Даташит ir2153: 404 ТАКОЙ СТРАНИЦЫ НЕТ НА САЙТЕ

Содержание

Схема импульсного блока питания на IR2151-IR2153

Импульсный блок питания на IR2151-IR2153

Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151

 

 

 

 

 

Характерной чертой этого блока питания является его простота и повторяемость. Схема содержит малое количество компонентов и хорошо себя зарекомендовала на протяжении более двух лет. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.

На входе стоит PTC термистор– полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef.

Защищает силовые ключи в момент включения на время зарядки конденсаторов.

Диодный мост на входе для выпрямления сетевого напряжения на ток 10А. Использована диодная сборка типа «вертикалка», но можно использовать диодную сборку типа «табуретка».

Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы «вытянут» нагрузку в 220Вт.

Гасящее сопротивление в цепи питания драйвера мощностью 2 Вт. Предпочтение отдано отечественным резисторам типа МЛТ-2.

Драйвер IR2151 – для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс «D», например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.

Полевые транзисторы

используются предпочтительно фирмы IR . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Справочник по полевым транзисторам фирмы IR на русском языке можно скачать здесь. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.

Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В).

При выборе трансформатора следует брать такой, у которого на родной плате закорочены вывода так, как это показано на схеме. Это важно. Иначе вам следует закротить как это сделано на плате, из которой вы демонтируете трансформатор.

Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки.

Емкость на выходе – буферная емкость. Не следует устанавливать емкость более 10000 мкф.

Печатная плата

Практика показала, что в данном приложении не требуется специальной организации обратной связи, индуктивных фильтров по питанию, снабберов и прочих «наворотов», присущих импульсным преобразователям. Так или иначе, в звуке на слух не ощущается типичных дефектов, свойственных «плохому питанию» (фон и посторонние звуки).

В работе полевые транзисторы не сильно нагреваются.

Для них достаточно пассивного охлаждения. Полевые транзисторы фирмы IR очень устойчивы к тепловому разрушению и работают вплоть до температуры 150?С. Но это не означает, что их следует эксплуатировать в таком критическом режиме. Для таких случаев потребуется организация активного охлаждения, а по-простому, установить вентилятор.

Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением. После ВЫключения данного блока питания в его цепях не остается опасного напряжения. Правильно собранный блок питания не нуждается в настройке и налаживании.

ИИП для новичков на IR2153 — Блоки питания (импульсные) — Источники питания

Многие начинающие знакомство с импульсниками, начинают собирать то, что по проще. 
В том числе и с этой схемы:


Я также начинал с нее.

Вполне рабочая схема, но если ее немного доукомплектовать, то получится достойный импульсный БП для начинающих и не только.
Вот как то так:

Большинство деталей выпаивал из старых компьютерных БП и старых мониторов. В общем собирал из того что нормальные люди выбрасывают на свалку.

Вот так выглядит ИИП в сборе:

А вот уже БП с нагрузкой. 4 лампы по 24 вольта. По две штуки в каждое плечо.

Замерял общее напряжение и ток в одном плече. За пол часа работы с нагрузкой, радиатор нагрелся около 50*.
В общем получился блок потания на 400Ватт. Вполне можно запитать 2 канала усилителя по 200Ватт.

Основную проблему для начинающих создает намотка трансформатора.
Трансформатор можно намотать на кольцах, или выдернуть транс из компового БП.
Я взял транс из старого монитора, а так как в мониторах транс с зазором, я взял сразу два.

Эти трансы кидаю в банку, заливаю ацетоном, закрываю крышкой и курю.

На следующий день открыл банку, один транс сам развалился, второй немного пришлось расшевелить руками.

Так как с двух трансов получится один, я размотал одну катушку. Ничего не выбрасываю, все пригодится для намотки нового транса.
Можно конечно спилить феррит, чтобы убрать зазор. Но у меня старых мониторов как грязи и с стачиванием зазора не заморачиваюсь.
Сразу же переставил ноги, распиновка как и в комповом трансе, а лишние выбросил.

Потом в программе Старичка рассчитываю под нужное мне напряжение и ток.
Подгоняю расчеты под провод который есть в наличии. 
Длинна катушки 26,5мм. У меня есть провод 0,69. Считаю 0,69х2(двойным проводом)х38 витков / делю на 2 (слоя) =26,22мм.
Получается 2 провода 0,69 лягут ровно в два слоя.

Теперь готовлю медную ленту для намотки вторички. Лентой легко мотать, провода не путаются, не распадаются и ложатся виток к витку.
Мотаю сразу четырьмя проводами 0,8мм, 4 полу обмотки.
В рейку забил 2 гвоздя, натянул 4 провода, промазал клеем.

В итоге:

Пока лента сохнет мотаю первичку. Пробовал мотать два одинаковых транса, в одном первичку мотал целиком, в другом мотал половину первочки, потом вторичку и в конце вторую половину первички(так как намотаны комповские трансы). Так вот разницы в работе обеих трансов не заметил никакой. Больше не заморачиваюсь и мотаю первичку целой.
В общем мотаю: намотал один слой первички, так как нету третьей руки чтобы поддерживать, обматываю узким скотчем в один слой. При нагреве транса скотч расплавится, и если где-то был послаблен виток, скотч склеит как клеем. Теперь наматываю пленочную ленту, ту что с разобранного транса. и доматываю первичку.

За изолировал первичку, положил экран(медная фольга) только чтобы небыло полного витка, не должна сходится на 3-5мм.
Экран забыл сфоткать.
Лента высохла, и таким макаром мотаю вторичку.

Намотал слой вторички, выровнял ряд узкими полосками с разобранного транса, за изолировал, домотал вторичку, за изолировал

Воткнул ферриты, стянул их узким скотчем(около 10 слоев), с баллончика залил лаком сверху и снизу, чтобы транс не цикал и под тепло вентилятор. Пусть сохнет. 
В итоге готовый трансформатор:

На намотку транса потратил минут 30. И около часа на подготовку и зачистку с залуживанием проводов.

АРХИВ:Скачать

 

 

IR2161 VS IR2153. Импульсный блок питания на IR 2161

РадиоКот >Схемы >Питание >Блоки питания >

IR2161 VS IR2153. Импульсный блок питания на IR 2161

IR2161 VS IR2153. Импульсный блок питания на IR 2161


Эта статья будет интересна тем кто собирал ИИП на основе IR2153. На самом деле IR2153 плохо подходит для создания ИИП, из-за отсутствия штатной системы защиты от КЗ и перегрузок, невозможность при необходимости «димированния» и создания обратной связи по напряжению и току.

Более подходит для создания ИИП IR2161. Это полумостовой импульсный преобразователь для питания галогеновых ламп. Особенности 2161 – защита от перегрузок и КЗ с автоматическим сбросом, мягкий старт, возможность димирования (несколькими способами), возможность построения обратной связи. После построения входных и выходных каскадов получается импульный источник питания.
Вот схема ИИП на 2161.

 

Напряжение питания и ток у этих микросхем примерно одинаковые, значит можно использовать для 2161 схему питания как у 2153 на резисторах R2 и R3 по 2 Вт, можно использовать китайский «кирпичь» 5 Вт на 18-30 кОм.


На борту 2161 присутствует функция мягкого старта (софтстарт). Работает примерно так: сразу же после запуска, частота внутреннего тактового генератора микросхемы составляет около 125 кГц, что значительно выше рабочей частоты выходного контура С13С14Тr1 (около 36 кГц), в результате напряжение на вторичной обмотке Т1 будет мало. Внутренний генератор микросхемы управляется напряжением, его частота обратно пропорциональна напряжению на конденсаторе С7. Сразу же после включения, С7 начинает заряжаться от внутреннего источника тока микросхемы. Пропорционально росту напряжения на нем будет уменьшаться частота генератора микросхемы. При достижении 5В (около 1сек.) частота уменьшится до рабочего значения, около 36кГц, а напряжение на выходе схемы соответственно достигнет номинального значения. Таким образом и реализован мягкий старт, после его завершения IC1 переходит в рабочий режим.


Вывод CS (выв.4) IC1 является входом внутреннего усилителя ошибки и используется для контроля тока нагрузки и напряжения на выходе полумоста. В случае резкого увеличения тока нагрузки, например, при коротком замыкании, падение напряжения на токоизмерительном резисторе R7 превысит 0,56В, а следовательно и на выв.4 IC1, внутренний компаратор переключится и остановит тактовый генератор. . В апнот и даташит присутствуют расчеты резсистора-токового датчика R7. Вывод можно сделать сразу 0,33 Ом – 100Вт, 0,22 Ом – 200Вт 0,1 Ом-300Вт, не испытывал, но можно попробовать 2 резистора параллельно по 0,1 Ом – тогда максимальная нагрузка составит 400Вт. Испытание защиты от КЗ я показал а видео. Более подробно режимы работы микросхемы IR2161 рассмотрены в даташит.

Конденсатор C3 емкостью не менее 1мкФ на 1Вт выходной мощности. С таким конденсатором обязательно применение термистора NTC1, например от компьютерного блока питания.


Можно производить расчеты трансформатора, можно взять готовый, но я решил намотать на неизвестном ферритовом кольце 29 мм. Я отказался от расчетов, т.к. это полумост и другом конце моста стоят конденсаторы С13С14, — можно ошибиться на 200%. Первичку намотал проводом диаметр 0,5 мм. полностью заполнил кольцо примерно 80 витков, вторичка литц в 4 провода 0,5 мм на глазок, двуполярно на 24В, 2 по 12В. Примеры расчетов трансформатора присутствуют в апнот и даташит.
Видео состоит из 3х частей, в них рассмотрены теория, сборка и испытание ИИП на 2161.

Источники:
datasheets: https://www.irf.com/product-info/datasheets/data/ir2161.pdf

appnotes: https://www.irf.com/technical-info/appnotes/an-1069.pdf

irplhalo1e: https://www.irf.com/technical-info/refdesigns/irplhalo1e.pdf

Видео состоит из 3х частей, в них рассмотрены теория, сборка и испытание ИИП на 2161

Часть 1. Часть 2. Часть 3.

 

Файлы:
Фото схемы
Архив ZIP

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

Импульсный блок питания на IR2153/2155

Импульсный блок питания я решил сделать потамучто он на первый взгляд гораздо дешевле сетевого трансформатора, конечно если речь идёт о мощности более 150вт, хотя с такими темпами роста цен на Чип Диповские торы сейчас уже и вместо ТТП60 выгоднее использовать ИБП 🙂 Во вторых вес получается значительно меньше, в третьих ИБП может работать при повышенном напряжении сети без каких либо отрицательных последствий, естественно в разумных пределах, всё ограничено Vds полевиков и напряжением основных фильтрующих кондёров. А вот сетевые трансы при повышении напряжения в сети начинают сильно гудеть и гретья. Также из за очень низкого сопротивления вторичной обмотки, выходное сопротивление ИБП меньше чем у простых блоков питания. Главный недостаток ИБП это ВЧ помехи. Надо принимать меры чтоб их как можно сильнее подавить. Ещё в момент подачи питания он потребляет очень большой пиковый ток, поэтому на больших мощностях надо применять специальные системы софт старта и мягкой зарядки фильтрующих конденсаторов и конденсаторов делителя. В моём случае киловатты не требуются поэтому я обошёлся просто последовательной цепочкой из резистора и термистора. Некоторые могут подумать что из за этой цепочки будет проседать выходное напряжение, но всё не так страшно. Предположим если начальное сопротивление её 10ом то при токе 2А (это 440вт) на ней просядет 20в тоесть это менее 10%. Надёжность и ЭМИ блока питания в первую очередь зависят от разводки платы, она перетерпела доработок и изменений не меньше чем для TDA8924. Я считаю что сейчас самый оптимальный вариант, по крайней мере на 1 слое лучше не сделать. Очень не рекомендую что либо менять на плате в высоковольтной части и части управления.

Сначала идут резисторы для плавной зарядки конденсаторов делителя, потом сетевой фильтр. У меня стоит дроссель PLA на 1А, на плату можно установить также дроссель из компьютерного блока питания. Далее плоский низкочастотный диодный мост GBU, они бывают на токи до 25А. Чтобы поставить более распространённый KBU плату надо слегка изменить (отодвинуть конденсаторы делителя от радиатора). Затем стоит делитель. Переусердствовать с этими ёмкостями не стоит, слишком много ставить нельзя тк при каждом включении есть вероятность сжигать предохранитель, а если повезёт то и автомат защиты в щитке :)) Оптимально 150-330мк 200в. После организовано питание микросхемы от средней точки делителя, это позволяет снизить суммарное тепловыделение схемы на резисторах примерно на 1вт. Схема включения 2153 стандартная из даташита. Чтобы выбрать P1 для нужной частоты читайте даташит на мс. Полевые транзисторы IRFI840GLC это лучшее что может быть для этой схемы от IR. С другими фирмами сталкиваться не приходилось. Если хотите сэкономить то можно поставить IRFIBC30G они чуть послабее но даже их хватит для мощности около 300вт, больше 400вт я бы не стал снимать с такого ИБП. Какие либо другие полевики ставить не рекомендую. Иначе придётся уменьшать R2, R3 и это приведёт к увеличению тепловыделения на них. Напряжение на мс во время работы должно быть не менее 10в! Оптимально 11-14. Цепочка L1 C13 R8 слегка облегчает режим работы полевиков, в принципе её можно просто закоротить, сильно хуже не станет, а ЭМИ даже слегка уменьшатся. Снаббер R7 C12 тоже не обязателен но желателен, для подавления вч грязи.
Выходные дроссели я мотал на ферритовых гантельках проницаемостью 600НН. Индуктивность их около 10мкг, намотано 2 слоя провода около 1мм. Можно мотать на стержнях от старых приёмников, хватит витков 10-15. Основные конденсаторы выходного фильтра Jamicon WL. Если нет возможности поставить Low ESR то параллельно конденсаторам стандартного типа нужно добавить керамику 0.1-0.22мк. Но Low ESR в этом месте крайне желательны, ток пульсаций у 4700мк/35в Jamicon WL больше чем у стандартного 22000/35в!
Подробно расписывать про расчёт и намотку трансформатора не буду, тк в интернете на эту тему очень много написано. Я считаю в программе Transformer 2. Результат похож на правду. Индукцию нужно выбирать как можно меньше, лучше не более 0.25. Частоту в районе 40-80к. Очень не рекомендую использовать наши кольца из за сильного разброса параметров и больших потерь. После того как я попробовал кольца Epcos про наши просто забыл. Они дороже в 3-5 раз но они того стоят! Плата составлялась под кольцо 30х19х20. Во время проверки ИБП надо быть осторожным. НЕЛЬЗЯ тыкать землёй осциллографа на выход (точку соединения D-S полевиков). Первый раз можно последовательно блоку питания включить лампу 220в 25-40вт, но сильно нагружать в этом случае его нельзя только ватт на 3-5 макс.

Автор: Сергей Кузнецов (TDA)
Оригинал: www.classd.fromru.com


Похожие записи

Простой лабораторный инвертор для индукционного нагрева. Часть 1.

Кухтецкий С.В., [email protected]

В статье подробно описана схема, конструкция и приведены советы по изготовлению лабораторного инвертора, предназначенного для индукционного нагрева и плавки. Инвертор может быть легко интегрирован в существующее оборудование лабораторных установок (трубчатые печи, прогреваемые трубопроводы, нагрев электропроводных тиглей и т.п.). Он может также использоваться автономно для закалки и плавки (в том числе — во взвешенном состоянии) небольших образцов металлов и сплавов (несколько грамм). Мощность инвертора регулируется от 0 до 2 кВт, диапазон рабочих частот – от 60 кГц до 300 кГц, питание – от сети 220В.
 

Введение

Инверторами называют устройства, обратные выпрямителям, т.е. — преобразователи постоянного напряжения в переменное. Обычно термин «инвертор» используется более узко: генератор переменного напряжения, используемый в качестве источника питания. Выходное напряжение инвертора может быть как промышленной частоты (50 Гц), так и повышенной (десятки, сотни кГц и выше). Одно из важнейших преимуществ источников питания повышенной частоты это резкое уменьшение массогабаритных параметров трансформаторов. Другой положительный момент связан с тем, что переключающие силовые элементы инверторов работают в ключевом режиме, т.е. основная часть потерь энергии происходит лишь в моменты переключения. Таким образом, современные быстродействующие полупроводниковые ключи позволяют существенно увеличить кпд преобразователей, приближая его для некоторых конструкций к 100%.

Быстрое развитие и удешевление элементной базы силовой электроники привело к тому, что некоторые классы инверторов прочно заняли свои ниши уже даже в быту. Это мощные импульсные блоки питания современных персональных компьютеров, электронные балласты для люминесцентных ламп, сварочные инверторы и бытовые индукционные электроплитки. Доступность и умеренная цена транзисторных инверторов также могли бы способствовать более широкому их внедрению и в практику физико-химического эксперимента. Вот далеко не полный список возможных приложений инверторов в экспериментальной лаборатории.

  • 1. Источники питания для печей с низкоомными трубчатыми нагревателями.
    2. Источники питания дуговых разрядов (плазмохимические реакторы с дуговым разрядом, электродуговая плавка).
    3. Источники питания высоковольтных неравновесных разрядов (импульсные разряды, высокочастотные коронные и дуговые разряды, барьерные разряды (озонаторы)).
    4. Индукционный нагрев (индукционные печи, закалка, плавка).

К сожалению, приобрести за разумную цену универсальный инвертор мощностью несколько киловатт с регулируемой частотой преобразования до двух-трех сотен килогерц – задача практически неразрешимая. Таких просто нет в продаже по вполне понятным причинам. Во-первых, очень непроста разработка такого универсального инвертора, пригодного к серийному производству. Во-вторых, у таких унифицированных инверторов нет непосредственного применения в быту. Поэтому производителям бытовой техники проще и дешевле использовать специализированные решения для каждого класса задач (сварка, электропитание, балласты и т.д.).

С другой стороны, для исследовательской лаборатории универсальность и гибкость оборудования – обычно один из самых важнейших критериев, часто перевешивающий остальные. Это несколько смещает акценты в сторону универсальных решений. Конечно, в ряде случаев можно попытаться приспособить некоторые бытовые решения для исследовательских задач. Например, можно приобрести и модифицировать готовый сварочный инвертор для питания низковольтной дуги. Это может оказаться дешевле, чем изготавливать инвертор в непрофильной лаборатории. Или можно переоборудовать компьютерный блок питания для получения среднечастотного инвертора на пару сотен ватт. Но грамотное выполнение таких задач потребует от экспериментатора квалификации не меньше, чем изготовление собственного инвертора, а гибкость и универсальность полученного решения будет весьма невелика.

Приведем еще несколько соображений, почему изготовление самодельного лабораторного инвертора может оказаться неплохим решением.

  • 1. Во-первых, «нагрузка» на лабораторный инвертор обычно существенно меньше, чем на бытовые или промышленные образцы. Поэтому лабораторный инвертор может представлять собой скорее макет (прототип), чем промышленный образец, готовый к серийному производству.
    2. Во-вторых, в условиях обычной исследовательской экспериментальной лаборатории нет таких жестких требований к надежности и экономичности устройства, как в промышленности или в быту. Это существенно «облегчает обвязку», связанную с автоматическим контролем функционирования устройства, защитой от внештатных ситуаций и перегрузок. Этот фактор становится еще более весомым, если учесть, что работа с этим оборудованием будет вестись достаточно квалифицированным персоналом.
    3. В-третьих, поскольку речь не идет о серийном выпуске отработанного прототипа, то силовые комплектующие можно взять с большим избыточным «запасом прочности». Одновременно можно упростить и схемотехнические решения, повышающие надежность устройства.
    4. Ну и, наконец, универсальный лабораторный инвертор может (как «конструктор») представлять собой набор отдельных модулей, часть из которых может быть выполнена в виде макетов с навесным монтажом, упрощающих их модификацию, анализ и ремонт. Модернизация и развитие этих модулей («обвязка» защитными и диагностическими цепями, автоматизация защиты и контроля) в условиях ограниченного бюджета может проводиться постепенно, лишь по мере необходимости.

С учетом этих соображений в лаборатории плазмохимии ИХХТ СО РАН был разработан и изготовлен прототип лабораторного инвертора, описанию которого посвящена данная статья. Инвертор может работать в диапазоне частот 60-300 кГц, мощность (для полумоста) – до 2 кВт. Все модули и основные технические детали рассмотрены с детализацией, достаточной для воспроизводства устройства любым квалифицированным экспериментатором, не имеющим специальной подготовки в области силовой электроники. В конце статьи приводятся примеры практического использования макета для нагрева и плавки.
 

Принцип работы полумостового инвертора

Различные варианты инверторов подробно описаны литературе [1, 2]. В данной статье речь пойдет о так называемом двухтактном «полумостовом» инверторе. Блок-схема полумостового инвертора представлена на рис.1.


Рис.1. Блок-схема полумостового инвертора.

Принцип его работы очень прост. Сетевое напряжение выпрямляется и подается на конденсатор C, к которому подключен силовой модуль. Силовой модуль содержит два полупроводниковых ключа (K1 и K2) и конденсаторный делитель (C1 и C2). Нагрузка подключается к общим точкам ключей и конденсаторов делителя. При помощи модуля управления ключи K1 и K2 включаются/выключаются попеременно с заданной частотой, подключая связанный с ними конец нагрузки то к верхней (по схеме), то к нижней шине питания. В результате на нагрузке получается переменное напряжение с амплитудой, равной половине напряжения питания.

Работа такого идеального инвертора, состоящего из идеальных ключей, действительно выглядит довольно просто. Проблемы начинаются тогда, когда мы приступаем к изготовлению реального инвертора из реальных компонентов. Эти проблемы приводят не только к усложнению схемотехнических решений, но и формируют вполне определенные требования к типу используемых компонентов, качеству монтажа, правилам компоновки, запуска и отладки. Без учета большинства этих требований сделать работоспособный инвертор не удается. Дорогие силовые транзисторы будут сгорать либо сразу при включении питания, либо в первые секунды работы.

Рассмотрим вкратце некоторые из этих требований. Более подробно они будут обсуждаться при описании конкретных модулей.

Первое требование — к модулю управления. Оно заключается в том, что работа ключей K1 и K2 должна быть согласованной, т.е. они должны открываться/закрываться попеременно и никогда не должны быть полностью открыты одновременно. Это необходимо для устранения так называемых «сквозных токов», текущих через оба открытых ключа, минуя нагрузку. Обычно это приводит к разрушению ключей. Кроме этого, поскольку реальные ключи имеют конечное (ненулевое) время открытия/закрытия, то открывающие сигналы модуля управления должны подаваться с некоторой задержкой после сигнала закрытия другого ключа. Эти задержки называются «мертвым временем» (dead-time) и должны быть предусмотрены в любом варианте модуля управления.

Другая проблема связана с тем, что все реальные элементы и соединения имеют конечную индуктивность. Поэтому даже при работе на чисто активную нагрузку при закрытии ключей возникают «выбросы» напряжения. Естественно, эти эффекты существенно возрастают при работе на индуктивную нагрузку, которая и нужна для данной задачи. Для решения этой проблемы обычно используют так называемые «возвратные диоды», включенные параллельно ключам. Кроме этого, необходимо выбирать ключи с некоторым запасом по рабочему напряжению (как минимум, вольт на 200).

Еще одна группа проблем связана с паразитными индуктивностями монтажа. Дело в том, что при очень быстром коммутировании больших токов заметные «наводки» появляются даже на очень небольших индуктивностях. С первого взгляда – просто «на пустом месте». Для того, чтобы «почувствовать» эти эффекты, сделаем простую оценку. Пусть мы коммутируем ток ΔJ ~ 10A за время Δt ~ 10нс (10-8 с). Напряжение U, возникающее на индуктивности L, можно оценить как U ~ L ΔJ/Δt. Индуктивность одного дюйма (2.54 см (!)) провода диаметром 1 мм порядка 10 нГн (10-8 Гн). В результате получаем наводку на этом дюйме провода U ~ 10-8*10/10-8 = 10 В (!). Это напряжение сравнимо с напряжением питания микросхем драйверов для управления ключами! Такая наводка вполне может открыть ключ в самый неподходящий момент (например, когда уже открыт второй ключ) со всеми вытекающими печальными последствиями. Поэтому правильная компоновка и монтаж играют особую роль в быстродействующей силовой электронике.

Единого рецепта здесь нет, но нужно придерживаться нескольких простых правил, уменьшающих паразитные индуктивности (либо эффекты от их наличия). Суть этих правил в следующем.

  • 1. Силовые проводники, по которым текут коммутируемые токи, нужно делать как можно короче, прямее и толще. Стараться избегать петель таких проводников.
    2. По-возможности, необходимо разделять силовые и управляющие цепи, а сами силовые элементы располагать как можно ближе друг к другу.
    3. При разводке земляных цепей придерживаться правила «одной точки». Всегда нужно помнить о том, что на любом проводнике, по которому течет большой ток, есть разность потенциалов, которая сопоставима с уровнем управляющих сигналов. Поэтому не стоит, например, заземлять различные элементы управляющих цепей в разных точках земляной шины, по которой течет большой импульсный ток. Это чревато непредсказуемой работой управляющего модуля.

На самом деле все не так уж страшно. Более того, многие разработчики указывают правила монтажа для критических узлов в документации к ним. Главное – не делать грубых ошибок. Тогда можно изготовить, пусть не идеальный, но вполне работающий прибор.
 

Предупреждение об опасности

Цепи выпрямителя и силового модуля находятся под высоким напряжением без гальванической развязки от питающей сети. Поэтому при работе с инвертором нужно соблюдать предельную осторожность. ВСЕ МАНИПУЛЯЦИИ с этими модулями можно проводить ТОЛЬКО ПОСЛЕ ВЫКЛЮЧЕНИЯ ПИТАНИЯ И ПОЛНОГО ОТКЛЮЧЕНИЯ ПРИБОРА ОТ СЕТИ!

Описание макета лабораторного инвертора

Перейдем теперь к описанию отдельных узлов лабораторного инвертора. Начнем с выпрямителя.

Выпрямитель

В данной реализации инвертора это самый простой, но и самый громоздкий узел. Он содержит большой и тяжелый ЛАТР (лабораторный автотрансформатор) для регулирования выходного напряжения выпрямителя и один громоздкий низкочастотный развязывающий трансформатор. Выбор такого решения обусловлен следующими причинами.

  • 1. На стадии первоначального знакомства с силовой электроникой и отладки желательно иметь возможность плавно регулировать постоянное напряжение, подаваемое на ключи. Самый простой способ, доступный практически в любой экспериментальной лаборатории – это ЛАТР.
    2. Если взять за правило начинать и заканчивать работу инвертора при «нулевом» положении ЛАТРа, то можно избежать необходимости создания специальных цепей для первоначальной зарядки больших электролитических конденсаторов фильтра.
    3. ЛАТР обладает большой индуктивностью, поэтому на первых порах можно убрать высокочастотные фильтры по цепи питания.
    4. На стадии знакомства с силовой электроникой возникает много вопросов, ответы на которые проще найти экспериментально, путем осциллографирования сигналов в различных точках схемы. Поскольку силовые узлы инвертора не имеют гальванической развязки с питающей сетью, то на первых порах ее лучше сделать. Хотя бы для процесса отладки, при работе на малых мощностях. Самый эффективный способ – запитать весь инвертор через развязывающий трансформатор подходящей мощности. Естественно, коэффициент трансформации его должен быть близок к единице. Такая развязка желательна также и для дополнительной безопасности самого экспериментатора при отладке инвертора.

С учетом этих соображений первый вариант регулируемого выпрямителя для лабораторного инвертора получается простым. Его схема представлена на рис.2. Выпрямитель не содержит каких-нибудь дефицитных деталей и узлов, надежен и весьма удобен в работе.


Рис.2. Схема выпрямителя.

Рассмотрим некоторые детали реализации выпрямителя. В качестве выключателя и предохранителей можно взять обычный бытовой сдвоенный автомат на 10-16 ампер. Подходящий 8-амперный ЛАТР можно найти в любой экспериментальной лаборатории «со стажем». При отсутствии ЛАТРа на стадии отладки (при работе на малых мощностях – 200-300 Вт) можно использовать электронный аналог ЛАТРа на биполярных транзисторах (см., например, [3]). При больших мощностях придется делать импульсный регулятор, естественно, со всеми вытекающими последствиями. Поэтому на начальных стадиях лучше все-таки приобрести ЛАТР, хотя стоят они сейчас недешево. Как, впрочем, и другие низкочастотные трансформаторы. Это, кстати, еще один аргумент в пользу перевода лабораторного хозяйства на импульсные преобразователи.

Развязывающий трансформатор TR можно заказать отдельно или же сделать из старого ЛАТРа подходящей мощности. В последнем случае, если использовать уже существующую обмотку ЛАТРа в качестве первичной, нужно обратить особое внимание на межвитковую изоляцию. Желательно хорошенько очистить обмотку от угольной пыли и залить лаком дорожку, где изоляция обмотки снята. В качестве развязывающего трансформатора можно также взять пару силовых (или небольших сварочных) трансформаторов, подходящей мощности и включить их встречно. Например, у трансформаторов 220 на 36 вольт соединить 36-вольтовые обмотки, и использовать 220-вольтовые обмотки как обмотки развязывающего трансформатора. После отладки инвертора развязывающий трансформатор желательно убрать (особенно, если он маломощный).

Диодный мост VD1 лучше выбрать с запасом, ампер на 20-30 и рабочим напряжением 1000 В. Например, KBPC3510, KBU25M и т.п.. Их лучше установить на небольшую металлическую пластину в качестве радиатора, хотя при мощности инвертора 1-2 кВт они практически не греются.

Кнопка S3 и резистор R2 предназначены для разряда конденсатора C1 в случае аварии. Например, при выгорании силовых ключей, на этом конденсаторе может остаться высокое напряжение опасное для жизни. В начале работы с силовой электроникой вероятности аварий достаточно велики, поэтому желательно предусмотреть такой разрядник.

Сам конденсатор C1 – электролитический, с рабочим напряжением не менее 400 В. Он может быть составным. В случае последовательного соединения конденсаторов обязательно нужно поставить выравнивающие резисторы на 150-200 кОм, подключенные параллельно каждому конденсатору. Конденсатор C2 – пленочный, с рабочим напряжением не менее 400 В.

И, наконец, 10-амперный измеритель переменного тока на входе инвертора и вольтметр постоянного напряжения на выходе выпрямителя предназначены для контроля полного тока, потребляемого инвертором из сети, и напряжения, подаваемого на полумост силового модуля. Этот контроль особенно актуален при ручной регулировке мощности инвертора. В качестве вольтметра очень удобно использовать недорогой китайский цифровой мультиметр. К сожалению, такие мультиметры не рассчитаны на длительное измерение больших токов (например, 10-амперный режим – не дольше 10 сек с перерывами 15 мин), поэтому в качестве амперметра проще использовать обычный стрелочный амперметр переменного тока.

Никаких особых требований к компоновке выпрямителя нет. Поскольку по цепям выпрямителя текут довольно большие токи (до 10 А в данном инверторе), то монтаж необходимо выполнять короткими и толстыми проводами сечением не менее 1.5 – 2 мм2. Общий вид одного из вариантов выпрямителя представлен на рис.3 (без развязывающего трансформатора).


Рис.3. Общий вид выпрямителя.

Конечно же, в перспективе желательно заменить такой регулятор с громоздким ЛАТРом на подходящий импульсный регулятор. Во-первых, он гораздо компактнее и, во-вторых, он мог бы обеспечить некоторый запас по мощности (до 6-10 кВт). Однако в данном проекте главная цель – получить реально работающий инвертор для физико-химических экспериментов максимально простым способом. Поэтому остановимся на этом варианте, а импульсный регулятор оставим на будущее.

Перейдем теперь к модулю управления.
 

Модуль управления

Естественно, схемотехника модуля управления определяется тем, какими ключами он будет управлять. В данном инверторе в качестве ключей используются мощные полевые транзисторы с изолированным затвором, известные под аббревиатурой MOSFET (Metal Oxide Semiconductor Field Effect Transistor) или по-русски — полевые МОП-транзисторы (Метал-Оксид-Полупроводник). Популярно о таких транзисторах можно почитать, например, в [1]. Однако, для данного раздела достаточно просто представлять MOSFET как некий электронный выключатель, который управляется напряжением на затворе (относительно истока). В открытом состоянии сопротивление между истоком и стоком мало (в зависимости от типа транзистора — от нескольких Ом до сотых долей Ома), а в закрытом – велико (десятки МОм и выше). Для большинства транзисторов напряжение на затворе может изменяться в пределах от -20 до + 20 Вольт. Если напряжение на затворе выше порогового (порог обычно от +2 до +4 В) транзистор открывается, если ниже – закрывается.

Таким образом, для управления ключами мы должны подавать на затворы транзистора положительные импульсы с напряжением 12-18 В. Это должны быть две последовательности импульсов, передаваемые по двум отдельным управляющим шинам, сдвинутые по времени относительно друг друга (рис.4). Как уже отмечалось выше, для устранения сквозных токов должны быть предусмотрены паузы (dead-time).


Рис.4. Диаграммы управляющих импульсов.

Существует множество вариантов таких генераторов управляющих импульсов. В данном проекте применено одно из простейших решений на основе распространенной и недорогой микросхемы IR2153. Эта микросхема представляет собой законченный автоколебательный драйвер полумоста для электронных балластов люминесцентных ламп. Драйвер имеет фиксированную длительность dead-time (1.2 мкс). Максимальное время нарастания и спада импульсов 150 и 100 нс, соответственно. Поэтому максимальная частота управляющих импульсов ограничена значением 300-350 кГц.

К сожалению, мощность выходных каскадов этого драйвера (Io+- = 200 мА/400 мА) не позволяет его использовать непосредственно в качестве драйвера затворов полевых транзисторов нашего инвертора. Причина в том, что затворы мощных MOSFET-ов имеют довольно большую емкость (доходящую до нескольких тысяч пикофарад), т.е. драйверы вынуждены работать на большую емкостную нагрузку. Поэтому драйверы должны выдавать большие токи. Иначе время переключения (и, следовательно, тепловые потери) транзисторов будут велики. Оценим эти токи.

В данном проекте в качестве ключей используются транзисторы IXFh40N50. Производитель декларирует суммарную емкость затвор-исток и затвор-сток Ciss = 5200-5700 пФ. Однако, в действительности реальная (эффективная) емкость затвора гораздо больше. Здесь для оценки нужно брать полный заряд, который необходимо передать затвору для того, чтобы транзистор полностью открылся. Обычно эта величина тоже приводится в datasheet. Для IXFh40N50 Qg(on) ~ 200-300 нКл. Таким образом, для напряжения затвор-исток 10 В получаем Cэфф ~ 20-30 нФ. Это в 4-6 раз больше, чем Ciss! Для того, чтобы время включения транзистора было порядка 100 нс, драйвер должен заряжать емкость затвора током порядка (2-3)*10-7 Кл / 10-7 сек ~ 2-3 A. Такой ток драйвер IR2153 выдать не может. Поэтому в данном проекте IR2153 используется только как задающий генератор, сигналы которого затем будут усиливаться. Схема генератора представлена на рис.5.


Рис.5. Генератор управляющих импульсов на IR2153.

С выводов 5 (LO) и 7 (HO) мы получим сигналы, точно совпадающие с сигналами, представленными на рис.4. Резисторы R3 и R4 и конденсатор C3 определяют частоту генерирования импульсов. Для указанных номиналов при помощи резистора R3 эту частоту можно изменять в пределах приблизительно от 60 до 300 кГц.

Для усиления сигналов генератора управляющих импульсов существует множество схемотехнических решений, как на дискретных элементах, так и специализированные интегральные микросхемы (см., например, [4, 5]). В данном инверторе был применен не самый дешевый, но зато очень простой вариант. Были использованы 6-амперные быстрые драйверы MAX4420. Естественно, вместо этих драйверов можно поставить продукты других производителей или собрать их на комплементарных парах транзисторов (полевых или биполярных). Главное условие – они должны быть быстродействующими (фронты и спады – до сотни наносекунд) и обеспечивать токи несколько ампер. Однако проще и экономичнее – готовые интегральные драйверы. Схема включения драйверов MAX4420 показана на рис.6.


Рис.6. Фрагмент модуля управления.

С выходов L и H мы получим усиленные управляющие импульсы, по форме совпадающие с сигналами на рис.4.

Теперь осталось рассмотреть очень важный и непростой вопрос — согласование уровней управляющих сигналов. Поскольку в основу силового модуля у нас положен полумост, то возникает известная проблема управления верхним плечом полумоста. Нам необходимо, чтобы драйвер верхнего плеча выдавал управляющие импульсы не относительно земли (как на рис.6), а относительно уровня истока верхнего транзистора (т.е. US1, рис.7). Это уровень может изменяться в течение рабочего цикла приблизительно от 0 (нижний ключ открыт, верхний закрыт) до напряжения питания (нижний ключ закрыт, верхний открыт).


Рис.7. К согласованию уровней управляющих импульсов полумоста.

Существуют несколько схемотехнических решений для сдвига уровня сигнала верхнего плеча. Они делятся на два класса: с гальванической развязкой и без. К первому классу относятся системы с оптической развязкой и на импульсных трансформаторах. Ко второму классу относятся, в частности, бутстрепные (bootstrap) схемы. Не вдаваясь в детали, отметим, что бутстрепные схемы удобны при реализации хорошо отлаженных решений. Однако на стадии освоения силовой электроники они доставляют немало огорчений. Из-за отсутствия гальванической развязки при тепловом пробое силовых транзисторов часто выгорает также и весь модуль управления (вплоть до задающего генератора). Поэтому в данной работе использован вариант с гальванической развязкой в виде импульсного трансформатора. На частотах десятки-сотни килогерц изготовление импульсных трансформаторов на ферритовом кольце не представляет никаких трудностей. При наличии осциллографа нет проблем ни с корректировкой количества витков, ни с подгонкой параметров снабберов, гасящих паразитные выбросы и осцилляции. Полная схема модуля управления с трансформаторной развязкой представлена на рис.8.


Рис.8. Полная схема модуля управления с трансформаторной развязкой.

Поскольку драйверы MAX4420 работают на индуктивную нагрузку, на их выходы нужно поставить диоды VD6-VD9. Можно использовать любые быстрые диоды SF, HER, UF и т.п. Снаббер C7-R5 предназначен для подавления выбросов напряжения при работе на индуктивную нагрузку. Кроме этого, C7 удаляет постоянную составляющую.

Импульсный трансформатор можно рассчитать, а можно просто подобрать экспериментально по качеству сигналов на нагрузке, моделирующей затворы MOSFET. При подборе количества витков можно руководствоваться простым правилом: количество витков должно быть максимально возможным, но при этом сердечник трансформатора не должен уходить в насыщение. При слишком малом количестве витков импульсы на вторичных обмотках имеют спадающий характер (т.е. у прямоугольных импульсов нет «полочки»), при слишком большом – наоборот. Сердечник насыщается, магнитная проницаемость падает и всплески получаются в конце импульсов. Во всем рабочем диапазоне импульсы должны иметь плоские вершины. Параметры трансформатора, использованного в данном инверторе, указаны на схеме. Размеры сердечника несколько избыточны, но для данной конструкции это не важно. Мотать обмотки лучше сразу в три провода, параллельно или перевив их, равномерно распределяя витки по сердечнику. На рис.9 представлен вид модуля управления, собранного на макетной плате.


Рис.9. Общий вид макета модуля управления.

Особых требований к монтажу здесь нет, кроме обычных правил для импульсных схем. Нужно стараться располагать компоненты поближе к друг другу, соединительные провода должны быть покороче и попрямее. Конденсаторы C4, C5 и C6 необходимо располагать непосредственно у корпусов соответствующих микросхем у ножек питания. В данном инверторе модуль управления неплохо работает и просто на макетной плате (как на рис.9).

Питание модуля управления осуществляется от единого нестабилизированного источника постоянного напряжения (20В, 8А), представляющего собой накальный трансформатор, выпрямительный мост и электролитический конденсатор на 1000 мкф в качестве фильтра. Для получения стабилизированных напряжений 12В и 15В используются микросхемы стабилизаторов LM7812 и LM7815, включенных согласно datasheet. В принципе, драйвер IR2153 содержит внутри стабилитрон, поэтому его можно просто запитать через резистор от тех же стабилизированных 15В. Но для повышения помехоустойчивости лучше его запитать через отдельный стабилизатор. От этого же общего нестабилизированного источника питается и вентилятор силового модуля (через еще одну LM7812 с небольшим радиатором). На рис.9 эти стабилизаторы находятся в левой части платы.

На рис.10 представлена осциллограмма сигнала на выходе блока управления (на конденсаторах Cэфф = 3300 пФ, на щупе осциллографа – делитель 1:10).

Рис.10. Осциллограммы управляющих сигналов на эквивалентах затворов (нижнее плечо слева и верхнее — справа).

Фронты и спады на емкостную нагрузку порядка 130-160 нс, «полочки» хорошо выражены, выбросы не превышают 0.5В. Необходимо учесть, что эффективная емкость реальных транзисторов гораздо больше (как правило, в 4 и более раз), поэтому при работе на реальные затворы фронты будут положе.

Подобная форма импульсов и длительности переходов сохраняются во всем рабочем диапазоне 60-300 кГц (см. рис.11). На этом рисунке представлены осциллограммы на границах диапазона. Видно, что спад вершины импульса при низких частотах (правая осциллограмма) несущественный.

Рис.11. Форма сигналов на высоких (306 кГц) и низких (62 кГц) частотах.

В заключение этого раздела отметим еще один положительный момент, связанный с применением трансформаторной развязки. Такое включение трансформатора, как на рис.8, превращает наш однополярный драйвер в двухполярный. Т.е. в полупериод, когда транзистор силового модуля должен быть закрыт, на его затвор подается отрицательный импульс (а не ноль, как в однополярном). Для приборов с изолированным затвором это допускается. Подача отрицательного сигнала на затвор позволяет существенно повысить помехоустойчивость силового модуля от наводок, избежать ложных срабатываний (открытий) транзисторов без дополнительных «обвязок» их затворов.
 

Силовой модуль

Как уже отмечалось выше, в данном инверторе силовой модуль представляет собой полумост. Его полная схема представлена на рис.12.

Рис.12. Схема силового модуля.

В качестве ключей использованы транзисторы IXFh40N50 фирмы IXYS. Они почему-то гораздо дешевле аналогичных приборов других производителей. Эти транзисторы рассчитаны на ток до 30 А и рабочее напряжение до 500 В. Сопротивление «исток-сток» в открытом состоянии – 0.16 Ом. Можно было бы поставить и менее мощные транзисторы, но экономия будет несущественной, а запас мощности никогда не помешает. Единственной веской причиной для использования транзисторов попроще было бы уменьшение емкости затвора и заряда, необходимого для открытия транзистора. Но в данной разработке мы используем драйверы достаточно мощные и для этих транзисторов.

В цепях затворов мы используем только резисторы R7 и R8, которые ограничивают токи зарядки емкостей затворов и гасят высокочастотный «звон». В данном варианте силового модуля никаких дополнительных элементов в цепях затворов нет.

Силовые транзисторы шунтированы возвратными диодами VD10 и VD11. В принципе, их можно не ставить, так как используемые транзисторы (IXFh40N50) сами содержат не такие уж плохие внутренние диоды (trr <250 нс). Однако, если работать на повышенных частотах (сотни килогерц), лучше поставить сверхбыстрые диоды. Под рукой оказались MUR860 с trr <60 нс, ток 8 А и напряжение 600 В. Вместо них можно использовать другие сверхбыстрые диоды (например, HER или SF), сопоставимые по параметрам. Можно взять и менее мощные (по току) диоды, но тогда их желательно разместить в зоне обдува радиаторов транзисторов.

Снабберы R9-C8 и R10-C9 также шунтируют ключи. Они служат для подавления выбросов и особенно желательны при работе на индуктивную нагрузку. Резисторы R9 и R10 заметно греются, поэтому их лучше разместить в зоне обдува, либо использовать более мощные резисторы (5 – 10 Вт). Конденсаторы C8 и C9 должны быть рассчитаны на напряжение не менее 600-800 В.

Конденсаторы C10 и C11 тоже должны быть высоковольтными (не менее 400 В) и пленочными. Если они будут монтироваться вне зоны обдува, то лучше их собрать из нескольких (3-4) конденсаторов меньшей емкости, включенных параллельно. В данной работе каждый конденсатор собран из трех по 0.47 мкФ. Их нагрев был незначительным даже без обдува.

Теперь немного о конструкции силового модуля.

Несмотря на то, что мы взяли довольно мощные транзисторы, нагрев их в процессе работы будет все-таки ощутимым. Высоковольтные MOSFET имеют, к сожалению, все-таки достаточно высокое сопротивление открытого канала. Действительно, даже в полностью открытом состоянии на транзисторе будет выделяться порядка 10-16 Вт тепла (0.16 Ом * (10 А)2 = 16 Вт). Плюс еще потери при переключении и еще при повышенных частотах. Поэтому ключи обязательно необходимо размещать на радиаторах. Разумные размеры радиаторов получаются при условии их принудительного обдува. Очень удобно использовать для этой цели кулеры (теплосъемники) мощных компьютерных процессоров. Они содержат радиатор и вентилятор, объединенные в одну конструкцию. В последние годы ассортимент кулеров сильно расширился, и они заметно упали в цене. Цена бывшего в употреблении кулера, даже с медным радиатором и сносно работающим вентилятором, гораздо ниже стоимости большого дюралюминиевого радиатора. Такой кулер и был положен в основу конструкции силового модуля, представленного на рис.13.

Рис.13. Силовой модуль.

Транзисторы VT1 и VT2 размещены на изолирующих прокладках из слюды непосредственно на подошве радиатора. Остальные компоненты припаяны к выводам этих транзисторов и, по сути дела, на них и держатся. Термопара для контроля температуры транзисторов размещена сверху и прижата к медному основанию радиатора тоже через изолирующую прокладку. Прокладка необходима для устранения наводок на термопару, так как радиатор не заземлен и находится под плавающим потенциалом.

Ну вот, по сути дела, и весь инвертор. Осталось соединить все модули вместе и приступить к испытаниям.
 

Первое включение инвертора

Для первого включения необходимо подключить развязывающий трансформатор и небольшую активную нагрузку. В качестве нагрузки возьмем лампу накаливания на 100 Вт. Вид собранного для испытаний инвертора представлен на рис.14.

Рис.14. Готовый к испытаниям инвертор.

Первое испытание инвертора проводим по шагам.

Шаг 1. Еще раз проверяем правильность монтажа и сборки инвертора. Полезно убрать все лишнее со стола.

Шаг 2. Включаем питание блока управления. Только блока управления! Высокое напряжение пока не включаем. Смотрим на экране осциллографа сигналы на затворах ключей. Земляной разъем щупа осциллографа подключаем к истоку соответствующего транзистора. Сигналы должны быть похожи на сигналы, представленные на рис.10. В зависимости от используемых транзисторов и драйверов фронты могут быть более пологие. Обязательно проверяем фазировку сигналов. Для этой цели, конечно, лучше двухлучевой осциллограф, но можно и однолучевым. В последнем случае запуск развертки осциллографа необходимо выполнять от отдельного сигнала синхронизации. В качестве такого сигнала удобно использовать один из выходов IR2153 (см. рис.8). Осторожнее с земляными разъемами щупов! В данном случае мы используем трансформаторную развязку, поэтому земляной разъем щупа в силовом блоке можно спокойно подключать к истокам обоих транзисторов полумоста. В противном случае для сигнала синхронизации нужно сделать развязку. Иначе могут быть большие искры.

Шаг 3. Если шаг 2 пройден успешно, подключаем щупы осциллографа параллельно нагрузке. Проверяем положение ручки ЛАТРа. Она должна быть на нуле! После этого включаем высокое напряжение. ЛАТРом плавно поднимаем напряжение до 15-20 В. Контролируем это напряжение по вольтметру выпрямителя. На экране осциллографа мы должны увидеть импульсы напряжения на нагрузке, симметричные относительно нуля (как на рис.15 слева).
 

Рис.15. Осциллограммы сигналов на активных нагрузках. Высокоомная (лампочка 100 Вт, 40 Ом) слева, низкоомная (лампочка 500 Вт, 8 Ом) справа. Щуп с делителем 1:10.

На самом деле это осциллограммы с шага 5. Но на этом шаге сигналы должны быть точно такие же, только меньшей амплитуды. Я их привел здесь для того, чтобы обсудить их форму. Мы видим медленно спадающие в течение dead-time «хвосты» на высокоомной нагрузке (рис.15 слева). Это связано с тем, что в течении dead-time оба транзистора закрыты. Поэтому чисто активная нагрузка вместе со щупом осциллографа просто, как говорят, «висит в воздухе». При отсутствии нагрузки (бесконечное сопротивление) потенциал средней точки (между ключами) вообще не изменяется в течение dead-time. Поэтому не нужно обращать внимание на эти хвосты. При уменьшении сопротивления нагрузки форма сигнала будет приближаться к классической (с «плечиками» dead-time). Чтобы убедиться в этом можно взять более мощную лампочку с меньшим сопротивлением нити накала или вообще другую нагрузку с сопротивлением 10-20 Ом. Осциллограммы для лампочки на 500 Вт приведены на рис.15 справа. Мы видим, что все работает правильно.

Продолжим работу с лампочкой на 100 Вт.

Шаг 4. Изменяем частоту инвертора от минимума да максимума. Форма импульсов не должна радикально меняться. По крайней мере они должны оставаться симметричными относительно нуля.

Шаг 5. Если на шаге 3-4 все нормально, постепенно увеличиваем напряжение до 100-120 вольт. Спираль лампочки начнет светиться. Первая мощность от инвертора получена! «Погоняем» его так минут 30-40. Температура радиатора не должна заметно уходить от комнатной.

Шаг 6. Если осциллограф не позволяет работать при высоких напряжения, то отключим щуп и плавно выведем напряжение на уровень 300-310 В. Лампочка ярко светится. Следим за температурой радиаторов. Если нагрев существенный – придется все-таки возиться с разрядкой затворов MOSFET. В моих экспериментах в течение часа температура радиаторов превысила комнатную лишь на 2-3 градуса. Не таким уж страшным оказалось наше «недозакрывание» транзисторов. Спокойно работаем дальше. Общий вид инвертора во время этого шага представлен на рис.16.

Рис.16. Общий вид инвертора в процессе испытаний (через час работы на шаге 6).

Шаг 7. Быстро выводим ЛАТР в 0 и быстро выключаем все питание (сначала высокое, затем — питание модуля управления с вентилятором). Внешней стороной пальца проверим температуру резисторов снабберов и конденсаторов делителя (R9, R10 и C10, C11). Они не должны быть горячими. Заодно проверим и радиатор. Так, на всякий случай. Вдруг у термопары – плохой тепловой контакт.

Все. Первые испытания инвертора закончены. Теперь можно переходить к индукционному нагреву.
 

Индукционный нагрев

Индукционный нагрев это технология, связанная с возбуждением вихревых токов в проводящих образцах для их нагрева. В настоящее время индукционный нагрев широко используется в различных отраслях промышленности и даже в быту (например, бытовые индукционные плитки). Однако, в исследовательской лаборатории индукционный нагрев – пока еще экзотика. Может быть лабораторный инвертор, о котором идет речь в данной статье, облегчит внедрение технологий индукционного нагрева в практику физико-химического эксперимента. Мы продемонстрируем замечательные возможности высокочастотных инверторов на одном красивом примере. Это – плавка металла (алюминия) во взвешенном состоянии. Иногда этот процесс называют плавкой в электромагнитном тигле или просто «левитационной плавкой» (с англоязычного термина «levitation melting»). Здесь высокочастотное электромагнитное поле не только греет и плавит металл, но и удерживает его в пространстве без каких-нибудь тиглей или ограничивающих стенок. Для того, чтобы осуществить такую плавку, нам необходимо изготовить водоохлаждаемую нагрузку с индуктором специальной формы и предусмотреть в системе некоторую дополнительную диагностику. Начнем с нагрузки.
 

Нагрузка

Эквивалентная схема нагрузки для индукционного нагрева и плавки представлена на рис.17.


Рис.17. Эквивалентная схема нагрузки для индукционного нагрева.

Трансформатор TR2 изготовлен из двух колец К 45х28х12. Марка феррита М 2000 НМ. Первичная обмотка – 26 витков провода МГТФ 0.75. Эта обмотка подсоединяется непосредственно к выходу инвертора. Роль вторичной обмотки, состоящей из одного витка, выполняет одна из отводных трубок индуктора (медь, диаметр 6 мм), проходящая через центр кольца трансформатора. Индуктор представляет собой катушку, содержащую несколько витков (медная трубка диаметром 4 мм). Индуктор вместе с конденсатором C образует последовательный колебательный контур, на резонансную частоту которого должен быть настроен инвертор. Нагреваемый образец, помещенный в индуктор на эквивалентной схеме можно представить как активное сопротивление, индуктивно связанное с индуктором.

Конструкция собранной нагрузки со специальным индуктором для плавки во взвешенном состоянии показана на рис.18 слева.

Рис.18. Общий вид нагрузки и дополнительной диагностики.

Поскольку данная статья посвящена, в основном, инвертору, а не тонкостям индукционного нагрева, отметим только самые важные моменты, касающиеся конструкции нагрузки.

Во-первых, в нашем колебательном контуре проходят весьма большие токи (сотни ампер). Поэтому медные трубки, образующие индуктор и подводы к нему, при больших мощностях довольно сильно нагреваются. Их нужно обязательно охлаждать. Проще всего использовать водяное охлаждение непосредственно из водопровода. Поскольку в контуре имеется высокое напряжение, необходимо предусмотреть электрическую развязку индуктора от водопровода. Для этого подвод воды делаем тонкими длинными диэлектрическими трубами. Длина этих труб зависит от проводимости водопроводной воды. Проводимость воды в лаборатории автора составляет величину порядка 100 мкСм/см, поэтому развязка в виде трубок диаметром около 6 мм и длиной 5-6 м имеет достаточное для электрической развязки сопротивление (около 50 Мом). Желательно также контролировать и температуру охлаждающей воды. Это легко сделать при помощи металлической вставки в сливной тракт. К ней можно прикрепить термопару, подключенную к недорогому китайскому тестеру, в котором есть режим измерения температуры (рис. 18 в левом верхнем углу). Очень удобно — сразу видно, если забыл включить воду для охлаждения.

Во-вторых, конденсатор C колебательного контура должен быть рассчитан на довольно большую реактивную мощность. Необходимо использовать либо специальные конденсаторы для индукционного нагрева, либо набирать батарею из достаточно большого количества пленочных конденсатором меньшей емкости, включенных параллельно. В данном контуре конденсаторная батарея содержит 40 полипропиленовых высоковольтных конденсаторов CBB81. Емкость каждого конденсатора — 0.033 мкФ, рабочее напряжение 2 кВ. Общая емкость батареи – 1.32 мкФ. Тангенс угла потерь их составляет 0.0008. Поэтому на каждом конденсаторе выделяются в виде тепла лишь десятые доли ватта. Конденсаторы смонтированы свободно и хорошо охлаждаются конвективными потоками воздуха. Поэтому, даже после получаса работы на максимальной мощности они нагреваются незначительно (на 10-20 градусов).

И, в-третьих. Для устойчивой левитационной плавки, конструкция катушки индуктора должна иметь специальную форму. В данном случае индуктор выполнен из медной трубки диаметром 4 мм в виде конуса. Угол между образующей и горизонталью равен 65°. Индуктор содержит четыре витка в прямом направлении и один – в обратном (противовиток). Это нужно для того, чтобы внутри индуктора была область, в которой поле меньше, чем вокруг нее. Проводник, помещенный в переменное электромагнитное поле, выталкивается в область меньших полей. Поэтому без области с минимальным полем положение образца внутри индуктора будет неустойчивым. Для левитационной плавки небольших образцов коническая конструкция индуктора с противовитком – одна из самых простых, но эффективных. Подробнее о плавке во взвешенном состоянии и сравнительный анализ различных конструкций индукторов см. в [5, 6].
 

Дополнительная диагностика

Для «ручной» настройки инвертора на резонанс при работе с резонансной нагрузкой и оптимизации процесса нагрева полезно добавить к установке еще пару измерителей, связанных с током, потребляемым нагрузкой.

Первый измеритель предназначен для контроля среднеквадратичного тока. Это трансформатор тока с двухполупериодным выпрямителем. Первичная обмотка представлена проводом, идущим от инвертора к нагрузке и проходящим через центр небольшого ферритового кольца. На этом кольце намотана вторичная обмотка (20 – 30 витков провода с выводом от середины обмотки). Далее при помощи двух диодов сигнал выпрямляется, фильтруется и измеряется при помощи обычного китайского мультиметра.

Второй измеритель также представляет собой трансформатор тока, идущего в нагрузку, но служит для контроля осциллограммы сигнала. Он устроен практически так же, как и в предыдущем случае, но вторичная обмотка не содержит вывода из центра и нагружена на резистор в несколько сотен Ом. С этого резистора сигнал подается на осциллограф. Очень удобно при настройке на резонанс и контроле нештатных ситуаций.
 

Проверка работоспособности установки индукционного нагрева

Включаем воду охлаждения и все измерители, необходимые для контроля процесса. Далее, сначала включается питание модуля управления и вентилятора, а затем – источник высокого напряжения (выпрямитель). Плавно при помощи ЛАТРа увеличиваем напряжение до 30-50 В. Затем, медленно изменяя частоту инвертора (резистор R3 на рис. 8), пытаемся настроить инвертор на резонанс. Резонанс настраиваем по максимуму тока, потребляемого нагрузкой, контролируя его амплитуду по осциллографу. После настройки на резонанс увеличиваем при помощи ЛАТРа напряжения на силовом модуле до нужного уровня. Установка для индукционного нагрева готова к работе.

Выключение производится в обратном порядке. Сбрасываем высокое напряжение (выводим ЛАТР в 0), затем выключаем его. После этого выключается источник питания модуля управления. Дальше – в произвольном порядке.

Настройку на резонанс приходится выполнять не так уж часто. Опыт показал, что при внесении в индуктор небольших ферромагнитных образцов, расстройка контура не приводит к фатальному уменьшению поглощаемой образцом мощности и он греется достаточно хорошо даже без дополнительной подстройки частоты. При работе с немагнитными материалами резонансная частота вообще практически не «уходит».

На рис. 19 и рис. 20 представлены два примера, иллюстрирующие работу инвертора в качестве индукционного нагревателя. Первый вариант – ферромагнетик (просто — ручка надфиля), второй – немагнитный (кусок нержавеющей трубки). По ссылкам ниже можно загрузить видео, показывающие весь процесс. Ни в том, ни в другом случае никакой дополнительной подстройки частоты не производилось.


Рис.19. Нагрев ферромагнитного материала.


Рис.20. Нагрев немагнитного материала.

При помощи пирометра ПД-4-02 была оценена температура графитового образца, помещенного в индуктор, на воздухе, без теплоизоляции. При максимальной мощности она была около 1300-1350°С. Так что для небольших трубчатых печей с графитовым нагревателем наш инвертор вполне подходит. Перейдем теперь к плавке.

 

Левитационная плавка

Плавка во взвешенном состоянии – довольно увлекательное занятие. В качестве образца для плавки выбран кусочек алюминия весом 2.6 гр. Отдельные кадры, иллюстрирующие процесс плавки, приведены на рис.21. Полное видео плавки можно загрузить по ссылке ниже.

Рис.21. Процесс плавки во взвешенном состоянии.

Во взвешенном состоянии образец может находиться неограниченно долго. Положение его довольно устойчивое. Оценка температуры верхушки образца (в расплавленном состоянии при максимальной мощности) была сделана тем же пирометром ПД-4-02 без поправки на излучательную способность перегретого алюминия. Она равна 1150-1200°С.
 

Заключение и выводы

Двухнедельная работа с описанным в данной статье лабораторным инвертором показала, что эта конструкция вполне может «трудиться» в исследовательской лаборатории в качестве устройства для индукционного нагрева и плавки. За это время было расплавлено более полусотни образцов алюминия, около десятка образцов стали и несколько образцов меди. Большинство плавок алюминия были выполнены во взвешенном состоянии. Масса образцов 2-3 гр. Масса стальных и медных образцов тоже составляла несколько грамм. Плавки проводились как в графитовых тиглях, так и без них.

Инвертор работал стабильно. Во всех этих экспериментах не случилось никаких нештатных или аварийных ситуаций. Никаких перегревов или взрывов транзисторов и других компонентов также не произошло. По сути дела, работа с инвертором ничем не отличалась от работы с любым другим несложным лабораторным прибором.

Так что можно считать, что цель создания простого лабораторного инвертора для индукционного нагрева и плавки небольших образцов металлов достигнута.

Естественно, в процессе разработки и практической работы с инвертором накопился список необходимых модернизаций и улучшений, которые желательно провести в ближайшем будущем. Первые в очереди из них перечислены ниже.

  • 1. Выпрямитель. Хотелось бы убрать громоздкий регулятор напряжения на ЛАТРе и поставить что-нибудь более современное, компактное и главное – с запасом по мощности.
    2. Модуль управления. Желательно удешевить «оконечники» (усилители) и выбрать более доступные компоненты. В принципе, здесь ничего сложного нет. Нужно просто проанализировать существующие в большом количестве решения и выбрать наилучшее.
    3. Трансформаторные развязки. В данной конструкции мы использовали самые простые решения. Мы «заплатили» за эту простоту качеством сигналов и сравнительно пологими фронтами импульсов. В принципе, работать можно, транзисторы греются приемлемо. Однако, лучше поработать в этом направлении дополнительно.
    4. Силовой модуль. Желательно увеличить мощность инвертора до 4-5 кВт. В принципе, можно увеличить мощность в два раза, практически ничего не меняя в схемотехнике. Для этого достаточно перейти с полумоста на полный мост. Добавится еще один кулер с парой транзисторов с «обвязкой» и пара дополнительных обмоток на импульсном трансформаторе блока управления.

Поскольку лабораторный инвертор имеет модульную структуру, то все эти модификации легко делать параллельно, не выводя инвертор надолго из работы. Возможно, в результате этих модификаций удастся создать действительно «бюджетный» вариант лабораторного инвертора. Это способствовало бы более широкому внедрению технологий индукционного нагрева в лабораторную практику.
 

Литература

 

  1. Семенов Б.Ю. Силовая электроника: от простого к сложному. – М.: СОЛОН-Пресс, 2005. – 416 с.
  2. Мелешин В.И. Транзисторная преобразовательная техника. М. Техносфера, 2005. – 632 с.
  3. Шандренко Д.А. Транзисторный регулятор напряжения.
    http://electroscheme.org/2007/08/13/tranzistornyjj_reguljator_naprjazhenija.html
    или
    http://www.radiolub.orsk.info/Shems/Shems2/tr_reg.htm
  4. Design Tips DT92-2A: High Current Buffer for Control IC’s.
    http://www.irf.com/technical-info/designtp/dt92-2.pdf
    См. русский перевод: Мощный буфер тока для управления затворами МОП-транзисторов
    http://vcoder.flyback.org.ru/electronics/power_buffer/Power%20buffer.pdf
  5. Фогель А.А. Индукционный метод удержания жидких металлов во взвешенном состоянии. Л. Машиностроение, 1979. – 104 с.
  6. Глебовский В.Г., Бурцев В.Т. Плавка металлов и сплавов во взвешенном состоянии. М. Металлургия, 1974. – 176 с.

Благодарности

Работа выполнена при частичной финансовой поддержке ОХНМ РАН (проект №5.5.3) и ГК № 02.740.11.0269.
 

Приложение

 


Рис.22. Общая схема инвертора.

Задающие генераторы импульсных блоков питания

ЗАДАЮЩИЕ ГЕНЕРАТОРЫ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ

В. КОЗЕЛЬСКИЙ, г. Луховицы Московской обл.

http://www.radiolub.orsk.info/IBP/zad_generat.htm

При проектировании двухтактных импульсных преобразователей напряжения необходимо принять меры по предотвращению сквозного тока через коммутирующие транзисторы. Обеспечить нормальную работу преобразователей можно, если сформировать для управления транзисторами сигнал специальной формы (отличной от меандра).



При конструировании импульсных блоков питания (ИБП), работающих на повышенной частоте, основное внимание уделяют обеспечению их надежности и высокого КПД. Именно этими качествами обладают двухтактные ИБП [1]. Однако без принятия специальных мер по устранению сквозного тока добиться устойчивой работы блоков с приемлемым КПД (80 %) невозможно.

Сквозной ток в двухтактных ИБП возникает из-за конечного (ненулевого) времени выключения коммутирующих транзисторов. Дело в том, что время выключения (tвык) большинства мощных транзисторов, применяемых в ИБП, находится в пределах 1,5…8 мкс, а время их включения (tвкл) примерно в десять раз меньше. Это и приводит к тому, что на повышенной частоте форма тока в цепях коллекторов искажается, становится отличной от меандра. В результате увеличивается длительность импульсов тока и уменьшается, особенно на спаде, их крутизна.

На рис. 1 представлена форма тока базы транзисторов ИБП (диаграммы а и б) и их коллектора (в и г). Из диаграмм видно, что за время уменьшения тока IК1 увеличивается ток IK2, что как раз и приводит к возникновению сквозного тока. На диаграммах в и г штриховой линией показан сквозной ток на фронтах и спадах импульсов тока коллекторов коммутирующих транзисторов.

Радикальный метод устранения сквозного тока — формирование в задающих генераторах (ЗГ) импульсов, отличающихся от меандра и имеющих паузы (tп), длительность которых в первом приближении равна tп = tвык — tвкл. Однако на практике время включения и выключения даже у двух одинаковых транзисторов различно. Зависит оно от напряжения первичного источника питания, температуры переходов, тока коллектора и т. д. Поэтому длительность паузы должна быть больше указанной величины, а лучше — регулируемой.

Цель настоящей статьи — предложить наиболее простые способы формирования импульсов в ЗГ, пригодных для управления ИБП. В ней приведены схемы ЗГ различной сложности, обеспечивающих как фиксированную, так и регулируемую длительность паузы.

Устройство, схема которого показана на рис. 2, позволяет сформировать импульсную последовательность с регулируемой паузой. Тактовый генератор собран на элементах DD1.1-DD1.3. Он вырабатывает импульсы — меандр удвоенной частоты по сравнению с частотой переключения коммутирующих транзисторов (рис. 3, диаграмма а). Дифференцирующая цепь C2R2 формирует короткие запускающие импульсы высокого уровня, которые управляют работой формирователя длительности пауз на элементах DD2.1, DD2.2 (рис.3, диаграмма б).
С выхода формирователя импульсы поступают на входы элементов DD2.3, DD2.4 и триггера DD3.1, которые выполняют функцию распределителя импульсов. На выходах ЗГ (диаграммы д, е) формируются импульсные последовательности, сдвинутые друг относительно друга на 180°, с паузой длительностью tп. Частота импульсов на выходе ЗГ в два раза меньше, чем на выходе тактового генератора. Длительность паузы регулируют переменным резистором R3.



Иногда для управления ИБП необходимо получить импульсы низкого уровня с паузой. В этом случае в схеме рис. 2 элементы DD2.1, DD2.2 микросхемы К561ЛЕ5 заменяют одним элементом микросхемы К561ЛС2, а вместо элементов DD2.3, DD2.4 включают элементы И-ИЛИ по схеме 2ИЛИ. Для этого лишь необходимо на выводы 9 и 14 микросхемы К561ЛС2 подать напряжение высокого уровня.

Если требуется увеличить мощность импульсов и крутизну их фронтов и спадов, в выходных ступенях ЗГ следует применять микросхемы ТТЛ и ТТЛШ. На рис. 4 приведена схема ЗГ на микросхемах ТТЛШ.



Устройство допускает широтно-импульсное регулирование выходного напряжения ИБП. Узел ШИМ собран на элементах DD2.1, VT1, VT2, R3, С3, R5, R6. Диаграммы напряжения показаны на рис. 5. Здесь: Unop — пороговое напряжение переключения элементов DD1.4 и DD2.1; tпф — фиксированная длительность паузы;
tпp — регулируемая длительность паузы;
tир — регулируемая длительность импульса; tи maх, tи min — максимальная и минимальная длительности импульса. Интервал регулирования длительности импульса — от 0,2 мкс до 18 мкс (при частоте выходных импульсов 25 кГц). Длительность импульсов регулируют изменением напряжения на базе транзистора VT1, который подключает резистор R5 параллельно R6 и тем самым изменяет постоянную времени дифференцирующей цепи C3R6. Резистор R7 обеспечивает гистерезис и предотвращает самовозбуждение элемента DD2.1. На вывод Uynp можно подавать сигнал обратной связи от стабилизатора выходного напряжения ИБП.

При налаживании ЗГ резистором R2 устанавливают длительность паузы, а резистором R5 — минимальную длительность (tn min) формируемых импульсов (диаграмма к).

Следует отметить, что применение ШИМ в ИБП ограничивается тем обстоятельством, что с уменьшением длительности импульсов менее чем tи mах/2 резко снижается КПД ИБП, так как большую часть времени коммутирующие транзисторы находятся в ненасыщенном состоянии. Поэтому применение ИБП с ШИ стабилизацией выходного напряжения ограничено минимальной нагрузкой, обычно не менее 10 % номинальной.

Представляет интерес ЗГ (рис. 6), позволяющий устанавливать длительность паузы без времязадающих дифференцирующих цепей с применением счетчиков К561ИЕ8 (К561ИЕ9).

Длительность паузы можно устанавливать дискретно изменением частоты тактового генератора и коэффициента деления счетчика в пределах, указанных в таблице для частоты выходного сигнала ЗГ 25 кГц. Из таблицы видно, что длительность импульса равна периоду тактового генератора.

В ЗГ использованы микросхемы КМОП, имеющие десятичные счетчики с дешифраторами на выходе, однако это не исключает применение ТТЛ и ТТЛШ микросхем с дешифраторами на выходе. Коэффициент деления изменяют подключением цепи обратной связи (точка е на схеме рис. 6) на вход R счетчика и выхода к распределителю импульсов (точка д) [2]. Частоту тактового генератора регулируют изменением параметров цепи R1C1.


Частота тактового генератора, кГц (период, мкс)

Коэффициент деления

Длительность паузы, мкс

Используемый выход счетчика К561ИЕ8 (вывод)

500 (2)

10

2

0(3)

450 (2,2)

9

2,2

8(9)

400 (2,5)

8

2,5

7(6)

350 (2,9)

7

2,9

6(5)

300 (3,3)

6

3,3

5(1)

250 (4)

5

4

4(10)

200 (5)

4

5

3(7)

150(6,6)

3

6,6

2(4)

100(10)

2

10

1(2)

В остальном устройство не отличается от вышеописанных. Эпюры напряжения в точках схемы приведены на рис. 7 для частоты выходных импульсов ЗГ 25 кГц, длительности паузы 4 мкс при коэффициенте деления 5.

В принципе, во всех рассмотренных ЗГ (кроме ЗГ с дискретно изменяемой длительностью паузы, рис. 6) можно применить ШИ управление введением сигнала обратной связи с выхода ИБП на узел регулирования паузы, предусмотрев соответствующее ограничение минимальной и максимальной длительности импульса.

Для гальванической развязки выходного напряжения ИБП от источника первичного напряжения по цепи обратной связи наиболее удобно и просто использовать компараторы в сочетании с оптронами как наиболее простой и дешевый способ.

Однако применение ШИМ приводит к усложнению фильтра в цепи постоянного тока на выходе, что иногда сводит на «нет» массогабаритные и экономические показатели, особенно при малой мощности ИБП и требовании малого коэффициента пульсации выходного напряжения.

ЛИТЕРАТУРА
1. Колганов А. Импульсный блок питания мощного УМЗЧ. — Радио, 2000, № 2,с.36-38.
2. Бирюков С. А. Применение цифровых микросхем серий ТТЛ и КМОП. — ДМК, 1999.


Автогенераторы в импульсных источниках питания.

© Маврычев Александр. Нижний Новгород.

http://un7ppx.narod.ru/device1/power9.htm
  [email protected]

    Из анализа известных статей В.Козельского и А.Колганова напрашивается вывод, что тема по разработке хороших мощных импульсных источников питания до сих пор является актуальной. Проблема со сквозным током вроде бы окончательно решена. Недостаток рассмотренных схем заключается только в громоздкости конструкции и несколько устаревшей элементной базе. Но выражаю огромную благодарность за аккуратное описание рассматриваемых в этих статьях технических решений.

Предлагаемая конструкция – просто переход на более современную элементную базу. На рис.1 приведена типовая схема полумостового преобразователя напряжения, с одной первичной обмоткой.

 

Цепи входного выпрямителя определяются выходной мощностью преобразователя. При выходной мощности до 100Вт, в качестве диодного моста можно использовать DB107. При увеличении мощности можно использовать мосты типа BR310 и более мощные. Выпрямитель во вторичной обмотке импульсного трансформатора не представляет интереса и поэтому не показан. Его можно выполнить по любой схеме, в зависимости от параметров и характера нагрузки. Подстроечный резистор предназначен для изменения частоты автогенератора в широких пределах.

В качестве автогенератора используется одна микросхема, типа IR2153 (можно использовать практически любую из целого ряда микросхем: IR2151, IR2152, IR2155, IR21531). Если найдете, то желательно с индексом “D” в конце названия. Типовая схема включения показана на рис.2.

Автогенератор IR2153 имеет внешнее регулирование частоты, фиксированную паузу на 1,2мкс, миниатюрный DIP-8 и SOIC корпус. Схемно заложенной фиксированной паузы на 1,2мкс достаточно при использовании любых современных мощных MOSFET транзисторов. В автогенераторе встроен стабилитрон на 15,6В, который и стабилизирует напряжение питания, получаемое через мощный токоограничительный резистор от цепи основного питания. Для питания цепи управления верхнего ключа, используется внешний высоковольтный, быстрый диод. В IR2153D этот диод встроен в микросхему.

В качестве выходных ключей необходимо использовать мощные MOSFET транзисторы с встроенным диодом защиты, например IRFBC40. При питании от первичной сети ~220В допустимое напряжение сток-исток выбираемого транзистора должно быть не менее 400В. Величина тока выбираемого MOSFET транзистора определяется необходимой мощностью преобразователя. Фактически выходная мощность определяется только применяемыми выходными транзисторами. Если посмотреть каталог фирмы International Rectifier, то видно, что выбор MOSFET транзисторов огромен, диапазон токов — от единиц до сотен ампер.

 

Токоограничительные резисторы в цепях затвора предназначены для ограничения выходного тока управления при перезаряде входной емкости MOSFET транзисторов. При выходной мощности более 50Вт, все мощные MOSFET транзисторы, конечно же, необходимо устанавливать на радиаторы.

Рабочая частота автогенератора задается одной RC-цепью. Рекомендуется использовать резистор номиналом не менее 5..10 кОм. Частота генерации определяется формулой 1.

Особое внимание необходимо уделить аккуратной трассировке управляющих и силовых цепей MOSFET транзисторов. Особенности расположения элементов около микросхемы и трассировки земли показаны на рис.3.

При сборке платы необходимо обеспечить электростатическую защиту MOSFET транзисторов. Запаивать в плату их надо в последнюю очередь.

Выбор рабочей частоты и расчет выходного трансформатора достаточно подробно приведен в различной литературе.

Выбранная для примера микросхема IR2153, конечно же не является последним словом техники. Кто хочет в широком диапазоне регулировать время паузы между импульсами, могут поработать с такими автогенераторами, как R2156 или IR21571.

 

 

Литература:

1. ЗАДАЮЩИЕ ГЕНЕРАТОРЫ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ, В. КОЗЕЛЬСКИЙ, г. Луховицы Московской обл.
2. Импульсный блок питания мощного УМЗЧ, Радио» N2 2000 А. КОЛГАНОВ, г. Калуга

Полумостовой ИБП

http://electronix.ru/forum/index.php?showtopic=29442

Р
ассчитываю трансформатор для классического полумоста на полевых транзисторах. Использую драйвер ir2153. Схематично изображено здесь:

Частота f=60000 Гц, мощность трансформатора 55W. Выходное напряжение в районе 950 В действующего значения. Нагрузка имеет чисто резистивный характер и может быть любя из диапазона от 16кОм до 110 кОм.
Сердечник выбран: EFD30/15/9, N87 все от EPCOS.

Расчет начинаю с определения числа витков первичной обмотки (w1). Кладу Bmax=0.130Т, U1=150В.

w1 = U1m/(4*q*Bmax*S*f), здесь q = T/(2tи), где tи = T – 2*dtime = T – 2*0.6мкс. (dtime – мертвое время в ir21531). Получаю w1 = 64 витка.

Далее рассчитываю количество витков во вторичной обмотки: w2 = U2/(4*sqrt(q)*Bmax*S*f), здесь U2=950В. В итоге получаю w2 = 422 витка.

Дальше пытаюсь выбрать необходимый зазор. Вот здесь у меня возникают вопрос, а правильно ли я это делаю?

Возьмем максимальный ток текущий через первичную обмотку равным Imax1 = P/150В = 55/150 = 0.366 ~=0.4А (с запасом).

Подсчитаем, а чему будет равна магнитная индукция, если я выберу набор ферритов от EPCOS с зазором 0.27 мм. Использую эту формулу B = мю0 * мюe * Imax1*w1/L, здесь из datasheet на EFD30/15/9 для феррита N87 с зазором 0.27 мюe = 256, L = 68 мм (длина средней линии). Подставляем и получаем что B будет равно 0.121 Т . Ура! Сердечник не войдет в насыщение. Более того, даже если я залажусь на ток равный Imax1 = 1А – индукция не превзойдет 300мТ.

Но на практике у меня получается что при линейном уменьшении нагрузки и ее приближении к 20 кОм я наблюдаю далеко не линейное увеличение тока через первичную обмотку. Как следствие перегрев транзисторов и трансформатора.

Вопрос: Правильно ли я все рассчитал? Скажу сразу, что большого опыта в расчете трансформаторов нет, так что нуждаюсь в вашей помощи.

Если я все правильно понимаю, то:
Когда нет зазора, эффективная магнитная проницаемость мю_e равна 1610 (взята из описания EFD30).
Далее. Предположим, что для нас максимально возможным значением магнитной индукции является значение равное Bmax = 300мТ. Если магнитная индукция превысет данный порог, то считаем, что наш трансформатор вошел в насыщение. Далее смотрим какой ток должен теч через первичную обмотку* , чтобы магнитная индукция стала равной 300мТ, при заданной мю_e равной 1610.
Imax = Bmax*L/(мю0*мю_e*w1), получаем Imax = 0.157 А. То есть если ток больше 0.157, то трансформатор перестает быть трансформатором (насыщение).

То есть, наш трансформатор может максимум отдать 20W, а не 55W.

* Возможно я здесь ошибаюсь и рассчитывать по этой формуле необходимо максимальный ток намагничивания, а не максимальный ток в первичной обмотке.

Опять вопрос к знатокам. Правильно ли я рассчитываю зазор в трансформаторе? Очень нужна ваша помощь.

Зазор в трансформаторе для прямоходовых преобразователей вообще не нужен и даже вреден, т.2)/L = 8.4 мГ.
Ток на холостом ходу (ток намагничивания) Iмаг = U1*dt/L0 = 0.148А, здесь dt — длина импульса равная около 8мкс.
Как я понял, ток намагничивания не зависит от тока нагрузки — найдем чему будет равна магнитная индукция при данном токе намагничивания — B = (Iмаг*w1*мю*мю_e*)/L = (мю_e=1610) = 0.281 мТ. — многовато однако — большие потери в сердечнике будут при частоте 60кГц.

Что это за магнитная индукция, которую мы используем в самом начале при рассчете количества витков?

В самом начале Вы ошиблись в количестве витков ровно в 2 раза — «четвёрка» в знаменателе уже учитывает, что к первичной обмотке трансформатора прикладывается половина напряжения питания, а Вы его ещё поделили на 2. В итоге, после всех этих сложных вычислений через «мю» должно было бы получиться 0,26 Т, т.е. ровно в 2 раза больше исходного значения.

В самом начале всё верно. Используется широко известная формула
U=w*S*dB/dt
и предполагается, что за время одного полупериода (точнее, за время T/2 — dtime) индукция меняется от -Bmax до +Bmax.2/2=50 мкДж. B каждом периоде эту энергию надо закачать дважды: чтоб зарядить емкость, а потом чтоб разрядить. При частоте 60 кГц мощность нужна P=E*2*f=6 Вт.

Когда вы вводите зазор в сердечник, то увеличиваете индуктивность рассеяния. Индуктивность рассеяния вместе с емкостью вторички образуют последовательный колебательный контур, настроенный на какую-то частоту. При увеличении индуктивности рассеяния резонансная этого контура снижается и становится ближе к собственной частоте преобразователя 60 кГц. Из-за этого несколько бОльшая часть энергии, запасенной в паразитной емкости вторички, будет рекуперирована, поэтому потери уменьшаются, транс греется меньше.

Такого же эффекта можно добиться, если влючить последовательно с первичкой дроссель. Индуктивность дросселя можно подобрать, чтобы частота контура была близка к частоте преобразователя, при этом потери будут минимальны.

На осциллограммах хорошо видна колебательная природа процессов, особенно при малой нагрузке. Видно, что фронт переключения работает против колебательного контура. Была бы частота у контура поменьше, тогда фронт пришелся бы не на пик, а на провал.

Зазор в таком трансе вообще говоря не нужен, разве что как подстраховка от насыщения при «жестком» старте. Почитайте статью ТРАНСФОРМАТОРЫ И ДРОССЕЛИ ДЛЯ ИМПУЛЬСНЫХ ИСТОЧНИКОВ ПИТАНИЯ, там все расписано, и примеры расчета есть.

http://members.kern.com.au/users/akouz/chokes.html

СПЕЦИАЛИЗИРОВАННЫЕ МИКРОСХЕМЫ

ДЛЯ ЭЛЕКТРОННЫХ БАЛЛАСТОВ

Поляков В.Д., Барышников А.Н.

Бурное развитие энергосберегающих технологий в светотехнической промышленности сопровождается появлением и широким внедрением интегральных схем (ИС), предназначенных для управления электронными балластами газоразрядных осветительных ламп [1-8]. Ведущие позиции в области создания специализиро-ванных ИС для управления электронными балластами занимают фирмы Internatinal Rectifier, ST Microelectronics (SGS-THOMPSON Microelectronics) и Motorola. Данная статья является аналитическим обзором и посвящена вопросам использования высоковольтных ИС этих фирм для управления электронным балластом люминесцентных ламп, выполненным на базе полумостового инвертора на МОП-транзисторах. Особенностью этих ИС является наличие интегрированного выходного драйвера плавающего уровня с максимальным рабочим напряжением 600В.

ИС серий IR215*(Internatinal Rectifier), МС2151 (Motorola), L6569, L6571 (SGS-THOMPSON Microelectronics), а также микросхемы с интегрированными силовыми транзисторами IR51H*** (Internatinal Rectifier), в силу своих привлекательных качеств, а именно, стабильности характеристик, низкого потребления, отсутствия необходимости в специальном источнике с потенциальной развязкой по цепям управления нижнего и верхнего силовых МОП-транзисторов, а также возможности управления частотой, находят растущий интерес у отечественных разработчиков и производителей электронных пускорегулирующих аппаратов для люминесцентных ламп. Имеются сведения о работах по созданию отечественных аналогов этих популярных микросхем, что позволяет надеяться на их появление в недалеком будущем. Наиболее широко представлены на российском рынке упомянутые выше изделия Internatinal Rectifier. Между тем, Internatinal Rectifier, Motorola и ST Microelectronics практически одновременно заявили о своих новых контроллерах IR2157, MC33157DW и L6574, обладающих расширенными функциональными возможностями [9-11].

Микросхемы IR215*, L6569, L6571 и МС2151 выпускаются в корпусах DIP8 и SO8 (для поверхностного монтажа), имеют сходную структуру и функциональное совпадение по выводам. Блок схема наиболее популярной микросхемы IR2155 приведена на рис.1. Общим для ИС является наличие генератора на базе популярного таймера серии 555 и двух выходных каналов для управления МОП-транзисторами. Один из каналов привязан к общей шине. Второй плавает, обеспечивая работу для стороны высокого напряжения ключа. ИС имеют защиту от сквозных токов за счет временной задержки (1,2 мкс) по каналам управления транзисторов обоих плеч полумоста, узел стабилизации напряжения питания микросхемы и защиту от снижения питающего напряжения.

Рис. 1. Блок схема ИС IR2155.

Т
иповое подсоединение ИС в полумостовом инверторе приведено на рис.2. Питание микросхем (вывод VСС) осуществляется от силовой цепи через балластный резистор. Частота работы устанавливается путем подключения к выводам RT , CT и СОМ времязадающих резистора и конденсатора. Питание драйвера верхнего уровня (выводы VB и VS), находящегося под плавающим потенциалом, производится от конденсатора, который заряжается через bootstrap-диод от цепи VСС при включении нижнего силового МОП-транзистора. В ИС L6569 bootstrap-диод интегрирован в структуру микросхемы [3].

Рис. 2. Типовое включение ИС драйвера в полумостовом инверторе.

TB2904HQ — усилитель звуковой частоты | Микросхема

Приведенный усилитель звуковой частоты публикуется по просьбе посетителя DRONvs15. Вот текст:

Не знаю с чего начать. Наверно с того, что у меня в наличии есть четыре микросхемы TOSHIBA TB2904HQ. Имея небольшой опыт в сборке усилителей звуковой частоты, я приблизительно знаю о их цене и параметрам. Но поскольку автомагнитолы (неворованые), откуда и были вытащены схемы, были достаточно повреждены механически, я не могу разобраться в их подключении. Знаю только, куда надо тулить динамики. Пожалуйста, если у вас есть в наличии схемы их подключения или их аналогов, выложите на сайте, а то б/у никто не купит, а дома без дела валяются.

Так вот. Микросхема TB2904HQ представляет собой квадрофонический усилитель звуковой частоты, схема которого приведена ниже.

Некоторые из функциональных блоков могут быть опущены или упрощены. Указанные радиодетали в схеме используются, чтобы получить и подтвердить заявленные производителем характеристики микросхемы TB2904HQ. Наибольшее применение усилитель звуковой частоты нашёл в автомобильных аудиосистемах. Микросхема разработана как 4-х канальный УЗЧ с минимальным уровнем искажений. В неё встроены Mute и StandBy функции, а также различные виды защиты: тепловая, от перенапряжения, от короткого замыкания и т.д. Выходная мощность усилителя звуковой частоты 4×43 Вт при напряжении питания 14.4 вольта и сопротивлении нагрузки 4 Ом. При напряжении питания 13.7 В выходная мощность 39 ватт на канал. Довольно низкий коэффициент гармоник: 0.015% при выходной мощности в 5 ватт. Возможный диапазон напряжения источника питания от 9 до 18 вольт. Ток покоя до 160 мА.

Если хотите подробнее почитать о Muting Function, Standby SW Function, Off-set detection function и прочих фичах, встроенных в TB2904HQ, то скачайте Datasheet.

Скачать Datasheet

Обсуждайте в социальных сетях и микроблогах

Метки: УНЧ

Радиолюбителей интересуют электрические схемы:

LM3875 — усилитель мощности звуковой частоты
TDA1517 — простой усилитель звуковой частоты

IR2153 Распиновка драйвера затвора полевого МОП-транзистора, техническое описание, эквивалент, схема и технические характеристики

IR2153D представляет собой улучшенную версию популярных ИС драйверов затвора IR2155 и IR2151 и включает в себя высоковольтный полумостовой драйвер затвора с входным генератором, аналогичным промышленному стандартному таймеру CMOS 555.

Конфигурация распиновки IR2153D

Номер контакта

Имя контакта

Описание

1

VCC

Напряжение питания логического и внутреннего управления затвором

2

РТ

Вход резистора синхронизации генератора

3

CT

Вход конденсатора синхронизации генератора

4

COM

Питание ИС и сигнальное заземление

5

LO

Выход драйвера затвора нижней стороны

6

VS

Высоковольтный беспотенциальный возврат питания

7

HO

Выход драйвера затвора верхней стороны

8

ВБ

Плавающее питание драйвера затвора на стороне высокого давления

Характеристики и характеристики
  • Интегрированный драйвер затвора полумоста 600 В
  • 15.Зажим стабилитрона 6 В на Vcc
  • Настоящий микромощный запуск
  • Более жесткий начальный контроль мертвого времени
  • Мертвое время с низким температурным коэффициентом
  • Функция отключения (1/6 Vcc) на выводе CT
  • Повышенный гистерезис блокировки минимального напряжения (1 В)
  • Схема переключения нижнего уровня мощности
  • Постоянная длительность импульса LO, HO при запуске
  • Нижний драйвер затвора di / dt для лучшей помехоустойчивости
  • Выход на стороне низкого давления в фазе с RT
  • Внутренний 50 нс (тип.) начальный диод (IR2153D)
  • Отличная устойчивость к защелкам на всех входах и выходах
  • Защита от электростатического разряда на всех выводах
  • Также доступно БЕСПЛАТНО

Примечание : Полную техническую информацию можно найти в техническом описании IR2153 , приведенном в конце этой страницы.

ИС, эквивалентные IR2153

IR44272, IR44273, IR44252, IR2100, IR2122

Где использовать драйвер затвора полевого МОП-транзистора IR2153

IR2153 — это улучшенная версия популярных микросхем драйвера затвора IR2155 и IR2151.IR2153 предоставляет больше функциональных возможностей и проще в использовании, чем предыдущие микросхемы. В вывод CT встроена функция отключения, так что оба выхода драйвера затвора могут быть отключены с помощью управляющего сигнала низкого напряжения. Кроме того, ширина выходного импульса драйвера затвора остается такой же, как только достигается возрастающий порог блокировки при пониженном напряжении на VCC, что приводит к более стабильному профилю зависимости частоты от времени при запуске. Помехоустойчивость была значительно улучшена как за счет снижения пикового di / dt драйверов затвора, так и за счет увеличения гистерезиса блокировки при пониженном напряжении до 1 В.Наконец, особое внимание было уделено максимальной устойчивости устройства к защелке и обеспечению комплексной защиты от электростатического разряда на всех контактах.

Поскольку эта микросхема представляет собой полумостовой драйвер затвора IC , который можно использовать во многих различных приложениях, таких как источники питания постоянного и переменного тока, инверторы, драйвер двигателя, соленоид, драйверы полевых МОП-транзисторов высокого уровня могут использоваться для распределения питания реле защиты и приложения драйвера двигателя.

Основные характеристики и максимальный рейтинг IR2153 IC

Эта микросхема обладает некоторыми интересными особенностями, которые необходимо знать для работы с этой микросхемой.Напряжение плавающего источника питания высокого уровня составляет максимум 25 В, напряжение смещения плавающего источника питания высокого уровня составляет 3 В, выводы RT и CT составляют VCC + 0,3 В соответственно, а приложенный ток для этой ИС составляет 25 мА. Скорость нарастания для этой ИС составляет 50 В / нс. Максимальная рассеиваемая мощность для этой ИС составляет 1 Вт. Максимальная температура перехода 150 ° C.

На приведенном выше рисунке показана частотная характеристика при использовании различных значений RT и CT в этом устройстве

Как использовать драйвер затвора полевого МОП-транзистора IR2153

Как следует из названия, эта ИС в основном используется для управления затвором полевого МОП-транзистора.Драйвер затвора MOSFET требуется, когда необходимо переключить MOSFET с максимальной эффективностью. На изображении ниже показана базовая схема конфигурации IR2153

.

Приложения
  • Промышленное управление
  • Автоматическое испытательное оборудование (ATE)
  • Блок управления HVAC
  • Медицинское оборудование
  • Интернет вещей

2D Модель и размеры

Если вы разрабатываете печатную плату или плату Perf с этим компонентом, то следующий рисунок из таблицы данных будет полезен, чтобы узнать тип и размеры его корпуса.

IR2153 (D / S) (PbF) Технический паспорт, Infineon Technologies

‘merno ôono ICDR выпрямитель

IR2153 (D) (S) & (PbF)

4www.irf.com

ПРИМЕЧАНИЕ. Для новых разработок мы рекомендуем новый продукт

IR IRS2153D

Характеристики плавающего источника питания

Определение символа Мин. Тип. Максимум. Условия тестирования модулей

IQBSUV Micropower пусковой ток питания VBS — 0 10 VCC ≤ VCCUV-

IQBS Ток питания VBS покоя — 30 50

VBSMIN Минимально необходимое напряжение VBS для надлежащего — 4.0 5,0 В VCC = VCCUV + + 0,1 В

функциональность от RT до HO

ILK Смещение тока утечки питания — — 50 мкАВ

B = VS = 600 В

VFBootstrap диодное прямое напряжение (IR2153D) 0,5 — 1,0 В IF = 250 мА

мкА

Электрические характеристики

VBIAS (VCC, VBS) = 12 В, CL = 1000 пФ, CT = 1 нФ и TA = 25 ° C, если не указано иное. Параметры VIN, VTH и IIN

связаны с COM. Параметры VO и IO относятся к COM и применимы к соответствующим выходным выводам

: HO или LO.

Символ Определение Мин. Тип. Максимум. Условия тестирования блоков

VCCUV + Порог блокировки при пониженном напряжении VCC 8.1 9.0 9.9

VCCUV- Порог блокировки при пониженном напряжении VCC 7.2 8.0 8.8

VCCUVH Блокировка пониженного напряжения VCC Гистерезис 0.5 1.0 1.5

VCCUCC Питающий ток ≤ 75 VCCU —

IQCC Ток покоя VCC — 500 950

VCLAMP Напряжение стабилитрона VCC 14.4 15,6 16,8 В ICC = 5 мА

Характеристики низковольтного источника питания

В

мкА

Символ Определение Мин. Тип. Максимум. Единицы Условия тестирования

fosc Частота генератора 19,4 20 20,6 RT = 36,9 кОм

94100106 RT = 7,43 кОм

d Рабочий цикл вывода RT 48 50 52% fo <100 кГц

Ток на выводе ТТ ICT — 0,001 1,0 мкА

ICTUV UV-mode CT Ток понижения на выводах 0,30 0.70 1,2 мА VCC = 7 В

VCT + Верхний порог линейного напряжения ТТ — 8,0 —

VCT- Нижний порог линейного напряжения ТТ — 4,0 —

VCTSD Порог отключения напряжения ТТ 1,8 2,1 2,4

VRT + Выходное напряжение высокого уровня RT, VCC — VRT — 10 50 I

RT = 100 мкА

— 100 300 IRT = 1 мА

VRT- Выходное напряжение RT низкого уровня — 10 50 I

RT = 100 мкА

— 100 300 IRT = 1 мА

VRTUV UV выходное напряжение RT — 0100 VCC ≤ VCCUV-

VRTSD SD-Mode RT выходное напряжение, VCC — VRT — 10 50 I

RT = 100 мкА,

VCT = 0 В

-10 300 IRT = 1 мА,

VCT = 0 В

Характеристики входов / выходов осциллятора

В

мВ

кГц

Полумостовые драйверы IR2153 от Infineon / IR — техническое описание | Технические характеристики


Тип драйвера: полумост
Технология: сквозное отверстие
Корпус: DIP-8
Количество драйверов: 2 Драйвер
Количество выходов: 2 Выход
Выходной ток: 400 мА
Время нарастания: 150 нс
Время спада: 100 нс
Минимальное напряжение питания: 10 В
Максимальное напряжение питания: 20 В
Рабочий ток: 5 мА
Рассеиваемая мощность: 1000 мВт
Минимальная рабочая температура: — 40 ° C
Максимальная рабочая температура: + 125 ° C


скачать техническое описание IR2153DPBF

Поисковые запросы об эквивалентных частях IR2153DPBF.

IR2153 IR2153 Infineon / IR IR2153 Half-Bridge Drivers Half-Bridge Drivers IR2153 IR2153 pinout IR2153 pin configuration IR2153 datasheet IR2153 datasheet download download IR2153 datasheet IR2153 pdf download IR2153 datasheet IRF3PB IR2153 технологии Половина IR2153 спецификации IR2153 Технологии

-Bridge Драйверы IR2153PBF IR2153PBF разводка IR2153PBF штырьковый конфигурации IR2153PBF техническое описание IR2153PBF техническое описание загрузить описание загрузить IR2153PBF техническое описание IR2153PBF PDF загрузить IR2153PBF техническое описание PDF IR2153PBF

IR2153SPBF IR2153SPBF Infineon Technologies Драйверы IR2153SPBF Half-Bridge Half-Bridge Drivers IR2153SPBF IR2153SPBF разводка IR2153SPBF штырьковый конфигурации IR2153SPBF техническое описание IR2153SPBF техническое описание скачать скачать IR2153SPBF datasheet IR2153SPBF pdf скачать IR2153SPBF datasheet pdf IR2153SPBF спецификация

IR2153STRPBF IR21 53STRPBF Infineon / IR IR2153STRPBF Half-Bridge Drivers Half-Bridge Drivers IR2153STRPBF IR2153STRPBF разводка IR2153STRPBF штырьковый конфигурации IR2153STRPBF техническое описание IR2153STRPBF техническое описание загрузить IR2153STRPBF техническое описание IR2153STRPBF PDF загрузить IR2153STRPBF техническое описание PDF IR2153STRPBF спецификация

IR21531STRPBF IR21531STRPBF Infineon / IR IR21531STRPBF Gate Driver IC Gate Driver IC IR21531STRPBF IR21531STRPBF разводка IR21531STRPBF контактных конфигурации IR21531STRPBF технического описание IR21531STRPBF технического описание загрузить IR21531STRPBF спецификации технического описания IR21531STRPBF PDF загрузить IR21531STRPBF технического описания PDF IR21531STRPBF

IR2153DPBF Соответствующих электронные компоненты

IR21814 технического описания
IR2183 спецификация
IR2213 разводки
IR2301 контактном конфигурацию
IR2301
IR2302 Pdf
IR2304 скачать техническое описание Микросхема
IR2308
IR25603, схема выводов
IR2135 корпус
IR2233 smd

IR2153_26308.Загрузить техническое описание в формате PDF — IC-ON-LINE

PART Описание Чайник
IR21531 IR21531DPBF IR21531S IR21531SPBF IR21531D ДРАЙВЕР ПОЛУМоста с самовозбуждением
Полумостовой драйвер гетеродина, синфазный гетеродин с RT, программируемая частота колебаний, мертвое время 0,6 мкс в 8-контактном корпусе DIP и дифференциальная фаза
Полумостовой драйвер гетеродина, синфазный гетеродин с RT, программируемая частота колебаний , 0,6 мкс Мертвое время в 8-выводном корпусе SOIC и другой фазе
IRF [Международный выпрямитель]
IRS21531DPBF IRS21531DSPBF IRS21531DSTRPBF IRS2153 Самоколебательный полумостовой привод, 1.Время нечувствительности 1 мкс в 8-выводном корпусе DIP Самоколебательный полумостовой драйвер
, мертвое время 1,1 мкс в 8-выводном корпусе SOIC
Self-Oscillating Half Bridge Driver, мертвое время 1,1 мкс в 8-контактном DIP корпусе.
Автоколебательный полумостовой драйвер, мертвое время 1,1 мкс в корпусе SO-8
Международный выпрямитель
IR51HD224 ПОЛУМОСТ САМОКОБИЛЯЮЩИЙСЯ
IRF [Международный выпрямитель]
IR2155PBF ПРИВОДИТЕЛЬ ПОЛУМОСТА САМОКОБИЛЯЮЩИЙСЯ
Международный выпрямитель
IR25603PBF Самоколебательный полумостовой привод
Международный выпрямитель
IR2155 ПРИВОД ПОЛУМОСТОВАЯ КОЛЛЕКЦИЯ
IRF [Международный выпрямитель]
IR51HD737 GT 3C 3 # 16S КОНТАКТНЫЙ РАЗЪЕМ
САМОКОБИЛЯЮЩИЙСЯ ПОЛУМОСТ
IRF [Международный выпрямитель]
IR2085STR ВЫСОКОСКОРОСТНОЙ, 100 В, САМОКОБИЛЯЮЩИЙСЯ, РАБОЧИЙ ЦИКЛ 50%, ПРИВОД ПОЛУМоста
Международный выпрямитель
IR2155 Полумостовой драйвер, гетеродин в фазе с RT, программируемая частота колебаний, 1.2us Мертвое время в 8-контактном DIP корпусе
Из старой системы даташитов
Международный выпрямитель
FSFR1800XSL FSFR2100XS FSFR2100XSL FSFR1600XS FSFR Выключатель питания Fairchild (FPS? Для полумостовых резонансных преобразователей
HALF BRIDGE BASED PRPHL DRVR, PZFM9 SIP-9
http: //
Fairchild Semiconductor, Corp.
PR103W PR103K PR134K PR101W PR114K PR105KW PR125K ТИРИСТОРНЫЙ МОДУЛЬ | МОСТ | HALF-CNTLD | CC | 800V V (RRM) | 12A I (T)
THYRISTOR MODULE | BRIDGE | FULLY-CNTLD | 1KV V (RRM) | 12A I (T)
THYRISTOR MODULE | HALF-CNTLD | CC | 400 В В (RRM) | 12A I (T)
ТИРИСТОРНЫЙ МОДУЛЬ | МОСТ | HALF-CNTLD | CA | 1 кВ В (RRM) | 12A I (T)
ТИРИСТОРНЫЙ МОДУЛЬ | МОСТ | HALF-CNTLD | CC | 1.2KV V (RRM) | 12A I (T)
THYRISTOR MODULE | BRIDGE | HALF-CNTLD | 1.2KV V (RRM) | 12A I (T)
THYRISTOR MODULE | BRIDGE | HALF-CNTLD | CC | 600V V (RRM) | 12A I (T)
ТИРИСТОРНЫЙ МОДУЛЬ | МОСТ | HALF-CNTLD | CA | 1.2KV V (RRM) | 12A I (T)
THYRISTOR MODULE | AC SWITCH | 1.2KV V (RRM) | 12A I (T) 可控 硅 模块 | 交流 开关 | 1,2 кВ 五 (无线 资源 管理) | 12A 条 疙 (T
Stackpole Electronics, Inc.
GA250TD120U Полумостовый IGBT 1200 В UltraFast 10–30 кГц в двойном пакете INT-A-Pak
IGBT HALF-BRIDGE INT-A-PAK Ultra-FastTM Speed ​​IGBT
IGBT HALF-BRIDGE DOUBLE INT-A-PAK
IRF [Международный выпрямитель]

手册, 数据 表, PDF 下载 — Лист данных

零件 编号 描述 制造 商 PDF
T215HVN01.2 Цветной TFT-LCD
AUO
PDF
SY8113B Синхронный понижающий регулятор
Силергия
PDF
SY8113ADC Синхронный понижающий регулятор
Силергия
PDF
SY8113 Синхронный понижающий регулятор
Силергия
PDF
STP8NM50FP N-КАНАЛЬНЫЙ МОП-МОП-транзистор
ST Микроэлектроника
PDF
STF5200 ВЫПРЯМИТЕЛЬ SCHOTTKY
SANGDEST МИКРОЭЛЕКТРОНИКА
PDF
STD5200 ВЫПРЯМИТЕЛЬ SCHOTTKY
SANGDEST МИКРОЭЛЕКТРОНИКА
PDF
СТБ5200 ВЫПРЯМИТЕЛЬ SCHOTTKY
SANGDEST МИКРОЭЛЕКТРОНИКА
PDF
ST5200 ВЫПРЯМИТЕЛЬ SCHOTTKY
SANGDEST МИКРОЭЛЕКТРОНИКА
PDF
SSC0018 SSC0018
ETC
PDF
SS411P Биполярные цифровые датчики положения на эффекте Холла
Honeywell
PDF
SS311PT Биполярные цифровые датчики положения на эффекте Холла
Honeywell
PDF

MC33153 — Драйвер затвора одиночного IGBT

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > транслировать BroadVision, Inc.2020-09-14T13: 35: 21 + 02: 002013-08-13T14: 43: 32-07: 002020-09-14T13: 35: 21 + 02: 00application / pdf

  • MC33153 — Драйвер одного затвора IGBT
  • ON Semiconductor
  • Acrobat Distiller 9.5.5 (Windows) uuid: 2b0591f3-9c1c-4d46-ba23-aae53efed198uuid: 27d928b5-138f-4558-9b3f-cd1b67e765a4 конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > транслировать HWrFG ~ E? Sf7RSSeI [«N̓ A» WiaxN7

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *