Цифровые транзисторы: Цифровой транзистор — Микроконтроллеры для всех

Цифровой транзистор — Микроконтроллеры для всех

Для усиления сигнала с вывода микроконтроллера часто используют схемы на транзисторах. На рисунке ниже показана классическая схема усиления сигнала с вывода микроконтроллера для управления реле:

Резистор R1 предназначен для ограничения тока, протекающего через базу транзистора. В такой схеме транзистор работает в ключевом режиме, то есть он либо открыт, либо закрыт.

Резистор R2 предназначен для гарантированного запирания транзистора в том случае, когда на входе Vin отсутствует сигнал, то есть вывод микроконтроллера находится в состоянии с высоким входным сопротивлением.

Такое состояние появляется на всех выводах, когда микроконтроллер находится в состоянии сброса. А перейти в состояние сброса микроконтроллер может по разным причинам.

Например, если напряжение питания уходит ниже допустимой границы, то в микроконтроллере срабатывает система мониторинга питания и микроконтроллер переходит в состояние сброса.

Или если в системе предусмотрена кнопка сброса, то при ее нажатии микроконтроллер так же перейдет в состояние сброса и будет оставаться в этом состоянии, пока кнопка нажата.

В общем, в ответственных системах, резистором R2 пренебрегать не стоит.

В итоге получается, что для реализации простой классической схемы с усилением на транзисторе, работающим в ключевом режиме, нужно на плату устанавливать сразу 3 компонента: R1, R2 и VT1

А так как такая схема часто используется на практике, поэтому появились компоненты, которые совмещают в себе три компонента R1, R2 и VT1

Такой компонент получил название цифровой транзистор, хотя по-русски можно было бы назвать и сборкой с биполярным транзистором. В англоязычной литературе такие сборки так и называют digital transistor — цифровой транзистор. Иногда в скобках в документации уточняется with built-in resistors.

В некоторых моделях резистора R2 может не быть. А вместо биполярного транзистора может применяться полевой.

На схемах цифровые транзисторы чаще всего обозначаются как совмещенные в одном корпусе компоненты:

Я с некоторых пор начал очень часто использовать цифровые транзисторы для управления различными нагрузками, которые допускают управление в ключевом режиме, то есть в режиме включено/выключено.

При использовании цифровых транзисторов схема подключения и количество используемых компонентов уменьшается, а надежность увеличивается.

Подключение реле с использованием цифрового транзистора

Мой любимый цифровой транзистор это биполярный DTD114EK
структуры npn.

Транзистор может работать с напряжениями до 50В и током нагрузки до 500 мА. Идеально подходит для подключения к микроконтроллерам с рабочим напряжениями от 3 до 5 В.

Транзистор выпускается только в SMD корпусе. Корпус SOT-346. Такой корпус по размеру чуть больше корпуса SOT-23. Это нужно учесть при разработке печатной платы.

На рисунке ниже слева впаян транзистор DTD114EK в корпусе SOT-346, а справа для примера я приложил транзистор BC817 в корпусе SOT-23, что бы были видны различия в размерах корпусов.

Слева DTD114EK, справа BC817

На aliexpress его можно найти по запросу DTD114EK. Обычно продаются лоты по 100 штук за $5.

Документацию на DTD114EK можно скачать по этой ссылке

SOT-23 SOT-323 SOT-523 TO-92 — Semtech


Постоянная рассеиваемая мощность PD, W

  • -0,2 1
  • 0,1 20
  • 0,125 1
  • 0,15 8
  • 0,2 208
  • 0,3 2

Выходной ток IO, A

  • -0,05 2
  • -0,1 52
  • -0,3 12
  • -0,8 12
  • 0,1 133
  • 0,3 12
  • 0,5 1
  • 0,6 4
  • 0,8 12

Выходное напряжение Vo, V

  • -5 70
  • 5 133
  • 10 29

Сопротивление R1, KΩ

  • 0,51 2
  • 1 25
  • 2,2 44
  • 3,3 1
  • 4,7 53
  • 10 48
  • 11 1
  • 13 2
  • 22 25
  • 47 30
  • 100 9

Полярность

  • NPN 129
  • PNP 111

Цоколевка Распиновка

  • BEC 179
  • ECB 54

Тип корпуса Корпус

  • SOT-23 105
  • SOT-323 45
  • SOT-523 29
  • TO-92 61

Показать колонки

☑ Показать колонки

  • VRWM, V

Закрыть

hFE
Усиление на постоянном токе в схеме с общим эмиттером DC current gain, common emitter
VO
Выходное напряжение Output voltage
IO
Выходной ток Output current
PD
Номинальная мощность Continuous power
ft
Произведение усиления по току на полосу частот Current Gain Bandwidth Product
ft
Выходной ток Output current

Первый шаг простой схемы

При управлении светодиодами и двигателями с помощью Arduinos и Raspberry Pi вам потребуется использовать схемы привода, в которых используются резисторы и транзисторы. Для схемных экспериментов удобно свободно комбинировать резисторы и транзисторы, но при изготовлении крупногабаритных схем с полноценными комплектами электроники идеально уменьшить количество деталей, чтобы не вызвать дефектов или ошибок контактов.
Теперь мы представляем «цифровой транзистор», который может уменьшить количество используемых электронных компонентов, чтобы повысить надежность и снизить стоимость.

Содержание

‧ Цифровой транзистор со встроенным резистором
‧ Зачем транзисторным переключателям нужны резисторы
‧ Как использовать цифровые транзисторы
‧ Как выбрать цифровой транзистор
‧ Сводка цифровых транзисторов

Цифровой транзистор со встроенным входной резистор


Цифровой транзистор — это электронный компонент, в корпус транзистора которого встроен резистор.
Для включения светодиодов и работы реле с платами микроконтроллеров, таких как Arduinos или Raspberry Pis, требуется схема привода (переключатель) с использованием транзисторов и резисторов. Схема возбуждения проста, но требует резистора, который ограничивает ток, протекающий через базу.
Поскольку резистор встроен в цифровой транзистор, схема управления может быть выполнена с одним транзистором.

ROHM были первой компанией в мире, разработавшей электронный компонент, известный как цифровой транзистор. Сегодня он продается и другими компаниями под названием «резисторный встроенный транзистор». Сокращенно его иногда называют «диги-тра».

Зачем транзисторным переключателям нужны резисторы

Прежде чем объяснять привлекательность цифровых транзисторов, давайте кратко рассмотрим, зачем транзисторам нужны резисторы. Существует несколько типов транзисторов, но здесь мы объясним использование биполярных транзисторов.

Необходимо пропускать ток через базу для управления включением/выключением транзистора. Если к базе приложить напряжение, ток будет течь, но если оставить все как есть, ток нагрузки будет увеличиваться экспоненциально по мере увеличения напряжения, поэтому даже незначительное изменение напряжения значительно изменит работу. В худшем случае транзистор или микроконтроллер могут быть повреждены или могут выйти из строя из-за небольшого количества статического электричества, что приведет к проблемам.
Следовательно, чтобы биполярный транзистор работал устойчиво, к его базе необходимо подключить входной резистор, ограничивающий ток, подаваемый на базу.


Ссылка: Пожалуйста, расскажите мне об основных идеях цифровых транзисторов (Digi-tra). |ROHM Co., Ltd.

Как использовать цифровые транзисторы

Цифровой транзистор может показаться простым электронным компонентом со встроенным в транзистор резистором, но когда вы попробуете их сами, вы начнете видеть их достоинства.
При использовании цифровых транзисторов можно ожидать различных преимуществ, включая «уменьшение монтажной площади (миниатюризация схемы)», «уменьшение количества деталей (снижение стоимости монтажа)» и « повышение надежности».

В качестве примера цифровых транзисторов в действии на двух рисунках ниже показано, насколько изменяется размер схемы при создании схемы светодиодного освещения.

Пример схемы управления 4 светодиодами на обычных транзисторах. Сопротивление, ограничивающее ток в базе, усложняет размещение и разводку электронных компонентов.

Если используется цифровой транзистор, сопротивление можно не указывать и уменьшить масштаб схемы. Следовательно, экономится место и уменьшается количество проводки, а это означает, что количество функций в одной и той же области может быть увеличено, а количество проблем с проводкой может быть уменьшено.

У обычного транзистора 18 проводов и 20 электронных компонентов, но если заменить его цифровым транзистором, то количество проводов можно уменьшить до 14, а количество электронных компонентов до 12. За счет уменьшения количества деталей , объем работы, необходимой для вставки компонентов в макетную плату, также сокращается примерно на 30 %.
Уменьшение количества проводов также снижает количество проблем, связанных с плохим контактом и ошибками. Это пример макетной платы, но в схемах массового производства, которые включаются в реальные продукты, даже уменьшение количества компонентов может иметь значительный эффект снижения затрат. Таким образом, цифровые транзисторы представляют собой электронные компоненты, с помощью которых можно легко добиться снижения стоимости и повышения надежности схемы.

На принципиальной схеме цифровой транзистор обычно заключают в пунктирную линию и используют символ, указывающий, что транзистор и резистор встроены в один электронный компонент. Номера деталей на принципиальной схеме обозначены DT1, DT2, … и т. д.

Как выбрать цифровой транзистор

Существуют различные варианты цифровых транзисторов в зависимости от тока коллектора и сопротивления, подключенного к базе. Процесс выбора цифровых транзисторов аналогичен процессу выбора для определения сопротивления соединения с базой при использовании обычного транзистора в качестве переключателя. (См. метод расчета сопротивления, мигающий светодиод на RasPi, закон Ома / GPIO / Узнайте больше о транзисторах|DevicePlus.)
Инструмент выбора цифрового транзистора доступен на странице цифровых транзисторов ROHM. Если вы введете четыре параметра полярности, напряжения питания, входного напряжения и выходного тока, оптимальный транзистор будет выбран автоматически, поэтому, если вы не уверены в выборе деталей, попробуйте использовать его.

Инструмент выбора цифрового транзистора|ROHM Co., Ltd.

Краткое описание цифровых транзисторов

Когда вы слышите термин «цифровой транзистор», он может показаться более сложным, чем обычный транзистор, но на самом деле это просто используемые электронные компоненты для работы переключателя, и, как вы можете видеть, они на самом деле очень просты и удобны в использовании.
Даже в комплектах электроники на макетных платах использование цифровых транзисторов может уменьшить количество используемых деталей и уменьшить такие проблемы, как дефекты контактов. Кроме того, они являются электронными компонентами, которые обеспечивают большие преимущества даже при мелкомасштабной электронной работе и проверке работы.
Также рекомендуется иметь под рукой цифровые транзисторы тем, кто часто использует транзисторы для работы переключателей.

Посетите нас в социальных сетях

Цифровые транзисторы (BRT)

Резисторные транзисторы смещения (BRT) со встроенным смещением, предназначенные для замены одного устройства и его внешней цепи смещения резисторов.

Рекомендуемые продукты

PRT+

Войдите в свою учетную запись onsemi, чтобы просмотреть избранные Сохраненные фильтры .

Зарегистрируйтесь сейчас

Инвертировать значение диапазона

Инвертировать значение диапазона

Инвертировать значение диапазона

Инвертировать значение диапазона

Инвертировать значение диапазона

Инвертировать значение диапазона

Значение диапазона инвертуи

Значение диапазона инвертирования

Значение диапазона инверта

Загрузка …

Active

SC-75-3

Подробнее

Active

SOT-723-3

.

Active

SC-75-3

Подробнее

Active

SOT-723-3

Подробнее

Active

SC-75-3

Подробнее

Active

SOT-723-1

3

Подробнее

Active

SC-75-3

Подробнее

Active

SOT-723-3

Подробнее

Active

Infinity

SC-75-3

.

Active

SC-75-3

Подробнее

Active

SOT-723-3

Подробнее

Active

SC-75-3

Подробнее

Active

0.0468

0002 SOT-723-3

Подробнее

Active

SC-75-3

Подробнее

Active

SOT-723-3

Более подробная информация

Active

SC-75-3

Более подробная информация

Active

SOT-723-3

Подробнее

Active

SC-75-3

Подробнее

Active

SOT-723-3

Подробнее

Active

SC SC. -75-3

Подробнее

Active

SOT-723-3

Подробнее

Последние поставки

SC-75-3

Более подробная информация

Последние поставки

SOT-723-3

БОЛЬШЕ. -75-3

Подробнее

Active

SOT-723-3

Подробнее

Active

SC-75-3

Подробнее

Active

SOT-723-3

Активный

SC-75-3

Подробнее

Active

SOT-723-3

Подробнее

Active

SC-75-3

Более подробная информация

Active

SOT-723-3

Active

SOT-723-3

Подробнее

Active

SC-75-3

Подробнее

Active

SOT-723-3

Подробнее

Active

SC-75-3

Подробнее

Загрузка .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *