Для чего применяется тепловое реле: принцип работы, конструкция, обозначение на схеме

Содержание

принцип работы, конструкция, обозначение на схеме

В виду высокой стоимости электродвигателей вопрос их защиты от повреждения при нарушении нормального режима работы стоит достаточно остро. Среди наиболее популярных нарушений перегрузка, обрыв одной из фаз, снижение рабочего напряжения. И все они характеризуются большими рабочими  токами, протекающими в обмотках электрической машины, что приводит к перегреву, ухудшению диэлектрических свойств изоляции и перегоранию жил, если ситуацию пустить на самотек. Для защиты электрических двигателей от перегревания в схему питания электропривода вводят тепловое реле.

Конструкция

Современный рынок электрооборудования предлагает огромный выбор тепловых реле различного принципа действия, как следствие, будет отличаться и их конструктивное исполнение. Однако, в соответствии с  п.3.2. ГОСТ 16308-84 все технические параметры конкретной модели должны соответствовать данному типу по габаритам, исполнению и принципиальной схеме этого типа. Наиболее распространенным вариантом за счет простоты исполнения и относительной дешевизны является электротепловое реле на биметаллической пластине. Конструкция которого приведена на рисунке 1.

Рис. 1. Конструкция теплового реле

Как видите, в состав механизма входят:

  • нагревательный элемент – токоведущая часть, пропускающая через себя рабочий ток электрической машины;
  • биметаллическая пластина – выступает в роли действующего индикатора, реагирующего на превышение температуры;
  • толкатель – выполняет функции жесткого рычага, передающего усилие от биметаллической пластины;
  • температурный компенсатор – позволяет внести поправку на температуру окружающей среды для стабилизации величины тока срабатывания;
  • защелка – предназначена для фиксации положения температурного реле;
  • штанга расцепителя – подвижная часть механизма, предназначенного для перемещения контактов;
  • контакты реле – передают питание в блок управления;
  • пружина – создает усилие для перемещения реле в устойчивое положение.

На практике существуют и другие типы реле, конструкция которых будет принципиально отличаться. Данный вариант приведен в качестве примера для наглядности протекания процессов и пояснения принципа работы.

Принцип работы

В основу работы положен принцип разности температурного расширения различных металлов, описанных законом Джоуля-Ленца. При нагревании биметаллической пластины, состоящей из двух металлов с различным коэффициентом теплового расширения, произойдет ее геометрическая деформация. Именно такая пластина и устанавливается в термореле, она реагирует на превышение температуры более установленного предела.

Для рассмотрения принципа работы температурного реле воспользуемся трехмерной моделью реального устройства, приведенной на рисунке 2 ниже:

Рис. 2. Принцип действия температурного реле

Как видите, подключенное в цепь электродвигателя тепловое реле пропускает основную нагрузку электрической машины через токоведущие шины. Если смоделировать ситуацию перегрузки, когда через них потечет ток в несколько раз превышающий номинальный, то шины начнут нагреваться и избыток тепла перейдет на биметаллическую пластину, подключенную к каждой из фаз электродвигателя. При достижении температуры уставки биметаллическая пластина изогнется и приведет в движение один из толкателей. Толкатель, в свою очередь, сместит рычаг защелки на несколько миллиметров, что отпустит пружинный механизм и даст ход штанге расцепителя.

После этого контакты теплового реле отключат питание цепи управления и перекроют контакты цепи сигнализации, которая оповестит об отключении защитного приспособления. После устранения причины перегрева реле возвращается в рабочее положение посредством нажатия механической кнопки. Следует отметить, что сразу после отключения теплового реле включить его не получиться, так как биметаллическая пластина еще не остыла и возможны ложные срабатывания. Поэтому процесс требует определенной выдержки времени, после которой электродвигатель можно запускать в работу.

Обозначение на схеме

При чтении схем важно ориентироваться в обозначении всех устройств, изображенных на них. Это позволяет обеспечивать точное подключение с соблюдением основных параметров работы электроустановки, селективности срабатывания защит и поддерживать нормальный режим электроснабжения. Изображение теплового реле на схемах определяется положениями двух нормативных документов. В соответствии с таблицей 3 ГОСТ 2.755-87 контакты данного вида оборудования изображаются следующим образом (рисунок 3):

Рис. 3. Изображение контакта термореле

В тоже время, само температурное реле имеет обозначение в соответствии с п.21 таблицы 1 ГОСТ 2.756-76, которое отображается на схеме следующим образом (см. рисунок 4):

Рис. 4. Воспринимающая часть электротеплового реле

Знание схематических изображений электротеплового реле позволит вам ориентироваться в принципиальных схемах уже действующих агрегатов. Или самостоятельно составлять и подключать оборудование через защитное приспособление.

Виды

Современное разнообразие тепловых реле охватывает довольно широкий ассортимент. Поэтому деление на виды производиться в соответствии с установленными критериями на основании п. 1.1. ГОСТ 16308-84. Так, по роду тока рабочей цепи все устройства подразделяются на две большие группы: реле переменного и постоянного тока. В зависимости от количества рабочих полюсов встречаются:

  • однополюсные – применяются для двигателей постоянного тока и других однофазных моделей;
  • двухполюсные – устанавливаются в трехфазную цепь, где контроль может осуществляться только по двум фазам;
  • трехполюсные – актуальны для мощных асинхронных агрегатов с короткозамкнутым ротором.

В зависимости от типа контактов вторичных цепей все тепловые приборы подразделяются на модели:

  • только с замыкающим контактом;
  • только с размыкающим контактом;
  • и с замыкающим, и с размыкающим контактом;
  • с переключающими;

В зависимости от способа возврата теплового реле в исходное положение существуют варианты с включением вручную или с самостоятельным возвратом. Также в моделях может реализовываться функция перевода с одного вида работы на другой.

Также существует разделение по наличию или отсутствию приспособления для компенсации температуры окружающего пространства. И модели с возможностью регулировки тока несрабатывания или с отсутствием таковой функции.

Назначение

Основным назначением теплового реле является защита электродвигателя от перекоса фаз, перегрева на затяжных пусках, заклинивании вала или подачи чрезмерной нагрузки. Для решения всех этих задач на практике выпускаются различные типы реле, имеющие узкую специализацию по конкретному направлению, рассмотрим далее более детально каждый из них.

  • РТЛ используется для защиты трехфазных асинхронных электрических машин от воздействия токов перегрузки, перегрева при обрыве или перекосе фаз, проблем с вращением вала. Может применяться как самостоятельно, так и с установкой на пускатель ПМЛ.
  • РТТ предназначено для работы с трехфазными агрегатами с короткозамкнутым ротором, обеспечивает полный охват аварийных режимов, приводящих к перегреванию обмоток. Также может устанавливаться на магнитный пускатель ПМА, ПМЕ или самостоятельно на монтажную панель.
  • РТИ – трехфазное тепловое реле с возможностью монтажа на пускатели серии КМТ, КМИ. Отличаются стабильным низким расходом электроэнергии, включаются в работу совместно с предохранителями.
  • ТРН – применяется для контроля пуска и режима работы электродвигателя, мало зависит от внешних температурных факторов. Является двухполюсной моделью, которую можно использовать для пуска двигателей постоянного тока.
  • Твердотельные — в отличии от предыдущих, не имеет контактных групп и перемещающихся элементов внутри. Применяется в трехфазных цепях, где устанавливаются повышенные требования к пожарной безопасности.
  • РТК – контролирует температурные показатели не через рабочие токи, а путем размещения датчика в корпусе мотора. Поэтому весь процесс взаимодействия осуществляется только по величине температуры.
  • РТЭ – представляет собой подобие предохранителя, так как отключение происходит за счет плавления проводника. Само тепловое устройство монтируется непосредственно с электродвигателем.

Технические характеристики

Корректная работа релейной защиты обеспечивается за счет соответствия параметров теплового устройства заданным условиям работы электрической машины. Поэтому важно изучить основные рабочие параметры реле еще до его приобретения. К основным техническим данным теплового реле относятся:

  • величина номинального  напряжения и частота на которые оно рассчитано;
  • время-токовая характеристика – определяет  время срабатывания при установленной кратности превышения;
  • время возврата теплового элемента в исходное положение;
  • диапазон изменения тока уставки;
  • тепловая устойчивость к превышению рабочей величины;
  • климатическое исполнение и степень пыле- влагозащищенности.

Схемы подключения

Подключение вышеперечисленных моделей тепловых реле может производиться по нескольким схемам, отличающихся в зависимости от конкретного типа оборудования. Рассмотрим наиболее актуальные из них.

Рис. 5. Схема включения теплового реле

Как видите на рисунке 5, трехфазное реле RT1 подключается последовательно к двигателю M. Питание к ним подается через контактор KM. В нормальном режиме работы контакты RT1 нормально замкнуты и через катушку КМ протекает ток. Как только возникнет аварийный режим, тепловая защита разомкнет контакты и катушка контактора обесточится, питание двигателя прекратиться.

Аналогичным образом происходит включение двухполюсного реле, с той разницей, что контакты защитного устройства включаются последовательно только в две фазы из трех, как показано на рисунке ниже:

Рис. 6. Схема включения двухполюсного реле

Помимо этого существует схема включения теплового реле для мощных электродвигателей, рабочий ток которых в разы превышает допустимый предел для защитного приспособления. В таких ситуациях используется трансформаторное преобразование, а схема включения выглядит следующим образом:

Рис. 7. Схема трансформаторного включения

Критерии выбора

Основным критерием при выборе конкретной модели является соответствие номинальной нагрузки допустимому интервалу самого теплового реле. Для нормальной работы электрической машины вам понадобиться срабатывание при 20 – 30% перегрузке не более, чем в 5 минутный интервал. Величина тока вычисляется по формуле:

Iсраб = 1,2*Iном

Это означает, что допустимый предел регулирования должен включать в себя полученную величину тока срабатывания. Затем, проверьте на время-токовой характеристике (см. рисунок 8), за какой промежуток времени будет срабатывать защита при такой кратности:

Рис. 8. Время-токовая характеристика

В данном случае время будет равно 4 минутам при 20% теплового превышения, что вполне удовлетворяет критериям поставленной задачи.

Использованная литература

  • Родштейн Л.П. «Электрические аппараты» 1989
  • Гуревич В.И. «Электрические реле. Устройство, принцип действия и применения. Настольная книга инженера» 2011
  • Фигурнов Е. П. «Релейная защита» 2004
  • Басс Э.И., Дорогунцев В.Г. «Релейная защита электроэнергетических систем» 2002
  • Кацман М.М. «Электрические машины»  2013
  • Агейкин Д.И. Костина Е.Н. Кузнецова Н.Н. «Датчики систем автоматического контроля и регулирования» 1959

принцип работы, назначение, устройство, правильный выбор

Основное предназначение тепловых Основное предназначение тепловых реле — защита электрических потребителей от возможных перегрузок в сети. В некоторых моделях предусмотрена также возможность автоматического отключения при появлении асимметрии в разных фазах, а также при пропадании одной из них.

Превышение тока выше номинального значения приводит к перегреву проводников и, как следствие, разрушению изоляции. Грамотно подобранные тепловые реле способны также защитить, например, электродвигатель в случае заклинивания якоря. Их можно также использоваться для регулировки (поддержания) необходимой температуры, например, в холодильном оборудовании или бытовых приборах.

Принцип работы теплового реле

Наиболее широко применяются конструкции, в которых главным элементом является

специальная биметаллическая пластина.

Последняя выполнена из двух слов металла с различными температурными линейными коэффициентами расширения. Благодаря этому при нагревании она деформируется (изгибается) и посредством специального рычага замыкает контакты. Как правило, для изготовления таких пластин используют инвар в паре с хромоникелевой или немагнитной сталью.

Так как эта процесс выполняется плавно, неизбежно возникновение электрической дуги между сближающимися контактами.

Чтобы предотвратить их выгорание и образование нагара, применяется «прыгающий» контакт, который резко срабатывает после достижения критических параметров.

Сама пластина нагревается за счет проходящего через нее тока или расположенного рядом нагревателя в виде спирали. Часто применяется и комбинированная схема. В любом случае температура нагрева находится в прямо пропорциональной зависимости от потребляемого электрооборудованием тока.

После срабатывания реле, в зависимости от конструктивного исполнения, возвращается в исходное состояние либо автоматически, по мере остывания, либо с помощью соответствующего переключателя (кнопки).

Правильный выбор тепловых реле

Основной характеристикой теплового реле является время срабатывания в зависимости от нагрузочного тока (так называемая времятоковая характеристика).

Главный критерий – номинальный ток потребления электрооборудования. Тепловое реле должно иметь соответствующие характеристики на 20-30 % выше, что обеспечивает ее срабатывание в течение соответствующей процентной перегрузки в течение 20 минут.

Влияние внешних климатических факторов на тепловые реле

Так как деформация биметаллической пластины зависит от ее фактического нагревания, время срабатывания реле находится в прямой зависимости также от температуры окружающей среды.

И при больших контрастах следует предусматривать в качестве дополнительной функции плавную регулировку. Также для снижения такого влияния следует подбирать реле с максимально возможной температурой срабатывания, а также располагать их в тех же помещениях, где находятся объекты, предназначенные для защиты.

Напоследок необходимо отметить, что тепловые реле не предназначены для предохранения оборудования от таких внештатных ситуаций, как короткое замыкание. В этом случае они сами нуждаются в специальной защите.

Тепловое реле: устройство, принцип действия, назначение

Одним из защитных аппаратов, применяемых в электроустановках, является тепловое реле, которое используется для защиты электродвигателя от перегрузки. На сегодняшний день существуют различные виды и типы данных изделий, однако все они имеют схожую область применения. В этой статье мы расскажем читателям сайта Сам Электрик об устройстве, принципе действия и назначении тепловых реле.

Конструкция

Начнем с того, что расскажем, из чего состоит реле тепловой защиты. В основу работы РТ заложено явление описано физическим законом Джоуля-Ленца:

Количество тепла выделяемому на участке электрической цепи пропорционально квадрату силы тока и сопротивления данного участка.

Данное явление с успехом используется в тепловом расцепителе. Короткий участок цепи, выполняющий роль теплового излучателя, намотан спиралью на изолятор. Весь ток, проходящий через электрическую машину, проходит через данный участок. Непосредственно возле спирали стоит биметаллическая пластина, которая при нагревании изгибается и воздействует на контактную группу. Пластина состоит из двух разнородных металлов, имеющих разный коэффициент расширения при нагреве, объединенных в один элемент.

На фото ниже изображен разрез действующего аппарата. Через проводники проходит три фазы питания на электрический двигатель. Обмотка нагрева расположена сверху биметаллической пластины для уменьшения ложного срабатывания от внешнего воздействия. Пластины упираются в подвижную планку, которая толкает механизм расцепителя. Сверху расположен пружинный регулятор токовой установки, для точной настройки пределов срабатывания, и две группы контактов (открытые NO и закрытые NC).

Принцип работы

Как выглядит тепловое реле вы узнали, теперь идем дальше и расскажем, как работает данное устройство. Как мы уже сказали ранее, РТ защищает двигатель от продолжительной перегрузки.

На каждом электродвигателе есть табличка с паспортными данными, где указан номинальный рабочий ток. Существуют механизмы, в работе которых возможно превышение рабочего тока, как во время запуска, так и в рабочем процессе. При длительном воздействии таких перегрузок, происходит перегрев обмоток, разрушение изоляции, и выход из строя самого двигателя.

Данное реле тепловой защиты предназначено для воздействия на цепи управления, путем отключения схемы, размыканием контактов, или подачей сигнала предупреждения дежурному персоналу замыкая контакты. Устройство устанавливается после пускового контактора в силовую цепь перед электродвигателем для того, чтобы контролировать проходящий ток.

Установку параметров производят в большую сторону от номинального тока двигателя, на величину 10-20 %, согласно паспортным данным. Отключение машины происходит не сразу, а по прошествии определенного времени. Все зависит от температуры окружающей среды и тока перегрузки, и может колебаться от 5 до 20 минут. Неправильно выбранный параметр приведет к ложному срабатыванию или игнорированию перегруза и выходу из строя оборудования.

Графическое обозначение устройства на схеме по ГОСТ:

Более подробно узнать о том, как устроено тепловое реле и как оно работает, вы можете, просмотрев данное видео:

Устройство и принцип действия РТТ

Назначение

Сразу же хотелось бы сказать о том, что существуют различные виды и типы тепловых реле и соответственно область применения каждой классификации своя собственная. Вкратце поговорим о назначении основных разновидностей устройств.

РТЛ — трехфазное, предназначено для защиты электродвигателя от перегрузок, перекоса фаз, затянутого пуска или заклинивания ротора. Крепятся на контакты пускатели ПМЛ или как самостоятельное устройство с клеммами КРЛ.

РТТ — на три фазы, предназначены для защиты короткозамкнутых двигателей от токов перегрузки, перекоса фаз, заклинивания ротора двигателя, затянутого запуска механизма. Может крепиться на ПМА и ПМЕ пускатели, а также самостоятельно устанавливаться на панели.

РТИ — защищают электромотор от перегрузки, асимметрии фаз, длинного пуска и заклинивания машины. Трехфазное тепловое реле, крепится на пускатели серии КМТ и КМИ.

ТРН — двухфазное реле, контролирует режим работы и пуска, имеет только ручной возврат контактов, работа устройства мало зависит от температуры окружающей среды.

 

Твердотельные трехфазное реле, не имеют подвижных деталей, не зависят от состояния окружающей среды, применяют во взрывоопасных местах. Следит за током нагрузки, разгоном, обрывом фаз, заклиниванием механизма.

РТК — контроль температуры происходит щупом, расположенным в корпусе электроустановки. Представляет собой термо реле, и контролирует только один параметр.

РТЭ — реле плавления сплава, электропроводящий проводник выполнен из сплава металла, при определенной температуре плавится и механически разрывает цепь. Данное тепловое реле встраивается непосредственно в контролируемое устройство.

Как видно из нашей статьи, существует большое разнообразие контроля за состоянием электроустановок, отличающихся типом и внешним видом, но одинаково выполняющих защиту электрооборудования. Это и все, что хотелось рассказать вам об устройстве, принципе действия и назначении тепловых реле. Надеемся, информация была для вас полезной и интересной!

Будет интересно прочитать:

устройство, принцип действия, виды и особенности выбора

Долговечность оборудования во многом зависит от перегрузок, которым оно подвергается в процессе эксплуатации. Протекание токов, превышающих номинальные, вызывает дополнительное повышение температуры и преждевременное старение изоляции. Чем выше перегрузки, тем реже они допустимы. Тепловые реле – это специальные устройства, которые отключают потребляющее электроэнергию оборудование при перегрузках. Они предотвращают поломку электромоторов из-за превышения нагрузки по показателям рабочего тока. Любой двигатель имеет свой номинальный рабочий ток, длительное критическое превышение которого вызывает перегрев обмоток силовой установки, разрушает изоляционный слой и приводит к выходу из строя электромотора в целом.

Конструкция и принцип работы реле тепловой защиты

В основе работы тепловых реле лежит закон физики, сформулированный учеными Джоулем и Ленцем еще в 19 веке и определяющий зависимость выделенного тепла от силы тока на конкретных участках электрической цепи. В составе конструкции устройств этого типа предусмотрена спираль – излучатель тепла. Рядом с ней установлена биметаллическая пластина, которая реагирует на излучаемое тепло.

Для изготовления термопластин используют два металлических сплава с различной теплопроводностью, которые во время нагревания/охлаждения меняют свою геометрию. Это свойство биметаллических элементов и лежит в основе работы реле тепловой защиты. Увеличение либо уменьшение тока нагрузки приводит к изменению пространственного расположения и механическому воздействию на толкатель, который размыкает или замыкает контактную группу прибора, подключенную к обмоткам магнитного пускателя (МП). Пускатель мотора срабатывает и отключает нагрузки от электросети.

Стандартная конструкция теплового реле предусматривает:

  • нагревательный элемент;
  • рычаг;
  • контакты с пружиной;
  • кнопку «возврат»;
  • толкатель реле;
  • штангу расцепителя;
  • биметаллическую пластину температурного компенсатора;
  • движок уставки;
  • эксцентрик.

На работу реле тепловой защиты с биметаллическими пластинами воздействует температура окружающего воздуха, которая дополнительно нагревает рабочие элементы конструкции прибора. Чтобы исключить это явление, устройства оснащаются компенсирующими биметаллическими пластинами, которые изгибаются в противоположную сторону по отношению к основным элементам.

Компенсатор регулирует ток срабатывания устройства. Для регулировки применяются эксцентрики с разделенной на две части шкалой. При повороте ручки компенсатора влево значение тока срабатывания уменьшается, а при повороте вправо – увеличивается. Значения тока срабатывания реле регулируют увеличением/уменьшением зазора между толкателем и главной пластиной, за счет действия эксцентрика на дополнительную биметаллическую пластину.

Важно! В случае обрыва либо отключения одной из фаз питания в трехфазной сети, токи нагрузки в оставшихся двух фазах увеличиваются, в результате чего срабатывает тепловое реле. Поэтому расцепитель является основной защитой электродвигателей от работы в аварийных ситуациях при оборванной фазе.

Виды реле защиты от тепловых перегрузок

На рынке электротехнического оборудования представлен большой выбор модулей тепловой защиты для электрических силовых агрегатов. Каждый тип устройства подбирается для конкретной ситуации и определенного типа силовых установок.

Основные разновидности тепловых реле:

  • РТЛ. Серия электромеханических приборов, которые обеспечивают надежную тепловую защиту трехфазных электродвигателей и других силовых установок от критической перегрузки по токам потребления. Помимо этого, реле этого типа защищают электроустановки при нарушении баланса питающих фаз, отсрочке по времени пуска устройств, а также при наличии механических проблем с ротором: заклинивании вала и других неисправностей. Прибор монтируют на контактах ПМЛ (пускателя магнитного) или в качестве самостоятельного элемента с клеммником КРЛ.
  • РТТ. Трехфазные устройства, предназначенные для защиты электродвигателей с короткозамкнутым ротором от токовой перегрузки, перекоса между питающими фазами и в случае механических повреждениях ротора, а также от задержки пускового момента. РТТ имеют два варианта установки: как самостоятельное реле на панели или совместно с магнитными пускателями типа ПМЕ и ПМА.
  • РТИ. Трехфазная разновидность теплового реле, которое защищает электродвигатель от тепловых повреждений обмотки в случае критического превышения значений тока потребления, от асимметрии питающих фаз, задержки пускового момента и в случае механических повреждений движущихся частей ротора. Реле устанавливается на магнитные контакторы КМТ или КМИ.
  • ТРН. Двухфазные устройства электротепловой защиты электрических двигателей, обеспечивающие контроль продолжительности пуска и тока в нормальных рабочих режимах. Контакты возвращаются в исходное состояние после аварийного срабатывания только вручную. Работа теплового устройства абсолютно не зависит от температуры окружающей среды, что актуально для применения в условиях горячих производств и жаркого климата.
  • РТК. Тепловые реле, с помощью которых можно контролировать лишь один параметр – температуру металлического корпуса электрических установок. Для этого используются специальные щупы. Если критические значения температуры превышают заданные, реле типа РТК отключает установку от линии питания.
  • Твердотельные. Вид тепловых реле, в конструкции которых отсутствуют какие-либо подвижные элементы. Работа устройства не зависит от температуры окружающей среды и других характеристик воздуха, что актуально для взрывоопасных цехов и производств химической промышленности. Твердотельные тепловые реле позволяют контролировать длительность разгона электромоторов, оптимальные токи нагрузки, обрывы фазных проводов и заклинивание ротора.
  • РТЭ. Защитные тепловые реле, которые по своему принципу работы напоминают плавкие предохранители. Устройства изготовлены из металлического сплава с низкой температурой плавления. Материал плавится при критической температуре и разрывает цепь, питающую оборудование. Устройства типа РТЭ монтируются непосредственно в корпусы электросиловых установок на штатное место.

Все перечисленные выше разновидности тепловых реле служат для одной цели – они защищают электродвигатели и другие силовые электроустановки от токовых перегрузок, при которых увеличивается температура рабочих частей агрегатов до критических и субкритических значений.

Технические характеристики тепловых реле:
Номинальное напряжение переменного тока, В 660
Частота переменного тока, Гц 50 (60)
Время срабатывания при токе 1,2 Iном, мин 20
Время ручного возврата, мин, не менее 1,5
Время срабатывания при нагрузке 6-кратным Iном, с РТЛ-1000 4,5 ... 9,0
РТЛ-2000 4,5 ... 12,0
Термическая стойкость реле, с, при нагрузке 18-кратным Iном на ток: до 10А 0,5
свыше 10А 1,0
Тип реле Диапазон регулирова-ния номинального тока несрабатывания, А Мощность, потребляемая одним полюсом реле, Вт Тип реле Диапазон регулирова-ния номинального тока несрабатывания, А Мощность, потребляемая одним полюсом реле, Вт
Номинальный ток 25А
РТЛ-1001 0,10 ... 0,17 2,05 РТЛ-1008 2,40 ... 4,00 1,87
РТЛ-1002 0,16 ... 0,26 2,03 РТЛ-1010 3,80 ... 6,00 1,84
РТЛ-1003 0,24 ... 0,40 1,97 РТЛ-1012 5,50 ... 8,00 1,68
РТЛ-1004 0,38 ... 0,65 1,99 РТЛ-1014 7,00 ... 10,0 1,75
РТЛ-1005 0,61 ... 1,00 1,8 РТЛ-1016 9,50 ... 14,0 2,5
РТЛ-1006 0,95 ... 1,6 1,8 РТЛ-1021 13,0 ... 19,0 2,75
РТЛ-1007 1,50 ... 2,60 1,8 РТЛ-1022 18,0 ... 25,0 2,8
Номинальный ток 80А
РТЛ-2053 23 ... 32 2,43 РТЛ-2059 47 ... 64 3,69
РТЛ-2055 30 ... 41 3,03 РТЛ-2061 54 ... 74 4,38
РТЛ-2057 38 ... 52 3,3 РТЛ-2063 63 ... 86 5,62

Как выбрать устройство тепловой защиты

Для правильного выбора подходящей модели теплового реле следует учитывать мощность защищаемого электромотора. Основными параметрами защитных устройств являются:

  1. Номинальный ток, при котором тепловое реле не срабатывает. Его превышение не вызывает незамедлительного отключения цепи. К примеру, если значение больше номинального на 20 %, то тепловое реле сработает примерно через 20-30 минут.
  2. Номинальное напряжение. Как правило, бытовые модели тепловых реле устанавливаются в однофазных сетях переменного тока (220 вольт и 50 Гц), однако существуют и трехфазные модели для промышленных предприятий.
  3. Условия эксплуатации. Категория размещения тепловых реле определяется согласно требованиям ГОСТ 15150. В стандарте описаны допустимые значения температуры и уровень влажности, а также устойчивость приборов к вибрации, ударным нагрузкам, контакту со взрывоопасными газами.
  4. Предел срабатывания теплового реле.
  5. Тип и количество дополнительных контактов для управления.
  6. Чувствительность к перекосу фаз.

Также в маркировке теплового реле обязательно указывается режим возврата (автоматический или ручной).

В некоторых моделях предусмотрена функция «недогрузки», которая позволяет обнаруживать уменьшение тока в цепи, а также опция компенсации температуры окружающей среды – такие модификации считаются самыми удобными и надежными. Кроме того, выпускаются тепловые реле с дополнительными световыми индикаторами. Датчики и светодиоды отображают сигналы включения и состояния.

Поэтому выбор конкретной модели зависит от многих факторов эксплуатации теплового реле – температуры окружающей среды, места установки, мощности подключенного оборудования, необходимости использования средств аварийного оповещения.

Советы по выбору:

  • Для однофазных сетей лучше выбирать тепловые реле с функцией автоматического сбрасывания и возврата контакта в первоначальное состояние через определенный период времени. Это гарантирует повторное срабатывание даже при сохранении аварийной ситуации и перегрузок по току.
  • Для горячих цехов и эксплуатации в условиях жаркого климата подойдут реле с компенсатором температуры воздушной среды – это модели ТРВ. Они обладают самым широким температурным диапазоном эксплуатации.
  • Для оборудования, чувствительного к обрыву фаз, рекомендуется подбирать реле, которое отключает электроустановку даже при обрыве одной фазы.

Реле со световыми индикаторами чаще всего используют на предприятиях промышленности, где требуется оперативное реагирование на аварийные ситуации. Благодаря светодиодным датчикам состояния, оператор может контролировать рабочие процессы.

Цена реле зависит от многих факторов. На стоимость влияют общие технические характеристики, наличие дополнительных функций, используемые в производстве материалы, фирма-производитель. Реле от известных брендов обязательно комплектуются паспортом с подробным описанием технических параметров, а также подробной инструкцией по подключению.

Особенности установки теплового реле

Обычно реле монтируется совместно с магнитным пускателем, обеспечивающим подключение и запуск двигателя. Некоторые модели устанавливаются в качестве самостоятельных приборов на DIN-рейку или на монтажные панели (ТРН или РТТ). Даже если реле ТРН имеет лишь пару входящих подключений, фаз все равно 3. Отключенные фазные провода выводятся с пускателя к мотору в обход устройства. Изменения тока будут происходить пропорционально в каждой фазе, в результате чего достаточно контроля только двух из них. Реле можно подключать и при помощи токовых трансформаторов – это целесообразно при использовании мощных электромоторов.

В любом случае необходимо избегать ошибок при монтаже, к примеру, нельзя подключать тепловое реле с параметрами, которые не соответствуют характеристикам электромотора.

Преимущества перед обычными автоматами

По своей конструкции тепловое реле является тем же устройством автоматического отключения электроустановок от сети питания. Однако в отличие от простых автоматов, которые включают/отключают питание, у реле есть два достоинства:

  1. Возможность регулировать время и момент срабатывания в зависимости от токов перегрузки и продолжительности их воздействия на электроприборы.
  2. Различные варианты коммутации – дистанционная установка в электрощитке либо непосредственный монтаж на магнитном пускателе.

Кроме того, реле обладают меньшими габаритами и массой, более доступной ценой, простой конструкцией и надежностью эксплуатации. Среди недостатков – необходимость периодической настройки и проверки.

Заключение

Тепловые реле (расцепители) – важные элементы системы защиты электродвигателей и других приборов. Устройства защищают практически от любых перегрузок. К тому же реле не подвержены ложным отключениям нагрузки в случае кратковременных скачков тока, что выгодно отличает их от входных автоматов. Их можно устанавливать не только совместно с магнитными пускателями, но и самостоятельно.

Тепловое реле: схема подключения, принцип работы, назначение

Автор Светозар Тюменский На чтение 3 мин. Просмотров 6k. Опубликовано Обновлено

Тепловые реле – это электрические устройства, основным назначением которых является защита двигателя от избыточной нагрузки и, как следствие, перегрузки системы в целом. На сегодняшний день наиболее распространенными являются следующие типы тепловых реле: ТРН, РТИ, РТТ и РТЛ. Необходимость применения тепловых реле обусловлена тем, что долговечность любого оборудования напрямую зависит от того, как часто оно бывает перегружено. Так, при регулярном превышении номинального напряжения происходит нагрев оборудования, что приводит к старению изоляции и, как следствие снижает эксплуатационный срок установок.

Схема подключения теплового реле

Схемы подключения электродвигателей, в которые включено тепловое реле, могут существенно отличаться между собой, в зависимости от технической необходимости и наличия различных устройств. Тем не менее, в каждой из схем тепловое реле обязательно должно подключаться последовательно с катушкой пускателя. Это обеспечивает надежную защиту от перегрузок оборудования. Так, при превышении определенного уровня потребляемого двигателем тока тепловое реле размыкает цепь, тем самым отключая магнитный пускатель и сам двигатель от источника электропитания.

Принцип работы теплового реле

На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.

Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.

Виды тепловых реле (РТТ, РТЛ, ТРН, РТИ)

Тепловые реле РТТ применяются в тех случаях, когда требуется обеспечить эффективную защиту трехфазных асинхронных двигателей от перегрузок, длительность которых превышает допустимую (которые могут возникнуть, например, при выпадении одной из фаз). Как правило, они являются комплектующими частями в управляющих схемах электроприводов и в магнитных пускателях.

Тепловые реле РТЛ используются в тех случаях, когда требуется защитить от перегрузок по продолжительности, а также о несимметричности тока, например, при выпадении одной из фаз. Этот тип реле может устанавливаться как на пускателях, так и отдельно, при наличии клеммников.

Двухфазное тепловое реле ТРН используется, как правило, на магнитных пускателях в асинхронных двигателях. Его особенностью является возможность использования в сетях постоянного тока.

Тепловое реле РТИ выполняет те же функции, что и описанные выше, а также обеспечивает защиту от затянутого пуска. Данный тип реле обладает собственным потреблением энергии, поэтому дополнительно при его использовании рекомендуется устанавливать предохранители.

Тепловые реле - Безопасность электроустановок

Схема подключения теплового реле

Схемы подключения электродвигателей, в которые включено тепловое реле, могут существенно отличаться между собой, в зависимости от технической необходимости и наличия различных устройств. Тем не менее, в каждой из схем тепловое реле обязательно должно подключаться последовательно с катушкой пускателя. Это обеспечивает надежную защиту от перегрузок оборудования. Так, при превышении определенного уровня потребляемого двигателем тока тепловое реле размыкает цепь, тем самым отключая магнитный пускатель и сам двигатель от источника электропитания.

Принцип работы теплового реле

На сегодняшний день наибольшую популярность приобрели тепловые реле, чье действие основано на использовании свойств биметаллических пластин. Для изготовления биметаллических пластин в таких реле используют, как правило, инвар и хромоникелевую сталь. Сами пластины между собой крепко соединяются посредством сварки или же проката. Поскольку одна из пластин обладает большим коэффициентом расширения при нагревании, а другая меньшим, то в случае воздействия на них высокой температуры (например, при прохождении тока через металл), происходит изгиб пластины в ту сторону, где располагается материал с меньшим коэффициентом расширения.

Таким образом, при определенном уровне нагревания биметаллическая пластина прогибается и оказывает воздействие на систему контактов реле, что приводит к его срабатыванию и размыканию электрической цепи. Также необходимо отметить, что в результате низкой скорости процесса прогиба пластины она не может эффективно гасить дугу, которая возникает в случае размыкания электрической цепи. Для того чтобы решить данную проблему, необходимо ускорить воздействие пластины на контакт. Именно поэтому на большинстве современных реле предусмотрены также ускоряющие устройства, которые позволяют эффективно разорвать цепь в минимальные сроки.

  Виды тепловых реле (РТТ, РТЛ, ТРН, РТИ)

Тепловые реле РТТ применяются в тех случаях, когда требуется обеспечить эффективную защиту трехфазных асинхронных двигателей от перегрузок, длительность которых превышает допустимую (которые могут возникнуть, например, при выпадении одной из фаз). Как правило, они являются комплектующими частями в управляющих схемах электроприводов и в магнитных пускателях.

Тепловые реле РТЛ используются в тех случаях, когда требуется защитить от перегрузок по продолжительности, а также о несимметричности тока, например, при выпадении одной из фаз. Этот тип реле может устанавливаться как на пускателях, так и отдельно, при наличии клеммников.

Двухфазное тепловое реле ТРН используется, как правило, на магнитных пускателях в асинхронных двигателях. Его особенностью является возможность использования в сетях постоянного тока.

Тепловое реле РТИ выполняет те же функции, что и описанные выше, а также обеспечивает защиту от затянутого пуска. Данный тип реле обладает собственным потреблением энергии, поэтому дополнительно при его использовании рекомендуется устанавливать предохранители.

 

Видеоролик

Тепловые реле

К тепловым реле можно отнести большую группу электроприборов, предназначенных для регулировки температуры различных нагревательных приборов, контроля технологических процессов, защиты электродвигателей, аккумуляторов и других устройств с использованием различных датчиков температуры. В этой статье рассматриваем конструкции и возможности тепловых реле с биметаллическими пластинами, используемых в основном для защиты электродвигателей промышленных установок.

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух соединённых плоскими поверхностями металлических полосок с разными коэффициентами линейного расширения. При изменении температуры из-за различного линейного расширения частей, пластина изгибается. При нагревании до определённой температуры, пластина нажимает на защёлку расцепителя и под действием пружины происходит быстрое электрическое разъединение контактов.

В отличие от предохранителей и электромагнитных расцепителей, которые применяются для защиты электрооборудования от коротких замыканий, тепловые реле предназначены для защиты от перегрузки, в основном электродвигателей. Это объясняется тем, что для нагрева биметаллической пластины до температуры, при которой происходит отключение нужно значительно больше времени, чем для срабатывания предохранителя и защищаемое оборудование может выйти из строя.

По конструкции тепловые реле защиты двигателя различаются в зависимости от назначения, способа установки, рабочего тока. Реле изготавливаются и применяются как отдельные электроустановочные изделия, так и в составе пускателей или автоматических выключателей в качестве конструктивных элементов. Чаще всего это двухфазные или однофазные реле с регулировкой тока срабатывания. Изготавливаются варианты с самовозвратом после срабатывания и с ручным возвратом в исходное положе.

Биметаллическая пластинка нагревается за счёт прохождения тока по токонагревающей спирали, которая наматывается на пластину через теплостойкую изоляцию. Количество витков спирали, а также сечение провода выбирается в зависимости от величины тока, на который рассчитано тепловое реле. При больших значениях тока в качестве нагревательного элемента может использоваться и сама биметаллическая пластина, изготовленная в вида буквы U, прикреплённой концами к контактам токоведущих поверхностей. У однофазных тепловых реле ТРП-60 и ТРП-150 одна часть тока проходит через нагревательный элемент, а вторая через биметаллическую пластину. Система рычагов и пружин по конструкции, отключающих контакты тепловых реле, различается в зависимости от типа и назначения реле.

Выбор теплового реле зависит от тока, потребляемого электродвигателем. Величина изменения тока срабатывания реле с помощью регулировки небольшая, поэтому для разных электродвигателей нужно подбирать тепловые реле с подходящими термоэлементами.

При пуске электродвигателя пусковой ток примерно в 5-7 раз превышает номинальный рабочий. Но, тепловое реле не срабатывает из-за замедления на нагрев биметаллической пластинки. Поэтому тепловое реле выбирается по номинальному току нагрузки или немного больше. Рекомендуемое превышение тока срабатывания защиты составляет 5% - 20% от номинального тока электродвигателя. Лучше всего сразу выбирать комплект для конкретного электродвигателя из пускателя и теплового реле, например, по готовой таблице.

Данные тепловых реле встроенных в пускатели ПМЕ и ПАЕ
Тип пускателяТип теплового релеНоминальный ток теплового элемента
или маркировка сменного нагревателя, А
МПЕ-000ТРН-10А0,32
0,4
0,5
0,63
8,0
1,0
1,25
1,6
2,0
2,5
3,2
ПМЕ-100ТРН-100,5
0,63
0,8
1,0
1,25
1,6
2,0
2,6
3,2
4,0
5,0
6,3
8,0
10
ПМЕ-200ТРН-255,0
6,3
8,0
10
12,5
16
20
25
ПАЕ-300ТРН-4012,5
16
20
25
32
40
ПАЕ-400ТРП-6020
25
30
40
50
60
ПАЕ-500ТРП-15050
60
80
100
120
ПАЕ-600ТРП-150100
120
160

Примечания: 
1. Номинальные токи указаны для случая, когда регулятор уставки тока находится в положении 0 и реле установлено открыто на панели при температуре окружающего воздуха 20 С - для реле ТРН и 40 С - для реле ТРП

2. При встройке реле ТРН в пускатель с оболочкой любого исполнения и температуре окружающего воздуха 20 С снижение номинальных токов не требуется. То же не требуется для ТРП 20-60А включительно. требуется снижение номинальных токов при температуре воздуха до 40 С для ТРП.

Настройка теплового реле необходима при изменении температурных условий эксплуатации электрооборудования, подстройки тепловой защиты для конкретного электрооборудования, а также для компенсации разброса характеристик у различных образцов изделий даже одного типа.

Большинство тепловых реле имеют два вида регулировки для установки тока срабатывания. Ближе к концу подвижной части биметаллической пластины находится регулировочный винт, который служит для того, чтобы регулировать расстояние от пластины до поверхности расцепителя, на которую этот винт нажимает для срабатывания реле. Эта регулировка недоступна пользователям без разборки. Вторая регулировка предназначена для подстройки тока срабатывания обслуживающим персоналом. Для этого используют выведенный на лицевую сторону как у реле ТРН регулировочный винт под отвёртку с эксцентриком для механического изменения изгиба. В другом варианте, как у автоматического выключателя АП-50, регулировка выполняется специальным рычажком. Возле регуляторов имеются деления для определения в процентах изменения величины тока. Величина регулировки тока срабатывания теплового реле ограничена и обычно составляет по 25% в одну или другую сторону.

Реле тепловые и токовые
№ п/пТипТок уставки А№ п/пТипТок уставки
1.РТТ-111до 2514.РТЛ-10103,6-6,0
2.РТТ-141до 2515.РТЛ-10125,9-8,0
3.РТТ-211до 4016.РТЛ-10147,0-10
4.РТТ-311до 10017.РТЛ-10169,5-14
5.РТТ-321до 16018.РТЛ-102113-19
6.РТЛ-1001от 0,1 до 0,1719.РТЛ-102218-25
7.РТЛ-10020,16-0,2620.РТЛ-205323-32
8.РТЛ-10030,24-0,421.РТЛ-205530-41
9.РТЛ-10040,38-0,6522.РТЛ-205738-52
10.РТЛ-10050,61-1,023.РТЛ-205947-64
11.РТЛ-10060,95-1,624.РТЛ-206154-74
12.РТЛ-10071,5-2,625РТЛ-206363-86
13.РТЛ-10082,4-4,0

При правильной настройке тока срабатывания обеспечивается защита электродвигателя трёхфазного тока от перегрузки при остановке двигателя от заклинивания ротора, при чрезмерном увеличении механической нагрузки на приводимый в движение механизм, при затяжном пуске электродвигателя. Тепловым реле обеспечивается также защита электродвигателя от перекоса или обрыва фазы по увеличению тока в оставшихся фазах. Для срабатывания тепловой защиты вполне достаточно повышения тока даже в одной из фаз, если ток проходит через нагреватель теплового реле. Поэтому достаточно надёжная защита электродвигателя от перегрузки обеспечивается одним двухфазным реле или двумя однофазными.

Настройка тока срабатывания теплового реле проводится на несложном стенде. Реле подключается через понижающий трансформатор и регулятор тока ЛАТР. Потребляемый ток измеряется амперметром. Правильно настроенное тепловое реле не должно срабатывать при значении тока Iн = 1,05, но должно срабатывать за время не больше 20 минут при токе Iн = 1,2 от номинального значения.

Время срабатывания теплового реле зависит от величины тока и температуры окружающей среды для каждого типа реле. Их значения, с учётом разброса характеристик, приводятся в специальных таблицах. Предварительно проверяемое реле прогревают номинальным током в течение 2-х часов.

Настройку и проверку реле при значительном из количестве можно производить в форсированном режиме сравнением реле, испытанным по вышеизложенному методу и принятым в качестве образца-эталона. На соединенные последовательно с образцовыми 8-10 тепловых элементов с одинаковым номинальным током подаётся 2,5-3 кратный ток уставки, и отчитывается время их срабатывания (обычно 5-8 минут). Тепловые элементы сработавшие с большим отклонением от образцового, подвергаются регулировке изменением положения регулировочного рычага до отключения реле. Эту операцию необходимо выполнить за время не более 25-30 секунд.

При особой требовательности к реле после его охлаждения (через 10-15 минут) испытание повторяют для контроля полученных результатов. Настройку реле можно считать удовлетворительной, если время срабатывания испытуемого реле будет отличаться от образцового не более чем на 10%.

Применение тепловых реле, а также их обслуживание имеет свои особенности. Схема защиты двигателя построена так, что ток электродвигателя проходит через нагреватели теплового реле, а его размыкающий контакт отключает цепь управления пускателем электродвигателя. Поэтому нужно иметь в виду, что при залипании двух или больше контактов на пускателе, реле не обеспечит отключение электродвигателя.

Тепловые реле имеют разброс по отключению, прежде всего это связано с сезонными и суточными изменениями температуры окружающего воздуха. Время срабатывания зависит от того, было ли до этого токовое реле под нагрузкой. Если реле было под нагрузкой и прогретое, то время срабатывания теплового реле уменьшается.

Срабатывание теплового реле обычно сигнализирует о наличии плохо заметной неисправности. Даже непродолжительный осмотр оборудования поможет своевременно выявить скрытые неисправности электрооборудования и предотвратит его выход из строя.

При плохом контакте происходит нагрев места соединения, и тепловое реле преждевременно срабатывает и при нормальном режиме работы защищаемого электрооборудования. Если сильно загрубить уставку теплового реле, то контакт подгорит, а тепловое реле может не сработать при увеличении тока в двух оставшихся фазах.

После срабатывания теплового реле необходимо некоторое время для остывания термоэлемента, только после этого возможно его повторное включение. Перед повторным включением очень желательно проверить на ощупь температуру электродвигателя. Если температура повышена, то нужно дать время для его остывания и проверить двигатель. Время остывания электродвигателя существенно больше, чем время необходимое для остывания и повторного включения теплового реле.

Частые включения электродвигателей не рекомендуются, если двигатель специально не предназначен для работы в таких режимах. Перед повторным включением желательно осмотреть и проверить вал электродвигателя на отсутствие заклинивания, люфтов в подшипниках. Отключив автомат электродвигателя проверить контакты пускателя на отсутствие залипания, состояние подвижной системы, затяжку электрических контактов. После включения автоматического выключателя проверить наличие напряжения на верхних контактах пускателя. При запуске электродвигателя нужно обратить внимание на отсутствие чрезмерного искрения в пусковой аппаратуре, на шумы в двигателе и приводимых в движение механизмах. Нужно проверить потребление тока в каждой фазе защищаемого двигателя по стационарным приборам или токовыми клещами.

Не редки случаи, когда из-за невнимательного осмотра оборудования или закорачивании отключающего контакта теплового реле, за короткое время на одном месте один за другим палят несколько электродвигателей.

Правила устройства электроустановок (3.1.19.) вводят ограничения на применение защиты электродвигателей, отключение которых может привести к серьёзным последствиям. Это некоторые виды сигнализации, средства пожаротушения, вентиляторы, предотвращающие образование взрывоопасных смесей и другие ответственные устройства.

Видеоролик


Тепловое реле: особенности и характеристики

Тепловое реле – устройство, замыкающее-размыкающее цепь под влиянием сигналов агрегатов, работающих от изменения температуры среды. Нагрев проводников электричеством замечали исследователи, количественное описание дает закон Джоуля-Ленца. Благодаря знанию зависимости, биметаллические конструкции применяют, контролируя ток, температуру.

Тепловое реле

Кратко о тепловых реле

Тепловые реле холодильников совмещают с пускозащитными. Применяются многими двигателями. Отличие защитных в электромагнитной конструкции, где катушка может мгновенно отработать резкое повышение тока. Тепловые работают с интегрированием эффекта некоторым отрезком времени. Медная обмотка иногда перегревается. В мясорубках случается, когда заклинивает вал. Ток повышает лимитирующую величину. Чтобы избежать опасности, изготовитель включает в механическую передачу пластиковые шестерни, ломающиеся, спасающие ситуацию. Конечно, лучше применять тепловые реле.

Принцип действия основан на свойствах биметаллических пластин. Двухслойные материалы, составленные парой металлов с неодинаковым коэффициентом линейного расширения. В результате при изменении температуры биметаллическая пластина гнется. Контакты используются повсеместно, начиная электрическими утюгами, заканчивая чайниками! Измерение тока происходит преимущественно в тепловых реле. В остальных случаях нагрев вызывается изменением температуры прибора: пара, ТЭНа.

В тепловых реле принцип используется, вариантом (см. патент US292586 A), но распространен больше другой – с защитой по току. В последнем случае используется упомянутый закон Джоуля-Ленца. С течением времени тепловой эффект накапливается, при соблюдении условий реле срабатывает. Обрыв цепи блокирует дальнейший рост температуры. Условия срабатывания реле тесно связаны с конструкцией двигателя.

Любому типу компрессора холодильника подобрана пара, работающая безотказно. Не соблюдая целостности тандема компрессор-двигатель, можно вызвать неисправности.

Для трёхфазных цепей используются двух- или трехполюсные тепловые реле. Включаются меж двумя линиями (нейтраль короткозамкнутая), в нормальном режиме ток здесь мал. При большой мощности вместо непосредственного присоединения к цепи используются трансформаторы тока. Эффект получается аналогичный: при обрыве фазы равновесие нарушается, нагрузка теплового реле увеличивается. В результате происходит разогрев биметаллической пластины, цепь обрывается. Двигатель спасается от перегрева, других негативных последствий.

Тепловое реле не защищает против короткого замыкания, само нуждается в охране от подобной ситуации. В противном случае цепь легко сгорает.

История создания тепловых реле

Идея регулировки температуры возникла в XVII веке. Английский изобретатель Корнелиус Дреббель применил в двух изобретениях: печь, инкубатор для цыплят. Конструкции требовали ответственного подхода. Дреббель сумел реализовать концепцию, используя ртуть. Любопытный факт: на момент начала третьего десятилетия термометров, не существовало. Работающих на ртути. Историки склонны изобретение термометра приписывать Корнелиусу Дреббелю. Касательно печей новшество заключалось в следующем:

  • Топка снабжалась воздухом через сопло, снабжаемое регулируемой заслонкой.
  • В зависимости от конструкции сооружение оборудовалось подобием реторты, дно которой размещалось в пепле, либо углях.
  • Изменяющийся уровень ртути позволял осуществлять поддержание температуры на заданном уровне путем регулирования объема подаваемого воздуха.

Патент US1477455 A

Аналогичного рода конструкция предложена инженерами компании Вестингауз Электрик в 1917 году (патент US1477455 A). Уровень ртути позволял замкнуть-размокнуть цепь в зависимости от изменяющейся температуры. Еще раньше для контроля параметров среды стали применять свойства биметаллических пластин. Патент Вестингауз Электрик принят только 11 декабря 1923 года, шведско-швейцарская компания ABB занималась выпуском тепловых реле для защиты работающих двигателей с 1920 года. Термостаты для инкубатора, печи под авторства Дреббеля рассмотрены комиссией организованного в 1660 году Королевского общества (Англии). И примерно через 40 лет после создания нашли признание ученого совета.

Свойства биметаллических пластин известны с 1726 года. Точнее говоря, к этой дате приурочено первое их официальное применение. Джон Харрисон, плотник по профессии, кое-что знал о металлах. Нашел оригинальный способ подарить маятниковым часам независимость от температуры. Подвес изготовил из стержней двух разных металлов, что проиллюстрировано на изображении, взятом из издания Общества Ньюкомена (1946 год). По мере изменения температуры длина маятника остается постоянной. Период колебаний поддерживается с высокой точностью.

Джон Харрисон не останавливается на достигнутом, в палубных часах конструкции 1761 года применяет балансную пружину свернутой биметаллической ленты. По замыслу конструктора новшество скомпенсирует капризы климата. Теперь время позволит определить географические координаты вне зависимости от температуры. Идеи Дреббеля и Харрисона использовал в 1792 году Жан Симон Боннемейн, – сегодня называемый отцом централизованного снабжения горячей водой. Применял идеи терморегуляторов для курятников (1777 год). Историки отмечают любопытный факт: несмотря на знаменитость Жан остается личностью загадочной. Доподлинно неизвестен день рождения.

Маятник и балансная пружина

Инкубатор Боннемейна напоминает печь-буржуйку. Снизу цилиндрическая конструкция подогревается открытым пламенем, продукты сгорания обтекают стенки и уходят наружу. Температура контролируется биметаллической пластиной (из железа и латуни), погруженной в воды, заполняющую пространство меж стенок. Неудивительно, что в скором времени инженер придумал первую котельную. Температура пламени регулируется скоростью подачи воздуха в топку, биметаллический стержень управляет заслонкой. Последовали многие другие изобретения аналогичного толка.

В некоторой степени к тепловым реле можно отнести изобретение Джеймса Кьюли (интернет обошел внимание подробности жизни), датированное 1816 годом. В британском патенте №4086 упоминается некий балансный термометр. Весы, вага которых представлена трубкой с двумя утолщениями на концах. Поделена в центре двумя секциям, одна заполнена спиртом, другая – ртутью. При изменении температуры нарушается баланс, поскольку объёмы в утолщениях неравные. И нужно, подстраивая длины плеч винтом, добиться равновесия. Показания считываются с зубчатого лимба, жестко привязанного к трубке. Изобретатель отмечал возможность использования изобретения для контроля микроклимата зданий.

Эра электричества тепловых реле

Долгое время термостаты не находили применения в сфере электричества. Справедливости ради заметим, применялось преимущественно фабриками, цехами, питая двигатели. До появления электрических лампочек накала было далеко. Устройством, давшим зеленый свет применению тепловых реле, историки считают электромагнитный клапан регулирования тока жидкости трубы. Наработка заявлена патентом US355893 A, опубликованным 11 января 1887 года. Документ говорит: термостат (тип не указан) размещен в жилых помещениях, электромагнитный клапан позволит регулировать под его командованием скорость тока горячей воды системы отопления.

Ряд обстоятельств позволит утверждать: изобретение касалось армии США, по-видимому, должно было применяться казармами. Что касается термостата, подходящий существовал к тому времени (патент US150566 A). В опубликованном 5 мая 1874 года документе Джон Гест говорит о создании настраиваемого реле управления электрической цепью. Внешний круглый корпус по кромке снабжен лимбом с нанесенными значениями температуры, устройство пригодно выполнять самые разные функции. Длинный полый цинковый стержень (другого материала) изменяет длину, отслеживая температуру, управляя движением стрелки, в определенном положении замыкающей контакт.

Конструкция теплового реле

Конструкция напоминает велосипедный звонок, из которого торчит упомянутый стержень. Реле контролирует температуру помещения. Для отслеживания величины тока непригодно. Исследователям осталось сделать один шаг: провести параллель меж законом Джоуля-Ленца и изменениями температуры, превращая термостат в тепловое реле. Собственно, было сделано патентом US292586 A, опубликованном 29 января 1884 года. Наверняка в бюро с интересом смотрели на странного изобретателя, по тем временам изделию тяжело было найти применение. Родс (разработчик) пишет: конструкция помогает в организации освещения газовыми рожками (лампочки накала тогда не существовали).

Патент заявил: авторским правом защищается реле на биметаллической пластине с нагревателем из резистора. Сегодня повсеместно используется. Можно сказать, Родс ткнул пальцем в небо, попав на золотоносную жилу. Дальнейший ход инженерной мысли понятен без дальнейших поисков в реестре патентов.

Характеристики тепловых реле

Характеристики теплового реле указывают, в паре с каким оборудованием применимо изделие. Среди важных параметров фигурируют:

  1. Номинальный ток – значение, при котором в режиме длительной работы тепловое реле не срабатывает. Превышение лимита не вызывает немедленного отключения цепи. Например, ток, больший номинального на 20%, заставляет реле сработать через 20-30 минут. Прибор напоминает автоматический выключатель. Принцип действия аналогичный.
  2. Номинальное напряжение – бытовое (220 В и 50 Гц) при одной фазе переменного тока. Для промышленных объектов возможны разные варианты.
  3. Условия эксплуатации:
  • Климат. Температура и влажность. Категория размещения отечественных реле выбирается согласно ГОСТ 15150.
  • Прочие факторы. Сюда относят вибрации, ускорения, удары, высота над уровнем моря. Дополнительно может оговариваться присутствие взрывоопасных газов, иных веществ природного и антропогенного происхождения.

Маркировка КЭАЗ

Реле выбирается, исходя из мощности защищаемого электродвигателя. Большинство ключевых характеристик заключено в условном обозначении. На рисунке приведена маркировка рекламных материалов завода КЭАЗ (основан в 1945 году). Особое внимание обратим на следующие моменты:

  1. Диапазон токов уставки (в скобках) разнится по производителям на малое значение. Простая небрежность инженеров-конструкторов.
  2. Литеры в обозначении типа исполнения могут отличаться, лучше уточнять по каталогам.
  3. Климатическое исполнение часто дается в виде диапазона. Например, УХЛ2О4. Что следует читать: УХЛ2 – О4. После аббревиатуры может следовать малая литера, характеризующая группу пониженного давления.

Обозначения могут отсутствовать вовсе. Возможно наличие не оговоренных выше включений. Например, РТЛ 205704 Д. Что означает здесь 04, сказать сложно, разумно уточнить момент на предприятии-изготовителе.

Что такое тепловые реле перегрузки и какие компоненты они защищают?

Тепло является основным фактором в работе и сроке службы двигателя, и одним из основных источников нагрева двигателя является ток, протекающий через обмотки двигателя. Поскольку нагрев является неизбежным условием работы двигателя, важно защитить двигатель от перегрева или тепловой перегрузки.

В предыдущем посте мы описали несколько типов датчиков, которые могут напрямую измерять температуру обмоток двигателя.Но в некоторых случаях - особенно для асинхронных двигателей переменного тока - нагрев двигателя можно измерить косвенно с помощью тепловых реле перегрузки, которые определяют температуру двигателя, контролируя величину тока, подаваемого на двигатель.


Тепловые реле перегрузки подключаются последовательно с двигателем, поэтому ток, протекающий к двигателю, также проходит через реле перегрузки. Когда ток достигает или превышает заданный предел в течение определенного времени, реле активирует механизм, который размыкает один или несколько контактов, чтобы прервать прохождение тока к двигателю.Реле тепловой перегрузки классифицируются по классу срабатывания, который определяет время, в течение которого может произойти перегрузка, прежде чем реле сработает или отключится. Обычные классы поездки - 5, 10, 20 и 30 секунд.

Учет времени, а также тока важен для асинхронных двигателей переменного тока, потому что они потребляют значительно больше, чем их полный номинальный ток (часто 600 процентов или более) во время запуска. Таким образом, если реле немедленно сработает при превышении тока перегрузки, двигатель будет испытывать трудности с запуском.


Существует три типа тепловых реле перегрузки - биметаллические, эвтектические и электронные.

Биметаллические тепловые реле перегрузки (иногда называемые нагревательными элементами) изготовлены из двух металлов с разными коэффициентами теплового расширения, которые скреплены или соединены вместе. Обмотка, намотанная на биметаллическую полосу или размещенная рядом с ней, проводит ток.

В биметаллическом тепловом реле перегрузки нагрев из-за протекания тока заставляет биметаллическую полосу изгибаться в одну сторону, активируя механизм отключения.
Изображение предоставлено: Siemens

Поскольку ток, протекающий через реле (и, следовательно, через двигатель), нагревает биметаллическую полосу, два металла расширяются с разной скоростью, заставляя полосу изгибаться в сторону с более низким коэффициентом термическое расширение. Когда полоса изгибается, она приводит в действие нормально замкнутый (NC) контактор, заставляя его размыкаться и прекращая прохождение тока к двигателю. Как только биметаллическое реле остынет и металлические полосы вернутся в свое нормальное состояние, цепь автоматически сбрасывается, и двигатель можно перезапустить.

Эвтектические тепловые реле перегрузки используют эвтектический сплав (комбинация металлов, плавящихся и затвердевающих при определенной температуре), помещенные в трубку и подключенные к обмотке нагревателя. Ток питания двигателя протекает через обмотку нагревателя и нагревает сплав. Когда сплав достигает достаточной температуры, он быстро превращается в жидкость.

В эвтектическом реле тепловой перегрузки нагрев из-за протекания тока вызывает быстрое разжижение эвтектического сплава, активируя механическое устройство, которое размыкает реле.
Изображение предоставлено: Rockwell Automation

В твердом состоянии сплав удерживает на месте механическое устройство, например пружину или трещотку. Но когда сплав плавится, механическое устройство срабатывает, размыкая контакты перегрузки. Подобно биметаллической конструкции, эвтектическое реле тепловой перегрузки не может быть сброшено до тех пор, пока сплав не остынет и не вернется в исходное твердое состояние.

Электронные тепловые реле перегрузки более точны и надежны, чем конструкции нагревателей, и могут предоставлять данные для диагностики и профилактического обслуживания.
Изображение предоставлено: ABB

Электронные тепловые реле перегрузки измеряют ток электронным способом, а не полагаются на механизм нагревателя, и поэтому они нечувствительны к изменениям температуры окружающей среды. Они также менее склонны к «неприятным» или ложным срабатываниям. Электронные реле перегрузки могут предоставлять такие данные, как процент использования тепловой мощности (% TCU), процент ампер полной нагрузки (% FLA), время до отключения, текущий среднеквадратичный ток и ток замыкания на землю - информация, которая может помочь операторам проводить диагностику. и предсказать, когда реле может сработать.

Электронные устройства также могут защищать двигатели от потери фазы (также называемой обрывом фазы), которая возникает, когда одна фаза тока равна нулю ампер, часто из-за короткого замыкания или перегорания предохранителя. Это заставляет двигатель потреблять чрезмерный ток на оставшихся двух фазах и приводит к значительному нагреву двигателя.


Тепловые реле перегрузки обычно являются частью пускателя двигателя, который включает реле перегрузки с контактами. Важно отметить, что тепловые реле перегрузки предназначены только для защиты двигателя от перегрева и не срабатывают при коротком замыкании, поэтому для защиты цепи необходимы дополнительные предохранители или автоматические выключатели.


Принцип работы теплового реле

Конструкция теплового реле перегрузки

Коэффициент расширения - одно из основных свойств любого материала. Два разных металла всегда имеют разную степень линейного расширения. Биметаллическая полоса всегда изгибается при нагревании из-за неравенства линейного расширения двух разных металлов.

Принцип работы теплового реле

Тепловое реле работает в зависимости от вышеупомянутых свойств металлов.Основной принцип работы теплового реле заключается в том, что, когда биметаллическая полоса нагревается нагревательной катушкой, протекающей по току системы, она изгибается и замыкает нормально разомкнутые контакты.

Конструкция теплового реле

Конструкция теплового реле довольно проста. Как показано на рисунке выше, биметаллическая полоса состоит из двух металлов - металла A и металла B. Металл A имеет более низкий коэффициент расширения, а металл B имеет более высокий коэффициент расширения.

Когда через нагревательную спираль протекает сверхток, он нагревает биметаллическую ленту.
Из-за тепла, выделяемого змеевиком, оба металла расширяются. Но расширение металла B больше, чем расширение металла A. Из-за такого разного расширения биметаллическая полоса изгибается в сторону металла A, как показано на рисунке ниже.


Полоса изгибается, замыкающий контакт замыкается, что в конечном итоге приводит в действие катушку отключения автоматического выключателя.
Эффект нагрева не мгновенный. Согласно закону нагрева Джоуля, количество выделяемого тепла равно

Где, I - ток перегрузки, протекающий через нагревательную катушку теплового реле.
R - электрическое сопротивление нагревательной катушки, t - время, в течение которого ток I течет через нагревательную катушку. Следовательно, из приведенного выше уравнения ясно, что теплогенератор у катушки прямо пропорционален времени, в течение которого через катушку протекает сверхток. Следовательно, существует длительная задержка срабатывания теплового реле.

Вот почему этот тип реле обычно используется там, где перегрузка может протекать в течение заранее определенного периода времени, прежде чем она сработает.Если перегрузка или перегрузка по току упадут до нормального значения до этого заданного времени, реле не сработает для отключения защищенного оборудования.
Типичное применение теплового реле - защита электродвигателя от перегрузки.

Каков принцип работы теплового реле?

Тепловые реле - это защитные электрические устройства, используемые для защиты двигателей или другого электрического оборудования и электрических цепей от перегрузки. При фактической работе двигателя, например, при перетаскивании производственного оборудования на работу, если машина неисправна или цепь ненормальная, двигатель столкнется с перегрузкой, скорость двигателя уменьшится, ток в обмотке увеличится, и температура обмотки двигателя повысится.Если ток перегрузки небольшой и время перегрузки короткое, а обмотка двигателя не превышает допустимого превышения температуры, перегрузка допустима. Однако, если время перегрузки велико и ток перегрузки велик, повышение температуры обмотки двигателя превысит допустимое значение, что приведет к старению обмотки двигателя, сокращению срока службы двигателя и даже сгоранию обмотки двигателя в серьезных случаях. . Поэтому такую ​​перегрузку мотор не переносит. Тепловое реле использует принцип теплового воздействия тока для отключения цепи двигателя в случае перегрузки, которую двигатель не может выдержать, чтобы обеспечить защиту двигателя от перегрузки.

Тепловые реле Nader

Структура теплового реле

Тепловое реле состоит из нагревательного элемента, биметаллического листа и контакта, среди которых биметаллический лист является ключевым измерительным элементом . Биметаллический лист состоит из двух видов металла с разным коэффициентом теплового расширения. Сторона с большим коэффициентом теплового расширения называется активным слоем, а сторона с малым коэффициентом теплового расширения - пассивным слоем.Тепловое расширение биметаллического листа происходит после нагрева. Однако из-за различных коэффициентов теплового расширения двух слоев металла первые два слоя металла тесно связаны друг с другом, из-за чего биметаллический лист изгибается, как одна сторона пассивного слоя. Механическое усилие, создаваемое изгибом биметаллического листа из-за нагрева, заставит подвижный контакт разорвать цепь.

Структура теплового реле

Принцип работы теплового реле

Когда двигатель работает нормально, тепловой элемент теплового реле не выделяет достаточно тепла для срабатывания функции защиты, и его нормально замкнутый контакт будет оставаться замкнутым государственный; когда двигатель перегружен, тепловой элемент теплового реле будет генерировать достаточно тепла, чтобы сработала функция защиты, и его нормально замкнутый контакт будет отключен, чтобы двигатель потерял мощность через цепь управления, чтобы защитить двигатель. После устранения неисправности необходимо сбросить тепловое реле, прежде чем можно будет перезапустить двигатель.

Тепловое реле обычно имеет две формы сброса: ручной сброс и автоматический сброс. Преобразование двух форм сброса может быть выполнено регулировкой винта сброса. Когда тепловое реле поставляется с завода, производитель обычно устанавливает его в состояние автоматического сброса. При использовании, устанавливается ли тепловое реле в состояние ручного или автоматического сброса, зависит от конкретной ситуации в цепи управления. В целом, принцип заключается в том, что даже если тепловое реле автоматически сбрасывается после выполнения защитного действия теплового реле, защищенный двигатель не должен перезапускаться автоматически, в противном случае тепловое реле должно быть установлено в состояние ручного сброса. Это сделано для предотвращения повторного запуска двигателя и повреждения оборудования, если неисправность не устранена. Например, для цепи управления ручным запуском и ручным остановом, управляемым кнопкой, тепловое реле может быть установлено в режим автоматического сброса; для цепи автоматического пуска, управляемой автоматическим элементом, тепловое реле должно быть переведено в режим ручного сброса.

Классификация тепловых реле

Биметаллическая пластина: биметаллический лист, изготовленный прокаткой двух видов металлов с разным коэффициентом расширения (обычно никелевый марганец и медная пластина), нагревается и изгибается, чтобы толкать несущий стержень, таким образом, перемещаясь при контакте. Биметаллическая пластина широко используется и часто образует магнитный пускатель с контактором.

Тип термистора: тепловое реле, сопротивление которого изменяется в зависимости от температуры.

Тип плавкого сплава: используя теплоту тока перегрузки, чтобы плавкий сплав достиг определенного значения температуры, сплав плавится и приводит в действие реле.

Руководство по выбору тепловых реле перегрузки: типы, характеристики, применение

Реле тепловой перегрузки являются защитными устройствами. Они предназначены для отключения электроэнергии, если двигатель потребляет слишком большой ток в течение длительного периода времени. Для этого тепловые реле перегрузки содержат нормально замкнутое (NC) реле. Когда через цепь двигателя протекает чрезмерный ток, реле размыкается из-за повышения температуры двигателя, температуры реле или измеренного тока перегрузки, в зависимости от типа реле.

Реле тепловой перегрузки аналогичны автоматическим выключателям по конструкции и использованию, но большинство автоматических выключателей отличаются тем, что они прерывают цепь, если перегрузка возникает даже на мгновение. Реле тепловой перегрузки, наоборот, предназначены для измерения профиля нагрева двигателя; поэтому перегрузка должна произойти в течение длительного периода, прежде чем цепь будет прервана.

Технические характеристики

База данных GlobalSpec SpecSearch содержит информацию о различных технических характеристиках реле тепловой перегрузки, включая тип, электрические характеристики, сведения о переключателе и характеристики.

Тип

Покупатели могут выбирать между несколькими различными типами реле, включая биметаллическое тепловое , твердотельное или типа контроля температуры .

Как следует из названия, биметаллические тепловые реле используют биметаллическую полосу для механического размыкания контактов. Биметаллические полосы состоят из двух соединенных между собой кусков металла, которые расширяются с разной скоростью при нагревании.Эта разница заставляет полосу изгибаться при нагревании. В тепловом реле полоса прикрепляется пружиной к контакту. Когда избыточное тепло от сверхтока заставляет полоску изгибаться и растягивать пружину, контакты размыкаются и цепь разрывается. Когда полоска охлаждается, она возвращается к своей первоначальной форме.

Это видео демонстрирует использование биметаллического переключателя, при этом биметаллическая полоса выделена в середине видео. Когда пламя воздействует на выключатель, полоса изгибается, и выключатель размыкается.Обратите внимание, что когда полоска остывает, полоска возвращается в исходное положение, и переключатель замыкается.

Твердотельные реле - это электронные устройства, не имеющие движущихся или механических частей. Вместо этого реле вычисляет среднюю температуру двигателя, отслеживая его пусковой и рабочий токи. Твердотельные реле, как правило, быстрее электромеханических, а также имеют регулируемые уставки и время срабатывания. Поскольку они не способны генерировать искру, их можно использовать во взрывоопасных средах.

Реле контроля температуры непосредственно измеряют температуру двигателя с помощью термистора или терморезисторного датчика (RTD), встроенного в обмотку двигателя. Когда достигается номинальная температура зонда, его сопротивление быстро увеличивается. Это увеличение затем обнаруживается пороговой схемой, которая размыкает контакты реле.

Реле перегрузки из плавящегося сплава (или эвтектического) состоит из нагревательной катушки, эвтектического сплава и механического механизма для размыкания цепи.Используя катушку нагревателя, реле измеряет температуру двигателя, контролируя величину потребляемого тока.

Электрические характеристики

Электрические характеристики реле

включают диапазон тока, информацию о срабатывании, фазу и управляющее напряжение.

Отключение используется для описания размыкающего действия реле перегрузки и автоматических выключателей. Реле тепловой перегрузки могут включать в себя несколько спецификаций, касающихся этого действия.

Диапазон тока полной нагрузки относится к диапазону значений тока, на который устанавливается реле.Паспортная табличка двигателя будет включать номинальный ток полной нагрузки для этого конкретного двигателя. Чтобы реле тепловой перегрузки сработало, точка тока полной нагрузки реле должна быть установлена ​​в соответствии со значением, указанным на паспортной табличке.

Диапазон температурного срабатывания применяется к реле, которые предназначены для измерения температуры вместо тока, например, твердотельные реле или реле контроля температуры.

Класс отключения означает максимальное время в секундах, в течение которого реле может выдержать 6-кратный номинальный ток до отключения.Например, реле класса 10 может выдерживать 600% своего номинального тока в течение 10 секунд, пока не сработает. Класс отключения является важной характеристикой, поскольку цепь пуска двигателя увеличивает потребляемый ток на короткие периоды времени при каждом запуске двигателя. Реле перегрузки должно выдерживать эти высокие пусковые токи без отключения. Можно сказать, что синхронизация класса отключения позволяет реле «различать» обычно высокие пусковые токи и аномально высокие токи перегрузки.

Термин «полюс» описывает количество отдельных цепей, управляемых переключателем.Количество цепей определяет количество контактов переключателя, которое, в свою очередь, определяет полюса, необходимые для замыкания или размыкания контактов. Выключатели обычно имеют от одного до четырех полюсов.

Управляющее напряжение - важная спецификация, поскольку напряжение цепи управления часто отличается от заданного напряжения двигателя. Это известно как «раздельное управление». Управляющее напряжение обычно меньше напряжения двигателя, и реле перегрузки следует выбирать в соответствии с этой спецификацией.

Характеристики

Покупатели могут выбрать реле с рядом особых атрибутов.

  • Реле с автоматическим сбросом вернется в исходное «замкнутое» положение через заданный период времени. Если после сброса двигатель все еще будет перегружен, реле снова сработает.
  • Реле с компенсацией температуры окружающей среды эффективно работают в широком диапазоне температур окружающей среды.
  • Некоторые реле имеют различные степени контроля фазы .Эти продукты могут проверять обрыв фазы, реверсирование или дисбаланс. При обнаружении каких-либо проблем с фазами реле срабатывает и отключает питание двигателя. В частности, асимметрия фаз может вызвать опасные колебания напряжения или тока двигателя и привести к его повреждению.

  • Обнаружение недогрузки относится к способности реле обнаруживать падение тока в результате разгрузки. Это может произойти, если, например, насос начинает работать всухую. Эти реле предназначены для обнаружения этих различий и срабатывания, как при обнаружении перегрузки.

  • Реле с визуальными индикаторами - это изделия со светодиодами или другими индикаторами состояния.

Стандарты

BS EN 60255-149 - Функциональные требования к тепловым электрическим реле

Список литературы

Качество электроэнергии и приводы - Класс реле перегрузки с выдержкой времени

Изображение кредита:

Eaton Corporation | Benshaw, Inc.| Низковольтная продукция ABB | Enasco | Излишек Skycraft


Принцип работы теплового реле перегрузки

Привет, друзья, в этой статье я рассказываю о принципе работы теплового реле перегрузки и его функции в пускателе DOL. Надеюсь, эта статья окажется для вас информативной и полезной.

Реле тепловой перегрузки работает на тепле, выделяемом чрезмерным током перегрузки. Тепло, выделяемое током перегрузки, используется для отключения цепи двигателя.В основном они используются для защиты низковольтных асинхронных двигателей с короткозамкнутым ротором или двигателей постоянного тока с более низкой выходной мощностью.



Функция теплового реле перегрузки, используемого в цепях пускателя двигателя, заключается в предотвращении потребления двигателем чрезмерного тока, который вреден для изоляции двигателя.

Он подключается либо напрямую к линиям двигателя, либо косвенно через трансформаторы тока. Он обесточивает стартер и останавливает двигатель при чрезмерном потреблении тока.


Всякий раз, когда двигатель перегружен, он будет потреблять больше тока из линии и будет постепенно нагреваться. Реле перегрузки предназначено для защиты двигателя от длительных перегрузок.

Реле перегрузки установлено в цепи управления двигателем, чтобы установить контакт в цепи отключения или механически управлять штангой отключения, таким образом отключая двигатель в случае чрезмерной нагрузки.

Состоит из биметаллических полос. Тепло, выделяемое током перегрузки, используется для нагрева биметаллических лент.

В нормальных условиях эксплуатации полоса остается прямой, но под действием тока короткого замыкания полоса нагревается и изгибается, а контакты реле разъединяются, что обесточивает цепь управления двигателем.

Усилие, необходимое для изгиба биметаллических полос, можно отрегулировать с помощью регулятора. Другими словами, его можно настроить на работу при разных токах перегрузки.

Тепловое реле перегрузки не обеспечивает защиты от короткого замыкания , так как для размыкания контактов требуется достаточно времени.Поэтому этот тип реле используется вместе с предохранителями для защиты цепи от перегрузки и короткого замыкания.

Эти реле имеют обратнозависимые временные характеристики, т.е. время отключения становится меньше при перегрузке и, следовательно, увеличивается ток. Они оцениваются по классу поездки. Класс отключения определяет период времени, который потребуется для работы в условиях перегрузки. Наиболее распространены классы 5, 10, 20 и 30. Реле перегрузки классов 30, 20, 10 и 5 срабатывают в течение 30, 20, 10 и 5 секунд соответственно при 600% тока полной нагрузки двигателя.

Функция реле перегрузки в DOL Starter




Принципиальная схема прямого пускателя для трехфазного асинхронного двигателя показана на рисунке. Пускатель состоит из набора кнопок «пуск» и «стоп» с соответствующими контактами, устройствами защиты от перегрузки и пониженного напряжения.

Кнопка пуска (S 1 , обычно зеленого цвета) представляет собой выключатель с мгновенным контактом, который удерживается нормально разомкнутым с помощью пружины. Кнопка останова (S 2 , обычно красного цвета) представляет собой выключатель с мгновенным контактом, который удерживается нормально закрытым с помощью пружины.Операция следующая.

Когда нажимается кнопка пуска S 1 , на рабочую катушку «C» (или главный контактор) подается питание через контакт перегрузки «D» (нормально замкнутый). Это замыкает три основных контакта «M», которые подключают двигатель к источнику питания. В то же время вспомогательный контакт «A» также замыкается.

Когда вспомогательный контакт замкнут, новая цепь устанавливается через кнопку останова, вспомогательный контакт и рабочую катушку «C».Поскольку рабочий контур теперь поддерживается вспомогательным контактом, двигатель продолжает работать даже после отпускания кнопки пуска.

Если питание отсутствует или напряжение в сети падает ниже определенного значения, главные и вспомогательные контакты размыкаются. При возврате питания контактор не может замкнуться, пока не будет снова нажата кнопка пуска.

Когда двигатель перегружен, он потребляет ток, превышающий его нормальный рабочий ток. Этот ток перегрузки нагревает биметаллическую полосу теплового реле перегрузки.

Теперь из-за этого тепла биметаллическая полоса начинает гнуться. Через некоторое время он достаточно изгибается, и цепь управления двигателем размыкается в точке «D» (точка показана на рисунке). Он отключает рабочую катушку от питания. В результате мотор останавливается.

Спасибо, что прочитали о принципе работы теплового реле перегрузки .

Трехфазный асинхронный двигатель | Все сообщения

© https://yourelectricalguide.com/ Принцип работы теплового реле перегрузки.

Обзор тепловых реле перегрузки

Тепловые реле перегрузки - это защитные электрические устройства, используемые для защиты двигателей или другого электрооборудования и электрических цепей от перегрузки. Тепловое реле перегрузки в основном используется для защиты от перегрузки асинхронных двигателей. После того, как ток перегрузки проходит через термоэлемент, биметаллический лист нагревается и изгибается, чтобы подтолкнуть механизм действия к контакту ...

Каталог

I Что такое тепловое реле перегрузки?

Тепловые реле перегрузки - это защитные электрические устройства, используемые для защиты двигателей или другого электрического оборудования и электрических цепей.

Тепловое реле перегрузки в основном используется для защиты асинхронных двигателей от перегрузки. Его принцип работы :

после того, как ток перегрузки проходит через термоэлемент, биметаллический лист нагревается и изгибается, чтобы толкать механизм действия для приведения в действие контакта, тем самым отключая схему управления двигателем, чтобы выключить двигатель с помощью питания. выключен, играя роль защиты от перегрузки. Поскольку теплопередача занимает много времени во время нагрева и изгиба биметаллического листа, тепловое реле перегрузки не может использоваться для защиты от короткого замыкания, а может использоваться только для защиты от перегрузки.

Тепловое реле перегрузки широко используется в качестве компонента защиты двигателя от перегрузки из-за своего небольшого размера, простой конструкции и низкой стоимости.

II Состав теплового реле перегрузки

Тепловое реле перегрузки состоит из биметаллического листа , нагревательного элемента, механизма действия и контактной системы . Биметаллический лист изготавливается путем сварки двух слоев металлических листов с большой разницей в коэффициенте расширения. При использовании нагревательный элемент подключается последовательно к источнику питания двигателя, а контакт подключается последовательно в цепи управления катушкой контактора.

Когда двигатель перегружен, ток большой, что приводит к нагреву и изгибу биметаллического листа. А через механизм действия подвижный контакт и статический контакт разъединяются, так что катушка контактора обесточивается, и двигатель отключается от источника питания.

Рисунок 1. Структура теплового реле перегрузки

(1) Биметаллический лист : Биметаллический лист является наиболее важной частью теплового реле перегрузки.Он объединяет два металлических листа с разными коэффициентами линейного расширения путем механической прокатки.

При комнатной температуре (то есть до нагрева) все обычно бывает плоским, как показано на Рисунке 2 (а). При повышении температуры металлический лист 1 (называемый активным слоем ) с большим коэффициентом линейного расширения пытается сделать большее расширение, в то время как металлический лист 2 с малым коэффициентом линейного расширения (так называемый ведомый слой ) ) можно сделать только меньшее расширение.Поскольку два слоя материалов плотно прикреплены и не могут быть растянуты свободно, биметаллический лист переходит из плоского состояния в изогнутое, как показано на рисунке 2 (b). Таким образом, активный слой может расширяться немного больше, а ведомый слой - меньше. Это причина того, что биметаллический лист после нагрева может вызывать деформацию изгиба.

Рисунок 2. Принцип работы биметаллической полосы

(2) Нагревательный элемент : Нагревательный элемент обычно изготавливается из медно-никелевого сплава, хромоникелевого сплава или хромо-алюминиевого сплава и т. Д., а его форма представляет собой нить, лист или ленту и т. д. Его функция заключается в использовании теплового эффекта, возникающего при прохождении электрического тока через резистивный нагревательный элемент, для приведения чувствительного элемента в движение.

(3) Управляющие контакты , управляющие контакты коэффициентов действия и системы действия или механизмы действия. В большинстве из них используется носовая пружина, пружина сжатия или механизм прыжка Лафи. Система действия часто оснащена устройством температурной компенсации, чтобы гарантировать, что рабочие характеристики теплового реле перегрузки остаются в основном неизменными в определенном диапазоне температур.

(4) Механизм сброса: Есть ручной сброс и автоматический сброс, которые можно свободно регулировать в соответствии с требованиями использования.

III Классификация тепловых реле перегрузки

В зависимости от количества фаз существует трех типов тепловых реле перегрузки : однофазные реле тепловой перегрузки , двухфазные тепловые реле перегрузки и три трех -фазные тепловые реле перегрузки . Каждый тип имеет разные характеристики и модели в зависимости от номинального тока нагревательного элемента.Трехфазные тепловые реле перегрузки часто используются в трехфазных двигателях переменного тока для защиты от перегрузки.

По своему назначению трехфазные тепловые реле перегрузки бывают двух типов: типы без фазовой защиты и типы с фазной защитой.

IV Характеристики тепловых реле перегрузки

1. Характеристики защиты

Поскольку время срабатывания контакта теплового реле перегрузки связано со степенью перегрузки защищаемого двигателя, до анализа принципа работы реле тепловой перегрузки, мы должны сначала выяснить взаимосвязь между током перегрузки двигателя и временем включения двигателя, когда не превышается допустимый рост температуры.Эта зависимость называется перегрузочной характеристикой двигателя.

Когда во время работы двигателя возникает ток перегрузки, это неизбежно вызывает нагрев обмотки. В соответствии с соотношением теплового баланса нетрудно сделать вывод, что время проводимости двигателя обратно пропорционально квадрату его тока перегрузки при допустимом повышении температуры:

Рисунок 3. Взаимосвязь между временем проводимости и ток перегрузки

Чтобы адаптироваться к характеристикам перегрузки двигателя и играть роль защиты от перегрузки, тепловое реле перегрузки должно иметь характеристики с обратнозависимой выдержкой времени .По этой причине в тепловом реле перегрузки должен быть установлен резистивный нагревательный элемент. Таким образом, тепловой эффект, создаваемый током перегрузки через резистивный нагревательный элемент, используется для приведения в действие чувствительного элемента, тем самым приводя в действие контактное действие для завершения защиты.

Связь между током перегрузки , проходящим через тепловое реле перегрузки, и временем срабатывания контакта теплового реле перегрузки называется характеристикой защиты теплового реле перегрузки, как показано на кривой кривой 2 на рисунке 3.Учитывая влияние различных ошибок, характеристика перегрузки двигателя и характеристика защиты реле представляют собой не одну кривую, а полосу. Очевидно, что чем больше погрешность, тем ремешок шире; чем меньше погрешность, тем уже ремешок.

Из кривой 1 на рисунке видно, что при перегрузке двигателя безопасно работать под кривой 1. Следовательно, характеристики защиты теплового реле перегрузки должны быть смежными с характеристиками перегрузки двигателя.Таким образом, если произойдет перегрузка, тепловое реле перегрузки сработает до того, как двигатель достигнет своего допустимого предела перегрузки, чтобы отключить питание двигателя, чтобы предотвратить повреждение.

2. Другие основные характеристики

(1) Управляющий контакт

Нормально разомкнутые и нормально замкнутые контакты теплового реле перегрузки должны обеспечивать срабатывание цепи катушки контактора переменного тока более 1000 раз. при указанном рабочем токе.

(2) Ампер-секунда Характеристики

Это также называется токово-временной характеристикой, которая представляет собой взаимосвязь между временем срабатывания и протекающим током теплового реле перегрузки и обычно является характеристикой с обратнозависимой выдержкой времени. . Чтобы надежно реализовать защиту двигателя от перегрузки, ампер-секундная характеристика теплового реле перегрузки должна быть ниже допустимой характеристики перегрузки двигателя.

(3) Регулировка тока

Диапазон регулировки тока тепловых реле перегрузки обычно составляет от 66% до 100%, а максимальный - от 50% до 100%.

(4) Температурная компенсация

Чтобы уменьшить ошибку действия, вызванную изменением температуры окружающей среды, необходимо принять меры температурной компенсации.

(5) Время сброса

Время автоматического сброса реле тепловой перегрузки не должно превышать 5 минут, а время ручного сброса должно быть не более 2 минут.

(6) Термическая стабильность

Термическая стабильность - это способность выдерживать ток перегрузки . Требования к термостойкости термоэлемента следующие: при максимальном токе настройки 10-кратный максимальный ток настройки применяется к номинальному току 100 А и ниже, и в 8 раз максимальный ток настройки применяется к току настройки выше 100 А. После этого реле тепловой перегрузки должно надежно сработать 5 раз.

В Причины срабатывания реле тепловой перегрузки

Срабатывание реле тепловой перегрузки в основном вызвано перегрузкой или неправильным выбором .Реле тепловой перегрузки используется для защиты электроприборов от перегрузки. Дизайн должен соответствовать электроприборам. Если тепловое реле перегрузки слишком мало или электрическое оборудование имеет сопротивление, часто срабатывает перегрузка. После срабатывания реле тепловой перегрузки контактор потеряет питание и отключится.

Другие причины:

(1) Установленное значение теплового реле перегрузки слишком мало;

(2) Ток нагрузки двигателя слишком велик, может быть короткое замыкание между витками или часть трансмиссии двигателя не является гибкой;

(3) Низкое качество реле тепловой перегрузки или плохой контакт контактов.

(4) Плохое качество контактора или плохой контакт контактов.

VI Как сбросить реле тепловой перегрузки после срабатывания

Существует два способа сброса реле тепловой перегрузки: ручной сброс и автоматический сброс.

1. Ручной сброс

После срабатывания защиты от перегрузки теплового реле перегрузки необходимо вручную нажать кнопку сброса, чтобы нормально замкнутый контакт снова замкнулся.Ручной сброс должен быть выполнен через 2-3 минуты после отключения, так как нагревательный лист для внутренней гибки нуждается в охлаждении.

2. Автоматический сброс

После срабатывания защиты реле от тепловой перегрузки нормально замкнутый контакт автоматически замыкается, и время автоматического сброса обычно составляет не более 5 минут.

Метод сброса можно выбрать с помощью винта настройки сброса.

Вставьте прямую отвертку в регулировочное отверстие на нижней стороне теплового реле перегрузки и затяните регулировочный винт сброса по часовой стрелке (до конца), что является методом автоматического сброса.Если вы ослабите винт регулировки сброса против часовой стрелки, так что винт откручивается на определенное расстояние, это становится ручным сбросом.

Новое тепловое реле перегрузки обычно имеет кнопку регулировки на верхней крышке. Когда кнопка регулировки повернута на H , это ручной сброс, а когда кнопка регулировки повернута на A , это автоматический сброс.

Рис. 4. Ручной сброс и автоматический сброс

Когда реле тепловой перегрузки используется для защиты двигателя от перегрузки, чтобы гарантировать, что нормально замкнутый контакт реле тепловой перегрузки может быть сброшен и замкнут после неисправность обрабатывается, тепловое реле перегрузки обычно устанавливается в режим ручного сброса.

VII Меры предосторожности при использовании

(1) Тепловое реле перегрузки может использоваться только для защиты двигателя от перегрузки и обрыва фазы, но не для защиты от короткого замыкания.

(2) Выбор точки установки.

● Разница температур между местом установки реле тепловой перегрузки и защищаемым оборудованием не должна быть слишком большой;

● В месте установки не должно быть источника вибрации;

● когда тепловое реле перегрузки установлено с другими электрическими приборами, чтобы другие нагревательные приборы не влияли на его рабочие характеристики, его следует устанавливать ниже.

(3) Направление установки реле тепловой перегрузки должно быть таким же, как указано в руководстве по продукту, а отклонение не должно превышать 5 °.

(4) Соединительный провод, используемый для теплового реле перегрузки, должен соответствовать техническим характеристикам. Если сечение соединительного провода слишком мало, осевая теплопередача будет медленной, и реле тепловой перегрузки выйдет из строя. Если соединительный провод слишком толстый, аксиальная теплопроводность происходит быстро, а реле тепловой перегрузки срабатывает медленно или отказывается двигаться.

Материал проволоки - обычно медь , если используется проволока с алюминиевым сердечником, концы должны быть луженые.

(5) Крепежные винты реле тепловой перегрузки должны быть затянуты, в противном случае контактное сопротивление и температура нагревательного элемента увеличатся, что приведет к неисправности реле тепловой перегрузки.

(6) Реле тепловой перегрузки с автоматическим сбросом должно быть установлено в автоматическое положение, и оно автоматически сбрасывается через 3-5 минут после срабатывания защиты.Для реле тепловой перегрузки с ручным сбросом кнопка сброса должна быть нажата после срабатывания защиты.

VIII Причины бездействия или неисправности

Причины бездействия или неисправности теплового реле перегрузки следующие:

1.

Причины бездействия

Причина бездействия выход из строя теплового реле перегрузки может быть:

(1) значение уставки тока слишком велико;

(2) термоэлемент сгорел или запломбирован;

(3) заедает механизм затвора или отваливается пряжка.

(4) При ремонте ток уставки может быть соответствующим образом отрегулирован в соответствии с допустимой нагрузкой, а термоэлемент или механизм действия могут быть отремонтированы.

2.

Причины неисправности

Причины могут быть следующими:

(1) текущее установленное значение слишком мало;

(2) тепловое реле перегрузки не согласовано с нагрузкой;

(3) время запуска двигателя слишком велико или слишком много раз непрерывного запуска;

(4) линия или нагрузка протекает или закорочено;

(5) реле тепловой перегрузки подвержено сильным ударам или вибрации.

Во время технического обслуживания мы должны выяснить причины и разумно отрегулировать ток уставки или заменить реле тепловой перегрузки, соответствующее нагрузке.

Если двигатель или цепь неисправны, двигатель и цепь питания должны быть отремонтированы; если в рабочей среде слишком много вибраций, следует использовать реле тепловой перегрузки с антивибрационным устройством.

IX Как выбрать тепловые реле перегрузки

1. В принципе, ампер-секундная характеристика теплового реле перегрузки должна быть как можно ближе или даже совпадать с характеристикой перегрузки двигателя, или по перегрузочной характеристике мотора.И при этом на реле тепловой перегрузки не должно воздействовать (бездействие) в момент кратковременной перегрузки и пуска двигателя.

2. Когда тепловые реле перегрузки используются для защиты двигателей при длительной работе или прерывистой длительной работе , их обычно выбирают в соответствии с номинальным током двигателя. Например, значение уставки реле тепловой перегрузки может быть равно 0,95-1,05 номинального тока двигателя, или среднее значение уставки тока реле тепловой перегрузки может быть равно номинальному току двигателя, а затем настроить.

3. Когда тепловое реле перегрузки используется для защиты двигателя с помощью повторяющегося кратковременного режима , тепловое реле перегрузки имеет только определенный диапазон адаптируемости. Если за короткое время выполняется много операций, следует использовать тепловое реле перегрузки с трансформатором тока быстрого насыщения.

4. Для специального рабочего двигателя с положительным и обратным вращением и частым включением и выключением тепловое реле перегрузки не должно использоваться в качестве устройства защиты от перегрузки, но должно быть защищено термореле или термистором, встроенным в обмотка двигателя.

Тепловое реле перегрузки: определение, принцип работы, применение

Электродвигатели составляют значительную часть нагрузок энергосистемы. Требования рынка вынудили промышленность по управлению двигателями постоянно оценивать технологии защиты двигателей. Технологические достижения позволяют отраслям управления двигателями предлагать несколько вариантов защиты двигателей. Его эффективный принцип работы делает тепловое реле одним из лучших решений для защиты двигателей.

Что такое тепловое реле перегрузки?

Тепловое реле перегрузки обеспечивает функции защиты для одно- или трехфазных двигателей.Реле контролирует рабочий ток двигателя и отключает контактор в случае перегрузки. Он также защищает двигатель от повреждений при обрыве фазы.

Реле перегрузки выполняют следующие функции:

  • Допускайте безопасные временные перегрузки (например, запуск двигателя) без нарушения цепи.
  • Сработает и разомкнет цепь, если ток достаточно высок, чтобы вызвать повреждение двигателя в течение некоторого времени.
  • Может быть сброшен после устранения перегрузки.

Его также называют реле тока перегрузки, реле защиты от перегрузки, реле электрической перегрузки

Выбрав соответствующий тип реле перегрузки с соответствующей функциональностью, можно защитить двигатель от большинства повреждений, вызванных следующими условиями:

  • Неисправность подшипника
  • Неисправность стержня ротора
  • Внешние отказы
  • Неисправность обмотки статора
  • Неисправность муфты вала

Как работает тепловое реле перегрузки?

Реле тепловой перегрузки предназначено для токовозависимой защиты приложений с нормальными условиями запуска от недопустимо высоких температур в результате перегрузки или обрыва фазы.Из-за перегрузки или обрыва фазы ток двигателя превышает установленный номинальный ток двигателя. Это повышение тока нагревает биметаллические ленты внутри реле через нагревательные элементы, которые, в свою очередь, приводят в действие вспомогательные контакты через механизм отключения из-за их отклонения. Они отключают нагрузку через контактор. Время отключения зависит от отношения тока отключения к рабочему току Ie и сохраняется в виде характеристики отключения с долговременной стабильностью. Состояние «Отключено» сигнализируется с помощью индикатора положения переключения.Сброс выполняется вручную или автоматически по истечении времени восстановления.

Применение теплового реле перегрузки

Тепловые реле перегрузки обеспечивают защиту от перегрузки для однофазных двигателей и трехфазных двигателей, таких как:

  • Вентиляторы
  • Насосы
  • Компрессоры
  • Миксеры
  • Конвейеры
  • Лифты
  • Малые станки
  • Генераторы
  • Промышленные ИБП

Параметры выбора реле тепловой перегрузки

При выборе реле перегрузки следует учитывать следующие параметры:

  • Диапазон тока
  • Номинальное рабочее напряжение
  • Класс поездки
  • Номинальное напряжение изоляции
  • Международные стандарты
  • Наличие обрыва фазы
  • Температура окружающего воздуха

Схема подключения реле тепловой защиты

Технические условия на тепловые реле перегрузки

Классы поездки

Классы срабатывания описывают интервалы времени, в течение которых реле перегрузки должно срабатывать с 7.В 2 раза больше рабочего тока Ie для симметричной трехполюсной нагрузки от холода.

Текущая установка

Реле тепловой перегрузки настраивается на номинальный ток двигателя с помощью поворотного потенциометра. Шкала поворотного потенциометра откалибрована в амперах.

Ручной и автоматический сброс

Если выбран ручной сброс, сброс можно выполнить непосредственно на устройстве, нажав кнопку «СБРОС».Когда выбран автоматический сброс, реле будет сброшено автоматически. Сброс невозможен, пока не истечет время восстановления.

Время восстановления

После отключения из-за перегрузки требуется определенное время для охлаждения биметаллических полос тепловых реле перегрузки. Реле перегрузки можно сбросить только после того, как оно остынет.

Функция тестирования

Правильность работы готового теплового реле перегрузки можно проверить с помощью кнопки ТЕСТ.Кнопка тестирования используется для имитации срабатывания реле. Во время этого моделирования нормально закрытый контакт (95-96) размыкается, а нормально открытый контакт (97-98) замыкается, в результате чего реле перегрузки проверяет правильность подключения вспомогательной цепи.

Функция остановки

При нажатии кнопки СТОП нормально замкнутый контакт размыкается и последовательно включенный контактор обесточивается, и, следовательно, нагрузка отключается. После отпускания кнопки СТОП нагрузка снова подключается через контактор.

Индикация состояния

Текущее состояние теплового реле перегрузки отображается индикатором состояния.

Вспомогательные контакты

Реле тепловой перегрузки имеет нормально разомкнутый контакт для сигнала отключения и нормально замкнутый контакт для отключения контактора.

Калибровочный штекер теплового реле перегрузки

  1. Подключение для монтажа на контакторы
  2. Кнопка ручного / автоматического сброса
  3. Тестовая кнопка
  4. Уставка тока двигателя
  5. Кнопка остановки
  6. Клеммы питания

Тепловое реле перегрузки по сравнению с электронным реле перегрузки

В тепловых реле перегрузки используются биметаллы для защиты.Но в электронном реле перегрузки используются встроенные трансформаторы тока, специализированные интегральные схемы (ASIC) и / или микропроцессоры, а также принципы электромеханической конструкции для создания компактного, высокофункционального решения защиты от перегрузки. Поскольку ток двигателя проходит через встроенные трансформаторы тока, для питания интегральной схемы доступна энергия. Контролируя трехфазную мощность, ASIC / микропроцессор может обрабатывать текущие данные и активировать механизм отключения в условиях перегрузки, размыкая нормально замкнутый контакт и отключая цепь катушки пускателя двигателя.

Преимущества теплового реле перегрузки

  • Защищает двигатель от перегрева. Его можно использовать в одно- или трехфазных двигателях.
  • Некоторые реле перегрузки имеют внутреннюю защиту от потери фазы.
  • Обладает эффективным принципом действия.
  • Это недорогое устройство.
  • Его можно установить непосредственно на контактор или на панель с помощью адаптера для DIN-рейки.
  • Он имеет внутреннюю кнопку тестирования, используемую для поиска и устранения неисправностей.
  • Некоторые реле перегрузки имеют внутреннюю кнопку выбора класса отключения.
  • Имеет широкий регулируемый диапазон тока.
  • Имеет функцию сброса. (ручной или автоматический)
  • Имеет функцию температурной компенсации.
  • Имеет механизм без расцепления.

Недостатки теплового реле перегрузки

  • Не имеет функции прямого отключения. Его следует использовать с другими переключающими или защитными устройствами для отключения цепи.
  • Не имеет защиты от короткого замыкания
  • Медленно работает.
  • Не имеет высокой частоты переключения. После стольких отключений необходимо охлаждение.
  • Он плохо работает при запуске в тяжелых условиях.
  • Не выдерживает вибрации и ударов. (Только некоторые специальные типы могут работать хорошо)