Динистор дв3 цоколевка их виды. Динистор DB3: характеристики, применение и проверка работоспособности

Что такое динистор DB3 и как он работает. Каковы основные характеристики динистора DB3. Где применяется динистор DB3 в электронных схемах. Как проверить исправность динистора DB3 с помощью мультиметра и тестовой схемы. Какие существуют аналоги динистора DB3.

Содержание

Что такое динистор DB3 и принцип его работы

Динистор DB3 — это полупроводниковый прибор, относящийся к семейству тиристоров. Он представляет собой двухэлектродный ключевой элемент, имеющий два устойчивых состояния — открытое и закрытое.

Основные особенности динистора DB3:

  • Имеет четырехслойную полупроводниковую структуру p-n-p-n типа
  • Два вывода — анод и катод
  • Отсутствует управляющий электрод
  • Переключение между состояниями происходит при достижении определенного напряжения

Как работает динистор DB3? В закрытом состоянии через него протекает очень малый ток утечки. При повышении напряжения до порогового значения происходит лавинообразный процесс и динистор резко открывается, начиная проводить большой ток. Для закрытия необходимо снизить ток до определенного уровня.


Основные характеристики динистора DB3

Рассмотрим ключевые параметры динистора DB3:

  • Напряжение включения: 28-36 В
  • Напряжение в открытом состоянии: около 5 В
  • Максимальный ток в открытом состоянии: 300 мА
  • Импульсный ток: до 2 А
  • Ток удержания: 1-5 мА
  • Время включения: 1-2 мкс
  • Диапазон рабочих температур: -40…+70°C

Какие особенности характеристик динистора DB3 важно учитывать? Ключевыми являются напряжение включения и ток удержания, определяющие режимы переключения прибора.

Области применения динистора DB3

Где используется динистор DB3 в электронных схемах? Основные области применения:

  • Схемы запуска тиристоров и симисторов
  • Релаксационные генераторы
  • Импульсные источники питания
  • Схемы защиты от перенапряжений
  • Электронные балласты для люминесцентных ламп
  • Коммутация нагрузки в сетях переменного тока

Почему динистор DB3 удобен в этих применениях? Он обеспечивает надежное переключение без управляющего электрода при достижении порогового напряжения.

Проверка работоспособности динистора DB3

Как проверить исправность динистора DB3? Существует несколько методов:


Проверка мультиметром

С помощью обычного мультиметра можно выполнить только базовую проверку:

  1. Переключите мультиметр в режим «прозвонки» диодов
  2. Подключите щупы к выводам динистора в прямом и обратном направлении
  3. В обоих случаях мультиметр должен показывать «обрыв» (высокое сопротивление)

Если прибор показывает короткое замыкание — динистор неисправен.

Проверка с помощью тестовой схемы

Для более полной проверки соберите простую тестовую схему:

  1. Подключите последовательно: источник питания — динистор — резистор 1 кОм — светодиод
  2. Плавно повышайте напряжение источника питания
  3. При напряжении 28-36 В светодиод должен загореться (динистор открылся)
  4. При снижении напряжения до 15-25 В светодиод должен погаснуть

Если динистор не открывается или не закрывается — он неисправен.

Аналоги динистора DB3

Какие существуют аналоги динистора DB3? Рассмотрим несколько вариантов замены:

  • КН102 — отечественный аналог с близкими характеристиками
  • HT-32 — зарубежный аналог с напряжением включения 32 В
  • 2N6027 — программируемый однопереходный транзистор
  • ST2 — симметричный динистор для работы на переменном токе

При выборе аналога важно учитывать напряжение включения и максимальный рабочий ток конкретной схемы.


Особенности монтажа и эксплуатации динистора DB3

На что обратить внимание при работе с динистором DB3? Несколько важных моментов:

  • Соблюдайте полярность подключения (анод-катод)
  • Не превышайте максимально допустимый ток
  • Обеспечьте теплоотвод при длительной работе на больших токах
  • Защитите от статического электричества при монтаже
  • Не допускайте превышения напряжения в закрытом состоянии

Учет этих факторов обеспечит надежную и долговременную работу динистора DB3 в вашем устройстве.

Преимущества и недостатки динистора DB3

Каковы плюсы и минусы использования динистора DB3? Рассмотрим основные:

Преимущества:

  • Простота конструкции и применения
  • Высокая надежность
  • Малые габариты
  • Отсутствие необходимости в управляющем сигнале
  • Низкая стоимость

Недостатки:

  • Фиксированное напряжение включения
  • Невозможность управления моментом включения
  • Ограниченный диапазон рабочих токов
  • Чувствительность к помехам

Какие альтернативы можно рассмотреть? В некоторых случаях динистор DB3 можно заменить управляемым тиристором или симистором, если требуется более гибкое управление.



Динистор DB3. Характеристики, проверка, аналог, datasheet

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:

Цоколевка динистора DB3

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.

Характеристики динистора DB3

Аналоги динистора DB3

  • HT-32
  • STB120NF10T4
  • STB80NF10T4
  • BAT54

Как проверить динистор DB3

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

Профессиональный цифровой осциллограф

Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

Источник питания

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.

Этапы проверки

Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжения на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Проверка динистора с помощью осциллографа

Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.

В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжения пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.

Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:

  • C = 0,015мкф — 0,275 мс.
  • С = 0,1мкф — 3 мс.
  • C = 0,22 мкф — 6 мс.
  • С = 0,33 мкф — 8,4 мс.
  • С = 0,56 мкф — 15 мс.

Скачать datasheet на DB3 (242,6 KiB, скачано: 10 592)

тестовая схема на примере тиристора ку 202н, проверка без выпаивания

Динистор — это важный радиоэлемент в электрических цепях. Предназначен он для схем с автоматической коммутацией устройств, импульсных генераторов, высокочастотных преобразователей сигналов. Из-за невысокой стоимости и простой конструкции такая радиодеталь считается идеальной для использования в регуляторах мощности.

Но как и любой электронный элемент, она может выйти из строя. Поэтому крайне важно уметь правильно проверить динистор мультиметром.

Назначение динистора

Динистор — это полупроводниковый элемент, обладающий двумя устойчивыми состояниями: закрытым и открытым. Изготавливается он из полупроводникового монокристалла с несколькими p-n переходами. В общем случае его можно рассматривать как электронный ключ, когда одно его состояние (закрытое) соответствует низкой проводимости, а другое (открытое) — высокой.

Динистор относится к «тиристорному семейству» радиоэлементов и не имеет принципиальных различий с тиристором. Единственное, что его отличает — это условия смены устойчивого состояния. В отличие от тиристора, имеющего три вывода, у динистора имеется их только два, то есть у него нет управляющего входа.

Отсюда и второе его название — диодный тиристор. Выводы динистора называются анодом и катодом. Первый выводится из крайней p-области, а второй — из n-области.

Изобретение тиристоров связывают с именем английского физика Уильяма Брэдфорда Шокли. После изобретения точечного транзистора учёный посвятил свои эксперименты созданию монолитного элемента. Так, в 1949 году был представлен прототип плоскостного транзистора, а уже в следующем году Спаркс и Тил, помощники Шокли, сумели изготовить трёхслойную структуру, позволяющую выпускать высокочастотные радиоэлементы на основе p-n переходов. Исследования учёного привели к созданию полупроводникового диода, названного диодом Шокли. Его конструкция представляет собой четырехслойный элемент со структурой pnpn типа.

В современной электронике динистор чаще всего применяется в схеме запуска энергосберегающих ламп и пускорегулирующих устройств дневного света.

На схемах и в литературе элемент обозначается с помощью латинских букв VD или VS, а за его графическое обозначение принят треугольник вместе с проходящей через его середину прямой линией, символизирующей электрическую цепь. В результате образуется своего рода стрелка, указывающая направление прохождения тока. Перпендикулярно прямой линии посередине и около вершины треугольника рисуются две короткие черты. Первая обозначает базовую область, а вторая — катод.

Принцип работы

Рассматривая динистор в качестве четырёхструктурного элемента, его можно представить в виде двух взаимосвязанных транзисторов n и p типа проводимости. Для работы транзистора необходимо появление тока на переходе база-эмиттер. Если на него не подано напряжение, тогда через радиоэлемент проходить ток не будет. Связано это с тем, что открытие транзисторов контролируется друг другом. Иными словами, чтобы открыть один из этих транзисторов, необходимо перевести в открытое состояние другой.

Между выводами динистора должно присутствовать напряжение определённой величины, позволяющее перевести работу одного из двух транзисторов в режим насыщения. В результате откроется второй элемент, и динистор начнёт пропускать ток.

Для перевода структуры в режим отсечки тока понадобится понизить величину напряжения, что приведёт к пропаданию тока смещения и, соответственно, тока базы на втором транзисторе. Динистор перестанет пропускать ток.

Существенную роль играет и полярность приложенного к выводам радиодетали напряжения. Когда на анод подаётся минус, через элемент ток практически не проходит. Такое включение называют обратным. Если же полярность поменять, то через устройство начнёт протекать ток небольшой величины — ток закрытия. Напряжение, соответствующее ему, определяет наибольшее значение, при котором динистор находится в закрытом состоянии. Чтобы динистор открыть, понадобится напряжение порядка десятков вольт.

Динисторы, как и тринисторы, пропускают ток только в одном направлении. Чтобы ток проходил в обоих направлениях, они включаются по встречно-параллельной схеме. Также для этого может использоваться пятислойная структура pnpnp типа.

Характеристики устройства

Чтобы правильно проверить тиристор мультиметром, необходимо не только понимать принцип его работы, но и знать основные его характеристики. Наиболее значимым параметром элемента является его вольт-амперная характеристика (ВАХ). Она наглядно показывает зависимость протекания тока через прибор от приложенного к его выводам напряжения. ВАХ динистора относится к S-образному виду. Эту характеристику разделяют на шесть зон:

  1. Участок открытого состояния. На этом промежутке элемент практически не оказывает сопротивления проходящему через него току. Его проводимость максимальная. Эта зона заканчивается точкой, в которой ток перестаёт протекать.
  2. Область отрицательного сопротивления. Провоцирует начало лавинного пробоя.
  3. Пробой коллекторного перехода. На этом промежутке элемент работает в режиме лавинного пробоя, из-за чего происходит резкое уменьшение напряжения на его выводах.
  4. Участок прямого включения. В этой области динистор закрыт, так как разность потенциалов, приложенная к его выводам, меньше, чем необходимая для возникновения пробоя.
  5. Пятый и шестой участки описывают работу прибора в нижней половине ВАХ и соответствуют состояниям обратного включения и пробоя элемента.

Анализируя ВАХ, можно сделать вывод о том, что работа динистора похожа на диод, но, в отличие от последнего, для его открытия необходимо подать напряжение, превышающее диодное значение в несколько раз. При этом динистор характеризуется рядом параметров, определяющих его применение в электрических цепях. К основным его характеристикам относят следующие величины:

  1. Разность потенциалов в открытом состоянии. Обычно указывается применительно к значению тока открытия. В качестве её единицы измерения используется вольт.
  2. Наименьшее значение тока в открытом состоянии. Эта величина зависит от температуры прибора и при её увеличении снижается. Измеряется в миллиамперах.
  3. Время переключения. Характеризуется периодом времени, в течение которого происходит переход режима работы прибора с одного устойчивого состояния в другое. Это значение составляет микросекунды.
  4. Ток запертого состояния. Определяется значением обратного напряжения и редко превышает 500 мкА.
  5. Ёмкость. Этот параметр характеризует обобщённую паразитную ёмкость, возникающую в элементе. Из-за неё ограничивается применение устройства в высокочастотных цепях и снижается скорость переключения режимов работы. Измеряется она в пикофарадах.
  6. Ток удержания. Обозначает величину, при которой динистор открыт. Единица измерения — ампер.

Диагностика прибора

Осуществляя проверку радиоэлемента на исправность, чаще всего используют мультиметр. Удобство применения этого измерительного прибора объясняется его многофункциональностью. С его помощью можно прозвонить элемент на пробой или измерить уровни пороговых напряжений. При этом неважно, аналоговый или цифровой тип измерителя используется.

Для получения верных результатов измерения понадобится подготовить мультиметр к работе. Вся суть подготовительной операции сводится к проверке элемента питания тестера. При работе с цифровым устройством необходимо обратить внимание на значок мигающей батарейки. Если он есть, значит, элемент питания необходимо заменить. Для аналогового устройства перед работой выполняется установка стрелки в нулевое положение. Если это сделать невозможно, то элемент питания нужно заменить.

Для достоверного результата во время измерения мультиметром также желательно проследить за окружающей температурой. Связанно это с тем, что при увеличении температуры проводимость полупроводников возрастает. Оптимальной для измерения считается температура около 22 °C.

Прозвонка без выпаивания

Из-за специфики устройства проверить симистор мультиметром, не выпаивая, не так уж и просто. Для полной проверки используется электрическая схема, позволяющая провести ряд необходимых измерений. Единственное, что можно сделать с помощью мультиметра, так это проверить его на явный пробой.

Для этого тестер переключается в режим позвонки диодов, после чего измерительными щупами дотрагиваются до выводов динистора. При любой полярности тестер должен показать обрыв, что будет обозначать отсутствие пробоя в элементе. Но это не будет гарантировать исправность прибора. Если при измерении мультиметр покажет короткое замыкание, то такой тиристор можно уже будет дальше не проверять, так как он неисправен.

При этом следует знать, что прозванивать радиоэлемент в схеме будет некорректно, так как параллельно с его выводом могут быть подключены другие радиоэлементы, влияющие на измерения. Выполняя простую прозвонку, необходимо хотя бы один из вводов динистора отсоединить от печатной платы. Для того чтобы проверить динистор, не выпаивая, можно использовать возможности той схемы, в которой он установлен.

Известно, что радиоэлемент открывается только при подаче на его выводы определённого уровня напряжения, поэтому можно попытаться достичь этого порогового значения.

В этом случае для проверки мультиметр переключается на режим измерения напряжения. В зависимости от предполагаемого напряжения пробоя выбирается диапазон измерения. Измерительные щупы подключаются параллельно к выводам элемента, после чего измеряется уровень сигнала. Если при изменении входного сигнала произойдёт скачок напряжения, то это и будет обозначать напряжение пробоя динистора, то есть его работоспособность.

Тестовая схема

Чтобы получить уверенность в работоспособности элемента, радиолюбители используют тестовые схемы. Они бывают разной степени сложности, что в итоге влияет на точность полученного результата. Самая простая схема состоит из трёх элементов:

  • регулируемого источника питания;
  • резистора;
  • индикатора.

В качестве последнего можно использовать светодиод. Собрав такую схему, приступают к проверке. Параллельно элементу в режиме измерения напряжения подключается тестер.

Например, чтобы проверить тиристор КУ202Н мультиметром, вначале устанавливается уровень выходного напряжения около двадцати вольт. При этом светодиод в схеме гореть не должен. Затем медленно поднимается уровень до того момента, пока светодиод не загорится. Свечение индикатора свидетельствует о том, что динистор открылся и через него начал проходить электрический ток. Для его закрытия уровень напряжения снижается.

Значение разности потенциалов, при котором происходит изменение режима работы, и является максимальным напряжением открытия. В рассматриваемом случае тестер должен показать значение около 50 вольт, в то время как уровень входного сигнала будет около 60 вольт. Резистор применяется любого типа. Его назначение заключается в том, чтобы ограничить величину тока, проходящего через светодиод.

Зная, как проверить тиристор КУ 202, можно проверить и любой другой тип тиристора, динистора или симистора. Следует отметить, что профессионалы вместо мультиметра используют осциллограф. Совместно с ним применяется тестовая приставка. К гнёздам X5 и X6 подключаются измеряемые элементы. При использовании тиристора его управляющий элемент подключается к гнезду X7. У элементов с управляющим выводом напряжение изменяется с помощью переменного резистора R4. Если радиоэлемент целый, тогда осциллограмма должна быть такой, как на рисунке.

Динистор db3 где выпаять — Морской флот

Динисторы – это разновидность полупроводниковых приборов, точнее – неуправляемых тиристоров. В своей структуре он содержит три p — n перехода и имеет четырёхслойную структуру.

Его можно сравнить с механическим ключом, то есть, прибор может переключаться между двумя состояниями – открытое и закрытое. В первом случае электрическое сопротивление стремится к очень низким величинам, во втором же, наоборот – может достигать десятков и сотен Мом. Переход между состояниями происходит скачкообразно.

Динистор DB 3

Данный элемент не получил широкого распространения в радиоэлектронике, но всё равно часто применяется в схемах устройств с автоматическим переключением, преобразователях сигналов и генераторов релаксационных колебаний.

Как работает прибор?

Для пояснения принципа работы динистора db 3 обозначим имеющиеся в нём p — n переходы как П1, П2 и П3 следуя по схеме от анода к катоду.

В случае прямого включения прибора к источнику питания, прямое смещение приходится на переходы П1 и П3, а П2, в свою очередь, начинает работать в обратном направлении. При таком режиме, db 3 считается закрытым. Падение напряжения происходит на П2 переход.

Ток в закрытом состоянии определяется током утечки, который имеет очень маленькие значения (сотые доли МкА). Медленное и плавное увеличение подаваемого напряжения, вплоть до максимального напряжения закрытого состояния (напряжения пробоя), не будет способствовать значительному изменению тока. Но при достижении этого напряжения, ток увеличивается скачком, а напряжение, наоборот – падает.

В таком режиме работы, прибор на схеме приобретает минимальные значения сопротивления (от сотых долей ом до единиц) и начинает считаться открытым. Для того чтобы закрыть прибор, то на нём нужно уменьшить напряжение. В схеме с обратным подключением, переходы П1 и П3 закрыты, П2 открыт.

Динистор db 3. Описание, характеристики и аналоги

Динистор db 3 – одна из популярнейших разновидностей неуправляемых тиристоров. Применяется чаще всего в преобразователях напряжения люминесцентных лам и трансформаторов. Принцип работы данного прибора такой же, как и у всех неуправляемых тиристоров, отличия лишь в параметрах.

  • Напряжение открытого динистора – 5В
  • Максимальный ток открытого динистора – 0.3А
  • Импульсный ток в открытом состоянии – 2А
  • Максимальное напряжение закрытого прибора – 32В
  • Ток в закрытом приборе – 10А

Динистор db 3 может работать при температурах от -40 до 70 градусов Цельсия.

Проверка db 3

Выход из строя такого прибора– редкое событие, но, тем не менее оно всё-таки может случиться. Поэтому проверка динистора db 3 – важный вопрос для радиолюбителей и ремонтников радиоаппаратуры.

К сожалению, из-за технических особенностей данного элемента, проверить его обычным мультиметром не получится. Единственное действие, которое можно реализовать с помощью тестера – это прозвонка. Но подобная проверка не даст нам точных ответов на вопросы о работоспособности элемента.

Однако это совсем не означает, что проверить прибор невозможно или просто тяжело. Для действительно информативной проверки о состоянии этого элемента, нам необходимо собрать простенькую схему, состоящую из резистора, светодиода и самого динистора. Подключаем элементы последовательно в следующем порядке – анод динистора к блоку питания, катод к резистору, резистор к аноду светодиода. В качестве источника питания необходимо использовать регулируемый блок с возможностью поднятия напряжения до 40 вольт.

Процесс проверки по данной схеме заключается в постепенном увеличении напряжения на источнике с целью загорания светодиода. В случае рабочего элемента, светодиод загорится при напряжении пробоя и открытии динистора. Проведя операцию в обратном порядке, то есть уменьшая напряжение, мы должны увидеть, как светодиод погаснет.

При подобной проверке рекомендуется замерять напряжение, при котором загорается светодиод. То есть, напряжение пробоя, которое понадобится для дальнейшей работы с прибором.

Помимо данной схемы, существует способ проверки с помощью осциллографа.

Схема проверки будет состоять из резистора, конденсатора и динистора, включение которого будет параллельным конденсатору. Подключаем питание 70 вольт. Резистор – 100кОм. Схема работает следующим образом – конденсатор заряжается до напряжения пробоя и резко разряжается через db3. После процесс повторяется. На экране осциллографа мы обнаружим релаксационные колебания в виде линий.

Аналоги db 3

Несмотря на редкость выхода прибора из строя, иногда это происходит и необходимо искать замену. В качестве аналогов, на которые можно заменить наш прибор, предлагаются следующие виды динисторов:

Как мы видим, аналогов прибора очень мало, но его можно заменить некоторыми полевыми транзисторами, по особым схемам включения, например, STB120NF10T4.

Популярные динисторы однополярные и симметричные. Справочные данные.

Динистор! Редкий зверь в наших краях. У него уши вот такие, глаза – такие, и сам он такой. Сразу видно – пришло животное из далёких стран. Надо звать людей, пусть кто-нибудь расскажет, что это за скотина.

Секундочку, я уже здесь, только подгребу немного и переключусь на открытый канал.
Итак, давайте определимся, что такое ДИНИСТОР.
Когда молчит википедия – чёткой формулировки, переходящей от источника в источник, не существует, каждый трактует её по-своему, порой не совсем адекватно. Потренируемся и мы.

Динистор – это двухэлектродный ключевой полупроводниковый элемент, открытие которого происходит при достижении между выводами анода и катода определённого напряжения, зависящего от типа данного динистора, а закрытие – снижением до определённого уровня тока через него.
К количеству наращённых в динисторе p-n переходов отнесёмся идентифирентно, а вот ВАХ (вольт-амперные характеристики), как нельзя лучше, помогут нам разобраться в работе данного типа полупроводников.


Рис.1

На Рис.1 (слева) приведена ВАХ однополярного (несимметричного) динистора, который работает только при наличии положительного смещения. При обратном смещении, превышающем Uобр max, прибор может выйти из строя.

Для снятия вольт-амперной характеристики динистора нам понадобится источник регулируемого напряжения от 0В до некоторого значения, превышающего напряжение открывания Uвкл полупроводника и эквивалент нагрузки Rн (Рис.2).
Установим на источнике самый низкий уровень напряжения и начнём его постепенно повышать.
Участок 1 на ВАХ: динистор закрыт, ток через нагрузку равен току утечки динистора (десятки микроампер), напряжение на Rн≈0.
При дальнейшем увеличении напряжения ничего не меняется до тех пор, пока не будет достигнут уровень Uвкл. В этот момент динистор триггерно открывается (участок 2), и дальнейшая величина тока через нагрузку будет зависеть от входного напряжения, сопротивления Rн и сопротивления открытого динистора (участок 3). Напряжение на нагрузке Uн при этом равно напряжению источника питания минус напряжение (около 5В) падения на открытом динисторе. Ясен пень, что Iн=Uн/Rн=(Uпит-Uпад)/Rн .
Как теперь закрыть динистор?
Начинаем уменьшать напряжение источника. Ток нагрузки по прежнему равен Iн=(Uпит-Uпад)/Rн.
В определённый момент времени, когда ток через динистор уменьшится до величины, называемой током удержания (Iуд), динистор мгновенно закроется, ток нагрузки упадёт до «0». Итог – ключ закрылся.

Симметричные (двухполярные) динисторы работают точно таким же образом, как и однополярные, только всё вышесказанное верно не только для положительных напряжений, но и для отрицательных. Проверяется незамысловатым изменением полярности подключённого источника питания.

Для наглядной иллюстрации изложенного материала, давайте рассмотрим работу динисторного генератора пилообразного напряжения.


Рис.3

Вот как описывает работу приведённого генератора автор издания «Практическая электроника от транзистора до кибернетической системы» Р.В.Майер.

«Нами использовались динистор типа КН102А (открывается при 11 В), резистор на 2 – 5 ком, конденсатор ёмкостью 1 – 10 мкФ; напряжение питания 20 – 100 В. При включении динистор закрыт, конденсатор C1 медленно заряжается от источника питания через резистор R1. Напряжение на конденсаторе растёт до напряжения открывания динистора (Рис.3.2). Когда динистор открывается, его сопротивление резко падает, и конденсатор быстро разряжается через него. При уменьшении анодного напряжения до напряжения закрывания динистор закрывается, после чего все повторяется снова.
Время заряда τ=RC, поэтому при увеличении R и C период колебаний растёт, частота импульсов уменьшается. С ростом напряжения питания конденсатор заряжается быстрее, частота генерируемых импульсов увеличивается».

Подобьём сказанное перечислением основных параметров динистора:

— Напряжение открывания (включения), Uвкл;
— Минимальный ток удержания, Iуд;
— Максимально допустимый прямой ток, Iпр;
— Ток утечки в закрытом состоянии, Iут;
— Максимально допустимое обратное напряжение, Uобр max;
— Падение напряжения на открытом динисторе, Uпр;
— Скорость нарастания напряжения при переключении, dUзакр/dt, либо
Время нарастания напряжения, tr.

Электрические характеристики распространённых однополярных динисторов КН102 и симметричных (двуполярных) DB3-D34 динисторов сведём в итоговую таблицу.

Да пребудут с вами Силы СВЕТА!

  • Главная
  • »
  • Наука и Техника
  • »
  • Электроника
  • »
  • Осциллограф DSO138
  • »
  • Тестер DB3
  • »
  • Индикаторная отвёртка

2019-07-14
Добавлено изречение
№65

2017-01-19
Добавлен раздел
Веды

Универсальный тестер проверки DB3, оптронов, стабилитронов и других компонентов

Мне в последнее время приходилось возиться с разными электронными балластами и в их составе с динистором DB3, оптронами и стабилитронами из других устройств. Поэтому для быстрой проверки этих компонентов пришлось разработать и изготовить специализированный тестер. Дополнительно, кроме динисторов и оптронов, чтобы не создавать ещё тестеры для подобных компонентов, тестер может проверять стабилитроны, светодиоды, диоды, переходы транзисторов. В нём использована световая и звуковая индикация и дополнительно цифровой измеритель напряжения для оценки уровня срабатывания динисторов и падения напряжения на переходе проверяемых стабилитронов, диодов, светодиодов, транзисторов.

! Примечание: Все права на схему и конструкцию принадлежат мне, Анатолию Беляеву.

Описание схемы

Схема тестера представлена ниже на Pic 1.

Примечание: для подробного просмотра картинки – кликните по ней.

Pic 1. Схема тестера DB3 (динисторов), оптронов, стабилитронов, диодов, светодиодов и переходов транзисторов

Основу тестера составляет генератор высоковольтных импульсов, который собран на транзисторе VT1 по принципу преобразователя DC-DC, то есть высоковольтные импульсы самоиндукции поступают в накопительный конденсатор C1 через высокочастотный диод VD2. Трансформатор генератора намотан на ферритовом кольце, взятом от электронного балласта (можно использовать любое подходящее). Количество витков около 30 на каждую обмотку (не критично и намотка может быть выполнена одновременно двумя проводами сразу). Резистором R1 добиваются максимального напряжения на конденсаторе C1. У меня получилось около +73.2 В. Выходное напряжение поступает через R2, BF1, HL1 на контакты панельки XS1, в которую вставляются проверяемые компоненты.

На контакты 15, 16 панельки XS1 подключен цифровой вольтметр PV1. Куплен на Алиэкспрессе за 60 Р . При проверке динисторов, вольтметр показывает напряжение открывания динистора. Если на эти контакты XS1[15, 16] подключать светодиоды, диоды, стабилитроны, переходы транзисторов, то вольтметр PV1 показывает напряжение на их переходе.

При проверке динисторов индикаторный светодиод HL1 и звуковой излучатель BF1 работают в импульсном режиме – указывая на исправность динистора. Если динистор пробит , то светодиод будет светиться постоянно и напряжение на вольтметре будет около 0 В. Если динистор в обрыве , то напряжение на вольтметре будет около 70 В, а светодиод HL1 светиться не будет. Аналогично проверяются оптроны, только индикаторный светодиод для них – HL2. Чтобы работа светодиода была импульсная в контакты XS1[15, 2] вставлен исправный динистор DB3 (КН102). При исправном оптроне свечение индикаторного светодиода импульсное. Оптроны имеют исполнение в корпусах DIP4, DIP6 и их необходимо устанавливать в соответствующие им контакты палельки XS1. Для DIP4 – это XS1[13, 12, 4, 5], а для DIP6 – XS1[11, 10, 9, 6, 7, 8].

Если проверять стабилитроны, то их подключать к XS1[16, 1]. Вольтметр будет показывать либо напряжение стабилизации, если катод стабилитрона подключен к контакту 16, либо напряжение на переходе стабилитрона в прямом направлении, если к контакту 16 подключить анод.

На контакты XS1[14, 3] выведено напрямую напряжение с конденсатора C1. Иногда есть необходимость засветить мощный светодиод или использовать полное выходное напряжение высоковольтного генератора.

Питание на тестер подаётся только во время проверки компонентов, при нажатии на кнопку SB1. Кнопка SB2 предназначена для контроля напряжения питания тестера. При одновременном нажитии на кнопки SB1 и SB2, вольтметр PV1 показывает напряжение на батарейках. Так сделал, чтобы можно было своевременно поменять батарейки, когда они разрядятся, хотя, думаю, что это будет не скоро , так как работа тестера кратковременная и потеря энергии батареек скорее за счёт их саморазряда, чем из-за работы самого тестера при проверке компонентов. Для питания тестера использованы две батарейки типа AAA.

Для работы цифрового вольтметра использовал покупной преобразователь DC-DC. На его выходе установил +4.5 В – напряжение поступающее и на питание вольтметра и на цепь светодиода HL2 – контроль работы выходного каскада оптронов.

В тестере использовал планарный транзистор 1GW, но можно использовать любой подходящий и не только планарный, который обеспечит напряжение на конденсаторе C1 больше 40 В. Можете попробовать использовать даже отечественный КТ315 или импортный 2N2222.

Фотообзор по изготовлению тестера

Далее небольшой фотоотчёт об этапах сборки окончательной конструкции тестера.

Pic 2. Печатная плата тестера. Вид со стороны панельки.

На этой стороне платы устанавливаются панелька, звуковой излучатель, трансформатор, индикаторные светодиоды и кнопки управления.

Pic 3. Печатная плата тестера. Вид со стороны печатных проводников.

На этой стороне платы устанавливаются планарные компоненты и больше-габаритные детали – конденсаторы С1 и С2, подстроечный резистор R1. Печатная плата была изготовлена упрощенным методом – прорезанием канавок между проводниками, хотя можно и провести травление. Файл с разводкой печатной платы можно скачать внизу страницы.

Pic 4. Внутреннее содержимое тестера.

Корпус тестера состоит из двух частей: верхней и нижней. В верхнюю часть устанавливается вольтметр и плата тестера. В нижнюю часть установлен преобразователь DC-DC для питания вольтметра и контейнер для батареек питания. Обе части корпуса соединяются за счёт защёлок. Традиционно корпус изготовлен из пластика ABS толщиной 2.5 мм. Размеры тестера 80 х 56.5 х 33 мм (без учёта ножек).

Pic 5. Основные части тестера.

Перед установкой преобразователя на его место в корпусе, произведена настройка выходного напряжения на +4.5 В.

Pic 6. Перед сборкой.

В верхней крышке прорезаны отверстия под индикатор вольтметра, под контактную панельку, под индикаторные светодиоды и под кнопки. Отверстие индикатора вольтметра закрыто кусочком оргстекла красного цвета (можно любым подходящим, к примеру, у меня с оттенком пурпурного, фиолетового). Отверстия под кнопки зазенкованы так, чтобы можно было нажать на кнопку, которая не имеет толкателя.

Pic 7. Сборка и подключение частей тестера.

Вольтметр и плата тестера крепятся на саморезах. Плата крепится так, чтобы индикаторные светодиоды, панелька и кнопки прошли в соответствующие им отверстия в верхней крышке.

Pic 8. Перед проверкой работы собранного тестера.

В панельку установлен оптрон PC111. В контакты 15 и 2 панельки вставлен заведомо исправный динистор DB3. Он будет использоваться как генератор импульсов подаваемых на входную цепь для проверки правильной работоспособности выходной части оптрона. Если использовать простое свечение светодиода через выходную цепь, то это было бы неправильно, так как если бы выходной транзистор оптрона был бы пробит , то светодиод светился бы тоже. А это неоднозначная ситуация. При использовании импульсной работы оптрона видим однозначно работоспособность оптрона в целом: как входную, так и выходную его части.

Pic 9. Проверка работоспособности оптрона.

При нажатии на кнопку проверки компонента, видим импульсное свечение первого индикаторного светодиода (HL1), указывающего на исправность динистора, работающего как генератор, и одновременно видим свечение второго индикаторного светодиода (HL2), который импульсной работой показывает на исправность оптрона в целом.

На вольтметре выводится напряжение срабатывания генераторного динистора, оно может быть от 28 до 35 В, в зависимости от индивидуальных особенностей динистора.

Аналогично проверяется и оптрон с четырьмя ножками, только устанавливается он в соответствующие ему контакты панельки: 12, 13, 4, 5.

Контакты панельки нумеруются по кругу против часовой стрелки, начиная с нижнего левого и далее вправо.

Pic 10. Перед проверкой оптрона с четырьмя ножками.

Pic 11. Проверка динистора DB3.

Проверяемый динистор вставляется в контакты 16 и 1 панельки и нажимается кнопка проверки. На вольтметре выводится напряжение срабатывания динистора, а первый индикаторный светодиод импульсной работой указывает на исправность проверяемого динистора.

Pic 12. Проверка стабилитрона.

Проверяемый стабилитрон устанавливается в контакты где проверяется и динисторы, только свечение первого индикаторного светодиода будет не импульсным, а постоянным. Работоспособность стабилитрона оценивается по вольтметру, где выводится напряжение стабилизации стабилитрона. Если стабилитрон вставить в панельку контактами наоборот, то при проверке на вольтметре будет выводиться падение напряжения на переходе стабилитрона в прямом направлении.

Pic 13. Проверка другого стабилитрона.

Точность показаний напряжения стабилизации может быть несколько условной, так как не задан определённый ток через стабилитрон.. Так, в данном случае проверялся стабилитрон на 4.7 В, а показания на вольтметре 4.9 В. Ещё может на это влиять и индивидуальная характеристика конкретного компонента, так как стабилитроны на определённое напряжение стабилизации имеют между собой некоторый разброс. Тестер же показывает напряжение стабилизации конкретного стабилитрона, а не значение его типа.

Pic 14. Проверка яркого светодиода.

Для проверки светодиодов можно использовать либо контакты 16 и 1, где проверяются динисторы и стабилитроны, тогда будет выведено падение напряжение на работающем светодиоде, либо использовать контакты 14 и 3, на которые напрямую выводится напряжение с накопительного конденсатора С1. Этот способ удобен для проверки свечения более мощных светодиодов.

Pic 15. Контроль напряжения на конденсаторе С1.

Если не подключать никакие компоненты для проверки, то вольтметр покажет напряжение на накопительном конденсаторе С1. У меня оно достигает 73.2 В, что даёт возможность проверять динисторы и стабилитроны в широком диапазоне рабочих напряжений.

Pic 16. Проверка напряжения питания тестера.

Приятная функция тестера – контроль напряжения на батареях питания. При нажатии одновременно на две кнопки, на индикаторе вольтметра показывается напряжение батарей питания и одновременно светится первый индикаторный светодиод (HL1).

Pic 17. Разные ракурсы на корпус тестера.

На виде сбоку видно, что кнопки управления не выступают за верхнюю сторону крышки, сделал так, чтобы не было случайного нажатия на кнопки, если тестер положить в карман.

Pic 18. Разные ракурсы на корпус тестера.

Корпус снизу имеет небольшие ножки, для устойчивого положения на поверхности и чтобы не протирать и не шоркать нижнюю крышку.

Pic 19. Законченный вид.

На фото законченный вид тестера. Его размеры можно представить по размещённому рядом стандартному коробку спичек. В миллиметрах же размеры тестера 80 х 56.5 х 33 мм (без учёта ножек), как и указывал выше.

Pic 20. Цифровой вольтметр.

В тестере применён покупной цифровой вольтметр. Использовал измеритель от 0 до 200 В, но можно и от 0 до 100 В. Стоит он недорого, в пределах 60. 120 P .

Db3 динистор характеристики маркировка российский аналог

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:

Цоколевка динистора DB3

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.

Характеристики динистора DB3

Аналоги динистора DB3

  • HT-32
  • STB120NF10T4
  • STB80NF10T4
  • BAT54

Как проверить динистор DB3

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

Источник питания

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.

Этапы проверки

Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжения на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Проверка динистора с помощью осциллографа

Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.

В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжения пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.

Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:

  • C = 0,015мкф — 0,275 мс.
  • С = 0,1мкф — 3 мс.
  • C = 0,22 мкф — 6 мс.
  • С = 0,33 мкф — 8,4 мс.
  • С = 0,56 мкф — 15 мс.

Скачать datasheet на DB3 (242,6 Kb, скачано: 8 033)

у меня такой, начали пропадать циферки в верхнем табло FOX65, 18 Сент. 14, 20:36

к нему нужно что то докупать? типа семистора или реле твердотельное? kiliwin, 19 Сент. 14, 13:48

Посл. ред. 19 Сент. 14, 07:54 от alexeyT

даже Гриня научился 3 кнопки нажимать alexeyT, 19 Сент. 14, 07:08

тот же РМ2 при снижении Т дурить начинает.(уже 2 ремонта сделал) alexeyT, 19 Сент. 14, 06:37

Расскажи подробнее,думаю будет интересно.

Расскажи подробнее,думаю будет интересно. alekslug, 19 Сент. 14, 08:56

Все размещаемые материалы отражают исключительно мнения их авторов и могут не совпадать с мнением Администрации форума ХоумДистиллер.

© 2019 ХоумДистиллер (форум самогонщиков, пивоваров, виноделов, ректификаторов, зерновиков) & Simple Machines LLC
Полная версия Упрощенная версия

Сегодня рассмотрим простейший способ регулировки напряжения. Способ применяется во многих бытовых устройствах, к примеру для изменения яркости свечения ночника, для регулировки температуры обогревателей и духовок. Или в качестве регулятора мощности паяльника.

Устройство собрано по схеме симистор-динистор. Динистор, как нам известно может моментально открыться и пропускать ток при заданном напряжении, но в обратном направлении он ток пропускать не будет. Из отечественных можно использовать динистор серии КН102, он достаточно часто применялся в отечественных обогревателях с регулировкой температуры.

Динистор с успехом можно заменить на импортный — DB3, он часто встречается в старых ЛДС со встроенным ИБП, именно на плате ИБП можно найти такой динистор (он голубого цвета). Импортный динистор более компактный, но как показала практика — менее устойчив, так, что если есть, то ставьте наш КН102.

Симистор применен импортный — MAC97А8. Это достаточно мощный симисторный ключ (600 вольт 0,8 ампер).

Конденсатор неполярный — подобрать с минимальным напряжением 250 вольт, емкость от 0,22 до 1 мкФ, в данном случае применен фирмы ЭПОКС. Рассматриваются две схемы симисторных регуляторов мощности, оба они работают достаточно стабильно, без каких-либо перегревов.

К устройству подключал лампу накаливания до 100 ватт, больше не пробовал. Поработало 5 минут и никаких перегревов и неожиданных поворотов — все работает очень хорошо.

Поскольку иногда могут возникнуть проблемы с используемыми компонентами (динистор или тиристор не очень уж и легко раздобыть), ниже приведены схемы замены динистора и тиристора.

Тут нужно применить транзисторы, которые способны работать на напряжениях более 200 вольт, отлично подойдут 13001. 13009. Выбор транзисторов зависит от мощности регулятора, для динистора можно использовать маломощные транзистора.

Поделитесь полезными схемами

Простая мигалка на шести светодиодах и двух резисторах, питающаяся от батарейки на 9 вольт.

Устройство предназначено для зарядки литиевых аккумуляторов от мобильных телефонов. Достаточно простая конструкция обеспечивает правильную зарядку аккумулятора. Имеет светодиодный индикатор заряда.

Для того, чтобы удобно использовать данный детектор, я встроил его в мультимитер, хотя так делать нежелательно, хоть и удобно. Чтобы не мешать другим измерения, прицепил к схеме кнопку.

СХЕМА ДИСТАНЦИОННОГО УПРАВЛЕНИЯ ОСВЕЩЕНИЕМ
Принципиальная схема двухканального блока дистанционного управления на микроконтроллере.
МОЩНЫЙ БЛОК ПИТАНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Схема проверенного простого стабилизатора напряжения на мощном полевом транзисторе, который позволяет подключать нагрузку с током до 30 ампер.

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:

Цоколевка динистора DB3

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.

Характеристики динистора DB3

Аналоги динистора DB3

  • HT-32
  • STB120NF10T4
  • STB80NF10T4
  • BAT54

Как проверить динистор DB3

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

Источник питания

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.

Этапы проверки

Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжение на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Проверка динистора с помощью осциллографа

Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.

В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжение пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.

Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:

  • C = 0,015мкф — 0,275 мс.
  • С = 0,1мкф — 3 мс.
  • C = 0,22 мкф — 6 мс.
  • С = 0,33 мкф — 8,4 мс.
  • С = 0,56 мкф — 15 мс.

Скачать datasheet на DB3 (242,6 Kb, скачано: 7 491)

Динисторы – это разновидность полупроводниковых приборов, точнее – неуправляемых тиристоров. В своей структуре он содержит три p — n перехода и имеет четырёхслойную структуру.

Его можно сравнить с механическим ключом, то есть, прибор может переключаться между двумя состояниями – открытое и закрытое. В первом случае электрическое сопротивление стремится к очень низким величинам, во втором же, наоборот – может достигать десятков и сотен Мом. Переход между состояниями происходит скачкообразно.

Динистор DB 3

Данный элемент не получил широкого распространения в радиоэлектронике, но всё равно часто применяется в схемах устройств с автоматическим переключением, преобразователях сигналов и генераторов релаксационных колебаний.

Как работает прибор?

Для пояснения принципа работы динистора db 3 обозначим имеющиеся в нём p — n переходы как П1, П2 и П3 следуя по схеме от анода к катоду.

В случае прямого включения прибора к источнику питания, прямое смещение приходится на переходы П1 и П3, а П2, в свою очередь, начинает работать в обратном направлении. При таком режиме, db 3 считается закрытым. Падение напряжения происходит на П2 переход.

Ток в закрытом состоянии определяется током утечки, который имеет очень маленькие значения (сотые доли МкА). Медленное и плавное увеличение подаваемого напряжения, вплоть до максимального напряжения закрытого состояния (напряжения пробоя), не будет способствовать значительному изменению тока. Но при достижении этого напряжения, ток увеличивается скачком, а напряжение, наоборот – падает.

В таком режиме работы, прибор на схеме приобретает минимальные значения сопротивления (от сотых долей ом до единиц) и начинает считаться открытым. Для того чтобы закрыть прибор, то на нём нужно уменьшить напряжение. В схеме с обратным подключением, переходы П1 и П3 закрыты, П2 открыт.

Динистор db 3. Описание, характеристики и аналоги

Динистор db 3 – одна из популярнейших разновидностей неуправляемых тиристоров. Применяется чаще всего в преобразователях напряжения люминесцентных лам и трансформаторов. Принцип работы данного прибора такой же, как и у всех неуправляемых тиристоров, отличия лишь в параметрах.

  • Напряжение открытого динистора – 5В
  • Максимальный ток открытого динистора – 0.3А
  • Импульсный ток в открытом состоянии – 2А
  • Максимальное напряжение закрытого прибора – 32В
  • Ток в закрытом приборе – 10А

Динистор db 3 может работать при температурах от -40 до 70 градусов Цельсия.

Проверка db 3

Выход из строя такого прибора– редкое событие, но, тем не менее оно всё-таки может случиться. Поэтому проверка динистора db 3 – важный вопрос для радиолюбителей и ремонтников радиоаппаратуры.

К сожалению, из-за технических особенностей данного элемента, проверить его обычным мультиметром не получится. Единственное действие, которое можно реализовать с помощью тестера – это прозвонка. Но подобная проверка не даст нам точных ответов на вопросы о работоспособности элемента.

Однако это совсем не означает, что проверить прибор невозможно или просто тяжело. Для действительно информативной проверки о состоянии этого элемента, нам необходимо собрать простенькую схему, состоящую из резистора, светодиода и самого динистора. Подключаем элементы последовательно в следующем порядке – анод динистора к блоку питания, катод к резистору, резистор к аноду светодиода. В качестве источника питания необходимо использовать регулируемый блок с возможностью поднятия напряжения до 40 вольт.

Процесс проверки по данной схеме заключается в постепенном увеличении напряжения на источнике с целью загорания светодиода. В случае рабочего элемента, светодиод загорится при напряжении пробоя и открытии динистора. Проведя операцию в обратном порядке, то есть уменьшая напряжение, мы должны увидеть, как светодиод погаснет.

При подобной проверке рекомендуется замерять напряжение, при котором загорается светодиод. То есть, напряжение пробоя, которое понадобится для дальнейшей работы с прибором.

Помимо данной схемы, существует способ проверки с помощью осциллографа.

Схема проверки будет состоять из резистора, конденсатора и динистора, включение которого будет параллельным конденсатору. Подключаем питание 70 вольт. Резистор – 100кОм. Схема работает следующим образом – конденсатор заряжается до напряжения пробоя и резко разряжается через db3. После процесс повторяется. На экране осциллографа мы обнаружим релаксационные колебания в виде линий.

Аналоги db 3

Несмотря на редкость выхода прибора из строя, иногда это происходит и необходимо искать замену. В качестве аналогов, на которые можно заменить наш прибор, предлагаются следующие виды динисторов:

Как мы видим, аналогов прибора очень мало, но его можно заменить некоторыми полевыми транзисторами, по особым схемам включения, например, STB120NF10T4.

Динистор DB3. Характеристики, проверка, аналог, datasheet

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:

Как проверить динистор DB3

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

Источник питания

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.

Этапы проверки

Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжение на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Эквивалентная замена лямбда-диодов

Совершенно особым видом ВАХ обладают полупроводниковые приборы типа лямбда-диодов, туннельных диодов. На вольт-амперных характеристиках этих приборов имеется N-об-разный участок.

Лямбда-диоды и туннельные диоды могут быть использованы для генерации и усиления электрических сигналов. На рис. 8 и рис. 9 показаны схемы, имитирующие лямбда-ди-од [РТЕ 9/87-35].

Практически в генераторах чаще используют схему, представленную на рис. 9 [ПТЭ 5/77-96]. Если между стоками полевых транзисторов включить управляемый резистор (потенциометр) либо транзистор (полевой или биполярный), то видом вольт-амперной характеристики такого «лямбда-диода» можно управлять в широких пределах: регулировать частоту генерации, модулировать колебания высокой частоты и т.д.

Рис. 8. Аналог лямбда-диода.

Рис. 9. Аналог лямбда-диода.

Проверка динистора с помощью осциллографа

Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.

В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжение пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.

Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:

  • C = 0,015мкф — 0,275 мс.
  • С = 0,1мкф — 3 мс.
  • C = 0,22 мкф — 6 мс.
  • С = 0,33 мкф — 8,4 мс.
  • С = 0,56 мкф — 15 мс.

Эквивалент инжекционно-полевого транзистора

Инжекционно-полевой транзистор представляет собой полупроводниковый прибор с S-образной ВАХ. Подобные приборы широко используют в импульсной технике — в релаксационных генераторах импульсов, преобразователях напряжение-частота, ждущих и управляемых генераторах и т.д.

Такой транзистор может быть составлен объединением полевого и обычного биполярного транзисторов (рис. 5, 6). На основе дискретных элементов может быть смоделирована не только полупроводниковая структура.

Рис. 5. Аналог инжекционно-полевого транзистора п-структуры.

Рис. 6. Аналог инжекционно-полевого транзистора р-структуры.

Причины поломки диммеров

Чаще всего причиной поломки может быть превышение максимально допустимой нагрузки либо короткое замыкание в нагрузке. Превышение нагрузки бывает, когда например, любители хорошего освещения вкрутят слишком мощные лампы в люстры. Либо через диммер подключают несколько светильников, в сумме потребляющих слишком большую мощность.

К слову, при выборе диммера следует мощность выбирать с запасом 30…50%. Как повысить мощность диммера, будет рассказано и показано в этой статье.

Короткое замыкание возможно не только из-за неисправной проводки. Бывает, когда лампочки перегорают, в них происходит короткое замыкание (КЗ), в природу которого углубляться не будем.

Кроме того, в момент включения лампы накаливания через неё течёт ток, в несколько раз превышающий рабочий. Подробнее – в статье про сопротивление лампы накаливания.

Неисправности диммеров на симисторе

В результате КЗ и перегрузки, как правило, выходит из строя симистор. Это основная неисправность, она встречается в 90% случаев поломки.

Симистор – это главный элемент. Его отличительные особенности – три вывода и к корпусу прикручен радиатор. Наиболее часто встречаются модели ВТ137, BT138, BT139.

Неисправность симистора можно выявить мультиметром. Если прозвонить в режиме омметра сопротивление между выводами А1 и А2 (или Т1 и Т2, первый и второй вывод), будет от нуля до несколько ом. Вывод – симистор однозначно сгорел.

Бывает другой случай – симистор звонится нормально (бесконечное сопротивление), а диммер однако не работает (лампа не горит во всех положениях регулятора). Тут поможет только проверка, т.е. включение в реальную схему.

О замене симистора будет подробно сказано ниже.

Креме неисправного симистора, встречаются другие неисправности диммера:

  1. Выгорают силовые дорожки печатной платы. Это – следствие основной неисправности. Дорожки придётся восстанавливать перемычками.
  2. Нарушается механическая целостность регулятора (потенциометра, или переменного резистора). От частого и интенсивного использования, тут пояснений не надо.
  3. В диммерах, в которых есть предохранитель, перед ремонтом надо в первую очередь проверить его. Часто производитель прикладывает запасной, который хранится там же, в диммере, где и рабочий. Разумное решение. Был бы он в отдельном кулечке – обязательно бы потерялся.
  4. Механическое нарушение контактов и пайки печатной платы. В первую очередь – пайка контактов, куда прикручиваются провода. Так же бывает, что электронные элементы просто плохо пропаяны производителем.
  5. Неисправности отдельных элементов. В первую очередь – динистор, затем резисторы и конденсаторы.

Порядок ремонта диммера

Теперь приведу пример, как заменить симистор своими руками, применяя дрель, паяльник, и обычную зубочистку.

Симистор можно заменить, открутив радиатор и выпаяв симистор из платы. Но радиатор сейчас приклёпывают. Заклёпка гораздо технологичнее и дешевле в массовом производстве.

Поэтому берём в руки дрель со сверлом диаметром 3,5…5,5 мм.

1 Высверливаем заклепку радиатора

Стрелкой показано направление сверла.

2 Снимаем радиатор с симистора

Радиатор снят, теперь надо аккуратно выпаять плохой симистор, минимально повредив плату. Рекомендуемая мощность паяльника – 25 или 40 Вт.

3 Выпаиваем симистор из платы. Обозначены выводы симистора – Т1, Т2, Gate.

Плюс к паяльнику, нужен опыт и сноровка.

Паяльником мощностью 60 Ватт и более можно запросто повредить плату.

Далее – подготавливаем место для нового симистора, используем для этого деревянную зубочистку:

4 Подготавливаем отверстия для нового симистора

5 Плата подготовлена

6 Место под новый симистор

Площадки слиплись, но это пока не важно.

А вот и друзья-симисторы, рядом динистор DB3:

7 Новые симисторы и динистор DB3

Симисторы (BT139, BT138, BT137) на фото все на напряжение 800 Вольт, максимальный рабочий ток соответственно 16, 12, и 8 Ампер.

Даташит можно будет скачать в конце статьи.

Теперь в эти сквозные отверстия вставляем новую деталь:

8 Симистор запаян

9 Обрезаем ноги (выводы))

Перемычка неудачная, надо было использовать проводок потоньше…

Внимательно проверяем пайку, чтобы не было замыкания между контактными площадками.

Дальше – монтируем радиатор. В домашних условиях дешевле и технологичнее использовать Винт, шайбу и гайку М3.

10 Осталось прикрутить радиатор

Теперь остаётся проверить работу в реальной схеме включения. Напоминаю, диммер включается точно так же, как обычный выключатель:

Включение лампочки через регулятор яркости.

Для схемы проверки использую лампочку любой мощности в патроне, провод со штепселем, и клеммник Ваго 222.

Область применения

Предназначение динисторов – запуск. Используются в тиристорах регуляторов мощности, в электронных преобразователях напряжения, в тепловых контролях.

Благодаря тому, что динистор обладает рядом особых свойств, и в тоже время является бюджетным вариантом, данный вид полупроводников получил широкое распространение во многих сферах.

Применяется в устройстве:

  • Преобразователей напряжения люминесцентных ламп, неоновых ламп, энергосберегающих ламп;
  • В электронных устройствах, которые осуществляют запуск и поддержку работы разрядных ламп;
  • Нашел своё применение в схемах радиоконструкций, некоторых старых моделях раций, радиомикрофонов;
  • Используется в схемах управления плавным спуском двигателей;
  • Обогревателей;

Это Интересно! Во времена активного пользования и широкого распространения стационарных телефонных аппаратов некоторые умельцы устанавливали динисторы с целью пресечения попыток прослушки, если имелось 2 и более телефона на одной линии.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 4 чел. Средний рейтинг: 2.8 из 5.

Динистор DB3 ST от 0.56 грн

DB-3
Код товара: 154934
Производитель:
Электронные компоненты и комплектующиеРазные комплектующие 3


DB3
Производитель: LGE
bidirectional; Itrm=2A Vbo=32V Vo=5V DB-3 Diac DB-3 DO-35(tape/box) LGE DDB3 LGE
количество в упаковке: 1000 шт
под заказ 3000 шт
срок поставки 14-28&nbspдня (дней)
DB3
Производитель: Fairchild Semiconductor
Description: DIAC, 36V MAX, DO-204AH
Supplier Device Package: DO-35
Package / Case: DO-204AH, DO-35, Axial
Part Status: Obsolete
Packaging: Bulk
Manufacturer: Rochester Electronics, LLC
Operating Temperature: -40°C ~ 125°C (TJ)
Current — Peak Output: 2A
Current — Breakover: 50µA
Voltage — Breakover: 28 ~ 36V
под заказ 1210401 шт
срок поставки 7-22&nbspдня (дней)
DB-3
Производитель: ST
Itrm=2A Vbo=32V Vo=5V Equivalent: BR100/03, LLDB3L1, DB3TG, DB-3 Diac DB-3 DO-35 STM DDB3
количество в упаковке: 5000 шт
под заказ 5000 шт
срок поставки 14-28&nbspдня (дней)
DB3
Производитель: DIOTEC

под заказ 1785 шт
срок поставки 16-23&nbspдня (дней)
308+ 1.26 грн
500+ 1.16 грн
2800+ 0.97 грн
10000+ 0.92 грн
DB3
Производитель: DC COMPONENTS
Material: DB3-DC Diacs
под заказ 260 шт
срок поставки 7-14&nbspдня (дней)
30+ 1.77 грн
100+ 0.92 грн
500+ 0.8 грн
870+ 0.6 грн
2390+ 0.57 грн
DB3
Производитель: LUGUANG ELECTRONIC
Material: DB3-LGE Diacs
под заказ 21165 шт
срок поставки 7-14&nbspдня (дней)
28+ 1.9 грн
100+ 0.77 грн
500+ 0.67 грн
965+ 0.54 грн
2645+ 0.51 грн
DB3
Производитель: STMicroelectronics
Material: DB3-ST Diacs
под заказ 2800 шт
срок поставки 7-14&nbspдня (дней)
13+ 4.04 грн
50+ 2.09 грн
250+ 1.64 грн
380+ 1.38 грн
1050+ 1.3 грн
DB3
Производитель: ON Semiconductor
DIAC 36V 0.1mA 2-Pin DO-35 T/R
под заказ 327 шт
срок поставки 9-28&nbspдня (дней)
49+ 7.31 грн
50+ 6.27 грн
51+ 5.98 грн
100+ 5.49 грн
250+ 4.98 грн
DB3
Производитель: SGS-Thomson
Діодний тригер; Udrm, В = 32; It(rms), А = 0,01; Тексп, °С = -40…+125; DO-35
под заказ 35 шт
срок поставки 2-3&nbspдня (дней)
67+ 8.65 грн
72+ 8.08 грн
100+ 7.5 грн
DB3
Производитель: STMicroelectronics
Description: DIAC 28-36V 2A DO35
Manufacturer: STMicroelectronics
Base Part Number: DB3
Supplier Device Package: DO-35
Package / Case: DO-204AH, DO-35, Axial
Operating Temperature: -40°C ~ 125°C (TJ)
Current — Peak Output: 2A
Current — Breakover: 50µA
Voltage — Breakover: 28 ~ 36V
Part Status: Active
Packaging: Cut Tape (CT)
под заказ 226 шт
срок поставки 7-22&nbspдня (дней)
4+ 10.78 грн
10+ 8.92 грн
25+ 6.76 грн
100+ 4.28 грн
DB3
Производитель: STMICROELECTRONICS
Description: STMICROELECTRONICS — DB3 — DIAC / SIDAC, 28 V, 36 V, 100 µA, DO-35, 2 Pins
No. of Pins: 2
Product Range:
Breakover Current Max.: 100
Breakover Voltage Vbo Min: 28
Breakover Voltage Vbo Max: 36
Peak Forward Current:
Diac / Sidac Case Style: DO-35
под заказ 2838 шт
срок поставки 10-18&nbspдня (дней)
42+ 13.29 грн
59+ 9.47 грн
150+ 3.71 грн
500+ 2.86 грн
1000+ 2.09 грн
Динистор DB-3
Производитель:
под заказ 28 шт
срок поставки 2-3&nbspдня (дней)
DB3
Производитель:
DB3
под заказ 3890 шт
срок поставки 2-3&nbspдня (дней)
DB3
Производитель:
DB3 DIAC TRIGGER DIODE 150MW DO-35
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель:
DB3 DIAC TRIGGER DIODE 150MW DO-35
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель:
DB3 DIAC TRIGGER DIODE 150MW DO-35
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: Diotec
Динистор (DIAC), 28-36В, DO-35 DB3DIO : DB3-DIO
под заказ 225 шт
срок поставки 4&nbspдня (дней)
DB3
Производитель: Shenzhen Luguang Electronic Technology Co., Ltd.
Динистор (DIAC), 28-36В, DO-35
под заказ 887 шт
срок поставки 4&nbspдня (дней)
DB3
Производитель: Vishay Europe Sales GmbH
Динистор (DIAC), 28-36В, DO-35
под заказ 71 шт
срок поставки 4&nbspдня (дней)
DB3
Производитель: STMicroelectronics
Description: DIAC 28-36V 2A DO35
Manufacturer: STMicroelectronics
Packaging: Tape & Reel (TR)
Part Status: Active
Voltage — Breakover: 28 ~ 36V
Current — Breakover: 50µA
Current — Peak Output: 2A
Operating Temperature: -40°C ~ 125°C (TJ)
Package / Case: DO-204AH, DO-35, Axial
Supplier Device Package: DO-35
Base Part Number: DB3
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: STMicroelectronics
DIAC 36V 0.05mA 2-Pin DO-35 T/R
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: ON Semiconductor
DIAC 36V 0.1mA 2-Pin DO-35 T/R
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: ON Semiconductor
Description: DIAC 28-36V 2A DO35
Packaging: Cut Tape (CT)
Part Status: Obsolete
Voltage — Breakover: 28 ~ 36V
Current — Breakover: 100µA
Current — Peak Output: 2A
Operating Temperature: -40°C ~ 125°C (TJ)
Package / Case: DO-204AH, DO-35, Axial
Supplier Device Package: DO-35
Manufacturer: onsemi
Base Part Number: DB3
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: DIOTEC SEMICONDUCTOR
Material: DB3-DIO Diacs
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: Diotec Semiconductor
DIAC 36V 0.2mA 2-Pin DO-35 Ammo
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: STMicroelectronics
DIAC 36V 0.05mA 2-Pin DO-35 T/R
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: STMicroelectronics
DIAC 36V 0.05mA 2-Pin DO-35 T/R
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: ON Semiconductor
Description: DIAC 28-36V 2A DO35
Supplier Device Package: DO-35
Package / Case: DO-204AH, DO-35, Axial
Operating Temperature: -40°C ~ 125°C (TJ)
Current — Peak Output: 2A
Current — Breakover: 100µA
Voltage — Breakover: 28 ~ 36V
Part Status: Obsolete
Packaging: Tape & Reel (TR)
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB-3
Производитель: Amphenol Industrial Operations
Description: CONN CABLE GRIP ALUM .375-.437
Includes: Compression Nut, Strain Relief
Material: Aluminum
Panel Hole Size: 0.875″ (22.2mm), 7/8″
Conduit Hub Size: 1/2″ (12.7mm)
Cable Diameter: 0.38″ ~ 0.44″ (9.5mm ~ 11.1mm)
Type: Cable Grip
Color: Silver
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: STMicroelectronics
Diacs 32 Volt Trigger
под заказ 151921 шт
срок поставки 8-21&nbspдня (дней)
DB3
Производитель: Rectron
Diacs DO-35,Diac,150mW,Tri gger,Tape/Ammo
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB-3
Производитель: Essentra
Essentra
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB-3
Производитель: Amphenol Industrial
Cable Mounting & Accessories CORD GRIP STR 7/8 .375-.437
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: ON Semiconductor / Fairchild
Diacs 350MW BI-DIRECTIONAL TRIGGER DIODES
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: EIC
SILICON BI-DIRECTIONAL DIACS
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB 3
Производитель: Diotec Semiconductor
DIAC 36V 0.2mA 2-Pin DO-35 Ammo
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: STMicroelectronics
DIAC 36V 0.05mA 2-Pin DO-35 T/R
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: STMicroelectronics
DIAC 36V 0.05mA 2-Pin DO-35 T/R
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB 3
Производитель: Diotec Semiconductor
DIAC 36V 0.2mA 2-Pin DO-35 Ammo
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: STMicroelectronics
DIAC 36V 0.05mA 2-Pin DO-35 T/R
под заказ 22 шт
срок поставки 9-28&nbspдня (дней)
DB3
Производитель: STMICROELECTRONICS
Description: STMICROELECTRONICS — DB3 — DIAC / SIDAC, 28 V, 36 V, 50 µA, DO-35, 2 Pins
No. of Pins: 2
Product Range:
Breakover Current Max.: 50
Breakover Voltage Vbo Min: 28
Breakover Voltage Vbo Max: 36
Peak Forward Current:
Diac / Sidac Case Style: DO-35
товар отсутствует, Вы можете сделать запрос добавив товар в корзину
DB3
Производитель: STMICROELECTRONICS
Тиристоры и симисторы DIACs & SIDACs DIAC Breakover Current Max. 100µA Thyristor Case DO-35 No. of Pins 2 SVHC No SVHC (15-Dec-2010) Package / Case DO-35 Device Marking DB3 External Diameter 2mm External Length / Heigh
количество в упаковке: 1 шт
под заказ 12320 шт
срок поставки 14-28&nbspдня (дней)
DB3
Производитель: ST
DB3
количество в упаковке: 5000 шт
под заказ 75000 шт
срок поставки 21-35&nbspдня (дней)

Динистор дв3 цоколевка их виды

Условное графическое обозначение динистора на схеме немного напоминает полупроводниковый диод за одним отличием. У него есть перпендикулярная черта, которая символизирует базовую область, и придающая динистору его необыкновенные параметры и характеристики.

Но как это ни странно изображение динистора на ряде схем бывает и другим. Допустим, изображение симметричного динистора может быть таким:

Такой разброс в условно-графических обозначениях связан с тем, что существует огромный класс полупроводников тиристоров. К которым относится динистор, тринистор (triac), симистор. На схемах все они похожи в виде сочетания из двух диодов и дополнительных линий. В зарубежных источниках этот подкласс полупроводника получил название trigger diode (триггерный диод), diac. На принципиальных схемах он может обозначаться латинскими символами VD, VS, V и D.

Принцип работы триггерного диода

Основной принцип работы динистора основывается на том, что при прямом включении он не пропустит электрический ток до тех пор, пока напряжение на его выводах не достигнет заданной величины.

Обычный диод также имеет такой параметр как напряжение открытия, но для него оно лишь пара сотен милливольт. При прямом включении обычный диод открывается как только к его выводам приложить небольшой уровень напряжения.

Чтобы наглядно понять в принцип работы необходимо посмотреть на вольт-амперную характеристику, она позволяет наглядно рассмотреть, как работает этот полупроводниковый прибор.

Рассмотрим ВАХ самого часто встречающегося симметричного динистора типа DB3. Его можно монтировать в любую схему без соблюдения цоколевки. Работать он будет точно, а вот напряжение включения (пробоя) может немного отличаться, где-то на три вольта

Как мы можем видеть обои ветви характеристики, абсолютно одинаковы. (говорит о том, что он симметричный) Поэтому и работа DB3 не зависит от полярности напряжения на его выводах.

ВАХ имеет три области, показывающие режим работы полупроводника типа DB-3 при определенных факторах.

Таким образом из графика четко видно, что динистор в своей работе похож на диод за одним большим «НО». Если его пробивное напряжение обычного диода составляет значение (150 – 500 мВ), то для открытия триггерного диода требуется подать на его выводы напряжение от пары десятки вольт. Так для прибора DB3 напряжение включения составляет 32 вольта.

Для полного закрытия динистора, необходимо снизить уровень тока до значения ниже тока удержания. В случае несимметричного варианта, при обратном включении он не пропускает ток до тех пор, пока обратное напряжение не достигнет критического уровня и он сгорит. В радиолюбительских самоделках динистор может использоваться в стробоскопах, переключателях и регуляторах мощности и многих других устройствах.

Основой конструкции является релаксационный генератор на VS1. Входное напряжение выпрямляется диодом VD1 и поступает через сопротивление R1 на подстроечник R2. С его движка часть напряжения следует на емкость С1, тем самым заряжая ее. Если напряжение на входе не выше нормы, напряжения зарядки емкости нехватит для пробоя, и VS1 закрыт. Если уровень сетевого напряжения увеличивается, заряд на конденсаторе тоже возрастает, и пробивает VS1. С1 разряжается через VS1 головной телефон BF1 и светодиод, тем самым сигнализируя об опасном уровне сетевого напряжения. После этого VS1 закрывается и емкость опять начинает накапливать заряд. Во втором варианте схемы подстроечное сопротивление R2 должно быть мощностью не ниже 1 Вт, а резистор R6 – 0,25 Вт. Регулировка этой схемы заключается к установке подстроечными сопротивлениями R2 и R6 нижнего и верхнего предела отклонения уровня сетевого напряжения.

Здесь используется широко распространенный двунаправленный симметричный динистор DB3. Если FU1 цел, то динистор закорочен диодами VD1 и VD2 во время положительного полупериода сетевого напряжения 220В. Светодиод VD4 и сопротивление R1 шунтируют емкость С1. Светодиод горит. Ток через него определяется номиналом сопротивления R2.

В этой схеме частота вспышек задается релаксационным генератором на D3. Он будет закрыт, пока напряжение на выходе не достигнет своего максимального значение, около 32 В. Емкость С4 начинает заряжаться через Р1 и сопротивление R7, пока закрыт симметрический Д. Частоту колебаний генератора можно настраивать потенциометром Р1.

В момент открытия динистора, откроется и симистор, через подключенную к выходу нагрузку потечет ток, зависящий от суммарного сопротивлением открытого симистора и нагрузки. Симистор будет открыт до конца полупериода. Резистором VR1 задаем напряжение открывания полупроводников, тем самым регулируя мощность.

Строительство и Дача на понятном языке

Здравствуйте, статья находится в разработке!

6 комментариев

Добавить комментарий

Отменить ответ

Совершенно безграмотная статья. Может, есть смысл перед публикацией просматривать инженеру? А девочки, набранные по объявлению, заведомо ничего написать не могут. Что и видим.
Чюдо 1: «то для открытия устройства целесообразно осуществить на выводы напряжение включения»
Чюдо 2: «Динистор DB3 применяется в тиристоры регуляторах мощности,»
Чюдо 3:»устройство во время включения не способно проводить ток до того, пока напряжение на выходе не будет иметь более высокого показателя. Этот показатель не меняется.»
и т.д.
Ну граждане, неудобно даже…Переводила жертва ЕГЭ?
Поправьте, не срамитесь.

нехорошо начинающих путать Вольты с ватами Для прибора DB3 напряжение включения равняется 32 Вт. что напряжение пробоя будет варьироваться до 3 Вт

не нашлось сил исправить, только пообещать? И на том спасибо.

нехорошо начинающих путать Вольты с ватами Для прибора DB3 напряжение включения равняется 32 Вт. что напряжение пробоя будет варьироваться до 3 Вт

В схеме ошибка ! Для правильной работы необходимо «перевернуть» диоды Д2 и Д3.

Здравствуйте Александр, спасибо за комментарий, мы исправим ошибку!

Динистор – это двунаправленный триггерный неуправляемый диод, аналогичный по устройству тиристору небольшой мощности. В его конструкции отсутствует управляющий электрод. Он обладает низкой величиной напряжения лавинного пробоя, до 30 В. Динистор может считаться важнейшим элементом, предназначенным для переключающих автоматических устройств, для схем генераторов релаксационных колебаний и для преобразования сигналов.

Динисторы производятся для цепей максимального тока до 2 А непрерывного действия и до 10 А для работы в импульсном режиме для напряжений с величинами от 10 до 200 В.

Рис. №1. Диффузионный кремниевый динистор pnpn (диодный тиристор) марки КН102 (2Н102). Устройство применяется в импульсных схемах и выполняет коммутирующие действия. Конструкция выполнена в из металлостекла и имеет гибкие выводы.

Принцип работы динистора

Прямое включение динистора от источника питания приводит к прямому смещению p-n-p-перехода П1 и П3. П2 работает в обратном направлении, соответственно состояние динистора считается закрытым, а падение напряжения приходится на переход П2.

Величина тока определяется током утечки и находится в границах от сотых долей мкрА (участок ОА). При плавном увеличении напряжения, ток будет расти медленно, при достижении напряжением величины переключения близкого к величине пробивного напряжения p-n-перехода П2, то ток его возрастает резким скачком, соответственно напряжение падает.

Положение прибора открытое, его рабочая составляющая переходит в область БВ. Дифференциальное сопротивление устройства в этой области имеет положительное значение и лежит в незначительных границах от 0,001 Ом до нескольких единиц сопротивления (Ом).

Чтобы выключить динистор необходимо уменьшить величину тока до значения тока удержания. В случае приложения к прибору обратного напряжения, переход П2 открывается, переход П1 и П3 закрыты.

Рис. №2. (а) Структура динистора; (б) ВАХ

Область применения динистора

  1. Динистор может использоваться для формирования импульса предназначенного для отпирания тиристора, благодаря своей несложной конструкции и невысокой стоимости динистор считается идеальным элементом для применения в схеме тиристорного регулятора мощности или импульсного генератора
  2. Еще одно распространенное применение динистора – это использование в конструкции высокочастотных преобразователей для работы с электрической сетью 220В для питания ламп накаливания, и люминесцентных ламп в компактном исполнении (КЛЛ) в виде компонента, входящего в устройство «электронного трансформатора» Это так называемый DB3 или симметричный динистор. Для этого динистора характерен разброс пробивного напряжения. Устройство используется для обычного и поверхностного монтажа.

Реверсивно-включаемые мощные динисторы

Широкое распространение получила разновидность динисторов, обладающих реверсивно-импульсными свойствами. Эти приборы позволяют выполнить микросекундную коммутацию в сотни и даже в миллионы ампер.

Реверсивно-импульсные динисторы (РВД) используются в конструкции твердотельного ключа для питания силовых установок, РВД и работают в микросекундном и субмиллисекундном диапазонах. Они коммутируют импульсный ток до 500 кА в схемах генераторов униполярных импульсов в частотном режиме многократного действия.

Рис. №3. Маркировка РВД используемого в моноимпульсном режиме.

Внешний вид ключей собранных на основе РВД

Рис. №4. Конструкция бескорпусного РВД.

Рси.№5. Конструкция РВД в метало-керамическом таблеточном герметичном корпусе.

Число РВД зависит от величины напряжения для рабочего режима коммутатора, если коммутатор рассчитан на напряжение 25 kVdc, то их число – 15 штук. Конструкция коммутатора на основе РВД схожа с конструкцией высоковольтной сборки с последовательно соединенными тиристорами с таблеточным устройством и с охладителем. И прибор, и охладитель выбираются с учетом рабочего режима, который задается пользователем.

Структура кристалла силового РВД

Полупроводниковая структура реверсивного-включаемого динистора включает в свой состав несколько тысяч тиристорных и транзисторных секций, обладающих общим коллектором.

Включение прибора происходит после изменения на короткое время полярности внешнего напряжения и прохождения через транзисторные секции короткого импульсного тока. Происходит инжектирование электронно-дырочной плазмы в n-базу, по плоскости всего коллектора создается тонкий плазменный слой. Насыщающийся реактор L служит для разделения силовой и управляющей части цепи, через доли микросекунды происходит насыщение реактора и к прибору приходит напряжение первичной полярности. Внешнее поле вытягивает дырки из слоя плазмы в p-базу, что приводит к инжекции электронов, происходит независимое от величины площади переключение прибора по всей его поверхности. Именно благодаря этому имеется возможность производить коммутацию больших токов с высокой скоростью нарастания.

Рис. №6. Полупроводниковая структура РВД.

Рис. №7. Типичная осциллограмма коммутации.

Перспектива использования РВД

Современные варианты динисторов изготовленных в доступном в настоящее время диаметре кремния позволяют коммутировать ток величиной до 1 млА. Для элементов в основу, которых положен карбид кремния характерна: высокая насыщенность скорости электронов, напряженность поля лавинного пробоя с высоким значением, утроенное значение теплопроводности.

Их рабочая температура намного выше из-за широкой зоны, вдвое превышающая радиационная стойкость – вот все основные преимущества кремниевых динистров. Эти параметры дают возможность повысить качество характеристик всех силовых электронных устройств, изготовленных на их основе.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

сайтов для поиска технических данных по полупроводникам

Что такое лист данных?

Техническое описание представляет собой своего рода руководство для полупроводниковых, интегральных схем . Таблица — это документ, печатный или электронный, который предоставляет подробную информацию о продукте, таком как компьютер, компьютерный компонент или программное обеспечение. Таблица включает информацию, которая может помочь в принятии решения о покупке продукта, предоставляя технические характеристики продукта.

Содержимое файла обычно содержит подробную информацию, пакеты, коды заказа и максимальное номинальное напряжение.

Раньше он распространялся в виде книги, которая называлась книгой данных, но теперь она доступна в виде файла PDF. Обычно он предоставляется в виде файла PDF. Как правило, таблицы данных часто имеют несколько дистрибутивов, поэтому полезно проверять последние версии таблиц.

Тем не менее, я рекомендую вам сверяться с таблицей данных за период времени, в течение которого вы знаете год производства деталей, которыми вы владеете.

Ссылки сайтов

1. Сайт с техническими данными, предоставленный магазином полупроводников

  • https://www.arrow.com/
  • https://www.digikey.com/
  • https://www.mouser.com/
  • http://www.element14.com/
  • https://www.verical.com/
  • http://www.chip1stop.com/
  • https://www.avnet.com/
  • http://www.newark.com/
  • http://www.futureelectronics.com/
  • https://www.ttiinc.com/

2.Коллекция сайтов поиска по таблицам

  • http://www.datasheet39.com/
  • http://www.datasheet4u.com/
  • http://www.datasheetcatalog.com/
  • http://www.alldatasheet.com/
  • http://www.icpdf.com/
  • http://www.htmldatasheet.com/
  • http://www.datasheets360.com/
  • https://octopart.com/

Octopart — это поисковый движок для электронных и промышленных деталей. Найдите данные по запчастям , проверьте наличие и сравните цены у сотен дистрибьюторов и тысяч производителей.

3. Другие семейства веб-сайтов, связанные с таблицами

  • https://en.wikipedia.org/wiki/Datasheet
  • http://www.smdcode.com/en/
  • http://www.s-manuals.com/smd
  • http://www.qsl.net/yo5ofh/data_sheets/data_sheets_page.htm

4. Как читать техническое описание

Статьи по теме в Интернете

KVM-переключатель | KVM через IP | Dominion KX III

Все доступные модели KX III
9116

8 портов

9011 9011 9011 9011 9011 9011 9011 -232

Удаленные пользователи
по сети

64 порта

32 порта

1 порт

8

KX III-864

KX III-832

900 KX III-832 -808

4

KX III-464

KX III-432

KX III-416

KX III-216

1

KX III-132

9011 6

KX III-116

KX III-108

KX IV-101

  1. Пользователи сети работают одновременно.До 8 пользователей могут просматривать и управлять одним сервером с помощью PC Share®
  2. Все модели имеют двойной источник питания, двойную локальную сеть и поддерживают виртуальные носители и абсолютную синхронизацию мыши.
  3. Для получения дополнительной информации о требуемых модулях CIM см. Руководство по KX III CIM
Схема топологии

На диаграмме ниже Dominion KX III обеспечивает:
Dominion KX III Клиенты KVM-over-IP

9011

9011 Вход-выход

Клиент KVM / IP

Технология

KVM-over-IP Производительность

Аудио

Смарт-карта

Активный KVM-клиент (AKC)

Microsoft.NET Framework

High

Full Virtual Media

Input Output

HTML KVM Client (HKC)

9011 9011 Browser Technologies

Удаленные / локальные образы ISO

Выходные данные

Виртуальный клиент KVM (VKC)

Java-апплет

Высокий уровень

Пользовательская станция KX III (VKC)

Аппаратное устройство Linux

Наивысшее значение

Полный виртуальный носитель

Вход

Dominion KX III га s три программных клиента KVM-over-IP: AKC, HKC и VKC.Пользователи взаимодействуют с этими Клиентами для доступа к удаленным серверам и управления ими. AKC — это полнофункциональный клиент без Java, используемый в Windows. HKC — это наш новый клиент без Java на базе браузера для платформ Linux, iOS и Mac. VKC — это оригинальный полнофункциональный клиент KVM на базе Java для всех платформ.

Пользовательская станция KX III обеспечивает высокопроизводительный доступ KVM-over-IP для вещания, диспетчерских и студий. Это аппаратное устройство на базе Linux поддерживает два видеосеанса 1080p со скоростью 30 кадров в секунду с задержкой 50 мс.


Как работают пользовательские станции Dominion KX:

Модуль компьютерного интерфейса (CIM) для Dominion KX III

CIM — это «серверный ключ», который соединяет ПК, сервер или рабочую станцию ​​с KX III с помощью кабеля Cat5 / 6. Существует несколько типов модулей CIM для поддержки различных типов компьютерных портов (USB, PS / 2, VGA, HDMI, DVI, DisplayPort, последовательный порт) и для выполнения таких функций, как виртуальные носители. Используйте приведенную ниже таблицу, чтобы найти соответствующий CIM. Для получения более подробной информации обратитесь к Руководству по KX III CIM.

HDMI

HDMI

VGA

USD DV-9 В наличии

9010 9010 9010 9011 9011
9011 9011 9011

9011
9011 9011 9011 9011 9011 9011 9011 9011 9011 9011 9010

110

P2CIM-SER

9011 9011 9010 9011 9011 9011 9011 9011 9011 9011 9011 9011 9011 9011 9011 9011 9011 9010

Деталь #

Последовательный

DVI

DisplayPort

USB

Virtual
Media

Absolute
Мышь

Smart
Card

Аудио

Аудио

D2CIM-DVUSB-DVI

9011 9011 9011 9011 9011

D2CIM-DVUSB

D2CIM-VUSB-USBC

9015

D2CIM-VUSB

SERIES

9010

P2000 9011 9011 9011 9011 9011 9011 9011 9011 ЕС

DCIM-PS2

9010 9010 9011 9011

DC116 9011 9011 9011 9010

Настоящий последовательный доступ с модулями последовательного доступа Dominion (DSAM)

С новыми модулями последовательного доступа Dominion (DSAM) пользователи могут подключаться к 8 последовательным устройствам с последовательным доступом без Java.2- и 4-портовые модули DSAM подключаются к USB-портам коммутатора KX III. Они обеспечивают «настоящий последовательный доступ» с возможностью копирования и вставки до 8 одновременных подключений к последовательным устройствам, таким как коммутаторы LAN, маршрутизаторы и серверы Linux / Unix.
Централизованный доступ и управление CommandCenter

Устройства Dominion KVM и Serial, включая SX II, KX III, KSX II и KX2-101-V2, интегрируются с CommandCenter Secure Gateway от Raritan. С помощью системы управления CommandCenter администраторы могут управлять несколькими устройствами Raritan.Пользователи могут получить доступ к сотням или тысячам компьютеров и сетевых устройств из единой интегрированной системы через ПК, ноутбук или пользовательскую станцию ​​KX III. Если у вас пять или более устройств Raritan, вам следует рассмотреть возможность централизованного управления и доступа через CommandCenter.

CommandCenter также обеспечивает удаленное управление питанием, доступ к виртуальным машинам VMware и поддержку решений внутриполосного доступа, таких как RDP, VNC, SSH и сервисные процессоры от ведущих производителей компьютеров. CC-SG является прекрасным дополнением к решению для управления питанием Power IQ и позволяет управлять питанием устройств, подключенных к блокам распределения питания различных производителей, которыми управляет Power IQ.

Как определить назначение контактов | LCDPARTS.net

Как определить назначение контактов
По сути, все инверторы ЖК-экрана имеют 4 основные функции: VIN (напряжение питания), GND (заземление), ENA (Вкл. / Выкл.) И ADJ (Регулятор затемнения). Однако большая часть промышленных ЖК-дисплеев имеет только 3 основные функции: VIN (напряжение питания), GND (заземление) и ENA (включение / выключение).
Определение назначения контактов на плате автономного инвертора
Часть 1
Из-за длины этого видео на Youtube мы разбили его на 2 части.
Часть 2

Определение назначения контактов на инверторе LIPS
Определить назначение контактов на инверторе LIPS немного сложнее, чем на отдельном инверторе.Тем не мение, сравнивая выходное напряжение между ВКЛ и ВЫКЛ, вы можете быстро определить назначение контактов.
Как установить драйвер светодиода MS456UB
Пожалуйста, нажмите здесь, чтобы просмотреть техническое описание MS456UB.

TST01
TST01 — специальная сборка для тестирования 4-проводного, 5-проводного и 8-проводного резистивного сенсорного экрана.

LST05-V3
Тестер ЖК-экрана (для тестирования интерфейса eDP / встроенного порта дисплея). Благодаря встроенному генератору цветных полос он может тестировать разрешение от 1280X800 до 3840X2160.

IT03
Тестирование светодиодной ленты без разборки. IT03 может тестировать все светодиодные ленты с небольшого промышленного экрана и до 70-дюймового экрана телевизора.

LST01
Больше никаких догадок!
LST01 — это специальный тестер сборки для ремонта экрана ноутбука; это может помочь вам в считанные секунды локализовать проблему между лампой подсветки CCFL и инвертором.
Экономьте время! Экономить деньги!

LST04 — Нет времени на настройку
Маленький и компактный, простой в использовании, со встроенным генератором цветных полос, вы можете протестировать ЖК-экран с диагональю до 60 дюймов.

IT01
IT01 предназначен для тестирования инвертора нескольких ламп задней подсветки; он способен протестировать любой тип инвертора до 6 ламп одновременно!

IT02
Автономный инверторный тестер!
Преимущество этого тестера нестандартной сборки в том, что вы можете подавать любое входное напряжение. через разъем постоянного тока для проверки инвертора от ноутбука до инвертора ЖК-телевизора.

Светодиодная подсветка серии UB
Серия UB является прямой заменой промышленных ЖК-экранов, изначально оснащенных двойным экраном. или 4 лампы подсветки CCFL.

ЖК-контроллер
Эти комплекты ЖК-контроллеров легко интегрируются в ЖК-экраны, на которых они расположены. обычно используется в киосках, POS, авионике, торговых автоматах, цифровых вывесках и во всех других приложениях.

Модернизированный ЖК-монитор для MDT962B-1A

Модернизированный ЖК-монитор для Mazak DR-5614


Комплект SKD для чтения при солнечном свете

Распиновка

, особенности, обзор приложений [FAQ]

L293D — это четырехконтактный сильноточный полупроводниковый драйвер .

В этом блоге описаны распиновка драйвера двигателя L293D, таблица данных, эквиваленты, функции и другая информация о том, как использовать и где использовать это устройство.

В этом видео показано, как запустить шаговый двигатель с Arduino и L293D.


Каталог


L293D Введение

L293D предназначен для управления широким спектром индуктивных нагрузок, таких как реле, соленоиды, шаговые двигатели постоянного тока и биполярные шаговые двигатели, а также другие сильноточные и высоковольтные нагрузки.Все входы совместимы с TTL и выдерживают напряжение до 7 В. Каждый выход представляет собой полную схему возбуждения с тотемным полюсом, с приемником транзистора Дарлингтона и источником псевдодарлингтона. Драйверы включаются парами: драйверы 1 и 2 включаются 1,2EN, а драйверы 3 и 4 — 3,4EN.

Когда вход разрешения высокий, соответствующие драйверы включены, а их выходы активны и находятся в фазе с их входами. Когда вход разрешения низкий, эти драйверы отключены, а их выходы выключены и находятся в состоянии высокого импеданса.При правильном вводе данных каждая пара драйверов образует реверсивный привод с полным H (или мостом), подходящий для соленоидов или двигателей.

Внешние фиксирующие диоды высокоскоростного выхода L293D интегрированы, чтобы уменьшить сложность системы и уменьшить ее общий размер. Клемма VCC1, отдельная от VCC2, предусмотрена для логических входов, чтобы минимизировать рассеиваемую мощность устройства. L293D рассчитан на работу от 0 ° C до 70 ° C.


Конфигурация выводов L293D и функции

Приведенная ниже таблица данных предназначена для вашего лучшего понимания 16 выводов в корпусах, деталей всех 16 выводов и функции каждого вывода:

L293D L293D Распиновка

Функции распиновки:

НАИМЕНОВАНИЕ ПИН-кода

НЕТ.

ТИП

ОПИСАНИЕ

1,2EN

1

I

Включить каналы драйвера 1 и 2 (активный высокий вход)

<1: 4> А

2, 7, 10, 15

I

Входы драйвера, неинвертирующие

<1: 4> Y

3, 6, 11, 14

O

Выходы драйвера

3,4EN

9

I

Включить каналы драйвера 3 и 4 (активный высокий вход)

ЗЕМЛЯ

4, 5, 12, 13

Штифт заземления и радиатора устройства.Подключение к заземляющей пластине печатной платы с помощью нескольких сплошных переходных отверстий

VCC1

16

Питание 5 В для преобразования внутренней логики

VCC2

8

Power VCC для драйверов 4.От 5 В до 36 В


L293D Характеристики

  • Широкий диапазон напряжения питания: от 4,5 В до 36 В

  • Отдельное питание логики ввода

  • Внутренняя защита от электростатического разряда

  • Входы с высокой помехоустойчивостью

  • Выходной ток 1 А на канал (600 мА для L293D)

  • Пиковый выходной ток 2 А на канал (1.2 А для L293D)

  • Выходные ограничивающие диоды для индуктивного подавления переходных процессов (L293D)


Где использовать L293D IC

L293D — это популярный 16-контактный драйвер двигателя. Как следует из названия, он в основном используется для привода двигателей. Одна ИС L293D может одновременно управлять двумя двигателями постоянного тока; также направление этих двух двигателей можно контролировать независимо.

Итак, если у вас есть двигатели с рабочим напряжением менее 36 В и рабочим током менее 600 мА, , которые должны управляться цифровыми схемами, такими как операционный усилитель, таймеры 555, цифровые вентили или даже ролики Micron, такие как Arduino, PIC, ARM и т. Д.эта микросхема будет для вас правильным выбором.


Как использовать микросхему драйвера двигателя L293D

Использовать эту микросхему драйвера двигателя L293D очень просто. Микросхема работает по принципу Half H-Bridge, давайте не будем слишком углубляться в то, что означает H-Bridge, а пока просто знайте, что H-мост — это установка, которая используется для запуска двигателей как по часовой стрелке, так и против часовой стрелки. -направление по часовой стрелке. Как было сказано ранее, эта ИС способна одновременно запускать два двигателя в любом направлении, схема для достижения этого показана ниже.

Все контакты заземления должны быть заземлены. У этой ИС два вывода питания, один — Vss (Vcc1), который обеспечивает напряжение для работы ИС, он должен быть подключен к + 5В. Другой — Vs (Vcc2), который обеспечивает напряжение для работы двигателей. В зависимости от характеристик вашего двигателя вы можете подключить этот вывод к любому месту от 4,5 до 36 В, здесь я подключил к +12 В. Контакты включения (Enable 1,2 и Enable 3,4) используются для включения входных контактов двигателя 1 и двигателя 2 соответственно.

Поскольку в большинстве случаев мы будем использовать оба двигателя, оба контакта по умолчанию удерживаются на высоком уровне при подключении к источнику питания +5 В. Входные контакты Input 1, 2 используются для управления двигателем 1, а входные контакты 3, 4 используются для управления двигателем 2. Входные контакты подключаются к любой цифровой схеме или микроконтроллеру для управления скоростью и направлением двигателя. Вы можете переключать входные контакты в соответствии со следующей таблицей для управления двигателем.

Вход 1 = ВЫСОКИЙ (5 В)

Выход 1 = ВЫСОКИЙ

Двигатель 1 вращается по часовой стрелке

Вход 2 = НИЗКИЙ (0 В)

Выход 2 = НИЗКИЙ

Вход 3 = ВЫСОКИЙ (5 В)

Выход 1 = ВЫСОКИЙ

Двигатель 2 вращается по часовой стрелке

Вход 4 = НИЗКИЙ (0 В)

Выход 2 = НИЗКИЙ

Вход 1 = НИЗКИЙ (0 В)

Выход 1 = НИЗКИЙ

Двигатель 1 вращается против часовой стрелки

Вход 2 = ВЫСОКИЙ (5 В)

Выход 2 = ВЫСОКИЙ

Вход 3 = НИЗКИЙ (0 В)

Выход 1 = НИЗКИЙ

Двигатель 2 вращается против часовой стрелки

Вход 4 = ВЫСОКИЙ (5 В)

Выход 2 = ВЫСОКИЙ

Вход 1 = ВЫСОКИЙ (5 В)

Выход 1 = ВЫСОКИЙ

Двигатель 1 не двигается

Вход 2 = ВЫСОКИЙ (5 В)

Выход 2 = ВЫСОКИЙ

Вход 3 = ВЫСОКИЙ (5 В)

Выход 1 = НИЗКИЙ

Двигатель 2 не двигается

Вход 4 = ВЫСОКИЙ (5 В)

Выход 2 = ВЫСОКИЙ


L293D Приложения

  • Драйверы шагового двигателя

  • Драйверы двигателей постоянного тока

  • Драйверы реле блокировки


L293D Типичное приложение

Типичное приложение для устройства L293 — это привод двухфазного двигателя.Ниже приведен пример схемы, показывающей, как правильно подключить двухфазный двигатель к устройству L293.


Обеспечьте питание 5 В для VCC1 и допустимые уровни логических входов для данных и разрешающих входов. VCC2 должен быть подключен к источнику питания, способному обеспечивать необходимый ток и напряжение для нагрузок, подключенных к выходам.


L293D Эквиваленты


L293D Пример компоновки


L293D Производитель

Texas Instruments Incorporated (TI) — американская технологическая компания со штаб-квартирой в Далласе, штат Техас, которая разрабатывает и производит полупроводники и различные интегральные схемы, которые она продает разработчикам и производителям электроники по всему миру.По объему продаж она входит в десятку ведущих мировых производителей полупроводников. Компания специализируется на разработке аналоговых микросхем и встроенных процессоров, на которые приходится более 80% ее доходов. TI также производит цифровые технологии обработки света и продукты для образовательных технологий, включая калькуляторы, микроконтроллеры и многоядерные процессоры. По состоянию на 2016 год компания имеет 45 000 патентов по всему миру.


Лист данных на компоненты

FAQ

L293D IC — это ИС с двойным Н-мостом.Один H-мост может управлять двигателем постоянного тока в двух направлениях. L293D IC — это ИС, повышающая ток, поскольку выходной сигнал датчика не может управлять двигателями, поэтому для этой цели используется L293D.

  • Что лучше l293d или l298n?

Драйверы L293D работают при напряжении от 4,5 В до 36 В, тогда как L298N может работать при напряжении до 46 В. Максимальный ток 600 мА может потребляться через оба канала L293D, тогда как драйвер двигателя L298N может потреблять до 2 А из обоих каналов.

  • Какая польза от вывода включения в l293d?

L293D имеет функцию включения, которая помогает вам включить выходные контакты IC. Если на разрешающем выводе установлен высокий логический уровень, то состояние входов соответствует состоянию выходов. Если вы установите этот низкий уровень, выходы будут отключены независимо от состояния входа.

  • Сколько двигателей постоянного тока можно контролировать с помощью IC l293d?

L293D — это 16-контактная микросхема драйвера двигателя, которая может одновременно управлять до двумя двигателями постоянного тока в любом направлении.

  • Как подключить Arduino к l293d?

Подключите 5V к Enable 1, Vss и Vs на L293D. Подключите контакты цифрового выхода (мы используем 6 и 7) к входам 1 и 2 на L293D. Подключите GND вашего Arduino к обоим контактам GND на одной стороне L293D. Наконец, подключите выход 1 и выход 2 L293D к контактам двигателя.

Н-мостовая схема.H-мост — это электронная схема, которая позволяет приложить напряжение к нагрузке в любом направлении. Н-мостовые схемы часто используются в робототехнике и многих других приложениях, чтобы двигатели постоянного тока могли работать вперед и назад.

  • Какова функция моста H?

H-мост — это электронная схема, которая переключает полярность напряжения, приложенного к нагрузке. Эти схемы часто используются в робототехнике и других приложениях, чтобы двигатели постоянного тока могли работать вперед или назад.

  • Что такое щит водителя двигателя l293d?

L293D Shield — это плата драйвера на базе микросхемы L293, которая может одновременно управлять 4 двигателями постоянного тока и 2 шаговыми или серводвигателями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *