фаза переменного тока, в случае попадания на корпус электрооборудования, пропускала свой ток в землю. Такая система получила название TN-C-S (заземленная нейтраль комбинированная, с разделением на месте).

Система TN-C-S имеет всего один недостаток – местное заземление должно быть повышенной надежности так как при обрыве нейтрали фазное напряжение, попавшее на корпус, будет заземлено только по цепи PE. Поэтому, при сооружении этой цепи принимают все меры по ее механической прочности и снижению электрического сопротивления.

Для этого используют металлические части зданий, трубопроводы и т.д. Однако все эти части соединяются всего в одной точке при помощи шин. Существует точка (шина) где ноль и земля соединяются, она называется шина уравнивания потенциалов. С ней соединяется и шина контура заземления.

В настоящее время TN-C-S является основной в городах и на предприятиях. В сельской местности еще много систем TT. Это связано с тем, что в сельской местности еще много деревянных домов и TT, при всех прочих недостатках имеет положительную сторону: она безопаснее в отношении грозы.

Что такое «фаза», «ноль» и «земля», и зачем они нужны.

Сегодня решил попробовать разобраться с тем, что такое «фаза», «ноль» и «земля».
Небольшой поиск в Гугле по этому поводу выявил, что в основном люди в интернете отвечают на этот вопрос каждый по-своему, где-то неполно, где-то с ошибками.
Я решил разобраться в этом вопросе досконально, в результате чего появилась эта статья.
Достаточно длинная, но в ней всё объяснено, в том числе, что такое фаза, ноль, земля, как это всё появилось и зачем всё это нужно.

Если очень кратко, то фаза и ноль — для электричества, а земля — только для заземления корпусов электроприборов, во имя спасения жизни человека в случае утечки электрического тока на корпус электроприбора.


Если начать с самого начала: откуда берётся электричество?
Все электростанции построены на одном и том же принципе: если магнит вращать внутри катушки (создавая тем самым периодическое «переменное» магнитное поле), то в катушке возникает «переменный» электрический ток (и, соответственно, «переменное» напряжение).
Этот величайший по своему значению эффект называется в физике «ЭлектроДвижущей Силой индукции», она же «ЭДС индукции», была открыта в середине XIX века.

«Переменное» напряжение — это когда берётся обычное «постоянное» напряжение (как от батарейки), и изгибается по синусу, и оно поэтому то положительное, то отрицательное, то снова положительное, то снова отрицательное.


Напряжение на катушке является «переменным» по своей природе (никто его специально не изгибает) — просто потому что таковы законы физики (электричество из магнитного поля можно получить только тогда, когда магнитное поле «переменное», и поэтому получаемое на катушке напряжение тоже всегда будет «переменным»).

Итак, значит, где-то в дебрях электростанции вращается магнит (для примера — обычный, а в реальности — «электромагнит»), называемый «ротором», а вокруг него, на «статоре», закреплены три катушки (равномерно «размазаны» по поверхности статора).

Вращается этот магнит, не человеком, не рабом, и не огромным сказочным големом на цепи, а, например, потоком воды на мощной ГидроЭлектроСтанции (на рисунке магнит стоит на оси турбины в «Генераторе»).

Поскольку в таком случае (случае вращения магнита на роторе) магнитный поток, проходящий через катушки (неподвижные на статоре), периодически меняется во времени, то в катушках на статоре создаётся «переменное» напряжение.

Каждая из трёх катушек соединена в свою отдельную электрическую цепь, и в каждой из этих трёх электрических цепей возникает одинаковое «переменное» напряжение, только сдвинутое («по фазе») на треть окружности (120 градусов из полных 360-ти) друг относительно друга.


Такая схема называется «трёхфазным генератором»: потому что есть три электрических цепи, в каждой из которых (одинаковое) напряжение сдвинуто по фазе.
(на рисунке выше «N-S» — это обозначение магнита: «N» — северный полюс магнита, «S» — южный; также на этом рисунке вы видите те самые три катушки, которые для упрощения понимания маленькие и стоят отдельно друг от друга, но в реальности они по ширине занимают треть окружности и плотно прилегают друг к другу на кольце статора, так как в таком случае получается больший КПД генератора электроэнергии)

Можно было бы с одной такой катушки оба конца проводки просто взять и вести к дому, а там от них чайник запитать.
Но можно сэкономить на проводах: зачем тащить в дом два провода, если можно один конец катушки просто тут же заземлить (воткнуть в землю), а от второго конца вести провод в дом (этот провод назовём «фазой»).
В доме этот провод подсоединяется, например, к одному штырьку вилки чайника, а другой штырёк вилки чайника — заземляется (грубо говоря, просто втыкается в землю).
Получим то же самое электричество: одна дырка в розетке будет называться «фазой», а вторая дырка в розетке будет называться «землёй».

Теперь, раз уж у нас три катушки, сделаем так: скажем, «левые» концы катушек соединим вместе и прямо тут же заземлим (воткнём в землю).
А оставшиеся три провода (получается, это будут «правые» концы катушек) по отдельности потянем к потребителю.
Получится, мы тянем к потребителю три «фазы».

Вот мы и получили «трёхфазный ток», идущий от генератора «трёхфазного тока».
Это «трёхфазное» напряжение идёт по проводам Линии ЭлектроПередач (ЛЭП) к нам во двор, в дворовую подстанцию (домик такой стоит, рядом с детской площадкой, со знаком «осторожно, высокое напряжение»).
И не только «к нам во двор» — по всей огромной России тянули наши предки эти ЛЭПы во времена ударных пятилеток коммунизма (а это огого какая гигантская работа: тянули электричество, прокладывали дороги, осушали болота, заводы строили по всей стране, поднимали целину — это не в офисах под кондиционерами сидеть).

Изобретён этот «трёхфазный ток» был в самом конце XIX века.
Передача электричества в виде именно трёхфазного тока, как некоторые говорят, экономичнее (возможно, меньше потерь в проводах, или что-нибудь типа того), и там ещё, говорят, у него есть разные преимущества над обычным током для промышленного применения.
Например, все вращающиеся штуки на заводах — станки там, двигатели, насосы, и прочее — сделаны именно для трёхфазного тока, поскольку гораздо легче построить вращающуюся штуковину на трёхфазном токе: достаточно просто точно так же подсоединить эти три фазы к трём катушкам на кольце, и в центр вставить металлический стержень с рамкой — и будет он сам крутиться, как только пойдёт ток.
Такой агрегат называется «трёхфазным двигателем».
Поскольку изначально электричеством заморачивались именно на заводах (не было тогда ещё в домах компьютеров, холодильников и люстр), то исторически всё идёт от промышленности в первую очередь.
Поэтому, видимо, ток из электростанции в ЛЭП пускают всегда трёхфазным, с напряжением 35 килоВольтов между фазами (а сила тока в проводах при этом — около 300 Амперов).

Такое высокое напряжение нужно, потому что нужна большая мощность тока: весь город энергию ест, как-никак, да и различные заводы потребляют порою огого сколько мощности: металлургические, например.
Большую мощность тока можно получить либо повышая силу тока, либо повышая напряжение (потому что мощность тока — это сила тока умноженная на напряжение).
При этом чем больше сила тока, тем больше энергии тратится впустую при преодолении сопротивления проводов при передаче электроэнергии на расстояние по проводам (потерянная энергия равняется силе тока в квадрате, умноженной на сопротивление проводов — именно поэтому чем толще провода в ЛЭП, тем экономичнее, потому что чем толще провод, тем меньше его сопротивление).
Поэтому экономически целесообразно повышать мощность передаваемого тока, наращивая не силу тока, а напряжение (напряжению никак не мешает сопротивление проводов — такова его природа).
Потребитель потребляет из розетки именно мощность (силу тока, умноженную на напряжение), а не отдельно ток и не отдельно напряжение, поэтому его не волнует, в каком виде эта мощность к нему в дом придёт по проводам: будет ли там больше тока и меньше напряжения, или, наоборот, больше напряжения и меньше тока — потребителя волнует только мощность в целом.

Поэтому на электростанции, перед передачей электроэнергии в провода ЛЭП, излишнюю силу тока, выработанного электрогенератором, перегоняют в напряжение, а при приёме тока в «подстанции» во дворе вашего дома выполняется обратное преобразование — излишнее напряжение перегоняют обратно в силу тока, поскольку к этому моменту весь путь по ЛЭП уже успешно пройден электроэнергией с минимальными потерями.

Прямо всю силу тока перекачать в напряжение не получится, потому что при гигантских напряжениях в проводах возникают свои сложности (может пробить через изоляцию, например, или зажарить человека, проходящего под ЛЭП, или ещё чего-нибудь).
Вот забавное видео про короткое замыкание ЛЭП в 110 килоВольтов — весёлый феерверк:

Занимательный факт: при длине ЛЭП переменного тока более нескольких тысяч километров возникает ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц, провод работает как антенна.

Я уже объяснил, что такое «фаза» и что такое «земля», и дальше я объясню, что такое «ноль» («нулевой провод») и зачем он нужен. Объяснение займёт следующие несколько абзацев, и может показаться непростым, но для понимания того, что такое «ноль», придётся понять это объяснение.

Для упрощения, пока представим, что как будто бы трёхфазный генератор стоит не на ГидроЭлектроСтанции, а прямо у нас в квартире. Условно «левые» концы катушек на статоре мы, как и раньше, соединяем вместе.

Такой способ соединения называется соединением по схеме «звезда». Полученная точка соединения трёх фазных проводов называется «нейтралью».


«Нейтраль» обычно заземляют для большей безопасности: если нейтраль не заземлить, то потом когда одна из фаз случайно замкнётся на землю где-нибудь в доме, то полученная электрическая цепь будет разомкнутой — не будет токопроводящего пути от места касания фазой земли в доме обратно на эту фазу на подстанции. А если бы нейтраль заземлили на подстанции, то обратный путь с земли в доме на фазу на подстанции прошёл бы через землю: землю можно в данном случае представить как огромный проводник, хотя строго говоря это и не так, она же не металлическая, но для наглядности можно представить её как один огромный проводник. Итак, при отсутствии заземления «нейтрали» на подстанции, при коротком замыкании фазы на землю ток из фазы в землю не пойдёт (или, может быть, пойдёт, но будет относительно небольшим), и такая неисправность не будет засечена специально созданными для этого приборами («автоматами»), и эти приборы («автоматы») не смогут вовремя предотвратить опасное замыкание фазы на землю, выключив электричество. Подробнее принцип работы «автоматов» описан в конце этой статьи. А если вас заинтересует более подробное объяснение, зачем используется именно заземлённая нейтраль, то можете прочесть его по этой ссылке.

В «нейтральной» точке, как можно посчитать по школьным формулам тригонометрии (или на глаз отмерить по графику с тремя фазами напряжения, который я давал в начале статьи), суммарное напряжение равно нулю. Всегда, в любой момент времени. Вот такая интересная особенность. Поэтому она и называется «нейтралью».

Теперь возьмём и подсоединим к «нейтрали» провод, и этот, получается, уже четвёртый провод тоже будет тянуться рядом с тремя фазными проводами (и ещё рядом будет тянуться пятый провод — это «земля», которой можно будет заземлить корпус подключенного электроприбора).

Получается, от генератора теперь будет идти четыре провода (плюс пятый — «земля»), а не три, как раньше.
Подключим эти провода к какой-нибудь нагрузке (например, к какому-нибудь трёхфазному двигателю, который тоже стоит у нас в квартире).
(на рисунке ниже генератор изображён слева, а трёхфазный двигатель — справа; точка G — это «нейтраль»).

На нагрузке (на двигателе) все три фазных провода тоже соединяются в одну точку (только не напрямую, чтобы не было короткого замыкания, а через некоторые большие сопротивления), и получается ещё одна такая «как бы нейтраль» (точка M на рисунке).
Теперь соединим четвёртый провод (идущий он «нейтрали»; точка G на рисунке) с этой второй «как бы нейтралью» (точка M на рисунке), и получим так называемый «нулевой провод» (идущий от точки G к точке M).


Зачем нужен этот «нулевой» провод?
Можно было бы, как и раньше, не заморачиваться, и просто подсоединять одну из фаз на один шпенёк вилки чайника, а другой шпенёк вилки чайника соединять с землёй, как мы делали раньше, и чайник бы нормально работал.
Вообще, как я понял, так и делали в старых советских домах: там от подстанции в дом заходят только два провода — провод фазы и провод земли.
В новых же домах (новостройках) в квартиры входят уже три провода: фаза, земля и этот «ноль». Это более прогрессивный вариант. Это европейский стандарт.
И правильно соединять фазу именно с нулём, а землю вообще оставить в покое, отдав ей только роль защиты от удара током (именно такой смысл должно нести слово «заземление», и никакого отношения к потреблению тока в розетке оно иметь не должно).
Потому что если все на землю ещё и ток будут пускать, то само заземление станет опасным — абсурд получится, будет поставлен с ног на голову весь смысл заземления.

Теперь немного математики, для тех, кто умеет её считать, и для тех, кто ещё не устал: попробуем посчитать напряжение между фазой и «нейтралью» (то же самое, что между фазой и «нулём»).
(вот ещё ссылка с расчётами, если кто-то захочет заморочиться этим)
Пусть амплитуда напряжения между каждой фазой и «нейтралью» равна U (само напряжение переменное, и скачет по синусу от минус амплитуды до плюс амплитуды).
Тогда напряжение между двумя фазами равно:
U sin(a) — U sin(a + 120) = 2 U sin((-120)/2) cos((2a + 120)/2) = -√3 U cos(a + 60).
То есть, напряжение между двумя фазами в √3 («квадратный корень из трёх») раз больше напряжения между фазой и «нейтралью».
Поскольку наш трёхфазный ток на подстанции имеет напряжение 380 Вольт между фазами, то напряжение между фазой и нулём получается равным 220 Вольтам.
Для этого и нужен «ноль» — для того, чтобы всегда, при любых условиях, при любых нагрузках в сети, иметь напряжение в 220 Вольт — ни больше, ни меньше. Оно всегда постоянно, всегда 220 Вольт, и вы можете быть уверены, что пока вся электрика в доме правильно подсоединена, у вас ничего не сгорит.
Если бы не было нулевого провода, то при разной нагрузке на каждую из фаз возник бы так называемый «перекос фаз», и у кого-то что-то могло бы сгореть в квартире (возможно даже в прямом смысле слова, вызвав пожар). Например, банально могла бы загореться изоляция проводки, если она не является пожаробезопасной.


До сих пор мы для простоты рассматривали случай воображаемого трёхфазного генератора, стоящего прямо в квартире.
Поскольку расстояние от квартиры до дворовой подстанции мало, и на проводах можно не экономить, то можно (и нужно, так же удобнее) перенести этот воображаемый трёхфазный генератор из квартиры в подстанцию.
Мысленно перенесли.
Теперь разберёмся с воображаемостью генератора. Понятно, что реальный генератор стоит не на подстанции, а где-нибудь далеко, на ГидроЭлектроСтанции, за городом. Можем ли мы на подстанции, имея три входящих фазных провода от ЛЭП, как-нибудь их соединить так, чтобы получилось всё то же самое, как если бы генератор стоял прямо в этой подстанции? Можем, и вот как.
В дворовой подстанции приходящее с ЛЭП трёхфазное напряжение снижается так называемым «трёхфазным» трансформатором до 380 Вольт на каждой фазе.
Трёхфазный трансформатор — это в простейшем случае просто три самых обычных трансформатора: по одному на каждую фазу
В реальности его конструкцию немного улучшили, но принцип работы остался тем же самым:


Бывают маленькие, и не очень мощные, а бывают большие и мощные:
Таким образом, входящие фазные провода от ЛЭП не прямо подсоединяются и заводятся в дом, а идут на этот огромный трёхфазный трансформатор (каждая фаза — на свою катушку), из которого уже «бесконтактным» способом, через электромагнитную индукцию, передают электроэнергию на три выходные катушки, от которых она идёт по проводам в жилой дом.
Поскольку на выходе из трёхфазного трансформатора имеются те же самые три фазы, которые вышли из трёхфазного генератора на электростанции, то здесь можно точно так же одни концы (условно, «левые») этих трёх выходных катушек трансформатора соединить друг с другом, чтобы получить «нейтраль» у себя на подстанции. А из нейтрали — вывести в жилой дом четвёртый «нулевой провод», вместе с тремя фазными (идущими от условно «правых» концов этих трёх выходных катушек трансформатора). И ещё добавить пятый провод — «землю».

Таким образом, из подстанции в итоге выходят три «фазы», «ноль» и «земля» (всего — пять проводов), и далее распределяются на каждый подъезд (например, можно распределить по одной фазе в каждый подъезд — получается по три провода заходит в каждый подъезд: одна фаза, ноль и земля), на каждую лестничную площадку, в электрораспределительные щитки (где счётчики стоят).

Итак, мы получили все три провода, выходящие из подстанции: «фаза», «ноль» (иногда «ноль» называют ещё «нейтралью») и «земля».
«фаза» — это любая из фаз трёхфазного тока (уже пониженного до 380 Вольт между фазами на подстанции; между фазой и нулём получится ровно 220 Вольт).
«ноль» — это провод от «нейтрали» на подстанции.
«земля» — это просто провод от хорошего правильного грамотного заземления (например, припаян к длинной трубе с очень малым сопротивлением, вбитой глубоко в землю рядом с подстанцией).

Внутри подъезда фазовый провод по схеме параллельного включения расщипляется на все квартиры (то же самое делается с нулевым проводом и проводом земли).
Соответственно, делиться ток по квартирам будет по правилу параллельного тока: напряжение в каждую квартиру будет идти одно и то же, а сила тока — тем больше, чем больше подключенная нагрузка в каждой квартире.
То есть, в каждую квартиру сила тока будет идти «каждому по потребностям» (и проходить через квартирный счётчик, который это всё будет подсчитывать).

Что может произойти, если все включат обогреватели зимним вечером?
Потребляемая мощность резко возрастёт, ток в проводах ЛЭП может превзойти допустимые рассчитанные пределы, и может либо какой-то из проводов перегореть (провод разогревается тем сильнее, чем больше его сопротивление и чем большая сила тока в нём течёт, и борется с этим сопротивлением), либо просто сама подстанция сгорит (не та, которая во дворе дома, а одна из Главных Подстанций города, которая может оставить без электроэнергии сотни домов, часть города может несколько суток сидеть без света и без возможности приготовить себе еду).

Если ещё у кого-то остался вопрос: зачем тянуть в дом все три провода, если можно было бы тянуть только два — фазу и ноль или фазу и землю?

Только фазу и землю тянуть не получится (в общем случае).
Выше мы посчитали, что напряжение между фазой и нулём всегда равно 220 Вольтам.
А вот чему равно напряжение между фазой и землёй — это не факт.
Если бы нагрузка на всех трёх фазах всегда была равной (см. схему «звезды», когда я объяснял её выше), то напряжение между фазой и землёй было бы всегда 220 Вольт (просто вот такое совпадение).
Если же на какой-то из фаз нагрузка будет значительно больше нагрузки на других фазах (скажем, кто-нибудь включит супер-сварочную-установку), то возникнет «перекос фаз», и на малонагруженных фазах напряжение относительно земли может подскочить вплоть до 380 Вольт.
Естественно, техника (без «предохранителей») в таком случае горит, и незащищённые провода тоже могут загореться, что может привести к пожару в квартире.
Точно такой же перекос фаз получится, если провод «нуля» оборвётся, или даже просто отгорит на подстанции, если по нулевому проводу пойдёт слишком большой ток (чем больше «перекос фаз», тем сильнее ток идёт по проводу нуля).
Поэтому в домашней сети обязательно должен использоваться ноль, и нельзя ноль заменить землёй.
Помню, когда мой отец делал разводку в его квартире в новостройке в Москве, и видел знакомый ему с советской молодости провод земли, а потом видел незнакомый ему провод ноля, то он, недолго думая, просто откусывал кусачками провод ноля, приговаривая, что «а он не нужен»…

Тогда зачем нам в доме нужен провод «земли»?

Для того, чтобы «заземлять» корпусы электроприборов (компьютеров, чайников, стиральных и посудомоечных машин), для того, чтобы от них не било током при прикосновении.

Приборы тоже иногда ломаются.

Что будет, если провод фазы, где-нибудь внутри прибора, отвалится и упадёт на корпус прибора?

Если корпус прибора вы заранее заземлили, то возникнет «ток утечки» (произойдёт короткое замыкание фазы на землю, вследствие чего упадёт ток в основном проводе фаза-ноль, потому что почти всё электричество устремится по пути меньшего сопротивления — по создавшемуся короткому замыканию фазы на землю).

Этот ток утечки будет немедленно замечен либо «автоматом» стоящим в щитке, либо «Устройством Защитного Отключения» (УЗО), тоже стоящим в щитке, и оно сразу разомкнёт цепь.

Почему недостаточно обычного «автомата», и зачем ставят именно УЗО? Потому что у «автомата» и у УЗО разный принцип работы (а ещё, «автомат» срабатывает гораздо позже, чем УЗО).


УЗО наблюдает за входящим в квартиру током (фаза) и исходящим из квартиры током (ноль), и размыкает цепь, если эти токи неодинаковы (в то время как «автомат» измеряет только силу тока на фазе, и размыкает цепь, если ток на фазе превосходит допустимый предел).
Принцип работы УЗО очень прост и логичен: если входящий ток не равен исходящему, то, значит, где-то «протекает»: где-то фаза имеет какой-то контакт с землёй, чего по правилам быть не должно.
УЗО измеряет разность между силой тока на фазе и силой тока на нуле. Если эта разность превышает несколько десятков миллиАмперов, то УЗО немедленно срабатывает и выключает электричество в квартире, чтобы никто не пострадал, прикоснувшись ко сломанному прибору.
Если бы в щитке не стояло УЗО, и вышеупомянутый провод фазы внутри корпуса, скажем, компьютера, отвалился бы, и замкнулся бы на заземлённый корпус компьютера, и лежал бы так себе незамеченным, а, потом, через пару дней, человек стоял бы рядом, и разговаривал по телефону, оперевшись одной рукой на корпус компьютера, а другой рукой — скажем, на батарею отопления (которая тоже фактически является одной гигантской землёй, т.к. протяжённость отопительной сети огромная), то догадайтесь, что бы стало с этим человеком.
А если бы, например, УЗО стояло, но корпус компьютера не был бы заземлён, то УЗО сработало бы только во время прикосновения человека к корпусу и батарее. Но, по крайней мере, оно бы в любом случае мгновенно сработало, в отличие от «автомата», который бы сработал только через некоторый промежуток времени, пусть и маленький, но не мгновенно, как УЗО, и к тому времени человек мог бы быть уже «зажарен». Казалось бы, тогда, можно и не заземлять корпусы электроприборов — УЗО же в любом случае «мгновенно» сработает и разомкнёт цепь. Но кто-нибудь хочет испытать судьбу на предмет того, успеет ли УЗО достаточно «мгновенно» сработать и отключить ток, пока этот ток не нанесёт серьёзных повреждений организму?
Так что и «земля» нужна, и УЗО нужно ставить.

Поэтому нужны все три провода: «фаза», «ноль» и «земля».

В квартире к каждой розетке подходит тройка проводов «фаза», «ноль», «земля».
Например, из щитка на лестничной площадке выходят три этих провода (вместе с ними ещё телефон, витая пара для интернета — всё это называют «слаботочкой», потому что там протекают маленькие токи, неопасные), и идут в квартиру.
В квартире на стене (в современных квартирах) висит внутренний квартирный щиток.
Там эти три провода расщепляются и на каждую «точку доступа» к электричеству стоит свой отдельный «автомат», подписнанный: «кухня», «зал», «комната», «стиральная машина», и так далее.
(на рисунке ниже: сверху стоит «общий» автомат; после которого стоят подписанные «отдельные» автоматы; зелёный провод — земля, синий — ноль, коричневый — фаза: это стандарт цветового обозначения проводов)


От каждого такого «отдельного» автомата своя, отдельная, тройка проводов уже идёт к «точке доступа»: тройка проводов к печке, тройка проводов к посудомойке, одна тройка проводов на все зальные розетки, тройка проводов на освещение, и т.п..

Наиболее популярно сейчас совмещать «главный» автомат и УЗО в одном устройстве (на рисунке ниже оно показано слева). Счётчик электроэнергии ставится между «главным» общим автоматом (который имеет также встроенное УЗО) и остальными, «отдельными», автоматами (синий — ноль, коричневый — фаза, зелёный — земля: это стандарт цветового обозначения проводов):


И вот ещё до кучи схема, по сути, о том же (только здесь главный автомат и УЗО — это разные устройства):

Каждый «автомат» изготовлен на заводе под определённую максимально допустимую силу тока.

Поэтому он «вырубается», если вы даёте слишком большую нагрузку на «точке доступа» (например, включили слишком много всего мощного в розетки в зале).

Также, автомат «вырубится» в случае «короткого замыкания» (замыкания фазы на ноль), чем спасёт вашу квартиру от пожара.

Жизнь человека, при отсутствии правильного заземления электроприборов, автомат без УЗО не спасёт, так как автомат слишком медленно срабатывает (это более грубое устройство, так сказать).

Вроде бы, по этой теме пока всё.

Отличие Нуля от Земли в Чем Принципиальная Разница?

ЭкономияSavedRemoved 0

С электричеством не шутят, но и боятся его не стоит. Если правильно понимать устройство электрических сетей, хотя бы на начальном уровне, то ничего страшного не произойдёт.

Обывателю, чтобы пользоваться электричеством без опаски, нужно знать несколько несложных для понимания вещей, в число которых входят понятия: фаза, ноль и заземление.

Что такое фаза многие знают, а вот что такое ноль и земля, в чем принципиальное отличие этих понятий – немногие.

Читайте также: Как сделать детский домик своими руками: из дерева и других материалов. Чертежи с размерами | (80 Фото Идей & Видео)

Две схемы подключения

Одинаковый обрыв нуля, а последствия такие разные

Для понимания роли “Ноля” и “Земли” нужно немного вникнуть в суть способов доставки электроэнергии до конечных потребителей и отличий последних.

Следует упомянуть, что электро-системы бывают линейные и фазные. Линейные используются в промышленной сфере деятельности, где требуются повышенные мощности (380В), фазные существуют для использования их в быту (220В). И том и в другом случае схемы подключения используют три провода. Только для линейных (380) в каждом из трех проводов присутствует фаза, а бытовом варианте (220В) есть Фаза, Ноль и Земля.

Для безопасности каждая система использует свои схемы подключения. Промышленные сети рассматривать не будем, а вот бытовые изучить следует, здесь используются две схемы:

  • TT – полное заземление
  • TN-C-S – совместное подключение земли и нуля, после потребителя питания

Используемы схемы подключения: 1. На ноль, 2. На землю

Чтобы было более понятно, расшифруем аббревиатуру:

  • Т – земля
  • N – нейтраль
  • S – раздельный, самостоятельный
  • C – объединять
  • L – фаза
  • PE – защитный
  • PEN – объединенный

Эти две схемы используются, однако следует указать ещё на одну существующую схему TN-C – это старая, но до сих пор действующая система, используемая в большинстве домов “старого” фонда, которой присуща аббревиатура PEN.

В ней Ноль и Земля совмещены (PEN) на всём протяжении. Такие сети не совсем безопасны, особенно для электроприборов. Монтировались они в советское время, бытовых приборов использовалось немного, а потому проектировщики не видели смысла в излишней трате на электропроводке ради пары десятков телевизоров (нагрузки были небольшие), — 30% экономия! На промышленных предприятиях заземление делалось отдельно.

Читайте также: [Инструкция] Ламинат на деревянный пол своими руками: полное описание процесса. Схемы укладки, какие материла следует использовать (Фото & Видео) +Отзывы

Предназначение “Ноля” и “Земли”

Цвета и маркировка проводов и кабелей

Для успешной работы каких-либо электроприборов требуется замкнутый контур электросети. Замыкание сети – основная роль “Ноля”. Разность потенциала уходит через него.

Заземление же используется в качестве защитных мероприятий, устраняющих риск поражением тока людей и животных, а также для исключения, смягчения скачков напряжения, которые могут вывести из строя бытовые электроприборы.

Заземляют практически все электроприборы, это делается посредством подключения Земли к их корпусам на случай пробоя электропроводки, при которой они окажутся под натряжением.

Схема TT

Исправная схема Подключен потребитель, электропроводка исправна (пробоев нет), корпус заземлён на отдельную линию

На рисунке выше показано подключение при полном заземлении. Т.е. Земля выделена в отдельную, автономную сеть. Данное подключение наиболее безопасно.

В случае пробоя, на корпусе прибора возникает электрический потенциал, который будет равен входящему напряжению, т.е. 220 В – это опасно для жизни. Однако корпус заземлен, и попавшее на него напряжение уйдет в землю.

Заземление на выделенную линию сработало – напряжения на корпусе нет

Схема TN-C-S

Схема TN-C-S для заземления использует линию Ноль, как это показано на рисунке ниже. В данном случае на корпусе потребителя напряжения нет.

Схема исправна, пробоя на корпус потребителя нет

При появлении нагрузки на корпусе, она отводится в линую, используемую в качестве нейтрали. Способ действенный, и хоть является устаревшим используется до сих пор.

Поражения током не будет

Читайте также: Мебель и другие изделия из дерева своими руками: чертежи скамеек, столов, качелей, скворечников и других предметов быта (85+ Фото & Видео)

Заключение

Автомат защитный

Какой бы безопасной схема подключения не была, но использовать автоматы и ИЗО необходимо. Они позволяют обесточить сеть даже при кратковременном скачке напряжения, который может быть весьма опасен не только для Вашей электроники и других бытовых приборов, но и для жизни Вас и Ваших питомцев.

ВИДЕО: Зануление и заземление,что лучше,можно ли использовать
ВИДЕО: Зануление и заземление. В чем разница между ними?

10 Total Score

Для нас очень важна обратная связь с нашими читателями. Оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Ваше мнение будет полезно другим пользователям.

Помогла ли Вам наша статья?

10

Оценки покупателей: Будьте первым!

«Ноль» и «земля»: в чем принципиальное отличие?

Исторически так получилось, что в Российской Федерации, как и в приграничных государствах, используется заземляющий принцип, когда нулевой проводник соединяется с заземляющим контуром. У многих людей может возникнуть «законный» вопрос: если они контактируют между собой, то для чего тянуть столько проводов – достаточно провести повсюду двойную жилу (фазу и нулевую линию) и будет возможность заземляться посредством нулевой жилы! Однако в такой постановке вопроса скрывается один технический нюанс, который превращает данное решение не только в бесполезную игрушку, но в некоторых случаях и в довольно опасную затею.

Для тех, кому не терпится, и кто любит «заглядывать в ответ», априори выскажу «секрет» – принципиальная идея заключается в том, в каком месте нулевой провод соединяется с заземлением. Вариант их соединения непосредственно внутри розетки, подключая заземляющую жилу (желто-зеленый провод) к нулевой (синий провод), не будет верным. Такая заземляющая схема войдет в противоречие с предписаниями ПУЭ. В результате никакой защиты людей от поражения током не получится, более того, добавится еще больше проблем с безопасностью.
В ПУЭ без каких-либо вариантов однозначно прописано, какой должна быть заземляющая жила. Она должна быть непрерывным проводом, без каких-либо размыкающих элементов – реле, предохранителей, выключателей, а также, положим, с помощью отсоединения электрической вилки от розетки.
Стоит нарушить это основное предписание, оговоренное в ПЭУ – и заземление из надежной защиты человека от поражения током превращается в бесполезную фикцию. Но проблемы на этом, как учит теория, и показывает практика, не заканчиваются! Если все-таки пытаться придавать нулевому проводу заземляющие функции, то не исключена возможность, что корпус холодильника, микроволновки или других бытовых приборов, окажется под напряжением. Это объясняется тем, что по нулевому проводу течет электроток с соответствующим падением напряжения, величину которого можно определить, умножая силу тока на показатель сопротивления проводника на промежутке между замеряемым местом и подлинной заземляющей точкой. Причем величина такого напряжения может характеризоваться десятками вольт, то есть может быть опасной для человека (в пределе – смертельной!).

Осталось подвести некоторые итоги и расставить акценты. В чем принципиальное отличие «ноля» от «земли»? В том, что по нулевому проводу протекает ток и к нему подключаются выключатели, те же вводные автоматы. То есть, если мы желаем иметь «землю» в виде непрерывной жилы, мы обязаны:
  • в многоэтажных многоквартирных домах: подсоединиться к особой земляной жиле в электрическом тоннеле;
  • для индивидуального жилого коттеджа: точкой подсоединения должен стать вводной автомат, точнее, его нулевой провод на входе, который тянется по воздуху или подземному кабелю от ближайшего от дома понижающего трансформатора, причем сечение нулевого провода должно быть не менее десяти квадратных миллиметров для медного провода и 16 мм2 – для алюминиевой жилы (см. в ПУЭ соответствующий пункт).

Любое другое место за вводным автоматом не может использоваться в качестве «земли», поэтому ни что, от металлических болванок, вкопанных недалеко от дома, до корпуса самого электрического щитка, таковыми считаться не могут.
Никогда не забывайте о правилах, изложенных в ПЭУ. Согласно им, следует руководствоваться элементарным, но верным правилом: когда нет уверенности в том, что вот этот конкретный провод является «землей», не стоит подсоединять к нему что бы то ни было, кроме устройства защитного отключения (УЗО) на 30 мА, который срабатывает мгновенно в отличие от автомата защиты. Бережёного, как известно, бог бережет!

Что такое фаза ноль земля в электрике и зачем они нужны фото

Все знают, что электроэнергия производится на разнообразных электростанциях, благодаря генераторам переменного тока. После она, используя линии электропередач, идет к трансформаторным подстанциям, оттуда поступает к потребителю, то есть нам.

Так вот чтобы понять, что собой представляет фаза, ноль, а также заземление, необходимо на элементарном уровне понимать, каким образом электроэнергия поступает в подъезд или частный дом. Все мы за нее платим, измеряя киловаттами, но ведь это не вода, у которой можно перекрыть кран. Потому давайте рассмотрим ситуацию подробнее.

Ликбез

Давайте разберемся, чем являются ноль и фаза, а затем перейдем к заземлению.

Фаза – это линия непосредственной подачи тока. Следовательно, используя ноль, ток возвращается в обратном направлении, а именно к нулевому контуру. Кроме того он выравнивает фазное напряжения, выполняя стабилизационную роль в фазной проводке.

Земля (заземляющий провод) — не под напряжением в принципе. У него есть одна функция – защита потребителя. Если сказать грубо, то «земля» в случае утечки отведет остаточный ток, не дав ему поразить человека.

Хотелось бы думать, что столь простое объяснение несколько прояснило ситуацию, и теперь вы понимаете какая роль у каждого проводника из комплекта: фаза, ноль, земля. Если вы планируете работать с проводами самостоятельно, то дополнительно, рекомендуем изучить цветовую палитру, которой производители отмечают предназначение полупроводников внутри кабеля.

Детальное рассмотрение

Трансформаторная подстанция выполняет важнейшую работу, а именно делает возможным питание потребителей благодаря обмотке низкого напряжения, которая понижает напряжение от «электросетевого» до «потребительского».

От подстанции к потребителю ведет общий проводник от нейтрали (точка соединение обмоток), и еще 3 проводника, которые являются остальными выводами обмотки. Таким образом каждый из трех проводников – это фаза, а нейтраль – ноль.

Трехфазная энергетическая схема подразумевает возникновение линейного напряжения, с номинальным напряжением в 380 В. Между фазой и нулем возникает фазное напряжение, его то значение и равняется, привычным нам, 220 В.

Как упоминалось выше под названием «земля» скрывается заземление, так и будем его называть. Так вот большинство электрических систем глухозаземленные, это значит, что ноль прямо соединен с землей. Физическая суть такого подключения в том, что в трансформаторе обмотки соединены по принципу «звезды», а нейтраль заземлена.

В данном случае ноль является совмещенным нейтрально-защитным проводником (PEN). Подобное повсеместно встречается в постройках советского времени. Неизвестно с чем это было связано, то ли с экономией, то ли с введением сомнительных инноваций, но в жилых домах того периода повсеместно занулены щитки, а отдельных заземлительных кабелей не предусмотрено.

Главная проблема такой конструкции в невозможности ее преобразования. Народные умельцы пытаются подключить дополнительный защитный кабель прямо к щитку, но это, по крайней мере, небезопасно.

Подобная самодельная «инновация» может привести к тому, что земля начнет простреливать и как душ, так и туалет начнут сопровождаться периодическими разрядами у всех жильцов дома.

Дома построенные в более позднее время, имеют электросеть отличающуюся следующими аспектами:

  1. Вместо общего проводника к щитку идет два проводника, один из которых исполняет роль нейтрали, а второй земли.
  2. Щиток в подъезде имеет отдельную шину-разделитель, которую с корпусом соединяют посредствам металлической связи, она предназначена для подключения нуля, земли и фазы.

Преимуществом подключения с заземлением является то, что заранее неизвестно, сколько тока будет потреблять каждая квартира, а предыдущая схема предполагает близкое к равномерному распределение. В незаземленной схеме возможно возникновение ситуации, когда одна квартира потребляет много, а вторая ничего.

Разность нагрузок начинает смещать нейтраль. Создается ситуация, когда в фазе ток стремится к нулю, а на проводнике-нейтрали напротив растет до 380 В. Кроме того что оборудование при возникновении подобной аварии будет испорчено, его корпус будет находится под напряжением, создавая реальную опасность для людей.

Полезное видео

Дополнительную информацию по данному вопросу вы можете почерпнуть из видео ниже:

Заключение

Будем надеяться, теперь вы знаете значение каждого, из озвученных в названии статьи терминов и как важен проводник «земля». Берегите себя, устанавливая электросеть у себя дома, побеспокойтесь о ней.

Электричество из земли своими руками: 4 способа (ВИДЕО)

Необходимость постоянного сжигания топлива для получения электроэнергии приводит к поискам способов удешевления этого процесса, а порой и создания теорий о возможности выработки халявного электричества. Подобные идеи не новы, так как их выдвигали еще знаменитые умы прошлого, стоявшие на заре зарождения массового использования электрических приборов.

Поэтому современные генераторы свободной энергии уже никого не удивляют, бесплатную электроэнергию предлагают получать самыми невероятными способами. Сегодня мы рассмотрим такой способ, как электричество из земли, насколько это реально и какие теории существуют в целом.

Мифы и реальность

Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса. С теоретической точки зрения, если разместить один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если пропорционально увеличить расстояние до 1000 м, то и уровень напряжения должен увеличиться в два раза.

Однако на практике  все получается далеко не так складно:

  • Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
  • Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
  • В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе. 

Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.

Что можно попробовать сделать?

Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с  теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.

Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа.  Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.

Схема по Белоусову

Название метода произошло от фамилии ученого, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:

Рис. 1. Схема получения электричества по Белоусову

Извлечение электричества из земли, согласно этой схемы, будет происходить по такому принципу:

  • Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте. Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
  • Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
  • Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.

Из земли и нулевого провода

Этот способ получения электричества из земли основан на том, что нулевой проводник в системах с глухозаземленной нейтралью у частного потребителя имеет значительное удаление от контура подстанции или КТП. Изначально проверьте, существует ли разность потенциалов между нулевым проводом и контуром заземления. Как правило, вольтметр покажет разность потенциалов в 10 – 20В. Это не большая разность потенциалов, но ее также можно использовать. Тем более что его можно запросто повысить при помощи обычного трансформатора до нужного номинала.

Рис. 2. Между нулем и землей

Чтобы добывать электричество вам понадобится обзавестись собственным контуром заземления, если такового еще нет на вашем участке. Более детальную информацию о процессе изготовления вы можете почерпнуть из соответствующей статьи на сайте — https://www.asutpp.ru/kontur-zazemleniya.html.  Заметьте, несмотря на использование системы центрального электроснабжения, приборы учета не будут  принимать в учет это напряжение, поэтому его можно считать бесплатным.

Стержни из цинка и меди (гальванический способ)

Рис.3. Стержни из цинка и меди

В таком методе получения  электричества из земли  используется тот же способ, что и в обычной батарейке. Здесь источником электроэнергии  выступает химическая реакция, которая возникает при взаимодействии металлических электродов с природным электролитом. Однако мощность этого природного генератора электричества и разность потенциалов будет зависеть от ряда факторов:

  • Габаритных размеров – длины, поперечного сечения и площади взаимодействия с грунтом. Чем больше площадь, тем  большую добычу электричества можно осуществить таким методом.
  • Глубина расположения – чем глубже разместить электроды, тем больше электричества будет собираться по всей высоте металла.
  • Состав грунта – химическая составляющая любого электролита будет определять проводимость электрического тока, способность генерации электрического заряда и т.д. Поэтому наличие тех или иных солей, концентрации определенных элементов и станет основным отличием для естественного электролита на поверхности планеты.

Для практической реализации данного метода получения бесплатной энергии возьмите пару электродов из разных металлов, составляющих гальваническую пару. Наиболее популярным вариантом являются медь и цинк. Погрузите медный провод в грунт, а затем отступите от него на 25 – 30 см и погрузите в грунт цинковый электрод. Для лучшего эффекта землю между ними необходимо  залить крепким раствором обычной пищевой соли.

Чтобы оценить результат эксперимента подождите минут 10 – 15, а затем подключите к выводам земляной батареи вольтметр. Как правило, вы получите напряжение от 1 до 3В, в зависимости от глубины залегания электродов  и типа почвы показатели могут отличаться. Это конечно не много, но для питания светодиода или другого слаботочного прибора будет вполне достаточно. Со временем солевой раствор впитается и его действие начнет ослабевать, поэтому и ресурс электричества на выходе также снизится.

Если вы проделываете эти манипуляции для постоянного использования гальванического элемента, питающего какую-либо электрическую установку, то будет рациональным попробовать забивать электроды в разных местах на земельном участке. А после выбрать наиболее выгодный вариант. Если напряжения от пары штырей будет слишком малым, то нужно забить несколько и подключить их последовательно. Но помните, постоянное подливание растворенной соли сделает почву непригодной для выращивания сельскохозяйственных и декоративных культур.

Потенциал между крышей и землей

Такой метод получения электричества из земли возможен для домов с металлической крышей. Вам понадобится подключить один электрод к металлической пластине, которая представляет собой единую конструкцию или антенну. А второй подвести к проводу заземления, который соединяется с общим контуром, при его отсутствии можете просто вбить штырь в землю. Крыша здания обязательно должна быть изолирована от земли.

Рис. 4. Потенциал между крышей и землей

Чем большую площадь занимает металлическая антенна и чем выше она расположена, тем большее напряжение вы получите. Как правило, в частном секторе удается сгенерировать электричество в 1 – 2 В, поэтому метод носит скорее экспериментальный, чем практический характер. Так как ни поднимать вверх, ни расширять площадь крыши ради нескольких вольт электричества будет нецелесообразно.

Из рассмотренных выше методов видно, что в земле присутствует как огромные запасы статического электричества, так и большой потенциал других видов энергии, которую можно поставить на службу человеку. Для этого нет нужды сжигать топливо, однако не один из способов не дает возможности запитать мощный прибор.

Поэтому куда выгоднее в качестве альтернативных источников получения электричества использовать те же солнечные батареи или ветрогенераторы. Дальнейшее изучение методов генерации электричества из земли может принести более продуктивные  результаты, но сегодня мы можем довольствоваться лишь энергией ради эксперимента.

Что такое заземление | Электротехнические примечания и статьи

Введение:

Основная причина заземления в электрической сети — безопасность. Когда все металлические части в электрическом оборудовании заземлены, тогда, если изоляция внутри оборудования выходит из строя, в корпусе оборудования отсутствуют опасные напряжения. Если токоведущий провод касается заземленного корпуса, тогда в цепи происходит короткое замыкание и немедленно перегорает предохранитель.Когда предохранитель перегорает, опасное напряжение отсутствует.

Назначение заземления:

(1) Безопасность для человеческой жизни / здания / оборудования:

  • Чтобы спасти человеческую жизнь от опасности поражения электрическим током или смерти в результате перегорания предохранителя, то есть обеспечить альтернативный путь протекания тока короткого замыкания, чтобы он не подвергал опасности пользователя
  • Для защиты зданий, машин и оборудования в аварийных условиях.
  • Чтобы гарантировать, что все открытые проводящие части не достигают опасного потенциала.
  • Обеспечивает безопасный путь для рассеивания токов молнии и короткого замыкания.
  • Обеспечить стабильную платформу для работы чувствительного электронного оборудования, то есть поддерживать напряжение в любой части электрической системы на известном уровне, чтобы предотвратить перегрузку по току или чрезмерное напряжение на приборах или оборудовании.

(2) Защита от перенапряжения:

  • Молния, скачки напряжения в сети или непреднамеренный контакт с линиями высокого напряжения могут вызвать опасно высокое напряжение в системе распределения электроэнергии.Заземление обеспечивает альтернативный путь вокруг электрической системы для минимизации повреждений системы.

(3) Стабилизация напряжения:

  • Есть много источников электроэнергии. Каждый трансформатор можно рассматривать как отдельный источник. Если бы не было общей точки отсчета для всех этих источников напряжения, было бы чрезвычайно сложно рассчитать их взаимосвязь друг с другом. Земля — ​​это самая вездесущая проводящая поверхность, и поэтому она была принята с самого начала создания электрических распределительных систем в качестве почти универсального стандарта для всех электрических систем.

Обычные методы заземления:

(1) Пластинчатое заземление:

  • Обычно для пластинчатого заземления обычно используется
  • Пластина чугунная размером 600 мм x 600 мм x 12 мм. ИЛИ
  • Пластина из оцинкованного железа размером 600 мм x 600 мм x 6 мм. ИЛИ
  • Медная пластина размером 600 мм * 600 мм * 3,15 мм
  • Пластина с заусенцами на глубине 8 футов в вертикальном положении и полоса GI размером 50 мм x 6 мм, прикрепленная к пластине болтами, поднимается на уровень земли.
  • Эти типы земляных ям обычно заполнены чередующимися слоями древесного угля и соли на расстоянии до 4 футов от дна ямы.

(2) Тип трубы Заземление:

  • Для заземления трубного типа обычно используется
  • GI труба [C-класс] диаметром 75 мм, длиной 10 футов, сваренная с фланцем GI диаметром 75 мм, имеющим 6 отверстий для подключения заземляющих проводов и вставляемым в землю шнековым методом.
  • Эти типы земляных ям обычно заполнены чередующимся слоем древесного угля и соли или реактивационным составом земли.

Метод сооружения ямы заземления (Индийский совет по электричеству):

  • Земляные выкопки для нормального грунта Размер ямы 1,5 х 1,5 х 3,0 м.
  • Используйте пластину GI размером 500 мм X 500 мм X 10 мм или большего размера для большего контакта с землей и уменьшения сопротивления земли.
  • Сделайте смесь из порошка для древесного угля, соли и песка в равных частях
  • Древесный угольный порошок используется в качестве хорошего проводника электричества, антикоррозийного действия, доказывает наличие ржавчины для GI Plate для длительного срока службы.
  • Уголь и соль используются для постоянного увлажнения почвы.
  • Соль просачивается, а уголь поглощает воду, поддерживая влажность почвы.
  • Всегда следует соблюдать осторожность, поливая ямы летом, чтобы почва ямы была влажной.
  • Уголь
  • состоит из углерода, который является хорошим проводником, минимизируя сопротивление заземления.
  • Соль используется в качестве электролита для образования проводимости между пластинчатым углем GI и землей с влажностью.
  • Песок используется для образования пористости для циркуляции воды и влажности вокруг смеси.
  • Поместите пластину GI (ЗАЗЕМЛЕНИЕ) размером 500 мм X 500 мм X 10 мм в середину смеси.
  • Используйте двойную полосу GI размером 30 мм X 10 мм для соединения пластины GI с системой заземления.
  • Лучше использовать трубу GI диаметром 2,5 дюйма с фланцем в верхней части трубы GI для покрытия ленты GI от ПЛАСТИНЫ ЗАЗЕМЛЕНИЯ до верхнего фланца.
  • Закройте верхнюю часть трубы GI с тройником, чтобы избежать заклинивания трубы пылью и грязью, а также время от времени используйте воду через эту трубу до нижней части пластины заземления.
  • Поддерживайте сопротивление менее одного Ом от проводника ЗАЗЕМЛЕНИЯ на расстоянии 15 метров вокруг ЗАЗЕМЛЕНИЯ с другим проводом, погруженным в землю глубиной не менее 500 мм.
  • Проверьте напряжение между проводниками заземляющей ямы и нейтралью источника питания 220 В переменного тока, 50 Гц, оно должно быть менее 2,0 В.

Факторы, влияющие на удельное сопротивление земли:

(1) Удельное сопротивление почвы:

  • Сопротивление почвы прохождению электрического тока.Значение сопротивления земли (омическое значение) земляной ямы зависит от удельного сопротивления почвы. Это сопротивление почвы прохождению электрического тока.
  • Он варьируется от почвы к почве. Это зависит от физического состава почвы, влажности, растворенных солей, размера и распределения зерен, сезонных колебаний, текущей величины и т. Д.
  • В зависит от состава почвы, содержания влаги, растворенных солей, размера зерна и его распределения, сезонных колебаний, текущей величины.

(2) Состояние почвы:

  • Различные грунтовые условия дают различное удельное сопротивление грунта. Большинство почв очень плохо проводят электричество, когда они полностью сухие. Удельное сопротивление почвы измеряется в ом-метрах или ом-см.
  • Почва играет важную роль в определении рабочих характеристик электрода.
  • Грунт с низким удельным сопротивлением очень агрессивен. Если почва сухая, значение удельного сопротивления почвы будет очень высоким.
  • Если удельное сопротивление почвы высокое, сопротивление заземления электрода также будет высоким.

(3) Влажность:

  • Влага оказывает большое влияние на удельное сопротивление почвы. Удельное сопротивление почвы можно определить по количеству воды, удерживаемой почвой, и по сопротивлению самой воды. Электроэнергия в почве осуществляется через воду.
  • Сопротивление быстро падает до более или менее стабильного минимального значения влажности около 15%.И дальнейшее повышение влажности почвы мало повлияет на удельное сопротивление почвы. Во многих местах уровень грунтовых вод понижается в сухую погоду. Поэтому очень важно наливать воду в яму и вокруг нее, чтобы поддерживать влажность в сухих погодных условиях. Влага существенно влияет на удельное сопротивление почвы

(4) Растворенные соли:

  • Чистая вода плохо проводит электричество.
  • Удельное сопротивление почвы зависит от удельного сопротивления воды, которое, в свою очередь, зависит от количества и природы растворенных в ней солей.
  • Небольшое количество солей в воде снижает удельное сопротивление почвы на 80%. поваренная соль наиболее эффективна для улучшения проводимости почвы. Но он разъедает металл и поэтому не рекомендуется.

(5) Климатические условия:

  • Увеличение или уменьшение влажности определяет увеличение или уменьшение удельного сопротивления почвы.
  • Таким образом, в сухую погоду сопротивление будет очень высоким, а в сезон дождей — низким.

(6) Физический состав :

  • Различный состав почвы дает различное среднее удельное сопротивление. В зависимости от типа почвы удельное сопротивление глинистой почвы может находиться в диапазоне от 4 до 150 Ом-метров, тогда как для каменистых или гравийных грунтов оно может быть значительно выше 1000 Ом-метров.

(7) Местоположение земляной ямы:

  • Местоположение также в значительной степени влияет на электрическое сопротивление.В наклонном ландшафте или на земле, состоящей из почвы, или на холмистых, каменистых или песчаных участках, вода стекает, а в сухую погоду уровень грунтовых вод понижается очень быстро. В такой ситуации Компаунд обратной засыпки не сможет притягивать влагу, так как почва вокруг ямы будет сухой. Земляные ямы, расположенные в таких местах, необходимо поливать через частые промежутки времени, особенно в засушливых погодных условиях.
  • Хотя компаунд для обратной засыпки сохраняет влагу в нормальных условиях, в сухую погоду он выделяет влагу в сухую почву вокруг электрода и в процессе этого теряет влагу с течением времени.Поэтому выбирайте участок, который естественно не дренирован.

(8) Влияние размера зерна и его распределения:

  • Размер зерна, его распределение и плотность упаковки также являются определяющими факторами, поскольку они определяют способ удержания влаги в почве.
  • Влияние сезонных колебаний на удельное сопротивление почвы: Увеличение или уменьшение содержания влаги в почве определяет уменьшение или увеличение удельного сопротивления почвы.Таким образом, в сухую погоду сопротивление будет очень высоким, а в сезон дождей — низким.

(9) Влияние текущей величины:

  • На удельное сопротивление почвы вблизи заземляющего электрода может влиять ток, протекающий от электрода в окружающую почву.
  • Тепловые характеристики и влажность почвы будут определять, вызовет ли ток заданной величины и продолжительности значительное высыхание и, таким образом, увеличит влияние удельного сопротивления почвы

(10) Свободная площадь:

  • Один электродный стержень, полоса или пластина не может достичь желаемого сопротивления в одиночку.
  • Если бы несколько электродов можно было установить и соединить между собой, можно было бы достичь желаемого сопротивления. Расстояние между электродами должно быть равным глубине погружения, чтобы избежать перекрытия зоны воздействия. Следовательно, каждый электрод должен находиться вне области сопротивления другого.

(11) Препятствия:

  • Почва может выглядеть хорошо на поверхности, но ниже нескольких футов могут быть препятствия, похожие на девственную скалу.В этом случае это повлияет на удельное сопротивление. Препятствия, такие как бетонная конструкция около ям, будут влиять на удельное сопротивление. Если рядом находятся ямы с землей, значение сопротивления будет высоким.

(12) Текущая величина:

  • Ток значительной силы и длительности вызовет значительное высыхание почвы и, таким образом, увеличит удельное сопротивление почвы.

Измерение сопротивления заземления с помощью тестера заземления:

  • Для измерения удельного сопротивления грунта используется Earth Tester.Его еще называют «MEGGER».
  • Он имеет источник напряжения, измеритель для измерения сопротивления в омах, переключатели для изменения диапазона прибора, провода для подключения клеммы к заземляющему электроду и шипы.
  • Измеряется с помощью прибора для проверки заземления с четырьмя выводами. Клеммы подключаются проводами, как показано на рисунке.
  • P = потенциальный скачок и C = текущий скачок. Расстояние между шипами может составлять 1М, 2М, 5М, 10М, 35М и 50М.
  • Все шипы расположены на одинаковом расстоянии и расположены по прямой линии для обеспечения непрерывности электрического тока.Измеряйте в разных направлениях.
  • Удельное сопротивление грунта = 2πLR.
  • R = Значение сопротивления заземления в Ом.
  • Расстояние между шипами в см.
  • π = 3,14
  • P = удельное сопротивление земли Ом-см.
  • Значение сопротивления заземления прямо пропорционально значению удельного сопротивления грунта

Измерение сопротивления заземления (трехточечный метод):

  • В этом методе клеммы C1 и P1 тестера заземления закорочены друг с другом и подключены к проверяемому заземляющему электроду (трубе).
  • Клеммы P2 и C2 подключены к двум отдельным штырям, вбитым в землю. Эти два шипа держатся на одной линии на расстоянии 25 метров и 50 метров, благодаря чему не будет взаимных помех в области отдельных шипов.
  • Если повернуть ручку генератора с определенной скоростью, мы получим прямое сопротивление заземления по шкале.
  • Длина шипа в земле не должна превышать 1/20 расстояния между двумя шипами.
  • Сопротивление необходимо проверить, увеличив или уменьшив расстояние между электродом тестера и шипами на 5 метров.Обычно длина проводов должна составлять 10 и 15 метров или составлять 62% от «D».
  • Предположим, расстояние выброса тока от заземляющего электрода D = 60 футов, тогда расстояние потенциального выброса будет 62% от D = 0,62D, т.е. 0,62 x 60 футов = 37 футов.

Четырехточечный метод:

  • В этом методе 4 шипа вбиваются в землю по одной линии на равном расстоянии. Два внешних штыря подключены к клеммам C1 и C2 тестера заземления. Аналогичным образом два внутренних шипа подключены к клеммам P1 и P2.Теперь, если мы повернем ручку генератора с определенной скоростью, мы получим значение сопротивления заземления в этом месте.
  • В этом методе ошибка из-за эффекта поляризации устранена, и тестер заземления может работать непосредственно от переменного тока

Заземление GI по сравнению с медным заземлением:

  • Согласно IS 3043, сопротивление пластинчатого электрода относительно земли (R) = ( r / A) X под корнем (P / A).
  • Где r = Удельное сопротивление грунта Ом-метр.
  • A = Площадь пластины заземления м3.
  • Сопротивление трубного электрода относительно земли (R) = (100 r / 2πL) X loge (4L / d).
  • Где L = длина трубы / стержня в см
  • d = Диаметр трубы / стержня в см.
  • Удельное сопротивление почвы и физические размеры электрода играют важную роль сопротивления стержня с землей.
  • Удельное сопротивление материала не считается важной ролью в удельном сопротивлении земли.
  • Любой материал данных размеров будет иметь такое же сопротивление относительно земли.За исключением размера и количества заземляющего или защитного проводника.

Заземление трубы против пластинчатого заземления:

  • Предположим, что медная пластина имеет размер 1,2 м x 1,2 м x 3,15 мм толщиной. удельное сопротивление грунта 100 Ом-м,
  • Сопротивление пластинчатого электрода относительно земли (R) = (r / A) X под корнем (π / A) = (100 / 2,88) X (3,14 / 2,88) = 36,27 Ом
  • Теперь рассмотрим трубный электрод GI диаметром 50 мм и длиной 3 м. удельное сопротивление грунта 100 Ом-м,
  • Сопротивление трубного электрода относительно земли (R) = (100r / 2πL) X loge (4L / d) = (100X100 / 2X3.14X300) X loge (4X300 / 5) = 29,09 Ом .
  • Из приведенных выше расчетов электрод GI Pipe имеет гораздо меньшее сопротивление, чем даже электрод из медной пластины.
  • Согласно IS 3043 Труба, пруток или полоса имеют гораздо меньшее сопротивление, чем пластина с такой же площадью поверхности.

Длина трубчатого электрода и заземляющей ямы:

  • Сопротивление заземления трубы или пластинчатого электрода быстро снижается в пределах первых нескольких футов от земли (в основном от 2 до 3 метров), но после этого удельное сопротивление почвы в основном становится однородным.
  • Примерно после 4-х метровой глубины сопротивление электрода относительно земли не меняется. За исключением того, что несколько параллельных стержней предпочтительнее одного длинного стержня.

Количество соли и древесного угля (более 8 кг):

  • Чтобы снизить удельное сопротивление почвы, необходимо растворить частицы влаги в почве.
  • Некоторые вещества, такие как соль / древесный уголь, обладают высокой проводимостью в водном растворе, но добавка снижает удельное сопротивление почвы, только когда оно растворяется во влаге в почве после того, как дополнительное количество не служит цели.
  • 5% влаги в соли быстро снижает удельное сопротивление земли, а дальнейшее увеличение содержания соли приведет к очень небольшому снижению удельного сопротивления почвы.
  • Содержание соли выражается в массовых процентах от содержания влаги в почве. Учитывая 1 м3 почвы, содержание влаги при 10 процентах составит около 144 кг. (10 процентов от 1440 кг). Содержание соли должно составлять 5% от этих (т.е.) 5% от 144 кг, то есть около 7,2 кг.

Количество мурлыканья:

  • Содержание влаги является одним из определяющих факторов удельного сопротивления земли.
  • При содержании влаги выше 20% удельное сопротивление практически не изменяется. Но ниже 20% удельное сопротивление быстро увеличивается с уменьшением содержания влаги.
  • Если влажность уже превышает 20%, нет смысла добавлять воду в земляной ям, за исключением, возможно, растраты такого важного и дефицитного национального ресурса, как вода.

Длина относительно диаметра заземляющего электрода:

  • Помимо соображений механической прочности, мало преимуществ можно получить от увеличения диаметра заземляющего электрода с целью увеличения площади поверхности, контактирующей с почвой.
  • Обычно выбирают диаметр заземляющего электрода, который будет обладать достаточной прочностью, чтобы позволить ему работать в конкретных условиях почвы без изгиба или раскалывания. Электродом большого диаметра может быть труднее управлять, чем электродом меньшего диаметра.
  • Глубина погружения заземляющего электрода оказывает гораздо большее влияние на его характеристики электрического сопротивления, чем его диаметр.

Максимально допустимое сопротивление заземления:

  • Крупная электростанция = 0.5 Ом.
  • Основные подстанции = 1,0 Ом
  • Незначительная подстанция = 2 Ом
  • Втулка нейтрали. = 2 Ом
  • Сервисное соединение = 4 Ом
  • Сеть среднего напряжения = 2 Ом
  • L.T. грозозащитный разрядник = 4 Ом
  • L.T. Полюс = 5 Ом
  • Полюс ВТ = 10 Ом
  • Башня = 20-30 Ом

Обработки для минимизации сопротивления заземления:

  • Удалить окисление на стыках и стыках следует подтянуть.
  • Залито достаточное количество воды в заземляющий электрод.
  • Используется заземляющий электрод большего размера.
  • Электроды следует подключать параллельно.
  • Земляной котлован большей глубины и ширины должен быть сделан.

Нравится:

Нравится Загрузка …

Связанные

О компании Jignesh.Parmar (B.E, Mtech, MIE, FIE, CEng)
Джигнеш Пармар завершил M.Tech (управление энергосистемой), B.E (электричество). Он является членом Института инженеров (MIE) и CEng, Индия. Членский номер: M-1473586. Он имеет более чем 16-летний опыт работы в сфере передачи, распределения, обнаружения кражи электроэнергии, технического обслуживания и электрических проектов (планирование-проектирование-технический обзор-координация-выполнение). В настоящее время он является сотрудником одной из ведущих бизнес-групп в качестве заместителя менеджера в Ахмедабаде, Индия. Он опубликовал ряд технических статей в журналах «Электрическое зеркало», «Электрическая Индия», «Освещение Индии», «Умная энергия», «Industrial Electrix» (Австралийские публикации в области энергетики).Он является внештатным программистом Advance Excel и разрабатывает полезные базовые электрические программы Excel в соответствии с кодами IS, NEC, IEC, IEEE. Он технический блоггер и знает английский, хинди, гуджарати, французский языки. Он хочет поделиться своим опытом и знаниями и помочь техническим энтузиастам найти подходящие решения и обновиться по различным инженерным темам.

Что вам нужно знать об электроэнергии

Эта статья является первой из серии из шести статей, в которой исследуется, как мы получаем электроэнергию, и что нам нужно знать о том, как генерируется электроэнергия из возобновляемых и невозобновляемых источников.

Для американцев потребление электроэнергии является основным компонентом воздействия на окружающую среду. Но мы склонны уделять этому меньше всего внимания, но есть возможности сэкономить и сэкономить, если вы понимаете, как работает электросеть.

В то время как у некоторых людей есть десятки тысяч долларов, необходимых для перевода наших домов на солнечную энергию, и мы не можем покупать электроэнергию, как интернет-провайдеры. Поэтому мы стараемся выключать свет, когда покидаем комнату, и уделяем основное внимание переработке и покупке экологически чистых продуктов.Но даже если кажется, что вы мало что можете сделать с потребляемой энергией, важно понимать, откуда берется ваша энергия и как она влияет на ваш экологический след.

Знание собственного источника энергии и его экологической стоимости может помочь вам решить, на чем сосредоточить свои действия, чтобы добиться наибольших результатов.

Силовая структура

Счет за электричество может поступать из города, а у вас — нет. Электростанции, производящие электроэнергию, и коммунальные предприятия, распределяющие электроэнергию среди пользователей, в основном принадлежат инвесторам.Что касается производителей электроэнергии, то почти все атомные электростанции находятся в частной собственности, как и большинство угольных электростанций и производителей природного газа. Большинство плотин, вырабатывающих гидроэлектроэнергию, также являются частными, хотя самые крупные из них принадлежат федеральному правительству.

Коммунальные предприятия — коммунальные некоммерческие поставщики электроэнергии — производят только около 10 процентов электроэнергии в США и распределяют 15 процентов потребляемой энергии. Есть также кооперативные коммунальные предприятия, но большинство из них — корпорации, часто те же самые, что владеют электростанциями.

Энергетические компании действуют как оптовые торговцы электроэнергией, покупая электроэнергию у нескольких производителей. Это означает, что электричество, которое вы используете в своем доме, не поступает из одного источника. Например, штат Вашингтон славится экспортом гидроэлектроэнергии благодаря плотине Гранд-Кули. Но значительный процент энергии, потребляемой его жителями, по-прежнему поступает из природного газа.

Виды электроэнергии

Фраза «чистая энергия» немного сбивает с толку. Как только он попадает в линии электропередач, вся электроэнергия остается прежней.Но даже если вы не заметите разницы в конечном продукте, источник электричества имеет большое значение, будет ли энергия «чистой» или «грязной». В Соединенных Штатах немногие люди полагаются на один источник энергии, и их сочетание может широко варьироваться в зависимости от штата и региона. Общая структура электроэнергетики в США составляет:

Природный газ 35%
Уголь 27%
Ядерная 19%
Негидроэлектрические возобновляемые источники энергии 10%
Гидроэлектростанция (обычная) 7%
Нефть и другие источники 1%

Каждый из них имеет свои экологические последствия.Все они используют невозобновляемые ресурсы, производят загрязнение и / или опасные отходы или разрушают уязвимые места обитания. В ближайшие недели Earth911 рассмотрит более подробно, где американцы черпают свою силу, и проанализирует сильные и слабые стороны каждого из этих источников.

Ваш источник энергии

Управление энергетической информации США предоставляет подробную информацию о производстве и потреблении электроэнергии штатами, а New York Times перевела эти данные в удобные графические изображения, которые легче понять.

Чтобы получить действительно четкое представление о вашем собственном энергетическом следе, Power Profiler EPA позволяет вам ввести ваш почтовый индекс и среднемесячное потребление электроэнергии (вы можете найти его в своем последнем счете за электроэнергию) для персонализированного расчета выбросов, производимых вашим домом. . Он даже скажет вам, сколько деревьев вам нужно посадить, чтобы компенсировать углерод, производимый таким количеством электроэнергии.

Что вы можете сделать

Если, как и большинство людей, вы не можете посадить достаточно деревьев, чтобы компенсировать выбросы углерода, производимые электричеством, вы можете предпринять шаги, чтобы уменьшить их воздействие.Самое экологичное, что вы можете сделать, — это отказаться от коммерческой электроэнергии и производить собственную солнечную энергию. Это может быть дешевле, чем вы думаете.

Но даже если ваша собственная солнечная энергетическая система недоступна, вы можете сделать свою энергию более экологичной. Многие коммунальные предприятия предлагают портфели экологически чистых источников энергии. Вернемся к примеру штата Вашингтон. Несмотря на то, что базовая структура энергопотребления Вашингтона является одной из самых зеленых в стране, программа Green Up города Сиэтла дает жителям возможность поддерживать более новые возобновляемые источники энергии за счет надбавки к счетам за электричество.Обратитесь в местную коммунальную службу, чтобы узнать, доступна ли аналогичная программа там, где вы живете.

Такие программы, как Green Up, несколько необычны, но программы повышения энергоэффективности встречаются гораздо чаще. Коммунальные предприятия предлагают скидки и льготы на все, от аудита энергии в доме до изоляции и программируемых термостатов. Но даже если ваша коммунальная компания вообще не может вам помочь, вы можете сократить использование дома с помощью простых средств энергосбережения, которые также сэкономят деньги.

Какая разница?

Использование меньшего количества энергии — всегда хорошая идея.Но если вы живете в таком штате, как Вермонт, Айдахо или Вашингтон — штатах, которые в наибольшей степени полагаются на возобновляемые источники энергии, — тогда вы можете отдать приоритет другим вопросам. Меньшее вождение и переключение на электромобиль окажут большее влияние, чем выключение термостата.

Но если вы живете в Делавэре, Огайо или Нью-Джерси, где возобновляемые источники энергии составляют менее 3 процентов энергетического портфеля, расчеты могут выглядеть немного иначе. Электромобили более экологичны, чем обычные автомобили, даже если они получают энергию от угольных электростанций.Но разница в улучшении может не окупать затрат по сравнению с улучшением эффективности дома, например, с изоляцией и тройными стеклопакетами, если у вас грязное электричество.

Не существует такого понятия, как источник энергии, свободный от воздействия на окружающую среду, но не вся электроэнергия создается одинаково. Люди не всегда могут полностью контролировать, откуда поступает электричество. Но знание экологических издержек вашего энергобаланса может помочь вам принимать более экологические решения. Даже если это только для того, чтобы постоянно выключать свет, когда вы выходите из комнаты.

Прочтите вторую часть этой серии статей «Что нужно знать о возобновляемых источниках энергии».

Вам также может понравиться…

Что такое электричество? | EAGLE

Заявление об ограничении ответственности: Моя мама совершенно ужасна, когда дело касается использования чего-либо в технике. Она до сих пор называет свой WIFI роутер ротором по неизвестным мне причинам. Но я больше не пытаюсь поправлять ее, просто ради лишнего смеха в жизни. Итак, я подумал, что может быть лучше, чем моя мама, чтобы попытаться объяснить электричество? В конце концов, они говорят, что если вы не можете объяснить концепцию достаточно просто, чтобы ее мог понять пятилетний ребенок, то на самом деле вы ее совсем не понимаете.

Электричество — это везде, куда ни глянь , и куда не смотришь. Он находится в вашем теле, проходит через вашу электрическую систему и мозг, позволяя вам читать этот блог. А если заглянуть наружу, вы обязательно найдете что-то в пределах досягаемости, что стало возможным благодаря электричеству.

Электричество — это фантом физического мира, очень похожий на ветер, который делает невидимые вещи на заднем плане, вдали от наших физически сосредоточенных глаз. И только по этой причине я нахожу электричество чертовски увлекательным.Как однажды сказал Билл Най: «Мы живем в электрическом мире». Итак, вот оно, для всех, кто когда-либо хотел знать, что такое электричество, мы объясняем это так просто, что даже ваша мама может понять.

Это похоже на школьные танцы — Строительные блоки электричества

Электричество можно разбить на несколько очень простых природных элементов. Самый большой из них — атом. Атомы — это все. Они есть в утреннем латте, в волосах и даже в туалете. Когда атомы собираются вместе, они образуют физические вещи, из которых состоит наш мир.Чтобы создать атом, вам понадобятся три основных ингредиента — протон, нейтрон и электрон.

Атом: строительный блок всего.

Запутались? Помните тот первый школьный танец, который вы посетили в начальной школе? В тот прекрасный период времени, когда мальчики боялись девочек, прятались в углу, чтобы не попасться на них. Это отличная аналогия, чтобы понять, как работает атом. Вот актеры, с которыми мы будем работать

  • Нил — Он нейтрон, который в мире электричества имеет нейтральный заряд или не имеет никакого заряда.Он по-прежнему считает девушек отвратительными.
  • Полли — Она протон, который заряжен положительно. Она без ума от Нила и собирается заставить его танцевать с ней.

  • Учителя — Они заряжены отрицательно! Им нравится парить по танцполу, переходить от ребенка к ребенку, следя за тем, чтобы ничего смешного не происходило.

Когда это трио попадает на танцпол, начинает происходить электричество. Нил и Полли начинают вместе танцевать неуклюжий медленный танец, стараясь избегать ног друг друга.Танец нейтральных нейтронов и протонов происходит в центре каждого атома, на который вы смотрите; они неразделимы.

Через комнату мистер Тайс пробирается сквозь толпу с неодобрительным выражением лица. Мистер Тайс — отрицательно заряженный электрон, никогда не оставаясь привязанным к одной паре протонов и нейтронов, прежде чем отправиться исследовать следующий потенциальный кризис на танцполе.

Этот танец — это электричество в его самой основной форме. Если вы можете представить камеру на этой сцене, смотрящую сверху вниз, вы увидите группы Нейлса и Полли, сбившиеся вместе, а учителя переходят от группы к группе.Все дело в тех электронах, протонах и нейтронах, которые плотно прилегают друг к другу в атоме!

Посмотрите на тех электронных учителей! Танец электричества в атоме.

Если вы хотите привязать определение к электричеству, вы можете сказать, что это поток электрического заряда . Но как вообще течет электричество? А что такое электрический заряд?

Противоположности притягиваются — понимание электрического заряда

Электрический заряд — это просто причудливый термин для обозначения притяжения противоположностей.Помните наши электроны и протоны из прошлого? Они заряжены отрицательно и положительно. Или противоположности.

  1. Противоположности притягиваются друг к другу. Положительно заряженные протоны всегда будут искать своих отрицательно заряженных электронных аналогов.
  2. Нравится отталкиваться друг от друга — Соедините два положительно заряженных протона вместе, и вы получите противоположный эффект: протоны отталкиваются друг от друга в поисках своих электронов.

В каждый момент каждого часа бодрствования протон ищет в мире свой противоположно заряженный электрон.И вот здесь происходит волшебство. Когда электроны перемещаются от атома к атому в поисках новых протонов, вы создаете так называемый ток . И вот как производится электричество, из простого движения электронов.

Вот свободный поток электронов от протона к протону в поисках совпадения.

В электронике вы увидите, как эти электроны танцуют в медных проводах повсюду, стекая по проводу, чтобы запитать ваш смартфон, ноутбук, автомобиль и практически неограниченное количество гаджетов и приспособлений, которыми мы располагаем в наши дни.Но подождите, вы можете спросить, почему электричество протекает только через определенные объекты. Вы не можете включить свой телефон в миску с желе, а электричество исходит из той самой дыры в стене, так в чем же дело?

Электроны разборчивы — электропроводность

Электронов — это избирательный сгусток, и вы не найдете электричества, протекающего через какой-либо материал. В мире электроники это называется проводимостью . Скорее всего, у вас есть смартфон, так что это должно быть довольно легко понять.Вытащите зарядный кабель, он ведь резиновый? Это было сделано по очень конкретной причине.

Резина, как и другие материалы, включая стекло, пластик и даже воздух, называются изоляторами . Эти изоляторы служат очень важной цели; они предохраняют вас от поражения электрическим током или электрошока! Электроны не любят изоляторы и не будут тратить зря время, протекая через них.

Внутри вашего зарядного кабеля не только резина. Внутри вы найдете жгут медной проволоки.Этот материал, в том числе серебро и золото, называется проводниками . Электроны любят летать по проводам, проникая прямо в ваш смартфон, чтобы полностью зарядить аккумулятор.

Простой взгляд на то, как изоляторы и проводники работают вместе в проводе.
(Источник изображения)

Теперь вы понимаете, что электричество состоит из атомов, и именно поток электронов производит электричество. Но откуда именно берется электричество? Это не возникает просто волшебным образом.

Накачивание — Как производится электричество

В то время как электричество плавает повсюду вокруг нас, превратить его в форму, которую можно использовать для работы вашей эспрессо-машины или водонагревателя, — совсем другое дело. Во-первых, вам нужен какой-то источник топлива. Точно так же, как вы используете газ для питания своего автомобиля, вам необходимо собрать некоторые природные ресурсы, включая уголь, газ, ветер или энергию солнца, чтобы питать электростанции, которые производят ваше электричество.

Независимо от того, какой ресурс вы используете, результат один — для питания гигантской турбины, которая представляет собой огромную прядильную машину с набором магнитов и медью внутри.Внутри этой турбины вращается магнит, посылая пучок свободных электронов по массивному медному проводу.

Турбины массивные! Вот лишь небольшая часть паровой турбины, используемой на электростанции. (Изображение предоставлено Siemens, Германия)

Все эти электроны затем проходят мили по кабелям электропитания, скручиваясь в вашем доме, чтобы их можно было использовать как угодно. Каким же образом все это электричество оживляет всю нашу электронику?

Это живо! — Электрический ток и цепи

Если вы когда-нибудь планируете возиться с электроникой, то вы будете иметь дело только с одним типом электричества — электричеством текущего тока.Это электричество, которое выходит из розетки в вашем доме, обеспечивая необходимый ток для питания ваших приборов, компьютеров, освещения и т. Д. Так как же все это текущее электричество заставляет ваши вещи работать? Благодаря магии цепи .

Схема — это просто причудливое название для полного пути. Подумайте об этом так: электроны должны иметь возможность двигаться в непрерывном цикле без каких-либо перерывов. В противном случае такие вещи, как холодильник или ноутбук, отключились бы и не работали.Помните, как в течение дня вы включали и выключали свет? Вы много лет работаете с схемой! Включив переключатель, вы обеспечите полный путь для электронов, которые войдут в вашу лампочку и выйдут с другой стороны.

Или, может быть, вы просто бросили новую пару батареек в свой контроллер Xbox One? Это еще одна действующая схема, в которой аккумулятор выступает в качестве источника питания для схемы. Схемы могут быть чертовски сложными, но вот действительно простой пример, чтобы показать вам, как все это работает для питания лампы от батареи:

Как вы можете видеть на изображении выше, все отрицательно заряженные электроны нашей батареи хотят попасть на положительную сторону цепи, чтобы соединиться со своими любимыми протонами.Чтобы совершить это путешествие, электроны сначала должны пройти через переключатель.

Но подождите, есть проблема! Цепь сейчас не работает, потому что выключатель не включен. При нажатии этого переключателя, как показано ниже, цепь замыкается, и электроны могут продолжать течь, наконец, включив лампу и соединяясь со своими любимыми положительными протонами.

Небольшое примечание — в приведенной выше схеме работает так называемый постоянный ток (DC), когда электроны текут только в одном направлении.Существует также переменный ток (AC), при котором электроны текут вперед и назад в чередующихся направлениях. Мы расскажем обо всем этом подробно в другом сообщении в блоге!

Резюме

Вот что мы рассмотрели:

  • Атом. Сначала мы говорили об основных строительных блоках электричества в виде атома. Помните наши школьные танцы? У вас есть девочки с положительными протонами, мальчики с нейтральными нейтронами и учителя с отрицательными электронами.
  • Электрический заряд.Затем мы узнали, как протоны и электроны объединяются, чтобы создать электрический заряд. Просто помните — противоположности притягиваются. И как только электрон начинает двигаться от атома к атому, начинает возникать электричество.
  • Электропроводность. Электроны — разборчивая группа, и они не могут пройти через все. Помните тот кабель для зарядки смартфона? У него есть как изолятор (резина) снаружи, который защищает вас от поражения электрическим током, так и проводник (медь) внутри, который нравится электронам.
  • Производство электроэнергии. Производство электричества, которое доставляется в ваш дом, — непростая задача, и мы узнали о некоторых природных ресурсах, необходимых для этого, с помощью турбины, магнитов и медного провода.

Ток и цепи. Наконец, мы узнали о типе электричества, с которым вы будете иметь дело в электронике, — о текущем электричестве. Этот электрический ток протекает по полному пути, называемому цепью, для питания всех ваших устройств дома!

Вы в шоке?

Короче говоря, электричество.Надеюсь, теперь все обретает смысл. Мы даже призываем вас показать маме этот пост в блоге, чтобы узнать, что она думает о нем! Если это только начало вашего пути в электронику, добро пожаловать на борт. Узнавать об этом — странное и увлекательное путешествие, и если вы когда-либо хотели, чтобы вас считали волшебником в кругу друзей, то вы попали в нужное место.

Начните свою первую трассу сегодня. Скачайте EAGLE бесплатно.

35 изобретений, которые изменили мир

Человеческие изобретения и технологии сформировали цивилизации и изменили жизнь на Земле.По мере развития ожиданий и возможностей каждое поколение развивает свой собственный набор новаторских мыслителей.

С момента изобретения колеса до разработки марсохода, большое количество этих изобретений было поистине революционным, даже если не было так очевидно в то время.

У большинства крупных изобретений нет только одного изобретателя. Вместо этого они были разработаны многими людьми отдельно или многие люди приложили руку к их эволюции от базовых концепций до полезных изобретений.

Вот список наших лучших революционных изобретений, изменивших мир:

1. Колесо

Колесо выделяется как оригинальное инженерное чудо и одно из самых известных изобретений. Эта базовая технология не только облегчила путешествия, но и послужила основой для огромного количества других инновационных технологий. Тем не менее, колесо на самом деле не такое уж и старое. Самое старое колесо из Месопотамии, около 3500 г. до н. Э. К тому времени люди уже занимались литьем металлических сплавов, строили каналы и парусники и даже конструировали сложные музыкальные инструменты, такие как арфы.

На самом деле, главным изобретением было не само колесо, которое, вероятно, было изобретено в первый раз, когда кто-то увидел катящуюся скалу, а комбинация колеса и фиксированной оси, которая позволяет соединить колесо с устойчивой платформой. . Без фиксированной оси колесо имеет очень ограниченную полезность.

2. Компас

Это современное изобретение, возможно, изначально было создано для духовных целей. Позже его приспособили для навигационных целей. Самые ранние компасы, скорее всего, были изобретены китайцами около 200 г. до н.э.Некоторые из них были сделаны из магнетита, который является естественной формой минерала магнетита. Есть также свидетельства того, что другие цивилизации также могли использовать магнитный камень. В какой-то момент, возможно, около 1050 г. н.э., люди начали подвешивать магнитные камни, чтобы они могли свободно перемещаться, и использовали их для навигации. Описание намагниченной иглы и ее использования среди моряков встречается в европейской книге, написанной в 1190 году, так что к тому времени, вероятно, использование иглы в качестве компаса было обычным явлением.

3.Автомобиль

Источник: 12019 / Pixabay

Хотя часто говорят, что рождение современного автомобиля произошло в 1886 году, когда немецкий изобретатель Карл Бенц запатентовал свой патент Benz-Motorwagen, автомобили находились в разработке с 1769 года, когда Николас-Джозеф Куньо разработал паровой автомобиль, способный перевозить людей.

На протяжении многих лет огромное количество людей способствовало развитию автомобиля и его составных частей. В начале 20-го века Генри Форд внедрил методы массового производства, которые позволили автомобилям стать доступными для масс.Затем эти методы стали стандартом для General Motors, а затем и для Chrysler.

История автомобиля действительно отражает мировую эволюцию. Для разработки двигателя внутреннего сгорания и других систем, на которые опирается автомобиль, потребовалась работа многих людей. Были задействованы также десятки дочерних производств, в том числе нефтяная и металлургическая.

4. Steam Engine

Считается, что испанский горнодобывающий администратор по имени Херонимо де Аянц был первым, кто разработал паровой двигатель.Он запатентовал устройство, которое использовало энергию пара для выталкивания воды из шахт.

Однако именно англичанину Томасу Савери, инженеру и изобретателю обычно приписывают разработку первого практического парового двигателя в 1698 году. Его устройство использовалось для забора воды из затопленных шахт с использованием давления пара. При разработке своего двигателя Савери использовал принципы, изложенные Дени Папеном, британским физиком французского происхождения, который изобрел скороварку.

В 1711 году другой англичанин, Томас Ньюкомен, усовершенствовал двигатель, а в 1781 году Джеймс Ватт, шотландский приборостроитель, работавший в Университете Глазго, добавил к двигателю Ньюкомена отдельный конденсатор, который позволил поддерживать паровой цилиндр. при постоянной температуре — резко улучшая его функциональность.Позже он разработал паровой двигатель с двойным вращением, который к 1800-м годам будет приводить в действие поезда, мельницы, фабрики и многие другие производственные предприятия.

5. Бетон

Источник: Pexels / Pixabay

Бетон — один из наиболее широко используемых искусственных материалов. Это композитный материал, состоящий из смеси битого камня или гравия, песка, портландцемента и воды, который можно намазывать или заливать в формы, и при затвердевании он образует массу, напоминающую камень.

Одним из основных компонентов бетона является цемент. Фундамент из цемента был заложен в 1300 году до нашей эры.

Ближневосточные строители покрыли снаружи своих глиняных крепостей тонким и влажным слоем обожженного известняка, который химически реагировал с газами в воздухе, образуя твердую защитную поверхность. Около 6500 г. до н.э. первые бетонные сооружения были построены набатейскими торговцами или бедуинами в южной Сирии и северной Иордании. К 700 г. до н.э. значение гидравлической извести стало известно, что привело к развитию печей для подачи раствора для строительства домов с каменными стенами, бетонных полов и подземных водонепроницаемых цистерн.

Примерно в 3000 году до нашей эры египтяне использовали первые формы бетона в качестве строительного раствора. В 1824 году Джозеф Аспдин из Англии изобрел портландцемент. Джордж Бартоломью проложил первую бетонную улицу в США в 1891 году, которая существует до сих пор.

К концу 19 -го века стали применяться железобетонные конструкции. В 1902 году Август Перре спроектировал и построил многоквартирный дом в Париже, используя железобетон. Это здание вызвало всеобщее восхищение и популярность из-за бетона, а также повлияло на развитие железобетона.

В 1921 году Эжен Фрейссине первым применил железобетонные конструкции, построив два колоссальных ангара для дирижаблей с параболической аркой в ​​аэропорту Орли в Париже.

6. Бензин

Без бензина не было бы транспортной отрасли в том виде, в каком мы ее знаем сегодня

Бензин — это топливо, производное от нефти. В США его называют «газом», а в других странах мира — «бензином».

Чтобы быть более конкретным, бензин — это прозрачная жидкость, полученная из нефти, которая используется в качестве топлива в двигателях внутреннего сгорания.Интересно, что изначально газ выбрасывали как нежелательный побочный продукт.

До открытия и коммерциализации бензина предпочтительным топливом была смесь спирта, обычно метанола, и скипидара, называемого камфеном, который позже будет в значительной степени заменен керосином. Первая нефтяная скважина, выкопанная в США в 1859 году в Пенсильвании, очищала нефть для производства керосина. Хотя в процессе дистилляции также производился бензин, он был выброшен как побочный продукт. Метод дистилляционной очистки дает только около 20 процентов бензина из определенного количества сырой нефти.

Однако, как только было обнаружено, что двигатель внутреннего сгорания лучше всего работает на легком топливе, таком как бензин, процесс очистки был хорошо усовершенствован. В 1913 году производить бензин стало проще с помощью химических катализаторов и давления. Новый процесс термического крекинга удвоил эффективность очистки и сделал переработку бензина более практичной.

7. Железные дороги

Железные дороги могут с комфортом перевозить большое количество пассажиров, а также перевозить тяжелые грузы на большие расстояния.Хотя рельсы или рельсы использовались для перевозки вагонов с шестнадцатого века, история современного путешествия на поезде насчитывает немногим более 200 лет.

Первый полноценный действующий железнодорожный паровоз был построен в Великобритании в 1804 году британским инженером Ричардом Тревитиком. Он использовал пар высокого давления для привода двигателя. 21 февраля 1804 года состоялось первое в мире путешествие по железной дороге на паровой тяге, когда безымянный паровоз Тревитика тащил поезд по трамвайной дороге в Уэльсе.

Однако локомотивы Тревитика были слишком тяжелыми для используемых тогда чугунных плит. Коммерческое появление железнодорожных сетей приходится на 1820-е годы. В 1821 году Джордж Стефенсон был назначен инженером на строительстве Стоктон-энд-Дарлингтонской железной дороги на северо-востоке Англии, которая была открыта как первая общественная железная дорога на паровой тяге в 1825 году. В 1829 году он построил свой знаменитый паровой двигатель . Ракета , и началась эпоха железных дорог.

8.Самолет

Источник: ingewallumrod / Pixabay

17 декабря 1903 года Уилбур и Орвилл Райт совершили первый пилотируемый, устойчивый и управляемый полет.

Хотя о летающих машинах мечтали со времен Леонардо да Винчи и, вероятно, задолго до этого, благодаря работе бесчисленных изобретателей на протяжении нескольких столетий, братья Райт стали первыми людьми, которые достигли управляемого полета с двигателем. Начиная с их работы над планерами, успех дуэта заложил основу современной авиационной техники, продемонстрировав, что возможно.

9. Пожар

Хотя огонь — это природное явление, его открытие как полезного инструмента знаменует собой революцию на страницах истории. Фактически, контролируемое использование огня, вероятно, предшествовало появлению Homo sapiens .

Существуют свидетельства того, что пища была приготовлена ​​приблизительно 1,9 миллиона лет назад — до появления Homo sapiens . Есть также свидетельства контролируемого использования огня нашими предками, Homo erectus , начиная примерно 1 000 000 лет назад.Кремневые лезвия, сожженные при пожарах, датируются примерно 300 000 лет назад. Есть также свидетельства того, что ранние современные люди систематически использовали огонь для термической обработки камня, чтобы увеличить его способность к расслаиванию, для использования в изготовлении инструментов около 164000 лет назад.

Согласно широко обсуждаемой гипотезе, именно использование огня для приготовления пищи позволило большему мозгу Homo sapiens развиться в первую очередь, позволив гоминидам есть более разнообразные продукты.

С прошлого и по настоящее время огонь использовался в ритуалах, сельском хозяйстве, приготовлении пищи, генерировании тепла и света, сигнализации, промышленных процессах и как средство разрушения.Его легко можно считать одним из ведущих изобретений, изменивших мир.

10. Гвозди

Сложная человеческая жизнь была бы невозможна без изобретения простого гвоздя. Они дают один из лучших ключей к определению возраста исторических зданий.

До изобретения гвоздей деревянные конструкции строились с использованием веревки, они использовались для скрепления соседних досок. Изобретение гвоздей восходит к нескольким тысячам лет и стало возможным только после развития технологий литья и придания формы металлу.

Бронзовые гвозди, датируемые примерно 3400 годом до нашей эры, были найдены в Египте. По данным Университета Вермонта, использование гвоздей ручной работы было нормой до 1790-х и начала 1800-х годов. К 1913 году 90 процентов гвоздей, производимых в США, были гвоздями из стальной проволоки.

11. Инструменты

Источник: Free-Photos / Pixabay

Как и в случае с огнем, использование инструментов, вероятно, предшествовало эволюции Homo sapiens и может растянуться на 2,6 миллиона лет или более. Сегодня существует ряд видов животных, которые используют инструменты.

Антропологи считают, что использование инструментов было важным шагом в эволюции человечества. Некоторыми из самых ранних инструментов могли быть палки, камень и огонь. Однако практически все может быть инструментом, в зависимости от того, как его использовать.

12. Lightbulb

Источник: dengri / Pixabay

Свет, который мы используем сегодня в наших домах и офисах, основан на яркой идее, появившейся более 150 лет назад.

Электрическое освещение было впервые изобретено в начале 19 века Хамфри Дэви, который экспериментировал с электричеством и изобрел электрическую батарею.Когда он соединил провода между своей батареей и куском углерода, углерод засветился, давая свет. Его изобретение было известно как электрическая дуговая лампа.

В течение следующих семи десятилетий другие изобретатели также создали «лампочки», но они не были пригодны для коммерческого применения.

В 1850 году английский физик Джозеф Уилсон Свон создал «лампочку», заключив нити из карбонизированной бумаги в вакуумированную стеклянную колбу. Но без хорошего вакуума срок службы его лампы был слишком коротким для коммерческого использования.Однако в 1870-х годах стали доступны более совершенные вакуумные насосы, и Свон смогла разработать лампочку с более длительным сроком службы.

Томас А. Эдисон усовершенствовал конструкцию Свона, применив металлические нити, и в 1878 и 1879 годах он подал патенты на электрическое освещение с использованием различных материалов для нити. В конце концов он обнаружил, что карбонизированная бамбуковая нить может прослужить более 1200 часов. Это открытие сделало возможным промышленное производство лампочек, и в 1880 году компания Эдисона, Edison Electric Light Company, начала продавать свой новый продукт.

13. Электроэнергия от батарей

Источник: blickpixel / Pixabay

Электроэнергия от батарей стала основной потребностью в нашей повседневной жизни, еще одним важным изобретением. Конечно, само электричество было здесь с самого начала, но были изобретены практические приложения для его эффективного использования. Хотя многие используют электричество, многие из вас знают историю электричества?

Алессандро Вольта приписывают открытие первого практичного аккумулятора.Он изобрел свою батарею в 1799 году, она состояла из дисков двух разных металлов, таких как медь и цинк, разделенных картоном, пропитанным рассолом.

В 1831 году британский ученый Майкл Фарадей открыл основные принципы производства электроэнергии. Открытие электромагнитной индукции произвело революцию в использовании энергии. Уличные фонари были одним из первых устройств, привлекающих внимание. С ростом практичности использования электроэнергии теперь она выступает в качестве основы современного индустриального общества.

14.Батарея

Источник: Awilson429 / Wikimedia

Доисторическая батарея, возможно, восходит к Парфянской империи, которой около 2000 лет . Древняя батарея представляла собой глиняный сосуд, наполненный раствором уксуса, в который был вставлен железный стержень, окруженный медным цилиндром.

Эти батареи могли использоваться для гальваники серебра. Но, как упоминалось в предыдущей записи, изобретателем первой электрической батареи является Алессандро Вольта, который разработал свайную батарею.

После этого, в 1802 году, Уильям Круикшенк изобрел батарею Trough, усовершенствованную гальваническую батарею Алессандро Вольта.

Батареи совершили прорыв в 1859 году, когда французским врачом Гастоном Планте была изобретена первая свинцово-кислотная аккумуляторная батарея. Никель-кадмиевый аккумулятор (NiCd) был представлен в 1899 году Вальдемаром Юнгнером.

Знаете ли вы, что новые натриево-ионные батареи могут проложить путь к устойчивому производству батарей?

15. Печатный станок

Источник: RayHolloway / Pixabay

До того, как Интернет стал распространять информацию, печатный станок помогал информации распространяться по всему миру.

Немецкому ювелиру Йоханнесу Гутенбергу приписывают изобретение печатного станка около 1436 года, хотя он был далеко не первым, кто автоматизировал процесс книгопечатания. Ксилография в Китае восходит к IX веку, и корейские букмекеры печатали подвижным металлическим шрифтом за столетие до Гутенберга.

Станок Йоханнеса Гутенберга, однако, улучшил уже существующие прессы и представил их на Западе. К 1500 году печатные машины Гутенберга работали по всей Западной Европе, выпустив 20 миллионов материалов, от отдельных страниц до брошюр и книг.

16. Код Морзе и телеграфный аппарат

Телеграф был разработан Сэмюэлем Морсом и другими изобретателями примерно в 1830–1840 годах, что произвело революцию в междугородной связи.

Электрические сигналы передавались по проводу, проложенному между станциями. Кроме того, Сэмюэл Морзе разработал код Морзе для простой передачи сообщений по телеграфным линиям. В зависимости от частоты использования код назначал английскому алфавиту и цифрам набор точек (короткие знаки) и тире (длинные знаки).

Телеграф заложил фундамент для современных удобств, таких как телефоны и, по мнению некоторых ученых, компьютерный код.

17.Сталь

Источник: MabelAmber / Pixabay

Бронза была первым металлом, выкованным для использования людьми. Однако бронза относительно слабая. Около 1800 г. до н.э. жители Черного моря под названием Чалибы начали использовать железную руду для создания прочного оружия из кованого железа с примерно 0,8% углерода. Чугун, который содержал около 2-4 процентов углерода, был впервые произведен в Древнем Китае примерно в 500 году до нашей эры. Китайские слесари построили печи высотой семь футов, чтобы плавить железную руду в жидкость и выливать ее в резные формы.

Около 400 г. до н.э. индийские мастера-металлисты изобрели метод плавки, в котором для хранения расплавленного металла использовалась глиняная емкость, называемая тиглем. Рабочие положили в тигли прутки кованого железа и куски древесного угля, затем запечатали контейнеры и поместили их в печь. Кованое железо расплавилось и поглотило углерод из древесного угля. Когда тигли охлаждались, они содержали слитки чистой стали — гораздо более прочного и менее хрупкого металла, чем железо.

Позднее развитие доменной печи привело к получению еще более прочной стали.После того, как британский инженер Генри Бессемер в 1856 году разработал процесс продувки воздухом расплавленного чугуна для создания безуглеродного чистого железа в 1856 году.

Знаменитое изобретение Бессемеровского процесса проложило путь для массового производства стали, сделав его одним из крупнейшие отрасли на планете. Теперь сталь используется при создании всего, от мостов до небоскребов.

18. Транзисторы

Источник: WikimediaImages / Pixabay

Транзистор является важным компонентом почти каждого современного электронного устройства.

В 1926 году Юлиус Лилиенфельд запатентовал полевой транзистор, но рабочее устройство оказалось невозможным.

В 1947 году Джон Бардин, Уолтер Браттейн и Уильям Шокли разработали первое практическое транзисторное устройство в Bell Laboratories.

Их изобретение принесло троице Нобелевскую премию по физике 1956 года.

С тех пор транзисторы стали фундаментальной частью схем в бесчисленных электронных устройствах, включая телевизоры, мобильные телефоны и компьютеры, оказывая заметное влияние на технологии.

19. Антибиотики

Источник: TLSPAMG / Pixabay

Антибиотики спасли миллионы жизней, убивая и подавляя рост вредных бактерий.

Луи Пастер и Роберт Кох впервые описали использование антибиотиков в 1877 году.

В 1928 году Александр Флеминг идентифицировал пенициллин, который получают из плесени.

На протяжении ХХ века антибиотики быстро распространились и оказались важным улучшением жизни, борясь почти со всеми известными формами инфекций и защищая здоровье людей.

20. Противозачаточные средства

Источник: Anqa / Pixabay

Профилактика беременности имеет давнюю историю.

История контрацептивов восходит к 1500 году до нашей эры, когда записи показывают, что древние египетские женщины смешивали мед, карбонат натрия и крокодиловый навоз в густую твердую пасту, называемую пессарием, и вставляли ее во влагалище перед половым актом. Тем не менее, многие исследователи считают, что старые методы контроля рождаемости, подобные этим, неэффективны и, возможно, опасны для жизни.

Первая известная форма презерватива (козий пузырь) использовалась в Египте около 3000 г. до н. Э.

В 1844 году Чарльз Гудиер запатентовал вулканизацию резины, что привело к массовому производству резиновых презервативов.

В 1914 году, выпустив ежемесячный информационный бюллетень «Женщина-бунтарь», Маргарет Сэнджер, выдающаяся женщина-педагог из штата Нью-Йорк, впервые ввела термин «контроль рождаемости». Позже Карл Джерасси успешно создал таблетку прогестерона, которая могла блокировать овуляцию.

Таблетка запустила международную революцию, которая позволила женщинам определять, когда у них будут дети, и избавила их от незапланированной беременности, которая могла подорвать их карьеру.

21. Рентгеновские лучи

Конечно, рентгеновские лучи — это явление естественного мира, и поэтому их нельзя изобрести. Но обнаружились они случайно.

Невидимое стало видимым в 1895 году. Рентгеновские лучи, несомненно, являются одним из эпохальных достижений в области медицины.

Все кредиты физику Вильгельму Конраду Рентгену. Проверяя, могут ли катодные лучи проходить через стекло, он заметил свечение, исходящее от расположенного поблизости экрана с химическим покрытием.Из-за неизвестной природы лучей он назвал их рентгеновскими лучами. Благодаря своим наблюдениям он узнал, что рентгеновские лучи можно сфотографировать, когда они проникают в человеческую плоть.

В 1897 году, во время войны на Балканах, рентгеновские лучи впервые использовались для обнаружения пуль и переломов костей внутри пациентов. В 1901 году за свою работу он получил Нобелевскую премию по физике.

22. Холодильник

Источник: 27707 / Pixabay

За последние 150 лет охлаждение предложило нам способы хранения продуктов питания, лекарств и других скоропортящихся веществ.До его зачатия люди охлаждали пищу льдом и снегом.

Джеймс Харрисон построил первую практичную систему охлаждения с компрессией пара. Однако первым широко распространенным холодильником был холодильник General Electric «Monitor-Top» 1927 года. Хотя изначально он помог ускорить производственные процессы, позже он стал индустрией.

23. Телевидение

Источник: Tomasz_Mikolajczyk / Pixabay

Телевидение! Небольшая коробка с возможностью передачи огромного объема информации, которая навсегда изменила развлечения и коммуникации.

Телевидение было изобретением многих людей. Хотя телевидение играет важную роль в нашей повседневной жизни, оно быстро развивалось в 19 и 20 веках в результате работы множества людей.

В 1884 году 23-летний студент немецкого университета Пол Юлиус Готтлиб Нипков запатентовал растеризатор изображений — вращающийся диск со спиральным узором отверстий в нем, так что каждое отверстие сканировало линию изображения.

Первой демонстрацией мгновенной передачи изображений был Жорж Ригно и А.Фурнье в Париже в 1909. В 1911 году Борис Розинг и его ученик Владимир Зворыкин создали систему, в которой использовался механический зеркальный барабанный сканер для передачи грубых изображений по проводам на электронно-лучевую трубку или в приемник. Но система не была достаточно чувствительной, чтобы разрешить движущиеся изображения.

В 1920-х годах шотландский изобретатель Джон Логи Бэрд использовал диск Нипкова для создания прототипа видеосистемы. 25 марта 1925 года Бэрд провел первую публичную демонстрацию переданных по телевидению изображений в движении.26 января 1926 года он продемонстрировал передачу изображения движущегося лица по радио. Это считается первой демонстрацией общественного телевидения в мире.

24. Камера

Источник: 955169 / Pixabay

Камера, несомненно, является одним из самых любимых творений.

Это современное изобретение стало свидетелем многих этапов эволюции — камеры-обскура, дагерротипы, сухие пластины, калотипы, зеркальные и зеркальные фотокамеры. В 1826 году Джозеф Нисефор Ниепс использовал выдвижную деревянную камеру, сделанную Шарлем и Винсентом Шевалье, чтобы щелкнуть то, что считается первой постоянной фотографией.

Благодаря технологическому прогрессу, цифровые фотоаппараты были представлены для сохранения изображений на картах памяти, а не на пленках.

История цифровых фотоаппаратов началась с идеи Юджина Ф. Лалли снимать планеты и звезды.

Позже инженер Kodak Стивен Сассон изобрел и построил первую цифровую камеру в 1975 году. Она была построена из частей комплектов, которые лежали на заводе Kodak. Камера была размером с хлебный ящик, и на захват одного изображения требовалось 23 секунды.

Сегодня в каждом смартфоне есть как минимум одна встроенная камера, которая также может снимать видео.

Сохраните прекрасные моменты своей жизни в виде фотографий лучшего качества и с превосходной управляемостью цифровой камерой. Не нужно заглядывать дальше фотоальбома, чтобы увидеть, что камеры — одно из великих изобретений, изменивших мир.

25. Компьютер

Источник: sifpceuc / Pixabay

Большое спасибо инженеру-механику Чарльзу Бэббиджу за создание основы для этого замечательного и самого надежного изобретения, а также Аде Лавлейс за создание первых программ.В начале 19 -го века «отец компьютера» задумал и изобрел первый механический компьютер. Хотя не существует единого изобретателя современного компьютера, принцип был предложен Аланом Тьюрингом в его основополагающей статье 1936 года.

Сегодня компьютеры являются символическим представлением современного мира.

26. Электронная почта

Большинство разработчиков ранних мэйнфреймов и мини-компьютеров разрабатывали похожие, но часто несовместимые почтовые приложения.Со временем они стали связаны сетью шлюзов и систем маршрутизации. Многие университеты США были участниками ARPANET, что повысило переносимость программного обеспечения между ее системами. Эта переносимость помогла сделать протокол SMTP все более популярным. Первое электронное письмо ARPANET было отправлено в 1971 году.

Человеку по имени Рэй Томлинсон на самом деле приписывают изобретение одной общей особенности системы электронной почты, которую мы знаем сегодня. В 1972 году, работая подрядчиком ARPANET, Томлинсон решил использовать символ @ для обозначения отправки сообщений с одного компьютера на другой.

К середине 1970-х электронная почта приобрела ту форму, которую мы знаем сегодня. В настоящее время большая часть официального делового общения зависит от электронной почты.

27. Интернет

В отличие от лампочки или телефона, в Интернете нет единого «изобретателя». Вместо этого он эволюционировал с течением времени. Он начался в Соединенных Штатах примерно в 1950-х годах вместе с развитием компьютеров.

Первый работоспособный прототип Интернета появился в конце 1960-х годов с созданием ARPANET, или сети агентств перспективных исследовательских проектов.ARPANET приняла протоколы TCP / IP 1 января 1983 года, и с этого момента исследователи начали собирать «сеть сетей», которая стала современным Интернетом.

28. Всемирная паутина

Источник: geralt / Pixabay

Интернет — это сетевая инфраструктура. В то время как World Wide Web — это способ доступа к информации через Интернет.

Отец всемирной паутины — британский ученый-компьютерщик Тим Бернерс-Ли. Первоначально Интернет был задуман и разработан для удовлетворения спроса на автоматизированный обмен информацией между учеными из университетов и институтов по всему миру.

Тим Бернерс-Ли написал первое предложение для Всемирной паутины в марте 1989 года, а второе предложение — в мае 1990 года. Бернерс-Ли работал с бельгийским системным инженером Робертом Кайо, чтобы формализовать это предложение, включая описание «WorldWideWeb», в котором: гипертекстовые документы »могут просматриваться« браузерами ».

К концу 1990 года Бернерс-Ли запустил первый веб-сервер и браузер в ЦЕРН. Только несколько пользователей имели доступ к компьютерной платформе, на которой запускался браузер, поэтому вскоре началась разработка более простого браузера, который мог работать в любой системе.

В 1991 году Бернерс-Ли объявил о программном обеспечении WWW в группах новостей Интернета, и интерес к проекту распространился по всему миру. Вскоре стало ясно, что требуется дополнительная помощь, поэтому Бернерс-Ли обратился с призывом к другим разработчикам присоединиться к ней. 30 апреля 1993 года ЦЕРН сделал исходный код WorldWideWeb доступным на безвозмездной основе, а остальное — по мере необходимости. говорят, это история.

29. Банкнота

От материалов, таких как домашний скот, до раковин, драгоценных металлов и монет, на протяжении всей истории валюта принимала различные формы.Из-за частой нехватки монет и проблем с переносимостью банки выпускали бумажные банкноты в качестве обещания против оплаты драгоценных металлов в будущем.

Идея использования легкого вещества в качестве денег, возможно, возникла в Китае во времена династии Хань в 118 г. до н.э.

Переход на бумажные деньги помог правительствам во время кризиса. Таким образом, он изменил облик мировой экономики, сделав важный шаг в новой денежной системе. Между тем, Биткойн достигает ошеломляющих новых высот.

30. Кредитные карты

На заре 20-го века -го и годов большинство людей расплачивались за все наличными.

Идея кредитной карты была предложена примерно в 1950 году Ральфом Шнайдером и Фрэнком Макнамарой, основателями Diners Club, которая позволяла посетителям расписаться за еду, а затем платить позже. В то время как технология продолжает развиваться, идея оплаты ежедневных покупок в кредит сейчас стала нормой.

31. Банкомат

Источник: 3D_Maennchen / Pixabay

Изобретение банкомата (банкомата) очень важно для современного банковского дела.По данным Ассоциации индустрии банкоматов (ATMIA), в настоящее время во всем мире установлено более 2,2 миллиона банкоматов.

Используя банкомат, клиенты могут совершать различные транзакции, такие как снятие наличных, проверка баланса или кредитование мобильных телефонов. Многие эксперты считают, что первый банкомат был изобретением Лютера Симджиана под названием Bankograph.

В 1967 году Джон Шеперд-Бэррон возглавил команду, которая придумала блестящую идею торгового автомата с деньгами, которую реализовал лондонский банк Barclays.В этих машинах использовались одноразовые жетоны, пропитанные радиоактивным углеродом-14. Радиоактивный сигнал был обнаружен машиной и сопоставлен с личным идентификационным номером, введенным на клавиатуре.

Вскоре начали появляться конкурирующие системы банкоматов, в том числе система, в которой вместо радиоактивного жетона использовалась пластиковая карта многоразового использования. Инженер из Далласа Дональд Ветцель изобрел первый банкомат в США.

32. Телефон и мобильные телефоны

«Mr.Ватсон, иди сюда, я хочу тебя. 10 марта 1876 года это были первые слова, сказанные изобретателем телефона Александром Грэмом Беллом своему помощнику Томасу Уотсону. История телефона предположительно началась с человеческого желания общаться повсюду. С появлением мобильных телефонов в 1980-х годах связь больше не была привязана к кабелям.

Умное изобретение сотовой сети способствовало революции в телефонной индустрии. Начиная с громоздких мобильных телефонов и заканчивая ультратонкими трубками, мобильные телефоны прошли долгий путь.Джон Ф. Митчелл и Мартин Купер из Motorola продемонстрировали первое портативное устройство в 1973 году. Ученые продолжают создавать новые идеи, которые еще больше помогут пользователям.

33. Робот

Роботизированные устройства используются для выполнения сложных, повторяющихся, а иногда и опасных задач. Слово «робот» ассоциируется с различными устройствами, от кухонного устройства до вездехода.

Слово «робот» впервые появилось в R.U.R. ( Универсальные роботы Россум ), пьеса, написанная чешским драматургом Карлом Чапеком в 1921 году.По совпадению, слово «робототехника» также было придумано писателем-фантастом Исааком Азимовым в его рассказе «Малышка», опубликованном в 1942 году.

Но на самом деле у роботов очень долгая история. Около 3000 г. до н.э. человеческие фигурки использовались для удара в часовые колокола египетских водяных часов. Это ознаменовало первую механическую конструкцию. Со временем появилось больше конструкций и устройств.

Основа для современных роботов была заложена в 1950-х годах Джорджем К. Деволом, который изобрел и запатентовал перепрограммируемый манипулятор под названием «Unimate» от компании «Universal Automation».

В конце 1960-х Джозеф Энглебергер приобрел патент и превратил их в промышленных роботов. Эти усилия сделали его «отцом робототехники». Это действительно изобретения, которые изменили мир!

34. Оружие

For для одних оружие может быть сенсационным изобретением, а для других — ужасным.

Оружие использовалось с незапамятных времен. Но это неоспоримый факт, что оружие и порох произвели революцию в мире.Порох был изобретен в Китае примерно в 9 веке, но, возможно, первоначально он использовался для фейерверков. Одно раннее огнестрельное оружие состояло из бамбуковой трубки, в которой использовался порох для стрельбы из копья, и использовалось в Китае около 1000 г. копье и использовалось как огнемет; Иногда в ствол помещали шрапнель, чтобы она вылетела вместе с пламенем. Огненное копье изображено на шелковом знамени из Китая середины X века.

Порох был усилен за счет увеличения количества селитры. Это, в свою очередь, означало, что нужен был более прочный ствол, бамбук был заменен металлическим, а снаряды были заменены более мелкими кусками металла, которые плотнее входили в ствол.

К середине-концу 14 века знания о порохе и огнестрельном оружии достигли Европы, и были разработаны портативные ручные пушки меньшего размера, которые создали тип личного огнестрельного оружия.

Проблема необходимости частой перезарядки была решена с изобретением ручного пулемета, названного пистолетом Гаттлинга.Он был изобретен Ричардом Дж. Гатлингом во время Гражданской войны в США. Поскольку технология продолжала развиваться, каждая следующая модель становилась все более смертоносной.

35. Фильмы

Источник: Skitterphoto / Pixabay

Практически все любят смотреть разные фильмы, такие как история любви, комедия, драма, ужасы, саспенс, боевик, фантастика, биография и т. Д. называется фильм, кинофильм, театральный фильм, спектакль, фильм. Название «пленка» происходит от того факта, что фотопленка использовалась для записи и показа движущихся изображений.

Ранним источником вдохновения для фильмов были пьесы и танцы, в которых были элементы, общие для фильма: сценарии, декорации, костюмы, постановка, режиссура, актеры, зрители и раскадровки.

Позже, в 17, -м, -м веке, фонари использовались для создания анимации, которая достигалась с помощью различных типов механических слайдов.

В марте 1895 года первым фильмом, снятым на камеру Cinématographe, был La Sortie de leucine Lumière a Lyon (Рабочие, покидающие фабрику Lumière в Лионе).Коммерческий публичный показ десяти короткометражных фильмов братьев Люмьер в Париже 28 декабря 1895 года часто воспринимается как начало кинематографических фильмов.

Со временем фильмы стали включать звук, цвет и передовые цифровые технологии.

Автор Алехья Сай Пуннамараджу

Что такое электричество?

Вы могли задаваться вопросом в тот или иной момент; что такое на самом деле электричество?

Трудно убежать; смотрите ли вы на природу и наблюдаете, как надвигается гроза с ее красивыми, но мощными ударами молний.Или вы просто идете на кухню, включаете свет и открываете холодильник; электричество — это часть нашей повседневной жизни.

Но чтобы действительно понять, что такое электричество, нам нужно взглянуть на науку, лежащую в основе этого на атомном уровне.

Все начинается с атомов

Атомы — это маленькие частицы, проще говоря, они являются основными строительными блоками всего, что нас окружает, будь то наши стулья, столы или даже наше собственное тело. Атомы состоят из еще более мелких элементов, называемых протонами, электронами и нейтронами.

Когда электрические и магнитные силы перемещают электроны от одного атома к другому, образуется электрический ток.

Посмотрите это видео, чтобы увидеть электроны в действии.

Вы действительно понимаете, что такое электричество?

Как производится электричество?

Во-первых, для выработки электроэнергии вам понадобится источник топлива, например уголь, газ, гидроэнергия или ветер.

В Австралии большая часть электроэнергии вырабатывается из традиционных видов топлива, таких как уголь и природный газ, при этом около 14 процентов приходится на возобновляемые источники энергии. 1

Независимо от выбранного топлива, большинство генераторов работают по одному и тому же проверенному принципу: поверните турбину так, чтобы она вращала магниты, окруженные медной проволокой, чтобы получить поток электронов через атомы, который, в свою очередь, генерирует электричество.

Уголь и газ работают аналогично; они оба сжигаются, чтобы нагреть воду, которая создает пар и вращает турбину.

Возобновляемые источники энергии, такие как гидроэнергетика и ветер, работают немного по-разному: вода или ветер используются для вращения турбины и выработки электроэнергии.

Солнечные фотоэлектрические панели используют другой подход: они вырабатывают электроэнергию путем преобразования солнечного излучения в электричество с помощью полупроводников.

Электростанции перерабатывают топливо в электричество

Уголь и газ сжигаются для нагрева воды и превращения ее в пар.

Затем пар под очень высоким давлением используется для вращения турбины.

Вращающаяся турбина заставляет большие магниты вращаться внутри катушек из медной проволоки — это называется генератором.

Движущиеся магниты заставляют электроны в проводах перемещаться из одного места в другое, создавая электрический ток и производя электричество.

Электроэнергия уходит в сеть

В Австралии мы получаем электроэнергию через сложную сетевую сеть.

Электроэнергия оставляет генераторы и перемещается по проводам в сетевой сети в дома и предприятия по всей стране. К тому времени, когда электричество дойдет до вас, оно, вероятно, пройдет сотни километров по сети.

Национальный рынок электроэнергии Австралии или NEM является крупнейшей объединенной энергосистемой в мире.

Если вас интересует вариант электроснабжения для вашего дома, вы можете сравнить планы на электроэнергию в Origin и увидеть ориентировочную стоимость использования.

Список литературы

Согласно анализу от Origin Energy, данные включают всю Австралию: национальный рынок электроэнергии (QLD, NSW, Vic, SA, TAS), а также Западную Австралию и Северную территорию, но не включают гору Иса.Данные встроенной генерации взяты из отчета о состоянии энергетического рынка за 2014 год, Австралийского органа регулирования энергетики, данных WA за 2012 год от Грега Рутвена, 2012 год, брифинга «Заявление о возможностях» перед запуском, Независимого оператора рынка за 2012 год и NT FY13; данные Ассоциации энергоснабжения Австралии 2012 г., Электричество Газ Австралия 2014 г.

Электроэнергия в США — Управление энергетической информации США (EIA)

Электроэнергия в США производится (генерируется) с использованием различных источников энергии и технологий

Соединенные Штаты используют множество различных источников энергии и технологий для производства электроэнергии.Источники и технологии менялись со временем, и некоторые из них используются чаще, чем другие.

Три основных категории энергии для производства электроэнергии — это ископаемое топливо (уголь, природный газ и нефть), ядерная энергия и возобновляемые источники энергии. Большая часть электроэнергии вырабатывается паровыми турбинами с использованием ископаемого топлива, ядерной энергии, биомассы, геотермальной и солнечной тепловой энергии. Другие основные технологии производства электроэнергии включают газовые турбины, гидротурбины, ветряные турбины и солнечные фотоэлектрические установки.

Нажмите для увеличения

Ископаемое топливо — крупнейший источник энергии для производства электроэнергии

Природный газ был крупнейшим источником — около 38% — выработки электроэнергии в США в 2019 году. Природный газ используется в паровых турбинах и газовых турбинах для выработки электроэнергии.

Уголь

был вторым по величине источником энергии для производства электроэнергии в США в 2019 году — около 23%. Практически все угольные электростанции используют паровые турбины.Несколько угольных электростанций преобразуют уголь в газ для использования в газовой турбине для выработки электроэнергии.

Нефть была источником менее 1% выработки электроэнергии в США в 2019 году. В паровых турбинах используются остаточное жидкое топливо и нефтяной кокс. Дистиллятное или дизельное топливо используется в дизельных генераторах. Остаточное жидкое топливо и дистилляты также можно сжигать в газовых турбинах.

Ядерная энергия обеспечивает пятую часть электроэнергии США

Ядерная энергия была источником около 20% U.S. Производство электроэнергии в 2019 году. Атомные электростанции используют паровые турбины для производства электроэнергии за счет ядерного деления.

Возобновляемые источники энергии обеспечивают растущую долю электроэнергии в США

Многие возобновляемые источники энергии используются для производства электроэнергии, и в 2019 году они составили около 17% от общего объема производства электроэнергии в США.

Гидроэлектростанции произвели около 7% от общего объема производства электроэнергии в США и около 38% электроэнергии из возобновляемых источников в 2019 году.Гидроэлектростанции используют проточную воду для вращения турбины, соединенной с генератором.

Энергия ветра была источником около 7% от общего объема производства электроэнергии в США и около 42% электроэнергии из возобновляемых источников энергии в 2019 году. Ветровые турбины преобразуют энергию ветра в электричество.

Биомасса была источником около 1% от общего объема производства электроэнергии в США в 2019 году. Биомасса сжигается непосредственно на пароэлектрических электростанциях или может быть преобразована в газ, который можно сжигать в парогенераторах, газовых турбинах или внутреннем сгорании. двигатели-генераторы.

Солнечная энергия обеспечила около 2% от общего объема электроэнергии США в 2019 году. Фотоэлектрическая (PV) и солнечно-тепловая энергия — два основных типа технологий производства солнечной электроэнергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *