Диод пропускает ток в одну сторону – . . . . .

Содержание

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью

p-типа, а другая — проводимостью n-типа.

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «

плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области –

дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в

закрытом состоянии.

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что

p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него

мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).

По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (

Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток

p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан

p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

sesaga.ru

Диод | Виды, характеристики, параметры диодов

В механике  есть такие устройства, которые пропускают воздух или жидкость только в одном направлении. Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда вы убирали шланг насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная штучка – ниппель.  Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение.

Электроника – эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток.  Если провести аналогию: бачок с водой – это заряженный конденсатор, шланг – это провод, катушка индуктивности – это колесо с лопастями

которое невозможно сразу разогнать, а потом невозможно резко остановить.

Тогда что такое ниппель в электронике? А ниппелем  мы будем называть радиоэлемент  – диод.  И в этой статье мы познакомимся с ним поближе.

Что такое диод

Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель ;-).

Некоторые  диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по другому:

Есть также и SMD исполнение диодов:

Диод имеет два вывода, как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия – анод и катод ( а не плюс и минус, как говорят некоторые неграмотные электронщики). Но как же нам определить, что есть что? Есть два способа:

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.  Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Если подать на анод плюс, а на катод минус, то у нас диод “откроется” и электрический ток спокойно по нему потечет. А если же  на анод подать минус, а на катод – плюс, то  ток через диод не потечет. Своеобразный ниппель ;-). На схемах  простой диод обозначают вот таким образом:

      

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

 

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор –  (Uу), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

 

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

На схемах  триодные тиристоры  выглядят вот таким образом:

Существуют также  разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  – одна из разновидностей диодных сборок.

 На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

www.ruselectronic.com

Принцип работы и назначение диодов

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

slarkenergy.ru

Полупроводниковый диод

Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция — это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P.

На стыке соединения P и N образуется PN-переход (PN-junction). Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя

Посмотрим, что происходит внутри PN-перехода, когда полупроводниковый диод находится в состоянии покоя. То есть тогда, когда ни к аноду, ни к катоду не подключено напряжения.

Итак, в части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки. В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.


Обратное включение диода

Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания — плюс к катоду, минус к аноду.

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода

Меняем полярность источника питания — плюс к аноду, минус к катоду. В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электорнам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода. Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.

Чтобы не возникло путаницы, напомню, что направление тока на электрических схемах обратно направлению потока электронов.

Недостатки реального полупроводникового диода

На практике, в реальном диоде, при обратном подключении напряжения, возникает очень маленький ток, измеряемый в микро, или наноамперах ( в зависимости от модели прибора ). В следствии слишком высокого напряжения, может разрушиться кристаллическая структура полупроводника в диоде. В этом случае, прибор начнет хорошо проводить ток также и при обратном смещении. Такое напряжение называется напряжение пробоя. Процесс разрушения структуры полупроводника невосстановим, и прибор приходит в негодность.

При прямом подключении, напряжение между анодом и катодом должно достигнуть определенного значения Vϒ, для того чтобы диод начал хорошо проводить ток. Для кремниевых приборов Vϒ — это примерно 0.7V, а для германиевых — около 0.3V. Более подробно об этом, и других характеристиках полупроводникового выпрямительного диода пойдет речь в статье ВАХ полупроводникового диода.

hightolow.ru

Как оно работает!?

Чтобы научиться создавать устройства, надо знать как они работают, из чего состоят. По любым радиоэлектронным устройствам бегает ток. От того, как и куда его направить, зависит работа устройства. Ток по проводам можно сравнить с течением жидкостей по трубам. Вода в трубах течет по разному, где-то быстро, где-то медленно. Где-то очень большое давление, а где-то совсем маленькое. По трубам не всегда вода течёт, бывает и нефть, а бывают и канализационные и мусоро-проводы для сваливания туда всяких отходов.

У электричества тоже есть свои давление и скорость течения. Чем больше электрический ток, тем толще должен быть провод. Если пустить гречневую кашу через гелевый стержень, она через него не потечёт, стержень заткнётся, и если будет достаточное давление, лопнет в том месте где заткнуло. А вот через трубу диаметром сантиметров пять, гречневая каша потечёт, и ничего не лопнет.
Ток обычно обозначается буквой I и меряется Амперами

Чем больше напряжение, тем толще должна быть изоляция провода. Напряжение — как давление, чем выше, тем толще изоляция, или толще должны быть трубы чтобы выдержать давление. Тонкие трубы ведь большого давления не выдерживают, лопаются, точно так же и провода при большом напряжении пробивает.
Напряжение обычно обозначается буквами U или V и меряется Вольтами.

Электричество течёт в электронных схемах от плюса к минусу.

Начну с описания различных деталей устройств и буду постепенно пополнять их разнообразие.


Диод
Диод обычно предназначен пускать ток в одну сторону, и не пускать в другую.
Как клапан, пропускает воду в одну сторону, а если она потекла в другую, то сразу закрывается. Диод работает точно так же. Диод — электронный клапан.
У каждой лапки диода есть название — анод и катод.
Катод — отрицательный электрод, поэтому в схемах обычно смотрит на минус.
Анод — положительный электрод, и на него чаще всего подают плюс.
Чтобы лучше запомнить, кто из них отрицательный, а кто положительный, — в слове «катод» столько же букв, сколько в слове «минус». А в слове «анод» столько же букв, сколько в слове «плюс». Диод пускает от анода к катоду, и не пускает обратно, от катода к аноду.
На схемах диод обозначается вот так:


Диод

Где у диода катод, а где анод — легко запомнить, одна сторона обозначения походит на буковку А (анод), правая сторона на букву К (катод).

Диоды на вид бывают всякие разные:

Важные характеристики диодов — максимальное напряжение и максимальные токи — постоянный и при коротком импульсе.
Если напряжение в схеме не более 15 Вольт, и ожидаемый постоянный ток через диод предполагается не более 1 Ампер, то и диод должен быть не ниже чем на 15 В, и не ниже чем на ток 1 А.

Если мы подключим диод катодом к минусу, то ток потечёт, и лампочка засветится.
Если мы перевернём диод анодом к минусу, то диод не пропустит ток с плюса на минус, и лампочка не загорится.

Фотодиоды и светодиоды на принципиальных схемах обозначаются вот как:

Иногда с круглишками, иногда без них.

У них точно так же есть катод и анод, как и у простых диодов.
Поэтому крайне важно для работоспособности схемы не путать назначение лапок, полярность.

Переменный ток

 

В предыдущем примере с диодом и лампочкой был постоянный ток, тоесть тёк в одном направлении.
При переменном токе полярность меняется с какой-то частотой.
В розетках нашей страны плюс с минусом меняются местами 50 раз в секунду, в электросетях Японии и Америки 60 раз, в Европе 100 раз в секунду.
Частота, — будь то смена полярности, или количество зажиганий светодиодика в секунду, — меряется в Герцах.

 

Как узнать переменный или постоянный ток в цепи ?
Подключили диод, лампочка светится.
Перевернули диод, лампочка всё равно светится.
Если диод заведомо целый, значит ток в цепи переменный.

Чтобы из переменного тока сделать постоянный, нужно 4 диода, для соединения в диодный мост.
Диодный мост на схемах рисуют из четырёх диодов, или просто ромбом с диодом внутри, для упрощения.

Белые провода — переменное напряжение, на выходе постоянное: черный — минус, красный плюс.

Если постоянный ток изобразить на графике, он будет выглядеть вот так.

С течением времени на плюсе всегда остаётся плюс, на минусе минус.

У переменного тока с течением времени плюс с минусом на проводах меняются местами, на графике он будет выглядеть вот так:

Каждая такая пупырышка называется полупериод.
Если выше полоски — положительный, например который нам нужен.
Если ниже полоски — отрицательный, который нам не нужен, и нам надо его перевернуть.
Участок времени из двух полупериодов, отрицательного и положительного, называют полным периодом.
Пометим положительные полупериоды зеленым цветом, отрицательные красным.

 Если собрать диодный мост из красных и зеленых светодиодов можно увидеть как он работает:

На лампочку идёт постоянный пульсирующий ток, но она не светится потому что ток через светодиоды недостаточно большой.
Светодиодный мост перевернул отрицательные (красные) полупериоды в нужную нам сторону

На предыдущем примере частота переменного тока была около 1 герца, тоесть примерно одна смена полярности в секунду.
С более высокими частотами работа диодного моста уже не так явно видна (здесь герц 7-10):

В цепях переменного тока частотами от 30 или 60 герц, глаз не может уследить за миганием светодиодов, они будут мигать очень быстро и будет казаться что они просто все светятся.

Конденсатор

Конденсатор — электронная бочка.
Конденсатор накапливает в себе энергию, и этим самым в электрических схемах работает как бак с водой.
Например если включать и выключать воду, то она то есть, то нету, а нас это не устраивает.
Нам нужно чтоб вода всегда была.
Если под кран, из которого вода то идёт, то не идёт, поставить бочку и проковырять снизу дырку, то из дырки вода будет течь всё время. Ту же самую роль выполняют и конденсаторы в схемах.

Конденсаторы бывают на переменный и на постоянный ток.
У конденсаторов на постоянный ток важно не путать полярность — назначение выводов, какой из них подключить на плюс, а какой на минус.
Конденсатор обозначается на схеме вот так:

Слева на переменный ток, справа на постоянный.

Конденсаторы бывают всякие разные:

 

 Предыдущая схема у нас была с пульсирующим постоянным током:

Если параллельно лампочке поставить конденсатор, то на лампочку пойдет постоянный ток без пульсаций.

Ёмкость конденсаторов измеряется в пикофарадах (пФ или pF), нанофарадах (нФ, nF), микрофарадах (мкФ, uF), и фарадах (Ф, F).
Например 7 нанофарад = 0, 000 000 007 фарад.
14 пикофарад = 0, 000 000 000 014 фарад.
10 микрофарад = 0, 000 010 Фарад.

 

Ёмкость почти всегда написана на конденсаторе русскими или английскими буквами, или бывает обозначена цветовым или цифровым шифром.

 

Цифровая маркировка выглядит как три цифры, первые две начальные цифры, последняя -количество нулей после них, получается число в пикофарадах.
Например на конденсаторе надпись 104, это 10 и 4 нуля = 100000 пикофарад = 0,1 микрофарад. Или 873 = 87+000 = 87000 пФ = 87 Нанофарад. 151 = 15 и 0 = 150 пФ. Если две цифры, например 82, то значит нулей нет, и ёмкость конденсатора 82 Пф.

 

Цветовая маркировка сначала кажется сложнее, но если часто возиться с полосатыми детальками, то можно и её запомнить наизусть.
На деталь наносят 3, 4 или 5 цветных колец.
Первые два кольца — тоже цифры, третье — множитель, х1, х10, х100, х1000, х10000, и т.п., четвёртая — допуск, серебряного цвета или золотого. Допуск — отклонение в процентах, от заявленной ёмкости, золотое кольцо — меньше или больше на 5%, серебряное — на 10%.
Золотое или серебряное кольцо всегда последнее, это чтобы не перепутать откуда считать кольца.

Не менее важный параметр конденсатора — его допустимое напряжение.
Конденсаторы нельзя ставить в цепь с более высоким напряжением, нежели чем указано на конденсаторе. Например на конденсаторе написано 3300uF 16V, значит его допустимое напряжение 16 вольт, его можно ставить в легковой автомобиль, где 13 вольт, но нельзя ставить в КАМАЗ, потому что там 24 вольта, и он может взорваться, а от взорванного конденсатора никакого толку не будет, только перевод деталей. Если просто хочется взорвать ненужный конденсатор, например с оторваной лапкой, или помятым корпусом, то можно подключить конденсатор с допустимым напряжением 6.3 вольта в цепь 48 вольт или еще больше.

Резистор

Резистор с латинского переводится как «сопротивляться».
Говоря по русски, резистор — сопротивление. Резистор в схемах выполняет роль заткнутой поролоном трубы. Заткнутость в трубах бывает разная, можно поставить сито, тогда будет пропускать почти полностью. Можно затолкать поролона, а можно заткнуть наглухо старым валенком так, что за сутки просочится всего одна капля.
Резистор ограничивает ток в цепи.
Чем меньше сопротивление резистора, тем он больше пропускает. Чем больше сопротивление, тем он больше «заткнут» и следовательно меньше пропускает.
Сопротивление измеряется в омах, килоомах (КОм, или К) и мегаомах (МОм или М). Иногда еще в миллиомах.
Чем больше ом резистор, тем больше в нём засунуто «поролона». Так мегаом (миллион ом) вообще почти ничего не пропускает, а один ом пропускает почти всё.
Резистор обозначается на схемах вот так или так:

Сверху обычно в таком виде он выглядит на наших схемах, а обозначением снизу резисторы рисуют на зарубежных.


Резисторы бывают всякие разные:

Узнать обозначение можно по маркировке, иногда её пишут буквами — М для мегаомов, К для килоомов, Е или R для омов. Резисторы могут маркироваться цветными кольцами, или цифровой маркировкой, так же как конденсаторы, только значение не в пикофарадах, а в омах.
102 = 10 и 2 нолика = 1000 ом = 1 килоом.
754 = 75 и 4 нолика = 750000 ом = 750 килоом, или 0,75 мегаом.

Еще бывают резисторы с надписями 2М2, М15, К47, 15М, 68К, 3К3, 4R7.
2М2 — 2.2 мегаома,
М15 — 0,15 мегаом или 150 килоом,
К47 — 0,47 килоом, или 470 ом,
15М — 15 мегаом,
68К — 68 килоом,
3К3 — 3.3 килоом (3300 ом),
4R7 — 4.7 ом.

В этой маркировке 2.2 мегаома будет выглядеть как 2М2,
22 мегаома — 22М,
220 килоом, или 0,22 мегаома будет выглядеть как 220К или М22.

shemu.ru

Полупроводниковый диод | Электронные печеньки

Диод — полупроводниковый прибор обладающий разной проводимостью в зависимости от направления тока. Иными словами, диод пропускает ток в одну сторону и не пропускает в другую. То есть ток идёт от анода (+) к катоду (-), но не наоборот (на самом деле и наоборот иногда идёт, всё сложно. Подробности в статье 🙂 ). Разумеется, диод рассчитан на определённое напряжение и ток, которое он может пропустить в прямом направлении и определённое напряжение, которому он способен сопротивляться в обратном. Полезно знать, что на корпусе диода катод обозначается цветным кольцом.

Диоды характеризуются двумя основными характеристиками: предельному обратному напряжению (Uобр) и максимальной силой тока (Imax), проходящей через него. Предельное обратное напряжение — максимальное напряжение на выводах диода, приложенное к нему в закрытом состоянии, которое он способен выдержать. Максимальный рабочий ток представляет собой ток при прямом включении диода, который диод может выдержать, не выходя из строя. Диоды широко применяются в электронике. Его основное свойство — пропускать ток только в одном направлении, определяет самое распространённое применение диода для выпрямления переменного тока. Однако, мы не станем останавливаться на выпрямителях слишком подробно. Статья рассказывает о применении диода в микроконтроллерных устройствах, разновидностях и способах подключения диода.

В устройствах с микроконтроллерами в основном применяются 3 типа диодов:

  • стабилитрон (диод Зеннера)
  • выпрямительный диод
  • диод Шоттки

Ниже рассмотрим отличия и назначения каждого типа диодов.

Изображение стабилитрона на схеме. Вот с такой загогулиной, да.

А так выглядит диод Зеннера в жизни

Прежде чем рассказать о стабилитронах, нужно вспомнить о ВАХ. ВАХ — это не только междометие, но и аббревиатура. Расшифровывается она как вольт-амперная характеристика. Чтобы не пугать вас и делать вид, что всё очень сложно, не будем приводить здесь графики этой самой ВАХ. Достаточно просто пояснить, что существует ВАХ для прямого и для обратного включения диода. ВАХ — это график, по которому можно определить характеристики диода: предельные токи, падение напряжения и прочее.

Стабилитроны  конструктивно ничем не отличаются от других диодов. Но их параметры специально рассчитаны для того, чтобы подключать диод наоборот :  анод на минус, а катод на плюс. Это позволяет стабилитрону стабилизировать напряжение. Это происходит в связи с особенностью ВАХ стабилитрона в обратном направлении: при определенном обратном напряжении на диоде, через него течет любой ток. Разумеется, ток через диод не может быть бесконечным, иначе стабилитрон банально перегреется и сгорит. Для стабилизации напряжения на больших токах используйте стабилизаторы напряжения.  Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. Как не сложно догадаться, это и есть напряжение, которое стабилитрон пропускает через себя.

Подключается стабилитрон вот так:

Типичная схема подключения стабилитрона

Можно заметить некоторое сходство с делителем напряжения. Собственно, это он и есть. Только напряжение на выходе регулируется стабилитроном динамически, а резистор в верхнем плече делителя называют балластным. Для правильного подключения стабилитрона необходимо произвести расчёт балластного резистора. Для этого необходимо знать следующие значения:

  • Входное напряжение (Uin)
  • Необходимое напряжение на нагрузке (URн)
  • Ток, потребляемый нагрузкой (Iн)

Выбирается стабилитрон, с током стабилизации в 2 или более раз большим, чем ток, потребляемый нагрузкой. Через балластный резистор потечёт ток, равный сумме тока стабилизации и тока, потребляемого нагрузкой.

По закону Ома выходит, что ток, потребляемый нагрузкой, мы можем рассчитать по формуле: (Входное напряжение-Напряжение стабилизации)/Сопротивление балластного резистора.

Тогда сопротивление балласта выражается такой формулой: R1=(Входное напряжение-Напряжение стабилизации)/Ток потребляемый нагрузкой.

Ну а теперь, когда вы полностью запутались, мы просто рекомендуем вам использовать резистор 33 Ом. Этого достаточно для тока нагрузки до 5мА и входном напряжении до 5 В. То есть с помощью стабилитрона из нашего магазина с резистором в 330 Ом вы сможете стабилизировать напряжение на уровне 3,3 вольт для SD модуля.

Так обозначается выпрямительный диод на схеме. Ага. Безо всяких закорючек.

Диод. Катод справа.

Собственно, дальше не так интересно. Выпрямительные диоды… выпрямляют ток. То есть позволяют получить из переменного тока постоянный. Помимо выпрямления тока, выпрямительные диоды используются в цепях управления, коммутации, в ограничительных и развязывающих цепях, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов. Эти диоды выдерживают большие токи и напряжения, но плохо работают на высоких частотах. Это значит, что защитить мощный блок питания от переплюсовки таким диодом можно, а вот ШИМ с таким диодом будет работать не так, как ожидается (работать будет, но скважность изменится, так как диод не будет успевать открываться-закрываться до конца).

ВАХ обратного включения выпрямительного диода характеризуется малым напряжением при большом токе. Это как раз и значит то, что написано выше. Диод хорошо пропускает ток в «правильном» направлении и готов сопротивляться до последнего току, который вдруг потечёт назад. Выпрямительные диоды могут использоваться для защиты управляющей схемы от индуктивных нагрузок. Это, в основном, различные устройства с катушкой — моторы и реле. После отключения тока, катушка может сработать как индуктивность и вернуть заряд назад, повредив вывод контроллера. Для защиты от индуктивности, в цепь с индуктивной нагрузкой включается диод:

Выпрямительный диод в цепи с мотором

На схеме диод Шоттки изображается так:

Диод Шоттки на схеме. Да. Теперь 2 закорючки.

Диод Шоткти. Также его называют сигнальным диодом. Отличается относительно малым предельным напряжением и током, но высокой скоростью работы. Применяется в схемах передачи высокочастотных сигналов. Подробное рассмотрение особенностей диода Шоттки выходит за рамки статьи.

Поделиться ссылкой:

Похожее

uscr.ru

Как оно работает!?

Чтобы научиться создавать устройства, надо знать как они работают, из чего состоят. По любым радиоэлектронным устройствам бегает ток. От того, как и куда его направить, зависит работа устройства. Ток по проводам можно сравнить с течением жидкостей по трубам. Вода в трубах течет по разному, где-то быстро, где-то медленно. Где-то очень большое давление, а где-то совсем маленькое. По трубам не всегда вода течёт, бывает и нефть, а бывают и канализационные и мусоро-проводы для сваливания туда всяких отходов.

У электричества тоже есть свои давление и скорость течения. Чем больше электрический ток, тем толще должен быть провод. Если пустить гречневую кашу через гелевый стержень, она через него не потечёт, стержень заткнётся, и если будет достаточное давление, лопнет в том месте где заткнуло. А вот через трубу диаметром сантиметров пять, гречневая каша потечёт, и ничего не лопнет.
Ток обычно обозначается буквой I и меряется Амперами

Чем больше напряжение, тем толще должна быть изоляция провода. Напряжение — как давление, чем выше, тем толще изоляция, или толще должны быть трубы чтобы выдержать давление. Тонкие трубы ведь большого давления не выдерживают, лопаются, точно так же и провода при большом напряжении пробивает.
Напряжение обычно обозначается буквами U или V и меряется Вольтами.

Электричество течёт в электронных схемах от плюса к минусу.

Начну с описания различных деталей устройств и буду постепенно пополнять их разнообразие.


Диод
Диод обычно предназначен пускать ток в одну сторону, и не пускать в другую.
Как клапан, пропускает воду в одну сторону, а если она потекла в другую, то сразу закрывается. Диод работает точно так же. Диод — электронный клапан.
У каждой лапки диода есть название — анод и катод.
Катод — отрицательный электрод, поэтому в схемах обычно смотрит на минус.
Анод — положительный электрод, и на него чаще всего подают плюс.
Чтобы лучше запомнить, кто из них отрицательный, а кто положительный, — в слове «катод» столько же букв, сколько в слове «минус». А в слове «анод» столько же букв, сколько в слове «плюс». Диод пускает от анода к катоду, и не пускает обратно, от катода к аноду.
На схемах диод обозначается вот так:


Диод

Где у диода катод, а где анод — легко запомнить, одна сторона обозначения походит на буковку А (анод), правая сторона на букву К (катод).

Диоды на вид бывают всякие разные:

Важные характеристики диодов — максимальное напряжение и максимальные токи — постоянный и при коротком импульсе.
Если напряжение в схеме не более 15 Вольт, и ожидаемый постоянный ток через диод предполагается не более 1 Ампер, то и диод должен быть не ниже чем на 15 В, и не ниже чем на ток 1 А.

Если мы подключим диод катодом к минусу, то ток потечёт, и лампочка засветится.
Если мы перевернём диод анодом к минусу, то диод не пропустит ток с плюса на минус, и лампочка не загорится.

Фотодиоды и светодиоды на принципиальных схемах обозначаются вот как:

Иногда с круглишками, иногда без них.

У них точно так же есть катод и анод, как и у простых диодов.
Поэтому крайне важно для работоспособности схемы не путать назначение лапок, полярность.

Переменный ток

 

В предыдущем примере с диодом и лампочкой был постоянный ток, тоесть тёк в одном направлении.
При переменном токе полярность меняется с какой-то частотой.
В розетках нашей страны плюс с минусом меняются местами 50 раз в секунду, в электросетях Японии и Америки 60 раз, в Европе 100 раз в секунду.
Частота, — будь то смена полярности, или количество зажиганий светодиодика в секунду, — меряется в Герцах.

 

Как узнать переменный или постоянный ток в цепи ?
Подключили диод, лампочка светится.
Перевернули диод, лампочка всё равно светится.
Если диод заведомо целый, значит ток в цепи переменный.

Чтобы из переменного тока сделать постоянный, нужно 4 диода, для соединения в диодный мост.
Диодный мост на схемах рисуют из четырёх диодов, или просто ромбом с диодом внутри, для упрощения.

Белые провода — переменное напряжение, на выходе постоянное: черный — минус, красный плюс.

Если постоянный ток изобразить на графике, он будет выглядеть вот так.

С течением времени на плюсе всегда остаётся плюс, на минусе минус.

У переменного тока с течением времени плюс с минусом на проводах меняются местами, на графике он будет выглядеть вот так:

Каждая такая пупырышка называется полупериод.
Если выше полоски — положительный, например который нам нужен.
Если ниже полоски — отрицательный, который нам не нужен, и нам надо его перевернуть.
Участок времени из двух полупериодов, отрицательного и положительного, называют полным периодом.
Пометим положительные полупериоды зеленым цветом, отрицательные красным.

 Если собрать диодный мост из красных и зеленых светодиодов можно увидеть как он работает:

На лампочку идёт постоянный пульсирующий ток, но она не светится потому что ток через светодиоды недостаточно большой.
Светодиодный мост перевернул отрицательные (красные) полупериоды в нужную нам сторону

На предыдущем примере частота переменного тока была около 1 герца, тоесть примерно одна смена полярности в секунду.
С более высокими частотами работа диодного моста уже не так явно видна (здесь герц 7-10):

В цепях переменного тока частотами от 30 или 60 герц, глаз не может уследить за миганием светодиодов, они будут мигать очень быстро и будет казаться что они просто все светятся.

Конденсатор

Конденсатор — электронная бочка.
Конденсатор накапливает в себе энергию, и этим самым в электрических схемах работает как бак с водой.
Например если включать и выключать воду, то она то есть, то нету, а нас это не устраивает.
Нам нужно чтоб вода всегда была.
Если под кран, из которого вода то идёт, то не идёт, поставить бочку и проковырять снизу дырку, то из дырки вода будет течь всё время. Ту же самую роль выполняют и конденсаторы в схемах.

Конденсаторы бывают на переменный и на постоянный ток.
У конденсаторов на постоянный ток важно не путать полярность — назначение выводов, какой из них подключить на плюс, а какой на минус.
Конденсатор обозначается на схеме вот так:

Слева на переменный ток, справа на постоянный.

Конденсаторы бывают всякие разные:

 

 Предыдущая схема у нас была с пульсирующим постоянным током:

Если параллельно лампочке поставить конденсатор, то на лампочку пойдет постоянный ток без пульсаций.

Ёмкость конденсаторов измеряется в пикофарадах (пФ или pF), нанофарадах (нФ, nF), микрофарадах (мкФ, uF), и фарадах (Ф, F).
Например 7 нанофарад = 0, 000 000 007 фарад.
14 пикофарад = 0, 000 000 000 014 фарад.
10 микрофарад = 0, 000 010 Фарад.

 

Ёмкость почти всегда написана на конденсаторе русскими или английскими буквами, или бывает обозначена цветовым или цифровым шифром.

 

Цифровая маркировка выглядит как три цифры, первые две начальные цифры, последняя -количество нулей после них, получается число в пикофарадах.
Например на конденсаторе надпись 104, это 10 и 4 нуля = 100000 пикофарад = 0,1 микрофарад. Или 873 = 87+000 = 87000 пФ = 87 Нанофарад. 151 = 15 и 0 = 150 пФ. Если две цифры, например 82, то значит нулей нет, и ёмкость конденсатора 82 Пф.

 

Цветовая маркировка сначала кажется сложнее, но если часто возиться с полосатыми детальками, то можно и её запомнить наизусть.
На деталь наносят 3, 4 или 5 цветных колец.
Первые два кольца — тоже цифры, третье — множитель, х1, х10, х100, х1000, х10000, и т.п., четвёртая — допуск, серебряного цвета или золотого. Допуск — отклонение в процентах, от заявленной ёмкости, золотое кольцо — меньше или больше на 5%, серебряное — на 10%.
Золотое или серебряное кольцо всегда последнее, это чтобы не перепутать откуда считать кольца.

Не менее важный параметр конденсатора — его допустимое напряжение.
Конденсаторы нельзя ставить в цепь с более высоким напряжением, нежели чем указано на конденсаторе. Например на конденсаторе написано 3300uF 16V, значит его допустимое напряжение 16 вольт, его можно ставить в легковой автомобиль, где 13 вольт, но нельзя ставить в КАМАЗ, потому что там 24 вольта, и он может взорваться, а от взорванного конденсатора никакого толку не будет, только перевод деталей. Если просто хочется взорвать ненужный конденсатор, например с оторваной лапкой, или помятым корпусом, то можно подключить конденсатор с допустимым напряжением 6.3 вольта в цепь 48 вольт или еще больше.

Резистор

Резистор с латинского переводится как «сопротивляться».
Говоря по русски, резистор — сопротивление. Резистор в схемах выполняет роль заткнутой поролоном трубы. Заткнутость в трубах бывает разная, можно поставить сито, тогда будет пропускать почти полностью. Можно затолкать поролона, а можно заткнуть наглухо старым валенком так, что за сутки просочится всего одна капля.
Резистор ограничивает ток в цепи.
Чем меньше сопротивление резистора, тем он больше пропускает. Чем больше сопротивление, тем он больше «заткнут» и следовательно меньше пропускает.
Сопротивление измеряется в омах, килоомах (КОм, или К) и мегаомах (МОм или М). Иногда еще в миллиомах.
Чем больше ом резистор, тем больше в нём засунуто «поролона». Так мегаом (миллион ом) вообще почти ничего не пропускает, а один ом пропускает почти всё.
Резистор обозначается на схемах вот так или так:

Сверху обычно в таком виде он выглядит на наших схемах, а обозначением снизу резисторы рисуют на зарубежных.


Резисторы бывают всякие разные:

Узнать обозначение можно по маркировке, иногда её пишут буквами — М для мегаомов, К для килоомов, Е или R для омов. Резисторы могут маркироваться цветными кольцами, или цифровой маркировкой, так же как конденсаторы, только значение не в пикофарадах, а в омах.
102 = 10 и 2 нолика = 1000 ом = 1 килоом.
754 = 75 и 4 нолика = 750000 ом = 750 килоом, или 0,75 мегаом.

Еще бывают резисторы с надписями 2М2, М15, К47, 15М, 68К, 3К3, 4R7.
2М2 — 2.2 мегаома,
М15 — 0,15 мегаом или 150 килоом,
К47 — 0,47 килоом, или 470 ом,
15М — 15 мегаом,
68К — 68 килоом,
3К3 — 3.3 килоом (3300 ом),
4R7 — 4.7 ом.

В этой маркировке 2.2 мегаома будет выглядеть как 2М2,
22 мегаома — 22М,
220 килоом, или 0,22 мегаома будет выглядеть как 220К или М22.

shemu.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *