Диод направление тока. Диод: принцип работы, виды и применение в электронике

Как работает диод и какие бывают виды диодов. Для чего используются диоды в электронных схемах. Какие существуют особенности подключения и маркировки диодов.

Содержание

Что такое диод и как он работает

Диод — это электронный компонент, который пропускает электрический ток только в одном направлении. Он состоит из двух электродов: анода (+) и катода (-). Основной принцип работы диода основан на p-n переходе.

P-n переход образуется на границе двух полупроводников с разным типом проводимости:

  • p-область содержит положительно заряженные «дырки»
  • n-область содержит отрицательно заряженные электроны

Когда диод подключен в прямом направлении (анод к «+», катод к «-«), через него протекает электрический ток. При обратном включении ток практически не течет.

Основные виды диодов

Существует несколько основных типов диодов, отличающихся конструкцией и назначением:

Выпрямительные диоды

Используются для преобразования переменного тока в постоянный. Способны пропускать большие токи.


Стабилитроны

Поддерживают постоянное напряжение на участке цепи при изменении тока. Применяются для стабилизации напряжения.

Светодиоды

Излучают свет при прохождении через них электрического тока. Бывают разных цветов.

Фотодиоды

Генерируют электрический ток под воздействием света. Используются в фотодатчиках.

Варикапы

Изменяют свою емкость в зависимости от приложенного напряжения. Применяются в радиотехнике.

Принцип работы полупроводникового диода

Работа полупроводникового диода основана на свойствах p-n перехода:

  1. При прямом включении диода напряжение на аноде больше, чем на катоде. Электроны из n-области и дырки из p-области движутся навстречу друг другу через p-n переход. Возникает электрический ток.
  2. При обратном включении диода напряжение на катоде больше, чем на аноде. Основные носители заряда (электроны и дырки) удаляются от p-n перехода. Ток практически не течет.

Таким образом, диод обладает односторонней проводимостью — пропускает ток только в прямом направлении.

Вольт-амперная характеристика диода

Вольт-амперная характеристика (ВАХ) диода показывает зависимость тока через диод от приложенного напряжения. У нее есть несколько ключевых участков:


  • Прямая ветвь — при прямом включении диода ток резко возрастает после достижения порогового напряжения (0.6-0.7 В для кремниевых диодов)
  • Обратная ветвь — при обратном включении течет очень малый ток утечки
  • Область пробоя — при превышении максимального обратного напряжения происходит лавинный пробой p-n перехода

Знание ВАХ диода позволяет правильно выбрать его для конкретного применения.

Особенности подключения диодов

При подключении диодов в электрическую цепь важно соблюдать несколько правил:

  • Анод диода подключается к положительному полюсу источника питания, катод — к отрицательному
  • Прямой ток диода не должен превышать максимально допустимое значение
  • Обратное напряжение на диоде не должно быть больше предельно допустимого
  • Для ограничения тока через светодиод нужно включать последовательно резистор

Неправильное подключение может привести к выходу диода из строя.

Маркировка и обозначение диодов

Для правильного применения диодов важно уметь читать их маркировку:

  • На корпусе диода обычно наносится полоса со стороны катода
  • Первые буквы в маркировке обозначают материал (Д — германий, КД — кремний)
  • Цифры указывают на тип диода
  • Буквы в конце маркировки обозначают группу по параметрам

На принципиальных схемах диод обозначается треугольником и чертой. Стрелка указывает направление протекания прямого тока.


Применение диодов в электронике

Диоды имеют широкое применение в электронных устройствах:

  • Выпрямление переменного тока в источниках питания
  • Защита от неправильной полярности подключения
  • Стабилизация напряжения
  • Детектирование радиосигналов
  • Генерация света в светодиодах
  • Фотоприемники на основе фотодиодов
  • Преобразование солнечной энергии в электрическую

Правильный выбор типа диода позволяет оптимально решить задачу в конкретной схеме.

Проверка исправности диодов

Для проверки работоспособности диода можно использовать несколько методов:

  1. Прозвонка мультиметром — в прямом направлении диод должен звонить, в обратном — нет
  2. Измерение прямого падения напряжения — для исправного кремниевого диода оно должно составлять 0.6-0.7 В
  3. Измерение обратного тока утечки — он не должен превышать значение, указанное в документации

Неисправный диод может иметь либо обрыв, либо короткое замыкание p-n перехода.

Заключение

Диоды являются одними из базовых электронных компонентов. Понимание принципов их работы и особенностей применения необходимо для проектирования и ремонта электронных устройств. При правильном использовании диоды позволяют реализовать множество полезных функций в электронных схемах.



Диод. Полупроводниковый диод. Подключение диода. Маркировка диодов. Работа диода

Основы

Полупроводниковый диод. Подключение диода. Маркировка диодов. Работа диода.

Диод — электронный прибор, пропускающий ток только в одну сторону.

Обозначение диода на схемах

Диод имеет два контакта, которые называют анодом и катодом. При включении диода в электрическую цепь ток протекает от анода к катоду. Умение проводить ток только в одну сторону — основное свойство диода.

Диоды относятся к классу полупроводников и считаются активными электронным компонентам (резисторы и конденсаторы — пассивными).

Треугольник можно рассматривать как острие стрелки, показывающей направление тока

При подключении диода в цепь должна быть соблюдена правильная полярность. Чтобы было легко определить расположение катода и анода, на корпус или на один из выводов диода наносят специальные метки. Встречаются различные способы маркировки диодов, но чаще всего на сторону корпуса, соответствующую катоду, наносят кольцевую полоску.

Если маркировка диода отсутствует, то выводы полупроводниковых диодов можно определить с помощью измерительного прибора — как уже говорилось выше, диод пропускает ток только в одну сторону. Если измерительного прибора под рукой нет, можно использовать батарейку и маломощную лампочку так, как описано в приводящемся ниже эксперименте.

Работа диода

Полупроводниковые диоды

Работу диода можно наглядно представить при помощи простого эксперимента. Если к диоду через маломощную лампу накаливания подключить батарею так, чтобы положительный вывод батареи был соединен с анодом, а отрицательный — с катодом диода, то в получившейся электрической цепи потечет ток и лампочка загорится. Максимальная величина этого тока зависит от сопротивления полупроводникового перехода диода и поданного на него постоянного напряжения. Данное состояние диода назвается открытым, ток, текущий через него, — прямым током I

пр, а поданное на него напряжение, из-за которого диод оказался открытым, — прямым напряжением Uпр.

Если выводы диода поменять местами, то лампа не будет светиться, так как диод будет находиться в закрытом состоянии и оказывать току в цепи сильное сопротивление. Стоит отметить, что небольшой ток через полупроводниковый переход диода в обратном направлении все же потечет, но в сравнении с прямым током будет настолько маленьким, что лампочка даже не среагирует. Такой ток называют обратым током Iобр, а напряжение, создающее его,— обратным напряжением Uобр.


В нейронных цепях BEAM-роботов диоды часто применяются при создании нейронов, моделирующих логическое сложение (элементы ИЛИ). Кроме того, в схемах BEAM-роботов иногда используются емкостные свойства диодов.

Диоды, выпрямление тока, стабилитроны, тиристоры.

Выходное напряжение обычного, нестабилизированного источника постоянного электрического тока подвержено колебаниям, из- за изменений напряжения на его входе. Рисунок. При подключении различных потребителей потребляющих разный ток напряжение так же меняется – возрастает при меньшей нагрузке, падает при большей. Для нормальной работы электронных устройств необходимо это напряжение стабилизировать, сделав его величину независимой от вышеупомянутых факторов. Стабилитроны это полупроводниковые диоды, использующиеся для стабилизации напряжения в различных источниках питания. В отличии от обычных диодов работают при обратном включении, в режиме пробоя. Это не наносит им вреда, если не превышается предел рассеивающей мощности, величина которого является производной, от падения напряжения на переходе и тока через него протекающего.


Итак, важнейшие параметры стабилитрона — это напряжение стабилизации и максимальный рабочий ток. Рабочий ток стабилитрона, ограничивается с помощью последовательно включенного резистора.

Трехэлектродные тиристоры(тринисторы) — полупроводниковые приборы, применяемые для регулирования мощности в сетях переменного и постоянного токов. Тиристор легко переходит из закрытого (непроводящего) состояния в открытое, при подаче на управляющий электрод открывающего импульса. После того, как тиристор открыт, он остается в таком состоянии, пока протекающий через него ток не снизится до определенного порогового значения.

При работе в цепях переменного тока, подобное снижение происходит с каждой сменой полярности, при изменении фазы. В цепях постоянного тока, для отключения используются специальные схемы.


Помимо способности пропускать ток только в одном направлении, p-n переход обладает рядом других интересных особенностей. Например, способностью излучать(в т. ч. и в видимом диапазоне) при протекании тока в прямом направлении и генерировать эл. ток под воздействием излучения. Эта особенность используется при реализации таких электронных элементов как светодиоды, фотодиоды и фотоэлементы.
Кроме того, любой p-n переход обладает еще и электрической емкостью, а кроме того, возможностью ее изменять с помощью напряжения приложенного в обратном направлении. Используя ее удалось создать такие полезные элементы как ВАРИКАПЫ.

Варикапы.

Итак, p-n переход обладает электрической емкостью, величина которой зависит от его площади и ширины. Если подавать напряжение в обратном направлении — переход смещается, площадь остается неизменной, но ширина увеличивается. Емкость, при этом соответственно — уменьшается. Появляется возможность, изменяя величину приложенного напряжения, эту емкость регулировать. Электронные элементы(диоды, по сути) созданные на этом принципе называют — варикапами.

Варикапы используются в радиоаппаратуре вместо обычных конденсаторов переменной емкости для перестройки частоты колебательных контуров. Приемущество Применение варикапов позволило значительно снизить габариты и повысить эффективность блоков селекции радиоприемных устойств, относительно просто и недорого реализовать автоматизацию процессов настройки(проводимых ранее вручную).

Диоды Шоттки.

Диод Шоттки(диод с барьером Шоттки) — полупроводниковый диод с малым падением напряжения(0,2—0,4 вольт) при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. В диодах Шоттки в отличие от обычных диодов,вместо p-n перехода используется переход металл-полупроводник. Это дает ряд особых преимуществ — пониженное падение напряжения при прямом включении, очень маленький заряд обратного восстановления.

Последнее объясняется тем, что в отличии от обычных диодов диоды Шоттки работают только на основных носителях, а их быстродействие ограничивается лишь барьерной емкостью. Диоды Шоттки наиболее целесообразно использовать в быстродействующих импульсных цепях, для выпрямления малых напряжений высокой частоты, в высокочастотных смесителях, в ключах и коммутаторах.

Светодиоды.

При протекании прямого тока через любой p-n переход(любого диода!) происходит генерация фотонов. Это является следствием циклической рекомбинации — восстановления атомов вещества в процессе перемещения основных носителей тока.
Электронные элементы служащие для генерации света и основанный на этом принципе называется соответственно — светодиодами. Светодиоды используют для индикации, передачи информации, в составе таких электронных приборов как оптопары.

К. П.Д. и яркость современных светодиодов настолько высоки, что на настоящий момент они являются наиболее перспективными источниками искуственного освещения. В зависимости от материала выбранного в качестве полупроводника светодиоды излучают на разных длинах волн.
ИК — диоды излучают в инфракрасной области, индикаторные и осветительные светодиоды в видимой части спектра(зеленые, красные, желтые и т. п.). Наиболее высоким К.П.Д. отличаются светодиоды излучающее в ультрафиолетовой области. Интересно, что как раз этот тип наиболее часто применяется для освещения. Белый свет получается при использовании специального люминофора, преобразующего ультрафиолет.

Интенсивность излучения светодиода возрастает при увеличении тока протекающего через p-n переход, до определенного предела. После его достижения сетодиод выходит из строя. Поэтому, для нормальной работы необходимо ограничивать ток.
Как правило, это реализуется с помощью последовательного подключения резистора.

Стабисторы.

Существующие стабилитроны имеют ограничение по минимальному напряжению стабилизации(около 3 В).
Что делать, если необходим источник стабилизированного напряжения до 3-х вольт? Использовать прямую ветвь Вольт — Амперной Характеристики диода(ВАХ). В области прямого смещения p-n-перехода напряжение на нем может иметь значение 0,7…2 В(в зависимости от материала полупроводника) и мало зависит от тока.
Диоды специально используемые в этом качестве, называют — СТАБИСТОРАМИ.

Фотодиоды.

Фотодиод — это светочувствительный полупроводниковый элемент с одним p-n переходом, обратный ток которого меняется в зависимости от уровня освещенности. Величина на которую происходит его изменение при этом, называется фототоком.

Фотодиоды используют для преобразования сигналов передаваемых в оптическом режиме в электрическую форму. Малая инерционость фотодиодов способствует приему передачи информации, с большой плотностью, например, в при передаче ее по оптоволоконным линиям. Кроме того фотодиоды могут использоваться в фотоприемниках дистанционного управления и т. д.

На главную страницу

ОШИБКА — 404 — НЕ НАЙДЕНА

  • Главная

Наши серверные гномы не смогли найти страницу, которую вы ищете.

Похоже, вы неправильно набрали URL-адрес в адресной строке или перешли по старой закладке.

Возможно, некоторые из них могут вас заинтересовать?

SparkFun Micro OLED Breakout (с разъемами)

В наличии ЖК-13722

$17,95

Избранное Любимый 1

Список желаний

SparkFun GPS Breaking — ZOE-M8Q (Qwiic)

В наличии GPS-15193

49,95 $

7

Избранное Любимый 8

Список желаний

Хобби-мотор с энкодером — Metal Gear (DG01D-E)

В наличии РОБ-16413

4

Избранное Любимый 5

Список желаний

UHF RFID-метки — клей (5 шт.

в упаковке)

В наличии WRL-20228

Избранное Любимый 3

Список желаний

Система STM32 Специальный

14 мая 2021 г.

Вчера мы выпустили две новые платы STM32, но на этой неделе нам еще есть о чем поговорить!

Избранное Любимый 0

9Конференция 0014 OpenTapeout уже на этих выходных!

3 ноября 2021 г.

В эти выходные пройдет бесплатная онлайн-конференция, на которой вы сможете узнать все о текущем состоянии инструментов проектирования ASIC с открытым исходным кодом.

Избранное Любимый 0

Руководство по проекту Qwiic Pro Kit

7 ноября 2019 г.

Комплект Qwiic Pro Kit позволяет пользователям начать работу с Arduino без пайки или макетной платы. Мы включили три входа (джойстик, акселерометр и датчик приближения) и один дисплей, который можно последовательно подключить к макетной плате RedBoard Turbo (SAMD21).

Избранное Любимый 2

Как работают диоды и светодиоды?

Узнайте, как работает диод для управления потоком электрического тока в цепи с использованием полупроводников n-типа и p-типа.

Пришло время повысить уровень своих знаний и перейти от простых пассивных компонентов к области полупроводниковых компонентов. Эти детали оживают, когда их подключают к электрической цепи, и они могут разными способами манипулировать электричеством. Вам предстоит работать с двумя полупроводниковыми компонентами: диодом и транзистором. Сегодня мы поговорим о диоде, печально известном регуляторе, который позволяет электричеству течь только в одном направлении! Если вы видели светодиод в действии, вы уже далеко впереди. Давайте начнем.

Управление потоком

Диод хорошо известен своей способностью управлять потоком электрического тока в цепи. В отличие от пассивных компонентов, которые сидят сложа руки, сопротивляясь или накапливая, диоды активно держат руку на пульсе приливов и отливов тока, когда он течет по нашим устройствам. Есть два способа описать, как ток будет или не будет течь через диод:

  1. Прямое смещение: Когда вы правильно вставите батарею в цепь, ток будет протекать через диод; это называется смещенным вперед состоянием.
  2. Обратное смещение: Когда вы вставляете батарею в цепь в обратном направлении, ваш диод блокирует протекание любого тока, что называется состоянием с обратным смещением.
Простой способ визуализировать разницу между состояниями диода с прямым и обратным смещением в простой схеме

Хотя эти два термина могут показаться слишком сложными, думайте о диоде как о переключателе. Он либо закрыт (включен) и через него проходит ток, либо открыт (выключен), и ток через него не проходит.

Полярность диода и символы

Диоды

являются поляризованными компонентами, что означает, что они имеют очень специфическую ориентацию, которую необходимо подключить в цепь для правильной работы. На физическом диоде вы заметите две клеммы, выходящие из консервной банки посередине. Одна сторона — это положительный полюс, называемый анодом. Другая клемма является отрицательным концом, называемым катодом . Ток в диоде может двигаться только от анода к катоду, а не наоборот.

Вы можете определить сторону катода на физическом диоде, посмотрев на серебряную полоску рядом с одним из выводов. (Источник изображения)

На схеме легко найти диод. Просто найдите большую стрелку с линией, проходящей через нее, как показано ниже. У некоторых диодов и анод, и катод отмечены как положительные и отрицательные, но простой способ запомнить, как протекает ток в диоде, — это следовать направлению стрелки.

Стрелка на символе диода указывает направление тока.

В настоящее время большинство диодов изготавливаются из двух самых популярных полупроводниковых материалов в электронике — кремния или германия. Если вы что-нибудь знаете о полупроводниках, то вы знаете, что ни один из этих элементов не проводит электричество в своем естественном состоянии. Так как же заставить электричество течь через кремний или германий? С помощью маленького волшебного трюка под названием допинг.

Легирование полупроводников

Полупроводниковые элементы странные. Возьмем, к примеру, кремний. Это изолятор днем. Однако, если вы добавите к нему примеси с помощью процесса, называемого легированием, вы наделите его магической способностью проводить электричество ночью.

Из-за их двойных свойств изолятора и проводника полупроводники нашли свою идеальную нишу в компонентах, которые должны управлять потоком электрического тока в виде диодов и транзисторов. Вот как происходит процесс легирования типичного куска кремния:

.
  1. Во-первых, кремний выращивают в строго контролируемой лабораторной среде. Это называется чистой комнатой, то есть в ней нет пыли и других загрязнений.
  2. Поскольку кремний вырос, пришло время его легировать. Этот процесс может идти одним из двух путей. Первый заключается в легировании кремния сурьмой, что дает ему несколько дополнительных электронов и позволяет кремнию проводить электричество. Это называется кремнием n-типа или отрицательным типом, потому что в нем больше отрицательных электронов, чем обычно.
  3. Вы также можете легировать кремний в обратном порядке. Добавление бора к кремнию удаляет электроны из атома кремния, оставляя пустые дыры там, где должны быть электроны. Это называется кремнием p-типа или положительного типа.
  4. Теперь, когда ваши кусочки кремния легированы как положительно, так и отрицательно, вы можете собрать их вместе. Соединяя кремний n-типа и p-типа вместе, вы создаете соединение.
Пример

Допустим, вы соединили кремний n-типа и p-типа вместе, а затем подключили батарею, создав цепь. Что случится?

В этом случае отрицательная клемма соединяется с кремнием n-типа, а положительная клемма соединяется с кремнием p-типа. А ничейная территория между двумя кусками кремния? Ну, он начинает сжиматься, и начинает течь электрический ток! Это состояние диода с прямым смещением, которое мы обсуждали вначале.

Предположим, вы подключаете аккумулятор наоборот: отрицательная клемма подключается к кремнию p-типа, а положительная клемма подключается к кремнию n-типа. Здесь происходит то, что нейтральная полоса между двумя кусками кремния становится шире, и ток вообще не течет. Это состояние с обратным смещением, которое может принимать диод.

Подключите батарею в непреднамеренном направлении, и ваш диод остановит протекание тока между n-типом и p-типом. (Источник изображения)

Прямое напряжение и поломки

Когда вы работаете с диодами, вы узнаете, что для того, чтобы один из них пропускал ток, требуется определенное количество положительного напряжения. Напряжение, необходимое для включения диода, называется прямым напряжением (VF). Вы также можете увидеть, что это называется напряжением включения или напряжением включения.

Чем определяется это прямое напряжение? Полупроводниковый материал и типа . Вот как он разбивается:

  • Кремниевые диоды. Использование диода на основе кремния потребует прямого напряжения от 0,6 до 1 В.
  • Германиевые диоды. Использование диода на основе германия потребует более низкого прямого напряжения, около 0,3 В.
  • Другие диоды. Для специализированных диодов, таких как светодиоды, требуется более высокое прямое напряжение, тогда как для диодов Шоттки (см. ниже) требуется более низкое прямое напряжение. Лучше всего проверить техническое описание вашего конкретного диода, чтобы определить его номинальное прямое напряжение.

Я знаю, что мы говорили о диодах, пропускающих ток только в одном направлении, но вы можете нарушить это правило. Если вы приложите огромное отрицательное напряжение к диоду, то вы сможете изменить направление его тока!

Конкретная величина напряжения, которая вызывает возникновение этого обратного потока, называется напряжением пробоя . Напряжение пробоя v для обычных диодов составляет от -50В до -100В. Некоторые специализированные диоды могут даже работать при этом отрицательном напряжении пробоя, о котором мы поговорим позже.

Распаковка семейства диодов

Существует множество диодов, каждый со своими особыми способностями. И хотя каждый из них имеет общую основу для ограничения потока тока, вы можете использовать эту общую основу для создания множества различных применений. Давайте проверим каждого члена семейства диодов!

Стандартные диоды

Ваш средний диод. Стандартные диоды имеют умеренные требования к напряжению и низкий максимальный номинальный ток.

Стандартный повседневный диод, доступный в Digi-Key, обратите внимание на серебряную полоску, которая отмечает конец катода. (Источник изображения)
Выпрямительные диоды

Это более мощные братья и сестры стандартных диодов и имеют более высокий максимальный номинальный ток и прямое напряжение. В основном они используются в источниках питания.

Более мощные аналоги стандартного диода, разница заключается в большем номинальном токе и прямом напряжении.
Диоды Шоттки

Это причудливый родственник семейства диодов. Диод Шоттки пригодится, когда вам нужно ограничить потери напряжения в вашей цепи. Вы можете идентифицировать диод Шоттки на схеме, найдя типичный символ диода, добавив два новых изгиба (форма «S») на выводе катода.

Найдите изгиб на катодном конце диода, чтобы быстро идентифицировать его как диод Шоттки.
Стабилитроны

Зенеровские диоды являются паршивой овцой в семействе диодов. Они посылают электрический ток в противоположном направлении! Они делают это, используя напряжение пробоя, о котором говорилось выше, также называемое пробоем Зенера. Используя эту пробойную способность, стабилитроны отлично подходят для создания стабильного опорного напряжения в определенном месте цепи.

Зенеровский диод разительно отличается от остальных диодов семейства и может передавать ток от катода к аноду. (Источник изображения)
Фотодиоды

Photodiodes — бунтующие подростки в семействе диодов. Вместо того, чтобы просто пропускать ток через цепь, фотодиоды улавливают энергию источника света и превращают ее в электрический ток. Вы найдете их для использования в солнечных панелях и оптической связи.

Фотодиоды поглощают энергию света и превращают ее в электрический ток. (Источник изображения)
Светодиоды (LED)
Светодиоды

— это сияющие звезды семейства диодов. Как и стандартные диоды, светодиоды позволяют току течь только в одном направлении, но с изгибом! Когда подается правильное прямое напряжение, эти светодиоды загораются яркими цветами. Однако есть загвоздка в том, что определенные цвета светодиода требуют разных прямых напряжений. Например, для синего светодиода требуется прямое напряжение 3,3 В, тогда как для красного светодиода требуется всего 2,2 В, чтобы он начал светиться.

Что делает эти светодиоды такими популярными?

  • Эффективность: Светодиоды излучают свет электронным способом, не выделяя тонны тепла, как традиционные лампы накаливания. Это позволяет им экономить тонну энергии.
  • Управление: светодиодами также очень легко управлять в электронной схеме. Пока перед ними стоит резистор, они должны работать!
  • Недорогой: светодиоды очень доступны по цене и долговечны. Вот почему вы обнаружите, что они так часто используются в сигналах светофора, дисплеях и инфракрасных сигналах.
Светодиоды бывают разных форм и цветов, для каждого из которых требуется разное прямое напряжение для освещения! (Источник изображения)

Три наиболее распространенных применения диодов

Поскольку диоды бывают разных форм, размеров и конфигураций, их использование в наших электронных схемах столь же богато! Вот лишь несколько вариантов использования диодов:

1.
Преобразование переменного тока в постоянный

Процесс преобразования переменного тока (AC) в постоянный ток (DC) может осуществляться только с помощью диодов! Этот процесс выпрямления (преобразования) тока позволяет вам подключать всю вашу повседневную электронику постоянного тока к настенной розетке переменного тока в вашем доме. Существует два типа приложений преобразования, в которых диод играет свою роль:

  • Полуволновое выпрямление. Для этого преобразования требуется только один диод. Если вы посылаете сигнал переменного тока в цепь, ваш единственный диод отсекает отрицательную часть сигнала, оставляя только положительный вход в виде волны постоянного тока.
     

     

Одиночный диод в схеме однополупериодного выпрямителя, отсекающий отрицательный конец сигнала переменного тока. (Источник изображения)
  • Полноволновое мостовое выпрямление . В этом процессе преобразования используются четыре диода. И вместо того, чтобы просто отсекать отрицательную часть сигнала переменного тока, как в однополупериодном выпрямителе, этот процесс преобразует все отрицательные волны в сигнале переменного тока в положительные волны для сигнала, готового к постоянному току.
Двухполупериодный мостовой выпрямитель идет еще дальше, преобразуя весь положительный и отрицательный сигнал переменного тока в постоянный. (Источник изображения)
2. Контроль скачков напряжения
Диоды

также можно использовать в приложениях, где могут возникать неожиданные скачки напряжения. Диоды в этих приложениях могут ограничить любое повреждение, которое может произойти с устройством, поглощая любое избыточное напряжение, попадающее в диапазон напряжения пробоя диода.

3. Защита вашего текущего

Наконец, вы также обнаружите, что диоды могут защищать чувствительные цепи. Если вы когда-нибудь разбивали батарею неправильным образом, и ничего не взрывалось, вы можете поблагодарить свой дружелюбный диод.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *