Диод для чего нужен. Диоды в электронике: принцип работы, виды и применение

Что такое диод и как он работает. Какие бывают виды диодов. Для чего используются диоды в электронных схемах. Основные характеристики и параметры диодов. Как проверить исправность диода.

Содержание

Что такое диод и его основные функции

Диод — это полупроводниковый электронный компонент с двумя выводами, который пропускает электрический ток только в одном направлении. Основные функции диода:

  • Выпрямление переменного тока
  • Детектирование сигналов
  • Стабилизация напряжения
  • Защита от обратного тока
  • Модуляция и демодуляция сигналов

Диод имеет два электрода — анод и катод. При подключении положительного потенциала к аноду, а отрицательного к катоду, диод открывается и пропускает ток. При обратном включении диод закрыт и ток практически не проходит.

Принцип работы полупроводникового диода

Работа диода основана на свойствах p-n перехода — области на границе между полупроводниками p-типа и n-типа. Основные процессы, происходящие в p-n переходе диода:


  1. При прямом включении основные носители заряда (электроны и дырки) движутся навстречу друг другу через p-n переход.
  2. Ширина обедненной зоны уменьшается, сопротивление падает.
  3. Через диод начинает протекать прямой ток.
  4. При обратном включении основные носители заряда оттягиваются от p-n перехода.
  5. Обедненная зона расширяется, ее сопротивление резко возрастает.
  6. Через диод протекает только очень малый обратный ток.

Таким образом, диод проводит ток практически только в одном направлении, что и определяет его основные функции в электронных схемах.

Основные параметры и характеристики диодов

Ключевые параметры, характеризующие работу диодов:

  • Максимальный прямой ток
  • Максимальное обратное напряжение
  • Прямое падение напряжения
  • Обратный ток утечки
  • Емкость p-n перехода
  • Время восстановления
  • Температурный коэффициент напряжения

Важнейшей характеристикой диода является его вольт-амперная характеристика (ВАХ), показывающая зависимость тока через диод от приложенного напряжения. По ВАХ можно определить основные параметры диода.


Разновидности полупроводниковых диодов

В зависимости от конструкции и назначения выделяют следующие основные типы диодов:

  • Выпрямительные диоды — для выпрямления переменного тока
  • Стабилитроны — для стабилизации напряжения
  • Варикапы — переменные емкости, управляемые напряжением
  • Импульсные диоды — для работы в импульсных схемах
  • Светодиоды — для генерации света
  • Фотодиоды — для детектирования света
  • Диоды Шоттки — для высокочастотных применений
  • Туннельные диоды — для СВЧ-техники

Каждый тип диодов имеет свои особенности конструкции и характеристики, определяющие область их применения.

Применение диодов в электронных схемах

Благодаря своим свойствам диоды широко используются в различных электронных устройствах:

  • Выпрямители переменного тока в блоках питания
  • Детекторы сигналов в радиоприемниках
  • Ограничители напряжения для защиты схем
  • Модуляторы и демодуляторы сигналов
  • Генераторы и умножители частоты
  • Переключатели и коммутаторы сигналов
  • Стабилизаторы напряжения
  • Источники света (светодиоды)

Диоды являются одним из базовых компонентов современной электроники, без которых невозможно создание большинства электронных устройств.


Как проверить исправность диода

Для проверки работоспособности диода можно использовать следующие методы:

  1. Прозвонка мультиметром в режиме «диод»
  2. Измерение прямого и обратного сопротивления
  3. Проверка прямого падения напряжения
  4. Измерение обратного тока утечки
  5. Снятие вольт-амперной характеристики

Исправный диод должен иметь низкое сопротивление в прямом направлении и очень высокое — в обратном. Прямое падение напряжения должно соответствовать паспортному значению. Обратный ток утечки не должен превышать допустимый.

Маркировка и обозначение диодов на схемах

Диоды на принципиальных схемах обозначаются следующим образом:

  • Обычный диод — треугольник с чертой
  • Стабилитрон — треугольник с дополнительной чертой
  • Светодиод — треугольник со стрелками
  • Варикап — треугольник с линией под углом

Маркировка на корпусе диода обычно содержит:

  • Тип диода
  • Максимальный прямой ток
  • Максимальное обратное напряжение
  • Полярность выводов

Правильное считывание маркировки позволяет определить основные параметры диода и его назначение.



Для чего нужен диод в электрической цепи: обратный ток

Содержание

  • Устройство
  • Назначение
  • Прямое включение диода
  • Прямое и обратное напряжение
  • Работа диода и его вольт-амперная характеристика
  • Основные неисправности диодов
    • Пробой p-n-перехода
    • Электрический пробой
    • Тепловой пробой
  • Диод
    • Что такое диод
    • Характеристики диода
    • Виды диодов
      • Стабилитроны
      • Светодиоды
      • Тиристоры
      • Диодный мост и диодные сборки

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока.
    Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала.
    Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Диод

В механике есть такие устройства, которые пропускают воздух или жидкость только в одном направлении. Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда вы убирали шланг насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная штучка – ниппель. Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение.

Электроника – эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток. Если провести аналогию: бачок с водой – это заряженный конденсатор, шланг – это провод, катушка индуктивности – это колесо с лопастями

которое невозможно сразу разогнать, а потом невозможно резко остановить.

Тогда что такое ниппель в электронике? А ниппелем мы будем называть радиоэлемент – диод. И в этой статье мы познакомимся с ним поближе.

Что такое диод

Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель ;-).

Некоторые диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по другому:

Есть также и SMD исполнение диодов:

Диод имеет два вывода, как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия – анод и катод ( а не плюс и минус, как говорят некоторые неграмотные электронщики). Но как же нам определить, что есть что? Есть два способа:

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Если подать на анод плюс, а на катод минус, то у нас диод “откроется” и электрический ток спокойно по нему потечет. А если же на анод подать минус, а на катод – плюс, то ток через диод не потечет. Своеобразный ниппель ;-). На схемах простой диод обозначают вот таким образом:

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты – одна из разновидностей диодных сборок.

На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

This entry was posted in Ремонт. Bookmark the <a href=»https://kabel-house.ru/remont/poluprovodnikovye-diody/» title=»Permalink to Полупроводниковые диоды» rel=»bookmark»>permalink</a>.

Диоды катоды аноды: для чего нужны

Содержание

  • 1 Вступление из теории
    • 1.1 Проводник
    • 1.2 Диэлектрик
    • 1.3 Полупроводник
  • 2 Что такое диод
  • 3 Как работает диод
  • 4 Назначение диодов
  • 5 Применение диодов
    • 5.1 Выпрямители
    • 5.2 Варикапы
    • 5.3 Стабилитроны
    • 5.4 Диоды Шоттки
    • 5.5 Светодиоды
  • 6 Видео

Что такое диод? Для того чтобы ответить на этот вопрос, надо копнуть вглубь, в самое начало, а именно, с чего начинается полупроводник.

Вакуумная двухэлектродная лампа

Вступление из теории

Проводник

Попробуем представить себе кусок материала проводника, например, меди. Чем он характеризуется: в нем есть свободные носители заряда – электроны. Причем таких отрицательных частиц в нем очень много.

Если на эту область подать плюс, то все эти отрицательные элементы устремятся к нему, то есть потечет ток через медь. Это известный факт, поэтому в качестве токопроводящих материалов применяют именно медь. К проводникам также относятся такие элементы периодической таблицы Менделеева, как алюминий, железо, золото и многие другие.

Диэлектрик

Диэлектрик – это материал, который свободных носителей заряда не имеет и, следовательно, ток не проводит.

Полупроводник

Полупроводник – это и металл, и неметалл. Материал, который и проводит ток, и не проводит. В нем мало свободных носителей заряда. Типичными полупроводниками являются кремний, германий.

Что такое диод

Диод 1n5819: характеристики

Кремний является четырехвалентным элементом. Чтобы его превратить в проводник, к нему подмешивают пятивалентный мышьяк. В результате этого соединения появляются лишние электроны, то есть свободные носители заряда. А если добавить к кремнию трехвалентный индий, в материале появятся позитроны, частицы с нехваткой электрона. Из таких областей и состоит диод.

Полученная структура называется PN элементом или PN-переходом. P – позитивная часть, N – негативная. Одна часть материала обогащена плюсовыми позитронами, другая – минусовыми электронами.

Как работает диод

Можно физически сами диоды не видеть, но результат их действия окружает нас повсюду. Эти устройства позволяют управлять потоком тока в указанном направлении. Существует много различных вариантов исполнения диодов. В каких случаях это бывает необходимо? Ниже будут рассмотрены примеры и в некоторой степени принцип работы полупроводниковых диодов.

Если добавить две металлические обкладки к P и N рабочим областям материала, то получатся электроды анод и катод. Схема подключения электродов к источнику может работать следующим образом:

  • подача напряжения с батарейки к электроду N обеспечивает притяжение позитронов, соответственно к P электроду – электронов;
  • отсутствие напряжения все возвращает в исходное состояние;
  • смена полярности подаваемого напряжения обеспечивает притяжение электронов в обратном направлении к плюсовой пластине, а позитронов – к минусовой.

В последнем случае избыточные заряды скапливаются на металлических обкладках, тогда как в центре самого материала образуется мертвая изолирующая зона. Таким образом, центральный участок материала становится диэлектриком. В таком направлении устройство не пропускает ток.

Для информации. Слово происходит от di (double) + -ode.  Определение терминов катод и анод диода, относящихся к контактам, известно каждому человеку. Катод – отрицательный электрод, анод – положительный. Если подать на анод плюс, а на катод – минус, то диод откроется, и электроток по нему потечет.

Таким образом, диод – это устройство, которое имеет два электрода: катод и анод. Простое нелинейное электронное устройство, состоящее из двух разных полупроводников. Как устроен диод, хорошо видно на изображении.

Принцип работы диода

Диоды – это полупроводники, состоящие из областей P и N. Благодаря свойствам PN-перехода диод проводит ток только в одном направлении. Таков принцип действия этих устройств. Для чего нужны они?

Назначение диодов

Диод 1n4007

Диоды бывают различного исполнения: от громоздких советских до миниатюрных современных. Может устройство быть одной и той же мощности, но из-за времени выпуска различаться по габаритам. Диоды на большой ток нуждаются в охлаждении, поэтому производятся с креплением под радиатор. Соответственно, устройства без радиатора рассчитаны на малый ток.

Применение диодов

Диод Шоттки

Устройства диодов могут быть ориентированы на ограничение или приостановление движения тока. Чрезвычайно распространенным приложением является его использование в качестве выпрямителя.

Полупроводниковый диодный ограничитель

Выпрямители

Поскольку диод позволяет току течь лишь в одном направлении, то переменный ток проходит через диод только положительную или отрицательную часть напряжения синусоидальной волны. Это означает, что можно эффективно преобразовывать переменный ток в постоянный ток, применяя диоды, расположенные в виде полноволнового выпрямителя.

Например, имеется источник переменного тока. На выходе из него в цепь поставлен диод, через который подключена нагрузка. Что получится? Если источник дает синусоиду, то на выходе диода пройдет только положительная полуволна. И так до следующей полуволны. Но если развернуть диод другой стороной, то на выходе получится отрицательная полуволна, то есть устройство пропускает ток только в одном направлении.

Если поставить на место диода мост, состоящий из четырех диодов, то на выходе будет сигнал в форме полуволн, напоминающих верблюжий горб. Полуволны будут развернуты все в одном направлении. При установке после диодов дополнительного конденсатора получатся те же полуволны, только сглаженные.

Мостовой выпрямитель

Варикапы

Графический значок варикапа очень напоминает условное изображение полупроводникового диода. Варикап – это и есть обыкновенный диод. Работа устройства основана на зависимости барьерной ёмкости p-n-перехода от обратного напряжения. Если напряжение подается маленькое, емкость получается большая, если подается большое напряжение – емкость становится маленькой. Реально варикапы изменяют свою емкость в несколько раз (до 7 раз).

Стабилитроны

Стабилитрон – это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. Выбирают стабилитрон с большим запасом рассеиваемой мощности, потому что он постоянно работает в режиме пробоя. Основное назначение стабилитронов – стабилизация напряжения.

Основной целью стабилизатора напряжения является поддержание постоянного напряжения на нагрузке, независимо от изменений входного напряжения и тока нагрузки. При изменяющихся условиях тока нагрузки стабилитрон может использоваться для получения стабилизированного выходного напряжения. Это основная причина использования стабилитрона в качестве стабилизатора напряжения.

Диоды Шоттки

Диод Шоттки – это низковольтное устройство, в котором используются в качестве электродов металл и обогащенный электронами полупроводник. Напряжение такого диода составляет примерно 0,2-0,4 В, в сравнение с обычным диодом эта величина в два раза меньше.

Зона применения диода Шоттки ограниченная, поскольку он не может работать без стабилитрона. В основном диоды Шоттки используются в устройствах, работающих в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.

Диодный прибор Шоттки

Светодиоды

Светоизлучающие диоды в настоящее время широко применяются в качестве диодных блоков легких энергосберегающих лампочек. Они становятся незаменимыми для жизни людей, поскольку способствуют снижению возрастающих цен на электроэнергию.

Для информации. Мигающие светодиоды часто применяют в различных сигнальных цепях, для украшения домашнего интерьера. Существуют схемы, с помощью которых можно заставить мигать светодиоды. Сделать мигающие светодиоды – вполне выполнимая задача.

Светодиоды LED

Можно совсем кратко ответить на вопрос, что такое диоды, и зачем они нужны. Именно этот элемент способен остановить свободное движение электронов в определенном направлении.

Видео

Оцените статью:

Что такое диод для чего нужен?


Что такое диод для чего нужен?

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий; см. выпрямитель). … Если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается.

Что такое диод простыми словами?

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Что такое диод и как он работает?

Диод (Diode -eng.) … – электронный прибор, имеющий 2 электрода, основным функциональным свойством которого является низкое сопротивление при передаче тока в одну сторону и высокое при передаче в обратную.

Что такое диод для чайников?

Диод — простейший полупроводниковый прибор, который можно встретить сегодня на печатной плате любого электронного устройства. … Данное устройство диода обеспечивает ему уникальное свойство — он проводит ток лишь в одном (прямом) направлении, от анода — к катоду.

Что делает диод в схеме?

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

Для чего нужны выпрямительные диоды?

Выпрями́тельные дио́дыдиоды, используемые для преобразования переменного тока в постоянный. На смену электровакуумным диодам и игнитронам пришли диоды из полупроводниковых материалов и диодные мосты (четыре диода в одном корпусе).

Как работает выпрямительный диод?

Как и любой другой диод, выпрямительные диоды работают с постоянным напряжением и током. Выпрямительный диод, как и его собраться пропускает ток лишь в одну сторону, при этом, он отсеивает одну полярность. Все эти свойства объясняются устройством этого полупроводникового радиокомпонента.

Какую функцию выполняет стабилитрон в источниках питания?

Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя. … Основное назначение стабилитронов — стабилизация напряжения. Серийные стабилитроны изготавливаются на напряжения от 1,8 В до 400 В.

Как выглядит стабилитрон на схеме?

п. Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус. Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Какую функцию выполняет диодный мост в источниках питания?

Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока. Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. … С его помощью производят двухполупериодное выпрямление переменного тока.

Какие бывают стабилитроны?

  • Стабилитроны
  • Типы варикапов
  • Выпрямительные диоды
  • универсальные диоды
  • Транзисторы малой мощности
  • Сверхвысокочастотные Транзисторы
  • Выпрямительные столбы и блоки
  • Транзисторы большой мощности

Как отличить стабилитрон от диода в стеклянном корпусе?

Например, современные маломощные импортные в стеклянном корпусе выглядят как диоды типа 1N4148. Отличить их можно по маркировке: на диодах есть надпись «4148», на стабилитронах же обычно указано напряжение стабилизации, например «5,6V», «9,1V» и т.

Как проверить стабилитрон мультиметром на плате?

Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение. При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.

Как проверить мультиметром стабилитрон?

Проверка мультиметром Проверка производится аналогично диоду. Если включить мультиметр в режим измерения сопротивления, то при подключении к стабилитрону в прямом направлении (красный щуп к аноду) прибор покажет минимальное сопротивление, а в обратном — бесконечность. Это говорит об исправности полупроводника.

Как проверить диод Зенера?

Проверяем выпрямительный диод и стабилитрон При присоединении красного провода («+») к аноду, а черного («-») к катоду дисплей мультиметра (или омметра) отобразит значение порогового напряжения тестируемого диода. После того, как меняем полярность, прибор должен показать бесконечно большое сопротивление.

Как узнать на сколько вольт стабилитрон?

Оптимальное напряжение питания – 25В. Если стабилитрон подсоединён правильно – анодом к X1, катодом к X2, то вольтметр покажет его напряжение стабилизации, а если неправильно – какое-то очень малое напряжение около нуля.

Как проверить стабилитрон?

Проверка стабилитрона мультиметром производится по аналогии с проверкой диода. Проверяют стабилитрон фактически любым тестером в режиме проверки диода или в режиме омметра. Исправный стабилитрон всегда должен проводить ток только в одном направлении, собственно как и диод.

Как проверить работу диода?

Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода. Как мы видим, мультиметр показал напряжение в 436 милливольт. Значит, конец диода, который касается красный щуп – это анод, а другой конец – катод.

Как отличить диод Шоттки от обычного?

Диоды Шоттки благодаря своему быстродействию зачастую используются в импульсных стабилизаторах , а также в выпрямителях блоках питания ПК. Проверка на исправность диода Шоттки ничем особо не отличается от проверки самого обычного диода , она проводиться по единому принципу.

Как проверить падение напряжения на диоде?

Падение напряжения можно измерить мультиметром, в режиме проверки диодов. Он показывает падение в вольтах. И это падение обязательно надо учитывать, особенно в слаботочных цепях. Например, развязываете вы диодом какой-нибудь вывод микроконтроллера, с уходящим от него сигналом.

Как проверить светодиодные лампы мультиметром?

Для проверки светодиода мультиметром необходимо перевести прибор в режим прозвона диодов, далее:

  1. к аноду, то есть, положительному электроду подключается красный (положительный) щуп мультиметра;
  2. к катоду – отрицательному электроду, подключается черный (отрицательный) щуп мультиметра;

Как проверить светодиодную лампу тестером на светодиодном прожекторе?

Методы проверки мультиметром ИК светодиода и обычного — одинаковы. Еще один способ как проверить инфракрасный светодиод на исправность – подпаять параллельно ему LED красного свечения. Он будет служить наглядным показателем работы ИК диода. Если он мерцает, значит сигналы на диод поступают и нужно менять ИК диод.

Что такое диод? — Определение, работа, типы, применение

Полупроводники имеют удельное сопротивление между проводниками и изоляторами. существует также влияние температуры на проводимость полупроводника, когда к нему добавляется подходящая металлическая примесь. Проводящие свойства полупроводника меняются. Полупроводники бывают двух типов: собственные полупроводники и внешние полупроводники.

Самая внешняя валентная оболочка атома содержит слабо связанный электрон. когда валентные электроны таких двух типов атомов расположены близко друг к другу, то валентные электроны обоих этих атомов объединяются, образуя « Электронные пары ”. Этот тип связи является ковалентной связью, потому что они слабы по своей природе.

Некоторые электроны имеют тенденцию смещаться со своего места и разрывать ковалентные связи из-за тепловой энергии, подводимой к кристаллу. Эти разорванные ковалентные связи создают свободное пространство из-за свободного электрона, который беспорядочно блуждает. это свободное пространство, созданное удалением электронов, называется дыркой .

Что такое диод?

Диод состоит из двух слов, т. е. «Di» означает два, а «Ode» означает электроды, что означает, что устройство или компонент имеет два электрода. (то есть катод и анод). Диод представляет собой электронное устройство с двухполюсным однонаправленным источником питания. Полупроводниковый диод — это первый диод, который появляется в полупроводниковых электронных устройствах, после чего появилось много новых инноваций. но чаще всего используется полупроводниковый диод.

Диод имеет две клеммы, которые имеют низкое сопротивление протеканию тока в одном направлении, низкое сопротивление с одной стороны и высокое сопротивление с другой, что ограничивает протекание тока в одном направлении. Полупроводниковые диоды представляют собой двухвыводные устройства, состоящие из p-n перехода и металлических контактов на двух концах.

Материалы, которые используются для изготовления диода: германий, кремний, арсенид германия и т. д.

P-n переход известен как полупроводниковый диод. поскольку он проводит только в одном направлении, поэтому его используют с целью ректификации. Так как он сделан из кристаллоподобного кремния или германия. Он также известен как кристаллический диод. символ диода:

Конструкция диода

Мы знаем, что существует два типа полупроводниковых материалов: внутренние и внешние полупроводники. В собственных полупроводниках число электронов и концентрация дырок равны при комнатной температуре. Во внешнем полупроводнике к полупроводнику добавляют примеси, чтобы увеличить количество электронов или количество дырок. Эти примеси бывают пятивалентными (мышьяк, сурьма, фосфор) или трехвалентными (бор, индий, алюминий).

Полупроводниковый диод имеет два слоя. один слой — полупроводник p-типа, а другой — полупроводник n-типа.

  • Если мы добавим трехвалентные примеси в полупроводник (кремний и германий), то появится большее количество дырок и это положительный заряд. поэтому этот тип слоя известен как слой р-типа.
  • Если добавить пятивалентные примеси в полупроводники (кремний или германий), то из-за избытка электронов возникает отрицательный заряд. поэтому этот тип слоя известен как слой n-типа.

Работа диода

В области N-типа основными носителями заряда являются электроны, а неосновными носителями заряда являются дырки. Принимая во внимание, что в области P-типа большинство носителей заряда являются дырками, а носителями отрицательного заряда являются электроны. Из-за разницы концентраций диффузия происходит в основных носителях заряда, и они рекомбинируют с противоположным зарядом. Он образует положительный или отрицательный ион. они собираются возле перекрестка. и этот регион известен как область истощения .

  • Когда анод или диод p-типа подключен к отрицательной клемме, а n-тип или катод подключен к положительной клемме батареи, этот тип диода подключается в обратном смещении.
  • когда анод или клемма p-типа подключены к положительной клемме, а n-тип или катод подключены к отрицательной клемме батареи, диод этого типа подключается к прямому смещению.

Прямое смещение

Прямое смещение

При смещении полупроводник подключен к внешнему источнику. когда полупроводник p-типа подключен к положительной клемме источника или батареи, а отрицательная клемма к n-типу, то этот тип соединения называется прямым смещением. При прямом смещении направление встроенного электрического поля вблизи перехода и приложенного электрического поля противоположны по направлению. это означает, что результирующее электрическое поле имеет меньшую величину, чем встроенное электрическое поле. из-за этого меньше удельное сопротивление и, следовательно, область истощения тоньше. В кремнии при напряжении 0,6 В сопротивление области обеднения становится совершенно пренебрежимо малым.

Обратное смещение

Обратное смещение

При обратном смещении n-тип подключается к положительной клемме, а р-тип подключается к отрицательной клемме батареи. В этом случае приложенное электрическое поле и встроенное электрическое поле имеют одинаковое направление, и результирующая электрического поля имеет более высокую величину, чем встроенное электрическое поле, создавая более активное сопротивление, поэтому обедненная область толще. если приложенное напряжение становится больше, то область обеднения становится более резистивной и толстой.

Несмещенный диод

Когда к полупроводникам не подключен внешний источник, называется несмещенным диодом. электрическое поле создается поперек обедненного слоя между материалом p-типа и n-типа. это происходит из-за несбалансированного нет. электронов и дырок из-за легирования. При комнатной температуре для кремниевого диода барьерный потенциал составляет 0,7 В.

Типы полупроводниковых диодов

Существуют различные типы полупроводниковых диодов:-

  1. Светодиод – Термин «светодиод» означает «светоизлучающий диод». Это наиболее полезный вид диода.
  2. Стабилитрон — Зенеровский диод — это тип диода, он позволяет протекать току в прямом направлении, он также может работать в обратном направлении, но в состоянии пробоя. Зенеровский диод применяется для регулирования напряжения. использует p-n переход в режиме обратного смещения, чтобы получить эффект Зенера.
  3. Туннельный диод – Туннельный диод используется для СВЧ.
  4. Диод с переменной емкостью — этот тип диода также называется диодом VARICAP, хотя выход переменной емкости может иметь обычный диод с p-n переходом, но этот диод одобрен для обеспечения предпочтительного изменения емкости, поскольку они относятся к другому типу диода. .
  5. Фотодиод – Этот тип диода, который производит ток при определенном количестве световой энергии, падает на него. два типа фотодиода, т. е. фотодиод PN и фотодиод PIN.
  6. Переключающий диод и т.д.

Применение полупроводникового диода

Применение полупроводникового диода: .

  • Светодиод – Светодиод используется для излучения инфракрасного спектра.
  • Стабилитрон – Стабилитрон используется для стабилизации тока и напряжения в электронных системах.
  • Фотодиод – работает как фотодетектор.
  • Переключающий диод- , который используется для быстрого переключения.
  • A Туннельный диод – Туннельный диод – это особый тип диода, который используется в области отрицательного сопротивления.
  • Пример вопроса

    Вопрос 1: Дайте определение термину «допинг».

    Ответ: 

    Легирование — это процесс добавления примесей в полупроводник, так что образуется больше электронно-дырочных пар. Добавляемые примеси, как правило, пятивалентные и трехвалентные. поэтому они являются полупроводниками p-типа и n-типа.

    Вопрос 2: Что происходит, когда –

    • Положительное напряжение диода приложено к аноду.
    • Отрицательное напряжение диода подается на анод.

    Ответ:

    • Этот тип диода имеет прямое смещение.
    • Этот тип диода имеет обратное смещение.

    Вопрос 3: Как влияет температура на полупроводники:

    Ответ:

    • Для собственных полупроводников проводимость увеличивается с повышением температуры, потому что генерируется большее количество электронно-дырочных пар.
    • Для внешних полупроводников – при повышении температуры количество электронно-дырочных пар увеличивается, что приводит к меньшему эффекту легирования и большему количеству этих пар нейтрализуется.

    Вопрос 4: Дайте определение термину напряжение пробоя p-n перехода.

    Ответ:

    В условиях обратного смещения, когда приложенное напряжение постепенно увеличивается в определенной точке, наблюдается увеличение обратного тока, это пробой перехода, соответствующее приложенное напряжение известно как напряжение пробоя диода p-n перехода.

    Вопрос 5: Каково соотношение электронов и дырок в собственном полупроводнике?

    Ответ:

    Количество электронов = n e

    Количество отверстий = n h

    В собственных полупроводниках ne = n h

    ne/n h = 1

    a 9003 9003 902 Диоды

    бывают разных форм, размеров и функций, но одна функция, которая есть у всех диодов, заключается в их способности пропускать электричество только в одном направлении. Диод, с точки зрения сантехники, можно рассматривать как односторонний клапан, в котором вода может входить в значение на входе и выходить через выход, но вода, пытающаяся попасть на выход, блокируется. Диоды классифицируются как пассивные компоненты, поскольку они не могут управляться внешним электрическим сигналом. Другие примеры пассивных компонентов включают резисторы, конденсаторы и катушки индуктивности.

    История диодов — Что такое диод?

    Первый диод был построен из кусочка кристалла сульфида свинца и небольшого кусочка проволоки, касающегося его поверхности. Использование тонкого провода дало ему название «кошачий ус» и стало важным компонентом в радиотехнологиях. При передаче звуковых волн (например, голоса и музыки) высокочастотная несущая волна (сотни мегагерц) модулируется низкочастотной звуковой волной. Высокочастотная несущая волна создает радиоволны в передатчике, а изменение выходной мощности — это то, что содержит аудиоинформацию. Приемник должен принять эту радиоволну и удалить высокочастотную несущую, чтобы низкочастотную звуковую волну можно было подать в динамик.

    Современными методами для достижения этого было бы использование гетеродина и вычитателя, которые могут изолировать несущую волну, но такие методы не были доступны в первых радиоприемниках. Вместо этого будет использоваться кошачий ус, который вместо этого исправит входящую радиоволну. После выпрямления конденсатор используется для удаления высокочастотной волны (поскольку эти конденсаторы легко пропускают), в то время как низкочастотная звуковая волна игнорирует конденсатор. Затем этот сигнал будет усилен с помощью лампового усилителя, а результирующая усиленная волна будет отправлена ​​​​на динамик.

    По мере развития технологий диоды становились стандартизированными по конструкции, разнообразными по применению и открывались лучшие материалы. Например, кремниевые диоды обычно используются в приложениях для обработки сигналов, а металлокремниевые диоды (например, диоды Шоттки) используются в приложениях для выпрямления мощности.

    Конструкция диода. Из чего сделаны диоды?

    Самым простым (и распространенным) диодом на сегодняшний день является кремниевый диод, состоящий из двух частей полупроводника; N и P-типа. Когда эти два куска материала соединены вместе, полученный материал приобретает диодные свойства, благодаря чему обычный ток может течь только из области P в область N (поток электронов противоположен этому, когда электроны перетекают из материала N в материал P).

    Как мы уже видели, реальный мир далек от идеала, и то же самое относится и к диодам. Идеальный диод не имеет падения напряжения на нем и не потребляет энергии. Однако настоящие диоды на самом деле имеют падение напряжения на них и поэтому рассеивают тепло, проводя электричество. Это падение напряжения на диоде называется его прямым напряжением, и это число зависит от типа диода. Кремниевые диоды, например, имеют прямое напряжение 0,7 В, диоды Шоттки имеют прямое напряжение от 0,15 В до 0,46 В, а германиевые диоды имеют прямое падение напряжения 0,2 В. Прямое напряжение можно рассматривать как минимальное напряжение, необходимое для включения диода, чтобы он мог проводить электричество. Это еще один фактор, который необходимо учитывать; диоды не будут проводить электричество, пока приложенное к ним напряжение не превысит их прямое напряжение!

    Интересно, что прямое напряжение на диоде практически не меняется, когда он становится проводящим. Это может быть полезно при создании опорных напряжений, которые не изменяются в зависимости от входного источника питания.

    Диоды параллельно

    Как и любой компонент, диоды имеют номинальную мощность, что означает, что они могут выдерживать только определенный ток. Теоретически несколько диодов можно использовать параллельно для создания более мощного диода, но в действительности это невозможно. Поскольку диоды могут различаться по прямому напряжению, несколько диодов, подключенных параллельно, могут обнаружить, что работает только один из дидоов, в то время как другие не могут достичь необходимого прямого напряжения. Это приводит к тому, что каждый диод один за другим перегревается и трещит.

    Диоды

    МОГУТ использоваться параллельно, но ТОЛЬКО при использовании последовательного резистора. Последовательный резистор позволяет каждому диоду достичь необходимого прямого падения напряжения, но недостатком этого метода является то, что через каждый резистор будет протекать ток, и, таким образом, будет рассеиваться мощность.

    Диоды серии

    Последовательные диоды

    невероятно полезны для создания источников опорного напряжения. Если, например, используются кремниевые диоды, то каждый диод будет последовательно иметь 0,7 В. Следовательно, если последовательно использовать три диода, то падение напряжения на всех трех составит 0,7 В х 3 = 2,1 В. Пока входное напряжение больше 2,1 В, это значение напряжения на трех диодах всегда будет сохраняться.

    Если не обрабатывается сама мощность, для диодов требуется последовательный резистор, чтобы они не проводили слишком большой ток. То же самое касается эталонов напряжения; подходящий резистор необходим последовательно, чтобы гарантировать, что источник опорного напряжения не проводит слишком большой ток. Вообще говоря, опорное напряжение может потреблять невероятно малое количество тока (менее 0,1 мА), поскольку опорное напряжение можно подавать в буфер, который будет воспроизводить опорное напряжение. Источники опорного напряжения являются важнейшим компонентом стабилизаторов постоянного напряжения, таких как 7805, которые выдают на своем выходе постоянное напряжение 5 В.

    Пример диодной схемы

    Чтобы лучше понять принцип работы диодов, рассмотрим несколько примеров схем

    Что такое полупериодный выпрямитель

    Однополупериодный выпрямитель представляет собой простейшую диодную схему, состоящую из одного диода. Такую схему можно использовать как для малой, так и для высокой мощности, но ее часто можно увидеть в приложениях, требующих удаления отрицательной части сигнала переменного тока (например, в усилителе).

    Что такое двухполупериодный выпрямитель

    Двухполупериодный выпрямитель представляет собой специальную конфигурацию из четырех диодов, которая выпрямляет сигнал переменного тока, но сохраняет форму волны целиком. Такая схема встречается почти исключительно в схемах преобразования мощности, которые преобразуют сеть переменного тока в постоянный.

    Фиксатор напряжения

    Цепи ограничителя напряжения ограничивают максимальное напряжение сигнала. Это исключительно полезно в схемах, которые могут быть повреждены внешними сигналами, если эти сигналы станут слишком большими.

    Диоды Шоттки и Зенера

    Как указывалось ранее, доступны диоды различных размеров, форм и функций. Все диоды бывают как со сквозным отверстием, так и со сквозным отверстием, причем варианты со сквозным отверстием часто используются в приложениях с большей мощностью. Но давайте взглянем на другие основные диоды, с которыми вы столкнетесь в мире электроники.

    Что такое диоды Шоттки и для чего используются диоды Шоттки?

    Диоды Шоттки

    изготавливаются из цельного куска полупроводника и металлического проводника. Эти дидоны имеют большие токи утечки, но имеют низкое падение напряжения в прямом направлении. Эти типы диодов обычно используются в силовых выпрямителях, поскольку их низкое прямое падение напряжения позволяет свести к минимуму рассеивание мощности.

    Что такое стабилитрон?

    Стабилитроны

    заслуживают отдельной статьи из-за их необычного обратного пробоя. Короче говоря, стабилитрон не позволит протекать обратному току, пока обратное напряжение не превысит определенного значения. Это значение можно отрегулировать для каждого диода, и что делает это действие полезным, так это то, что это напряжение может иметь широкий диапазон различных значений. Например, обратное напряжение пробоя стабилитронов можно сделать равным 5 В, что означает, что можно легко получить опорное напряжение 5 В. Это устраняет необходимость в последовательном подключении нескольких диодов.

    Что такое диоды — описание диодов

    Диоды

    невероятно важны в цепях, и их способность пропускать электричество только в одном направлении делает их полезными в приложениях обработки сигналов. Но прямое падение напряжения на диодах также полезно для создания источников опорного напряжения, а также для фиксации сигналов для предотвращения повреждения чувствительных цепей, как аналоговых, так и цифровых.

    Робин Митчелл — инженер-электронщик, который занимается электроникой с 13 лет. После получения степени бакалавра технических наук в Уорикском университете Робин перешел в область создания онлайн-контента, разрабатывая статьи, новости и проекты, предназначенные для профессионалов и производители одинаково. В настоящее время Робин управляет небольшим бизнесом по производству электроники MitchElectronics, который производит учебные комплекты и ресурсы.

    Следовать

    Оставьте свой отзыв…

    Предыдущий Далее

    Статьи по теме

    Что такое диод и как он работает?

    Диод представляет собой электронный компонент, который позволяет электрическому току проходить только в одном направлении через две его клеммы (анод и катод).

    В идеале можно считать, что он имеет нулевое сопротивление в первом случае и бесконечное сопротивление во втором случае.

    Содержание

    1. Символ диода
    2. Как работает диод
    3. Видиоды
      • Diode
      • . Диод Шоттки
      • Диод Шокли
    4. Применение диодов
      • Волновой мостовой выпрямитель
        • Мост Греца

    Несколько раз мы обсуждали различные типы диодов и их применение, но мы не определяли подробно, как работают эти электронные компоненты или какие другие типы существуют помимо светодиодов.

    Полупроводниковый диод

    Хотя существует несколько типов диодов, этим термином обычно называют полупроводниковый диод, наиболее распространенный. Другим типом могут быть термоэлектронные диоды, работа которых основана на вакуумных вентилях и генерации электронов в одном выводе посредством эффекта джоуля, но мы не будем вдаваться в подробности здесь.

    Мы сосредоточимся на изучении твердотельных (полупроводниковых) диодов, поскольку они являются технологической основой светодиодного освещения. Тем не менее, мы не будем подробно описывать научные основы этой технологии, чтобы облегчить чтение.

    Этот тип диода в основном представляет собой соединение двух полупроводниковых материалов с особыми характеристиками (p-n переход) . Один из материалов (n-типа) представляет собой отрицательно заряженную область (электроны). Другой (р-тип) заряжен положительно (дырки).

    Символ диода

    Электрический символ диода представляет собой равносторонний треугольник с линией, проходящей через одну его вершину одинаковой длины и параллельной противоположной стороне. Его форма похожа на стрелу.

    Электронный символ диода

    Интересно, что направление, в котором указывает символ, противоположно направлению, в котором движется ток.

    Соединение этих двух областей определяет поведение диода. Кроме того, именно в каждой из этих областей подключена каждая клемма устройства.

    Как работает диод

    Как мы только что видели, принцип работы этого устройства определяет его работу. Вообще говоря, можно сказать, что диод ведет себя двояко:

    • Подобно короткому замыканию, пропускающему электричество (прямая поляризация).
    • В качестве разомкнутой цепи, препятствующей прохождению тока (обратная поляризация).

    Различные типы диодов могут демонстрировать уникальное поведение в зависимости от применяемой поляризации, что позволяет использовать их в самых разных приложениях, как мы увидим ниже.

    Типы диодов

    Существует множество различных диодов, которые имеют особые характеристики в зависимости от их внешнего вида, материалов, примесей и т. д. Эти диоды используются в очень специфических приложениях.

    Некоторые из наиболее распространенных и которые мы обсудим более подробно: лазерный диод, Ганн, варикап и, конечно же, светодиод.

    Диод Ганна

    Применяются в высокочастотной электронике и характеризуются отрицательным сопротивлением при определенных условиях. Диоды Ганна используются в конструкции генераторов СВЧ.

    В зависимости от используемых материалов могут быть достигнуты частоты колебаний выше 10 ГГц, а с диодами из нитрида галлия — до 3 ТГц.

    Варикап или варакторный диод

    Они сконструированы таким образом, что при обратной полярности они ведут себя как переменный конденсатор, емкость которого зависит от приложенного напряжения.

    Они используются в настраиваемых цепях, где изменения емкости необходимы.

    Светодиод

    Отличаются тем, что рекомбинации носителей заряда генерируют фотоны , элементарные частицы, образующие свет.

    Как мы уже упоминали в других случаях, существуют различные типы светодиодов, которые составляют основу современных систем освещения.

    Лазерный диод

    Подобно светодиодам, этот тип диода является наиболее распространенным способом генерации лазера. Они применяются во многих областях, таких как: волоконно-оптическая связь, указатели, принтеры или считыватели штрих-кода, и многие другие.

    Стабилитрон

    Стабилитрон предназначен для работы с обратной поляризацией. Вместо того, чтобы отключать ток, как обычный диод, он начинает проводить ток в обратном направлении, когда достигается определенное напряжение. Точку, в которой это напряжение стабилизируется, часто называют напряжением Зенера.

    Этот тип полупроводникового диода является основной частью регуляторов постоянного напряжения.

    Диод Шоттки

    Диод Шоттки назван в честь немецкого физика Вальтера Х. Шоттки. Его главная особенность заключается в том, что он может очень быстро переключаться из состояния отсечки в состояние проводимости.

    Используется в интегральных схемах, где требуются высокие скорости переключения.

    Диод Шокли

    Диод Шокли отличается от предыдущих тем, что содержит четыре чередующихся слоя P и N полупроводников вместо двух. Они используются в цифровых приложениях, таких как счетчики и схемы таймеров.

    У него даже есть статуя в Маунтин-Вью (Калифорния) перед зданием, где раньше располагались Shockley Semiconductor Laboratories.

    Применение и применение диодов

    Как мы видели, в зависимости от типа диода, области применения очень разнообразны, они используются в освещении, радиодемодуляторах, устройствах защиты от перенапряжения или логических элементах (основное электронное устройство в конструкции микросхем), но одно из наиболее распространенных находится в источниках питания, где они действуют как волновые выпрямители.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *