Для преобразования переменного тока в постоянный применяют: Преобразование переменного тока в постоянный — Студопедия

Содержание

Способы преобразования постоянного напряжения в переменное

Эйси в диси и диси в эйси) - преобразования постоянного тока в переменный и наоборот.

Источники тока и напряжения - это розетки или батарейки на бытовом уровне. На более продвинутым уровне познания электричества для получения тока и напряжения применяются другие варианты.

И для определенных целей может пригодится как ток постоянной величины, так и ток переменной величины. Поэтому важно уметь преобразовывать один во второй без существенных потерь.

Для преобразования постоянного тока в переменный используется инвертор - устройство, предназначенное для получения из постоянного тока одной величины переменный ток другой величины.

Для преобразования переменного тока в постоянный используется выпрямление формы синусоиды до пульсирующего значения, или до формы прямой. Для этих целей служат - выпрямительные диоды, выпрямители, схемы выпрямления, диодные мосты - как бы это всё об одном и том же, но есть нюансы.

Выпрямительный диод - полупроводник, принцип которого на википедии сравнивают с действием обратного клапана (обратный клапан кстати встречается в аквариумистике в схеме компрессора), "амперка" же сравнивает данный радиокомпонент с ниппелем (как у камеры авто или велосипеда). Так вышеприведенные системы пропускают в одном направлении воду или воздух, выпрямительные же диоды работают с потоком электронов.

Назначение выпрямительного диода в преобразовании переменного тока в постоянный (выпрямлении).

Выпрямитель - устройство, преобразующее переменный ток в постоянный пульсирующий. Может быть однополупериодный, двухполупериодный; однофазный, трехфазный, многофазный; диодный (мостовой), тиристорный (используется для изменения величины мощности выпрямленного сигнала).

Схемы выпрямления - различные схемы, на входе у которых переменный ток, а на выходе различный выпрямленный. Самыми популярными являются: схема Ларионова, схема Греца, схема Миткевича. И опять же 1-,2-х полупериодные; 1-, 3-х фазные и их сочетания.

Диодный мост - специальное устройство, состоящее из диодов, которые собраны в определенной последовательности. Можно сделать своими руками, предварительно рассчитав, или же купить готовый по требуемым параметрам.

Также особо важную роль в выпрямлении берут на себя сглаживающие фильтры - различные индуктивные и емкостные фильтры, используемые в схемах выпрямления для получения из тока пульсирующего ток постоянный.

Вот такие основные способы преобразования постоянки в переменку и наоборот. Далее у меня в планах более подробно описать изложенное в этом материале, но в других статьях.

Сохраните в закладки или поделитесь с друзьями

Самое популярное

Как получить постоянное напряжение из переменного

Осциллограмма постоянного напряжения

Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток)  –  это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.

Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:

Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).

Для того, чтобы преобразовать переменное однофазное напряжение одного значения в  однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный  трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.

Но как же   нам из пульсирующего постоянного напряжения

получить самое что ни на есть настоящее постоянное напряжение?

Для этого нам нужен всего один радиокомпонент: конденсатор.   А вот так он должен подключаться к диодному мосту:

В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.

Зависимость пульсаций напряжения от емкости конденсатора

Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:

Рассмотрим первый. Замеряем его номинал с помощью нашего LC – метр. Его емкость 25,5 наноФарад или 0,025микроФарад.

Цепляем его к диодному мосту по схеме выше

И цепляемся осциллографом:

Смотрим осциллограмму:

Как вы видите, пульсации все равно остались.

Ну что же, возьмем конденсатор емкостью побольше.

Получаем 0,226 микрофарад.

Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.

А вот собственно и осциллограмма

 

Не… почти, но все равно не то. Пульсации все равно видны.

Берем наш третий конденсатор. Его емкость 330 микрофарад.  У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.

Цепляем его к диодному мосту снимаем с него осциллограмму.

А вот собственно и она

Ну вот. Совсем ведь другое дело!

Итак, сделаем небольшие выводы:

 – чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.

 – чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.

Как подобрать радиоэлементы для выпрямителя

Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд?  Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт?  А вот и не угадали!  Со вторичной обмотки трансформатора мы будем получать действующее напряжение.

где

UД – действующее напряжение, В

Umax – максимальное напряжение, В

Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!

Кстати,  у меня получился 17 Вольтовый источник постоянного напряжения, так как у  трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).

Ну и напоследок, чтобы лучше запомнилось:

 

Преобразование переменного тока в постоянный

Для того чтобы генератор переменного тока был способен заряжать батарею и обеспечивать питание других компонентов транспортного средства, требуется преобразовать переменный тик (alternating current — АС) в постоянный (direct current — DC). Самый подходящий электронный компонент для этой задачи — кремниевый диод. Если переменный ток одной фазы пропустить через диод, на выходе диода появится полуволна, как показано на рисунке. В этом примере диод позволяет проходить к положительному полюсу батареи только половине полупериодов волны. Отрицательные полупериоды блокируются.

Рис. Однополупериодное выпрямление

На рисунке ниже показано, что мостовой выпрямитель с четырьмя диодами выпрямляет обе полуволны однофазного напряжения. Диод часто рассматривается как односторонний клапан для электрического тока. И хотя это хорошая аналогия, важно помнить, что диод хорошего качества блокирует обратный ток с напряжением приблизительно 400 В, а для того, чтобы диод начал проводить в прямом направлении, требуется небольшое напряжение — около 0,6 В.

Рис. Мостовой двухполупериодный выпрямитель (одна фаза)

Чтобы выпрямлять напряжение трехфазной машины, потребуется шесть диодов. Они тоже связаны в виде моста, как показало на рисунке. Мост состоит из трех «пропускающих» и трех «запирающих» диодов. Форма выходного напряжения, создаваемого этой цепью, приведена на рисунке совместно с сигналами трех фаз.

Рис. Трехфазный мостовой выпрямитель

В блок выпрямителя часто вводятся еще три диода, выпрямляющих положительную полуволну напряжения. Они обычно меньше главных диодов и используются только для того, чтобы питать малым током обмотку возбуждения магнитного поля в роторе. Дополнительные диоды известим как экстра-диоды, диоды магнитного поля или диоды возбуждения. На рисунке показан выпрямитель с девятью диодами.

Рис. Девятидиодиый выпрямитель

Вследствие значительных токов, текущих через главные диоды, им требуется радиатор для отвода тепла, чтобы предохранить их от термического повреждения. В некоторых случаях вместо одного диода ставят нескольких соединенных параллельно, чтобы они без повреждения выдерживали большие токи. Диоды в блоке выпрямителя служат для предотвращения обратного тока от батареи к генератору. Они также позволяют нескольким генераторам переменного тока работать параллельно без синхронизации, так как ток не может течь от одного генератора к другому.

Когда используется статор с соединением обмоток «звезда», сумма напряжений в нейтральной точке звезды теоретически равна 0 В. Однако на практике из-за небольших погрешностей в конструкции статора и ротора и в этой точке возникает потенциал. Этот потенциал (напряжение) известен как третья гармоника и показан на рисунке. Его частота — утроенная основная частота фазной обмотки. Подключив к центру звезды два дополнительных диода, один в прямом и один в обратном включении, можно извлечь дополнительную мощность. Прирост мощности достигает 15%.

Рис. Третья гармоника

На последнем рисунке показана полная схема электрогенератора при использовании главного выпрямителя с восемью диодами и тремя диодами возбуждения поля. На схеме показан также регулятор напряжения. Индикаторная лампочка, помимо основной функции предупреждения о неисправности генератора, служит для подачи начального тока возбуждения в обмотку ротора. Генератор не всегда может самовозбуждаться, поскольку остаточный магнетизм обычно недостаточен для создания такого напряжения, которое преодолеет прямое смешение диодов выпрямителя (0,6 или 0,7 В). Типичная мощность лампочки индикатора — 2 Вт. Многие изготовители также подключают параллельно лампочке резистор, чтобы усилить возбуждение генератора и гарантировать его работу, если лампочка сгорит. Лампочка, предупреждающая об отсутствии заряда, погаснет, когда в обмотку ротора пойдет ток от диодов возбуждения, поскольку в этом случае на обоих выводах лампочки возникнет одно и то же напряжение (разница потенциалов на лампочке станет равной 0 В).

Рис. Полная внутренняя схема генератора переменного тока

преимущества и недостатки ⋆ diodov.net

Какой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?

Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.

Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями. Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции. Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно. Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.

Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.

I1 = P/U1 = 1000 кВт/10 кВ = 100 А.

I2 = P/U2 = 1000 кВт/100 кВ = 10 А.

Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.

Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.

Pпот1 = I12∙R = 1002∙10 = 100000 Вт = 100 кВт.

Pпот2 = I22∙R = 102∙10 = 1000 Вт = 1 кВт.

Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором. А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.

Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.

Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.

Преимущества переменного тока

Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.

Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.

Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.

Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока. Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин. Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.

Недостатки постоянного тока

Из выше изложенного следуют такие недостатки.

  1. Сложность повышения и снижения напряжения, то есть преобразования электроэнергии постоянного тока. В первую очередь это вызвано сложность конструкций преобразователей. Поскольку необходимы мощные полупроводниковые ключи, рассчитанные на высокое напряжение. Отсутствие которых приводит к большому числу последовательно и параллельно соединенных полупроводниковых приборов. В результате снижается надежность всего преобразователя, увеличивается стоимость и возрастают потери мощности.
  2. Электрические машины имеют более сложную конструкцию, поэтому менее надежны и более затратные, как в производстве, так и в эксплуатации.
  3. Сложности в развязке высокого и низкого напряжений.

Недостатки переменного тока

  1. Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его. В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.

Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.

  1. Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.

Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.

Преимущества постоянного тока

  1. Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.
  2. Постоянный ток в отличие от переменного протекает по всему сечению проводника.

Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.

К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.

Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя. Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения. Такие инверторы должны получать питание от источника постоянного напряжения.

 

Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.

Выводы: постоянный или переменный ток

Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества. Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции. К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.

Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.

Еще статьи по данной теме

Преобразователи переменного тока в постоянный

⇐ ПредыдущаяСтр 6 из 10Следующая ⇒

Принцип выпрямления переменного тока в постоянный можно рассмотреть на примере работы простейшего однофазного однополупериодного выпрямителя (рис. 1.21).

Рис. 1.21. Однофазный однополупериодный выпрямитель:

а – принципиальная схема; б – временные диаграммы напряжений и токов

 

В этой схеме входное напряжение ивх изменяется по синусоидальному закону с частотой 50 Гц. Ток в цепи нагрузки протекает только в положительный полупериод, когда точка а, к которой присоединен анод диода имеет положительный потенциал относительно точки b, к которой через нагрузку присоединен катод. В результате напряжение ивх оказывается приложенным к нагрузке Rнагр, в которой начинает протекать ток нагрузки iнагр. При активной нагрузке (как это показано на рис. 1.21, б) ток по фазе будет совпадать с напряжением, и диод будет пропускать ток до тех пор, пока напряжение ивх не снизится до нуля. В отрицательные полупериоды к диоду прикладывается все входное напряжение ивх, которое является для диода обратным, и поэтому он будет закрыт. При этом в нагрузке ток будет равен нулю. Таким образом, на резисторе нагрузки Rнагр будет однополярное пульсирующее напряжение иd, среднее значение которого составит

, (1.52)

где , – амплитуда напряжения сети и его действующее значение.

Очевидным недостатком такой схемы выпрямления является большой коэффициент пульсации выпрямленного напряжения

. (1.53)

Уменьшить пульсации возможно увеличением числа полуволн напряжения передаваемых в нагрузку за тот же промежуток времени, например применением трехфазной системы напряжений. На рис. 1.22 приведена схема трехфазного выпрямителя с нулевой точкой. К сети трехфазного тока подключен трансформатор Т, вторичные обмотки которого соединены в звезду. Фазы а, b, с присоединяются к анодам трех вентилей. Катоды этих вентилей соединяются вместе и служат положительным полюсом для цепи нагрузки Rнагр. Нулевая точка вторичной обмотки трансформатора является ее отрицательным полюсом.

Рис. 1.22. Трехфазный выпрямитель с нулевой точкой:

а – принципиальная схема; б – временные диаграммы напряжений и токов

 

Форма выпрямленного напряжения приведена на рис. 1.22, б. Ток через каждый из диодов будет протекать только в течение того периода, когда напряжение в данной фазе больше чем в двух других фазах. Работающий диод прекращает проводить ток тогда, когда потенциал его анода становится ниже общего потенциала катодов, т.е. когда к нему прикладывается обратное напряжение.

Переход тока от одного вентиля к другому (коммутация тока) происходит в момент пересечения кривых фазных напряжений (точки а, б, в, г, д на рис. 1.22, б). Выпрямленный же ток проходит через нагрузку Rнагр непрерывно. Среднее значение выпрямленного напряжения составляет

, (1.54)

а коэффициент пульсаций

, (1.55)

где – число импульсов тока в нагрузке за время одного периода.

Ток в обмотке каждой фазы трансформатора имеет пульсирующий характер и по продолжительности составляет не более 120 электрических градусов. Повысить использование трансформатора возможно применением мостовой схемы выпрямления (рис. 1.23), в которой каждый из диодов работает в течение 1/3 периода, а через каждую фазу трансформатора ток проходит в течение 2/3 периода.

Рис. 1.23. Трехфазный мостовой выпрямитель:

а – принципиальная схема; б – временные диаграммы напряжений и токов

Выпрямитель состоит из двух групп диодов – катодной и анодной. Диоды катодной группы открываются в момент пересечения положительных участков синусоид (точки а, б, в, г, д на рис. 1.23, б), а диоды анодной группы – в моменты пересечения отрицательных участков синусоид (точки к, л, м, н на рис. 1.23, б).

При мгновенной коммутации тока в трехфазной мостовой схеме выпрямления в любой момент времени проводят два диода – один из катодной, другой из анодной группы. При этом любой диод одной группы работает поочередно с двумя диодами другой группы, соединенными с разными фазами вторичной обмотки трансформатора. Иными словами, проводить ток будут те два накрест лежащих диода выпрямительного моста, между которым действует в проводящем направлении наибольшее линейное напряжение. Например, в интервале времени - ток проводят диоды и , в интервале времени - – диоды и , в интервале - – диоды и , и т.д. За период напряжения происходит шесть переключений диодов, в связи с чем такую схему выпрямления называют шестипульсной.

Среднее значение выпрямленного напряжения в такой схеме составляет

, (1.56)

а коэффициент пульсаций

. (1.57)

Для регулирования скорости электродвигателя постоянного тока требуется изменение подводимого к нему напряжения. Эта задача может быть решена заменой в схемах выпрямления неуправляемых вентилей – диодов на управляемые вентили – тиристоры (рис. 1.24).

При использовании тиристоров появляется возможность открывать вентили не в точках естественной коммутации (а, б, в, г, д на рис. 1.24, б), а в любой момент времени в интервале его проводимости. Для работы схемы на тиристоры подаются управляющие импульсы с некоторым смещением во времени относительно указанных точек. Пусть, например, управляющие импульсы подаются на тиристоры в моменты, соответствующие середине положительных полуволн фазных напряжений (угол ). В этом случае (см. рис. 1.24, в) в нагрузке возникают импульсы выпрямленного напряжения в виде четверти синусоиды.

Изменение фазы (смещение) управляющих импульсов в сторону увеличения или уменьшения угла управления вызывает соответствующее уменьшение (рис. 1.24, б) или увеличение (рис. 1.24, г) продолжительности импульсов выпрямленного напряжения. При угле кривая выпрямленного напряжения будет иметь такую же форму, как в неуправляемом выпрямителе (рис. 1.22, б).

Рис. 1.24. Трехфазный управляемый выпрямитель с нулевой точкой:

а – принципиальная схема; б, в, г – диаграммы напряжений

при различных углах управления

 

На рис. 1.25 приведены регулировочная характеристика тиристорных выпрямителей для трехфазной нулевой (кривая 1) и трехфазной мостовой (кривая 2) схем выпрямления. Эта характеристика показывает зависимость среднего значения выпрямленного напряжения от угла регулирования .

Важными характеристиками работы преобразователей являются их к. п.д. и коэффициент мощности. Потери в преобразователе складываются из потерь в вентилях и в трансформаторе. К.п.д. современных промышленных преобразователей достигает 95 %.

Для тиристорных преобразователей характерным является такой режим, когда потребляемый ими из сети ток несинусоидален, а его первая гармоника сдвинута относительно синусоиды питающего напряжения. Наличие такого сдвига приводит к потреблению из сети не только активной мощности, но и реактивной, не совершающей полезной работы. Это явление характеризуется коэффициентом мощности, значение которого равно отношению активной мощности Р, потребляемой преобразователем, к полной мощности S

. (1.58)

Величина коэффициента мощности для тиристорного преобразователя с трехфазной мостовой схемой выпрямления зависит от угла управления и составляет от 0,95…1 при до 0,3…0,45 при .

 

 



Читайте также:

 

Преобразование переменного тока - Справочник химика 21

    Основными элементами ламповых генераторов (рис. 3.33) являются 1 — трехфазный силовой трансформатор, повышающий напряжение с 220—380 до 6000— 9000 В 2 — выпрямительный блок на тиратронах для преобразования переменного тока в постоянный напряжением до 9000—15000 В 3— генераторный блок с одной или несколькими генераторными трехэлектродными лампами, преобразующий энергию постоянного тока в [c.172]
    Селеновый выпрямитель типа ВСА-6М предназначен для преобразования переменного тока в постоянный, подаваемый на питание электролитической ванны. Селеновый выпрямитель устанавливают на специальной подставке вблизи вытяжного шкафа. [c.112]

    ПРЕОБРАЗОВАНИЕ ПЕРЕМЕННОГО ТОКА В ПОСТОЯННЫЙ И ЕГО КОММУНИКАЦИЯ [c.409]

    Ранее для питания серий электролизеров постоянным током применялись генераторы напряжением до 250—275 В. Однако по мере развития техники преобразования переменного тока в постоянный и совершенствования конструкций электролизеров возросло и напряжение постоянного тока, применяемого для питания серий электролизеров. Увеличение напряжения постоянного тока позволяет снизить капитальные затраты на оборудование преобразовательных подстанций и при применении ртутно-выпрямительных агрегатов повышает коэффициент полезного действия преобразовательной установки. Переход на более высокое напряжение постоянного тока на электролитических установках был в значительной степени обусловлен применением ртутно-выпрямительных агрегатов. [c.242]

    В зависимости от источника энергии, используемого для возбуждения гидрогенератора, системы возбуждения можно подразделить на три группы 1) электромашинная система возбуждения с возбудителем постоянного тока 2) система возбуждения с генератором переменного тока с последующим преобразованием переменного тока в постоянный 3) система самовозбуждения, в которой часть энергии гидрогенератора преобразуется в энергию постоянного тока и используется для его возбуждения. [c.68]

    Электромашинная система возбуждения с генератором переменного тока и последуюш,им преобразованием переменного тока в постоянный. Независимая система возбуждения от вспомогательного синхронного генератора (ВСГ) с последующим преобразованием переменного тока [c.74]

    В качестве источников постоянного

Зависимость переменного тока (AC) от постоянного (DC)

Добавлено в избранное Любимый 46

Переменный ток (AC)

Переменный ток описывает поток заряда, который периодически меняет направление. В результате уровень напряжения также меняется на противоположный вместе с током. AC используется для подачи питания в дома, офисные здания и т. Д.

Генерация переменного тока

переменного тока может производиться с использованием устройства, называемого генератором переменного тока.Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.

Проволочная петля скручена внутри магнитного поля, которое индуцирует ток по проводу. Вращение провода может происходить с помощью любого количества средств: ветряной турбины, паровой турбины, проточной воды и так далее. Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются. Вот короткая анимация, демонстрирующая этот принцип:


(Видео предоставлено: Хуррам Танвир)

Генератор переменного тока можно сравнить с нашей предыдущей аналогией с водой:

Чтобы генерировать переменный ток в наборе водопроводных труб, мы соединяем механический кривошип с поршнем, который перемещает воду по трубам вперед и назад (наш «переменный» ток).Обратите внимание, что защемленный участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.

Формы сигналов

AC может быть разных форм, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения с течением времени, мы можем увидеть несколько различных форм сигналов. Наиболее распространенный тип переменного тока - синусоидальный. Переменный ток в большинстве домов и офисов имеет колебательное напряжение, которое создает синусоидальную волну.

Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:

Прямоугольные волны часто используются в цифровой и переключающей электронике для проверки их работы.

Треугольные волны используются при синтезе звука и используются для тестирования линейной электроники, такой как усилители.

Описание синусоидальной волны

Мы часто хотим описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоиду. Синусоидальная волна состоит из трех частей: амплитуда, частота и фаза .

Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:

V (t) - это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени. Уравнение справа от знака равенства описывает, как напряжение изменяется во времени.

V P - амплитуда . Это описывает максимальное напряжение, которое наша синусоида может достичь в любом направлении, а это означает, что наше напряжение может быть + V P вольт, -V P вольт или где-то посередине.

Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

- это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радианы в секунду).

f описывает частоту синусоидальной волны. Это дается в виде герц или единиц в секунду . Частота показывает, сколько раз определенная форма волны (в данном случае один цикл нашей синусоидальной волны - подъем и спад) происходит в течение одной секунды.

t - наша независимая переменная: время (измеряется в секундах). Со временем меняется и форма нашего сигнала.

φ описывает фазу синусоидальной волны. Фаза - это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360 и измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °.Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем вставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам, возможно, придется использовать «y» вместо «v» в уравнении, чтобы увидеть график).

Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и понижается до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоидальной волны. Если бы мы измеряли напряжение в розетках с помощью осциллографа, мы бы увидели именно это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерять напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).

ПРИМЕЧАНИЕ: Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В. Это тоже правильно.Как? Говоря об переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичный корень». (RMS). Когда вы хотите рассчитать электрическую мощность, часто бывает полезно использовать значение RMS для переменного тока. Несмотря на то, что в нашем примере у нас было напряжение, изменяющееся от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

Приложения

В розетках дома и в офисе почти всегда есть кондиционер. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно просто.При высоком напряжении (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокое напряжение означает более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.

AC также может питать электродвигатели. Двигатели и генераторы представляют собой одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на выводах генерируется напряжение!).Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от переменного тока.


← Предыдущая страница
Thunderstruck!

Зависимость переменного тока (AC) от постоянного (DC)

Добавлено в избранное Любимый 46

Битва течений

Почти каждый дом или офис подключен к сети переменного тока. Однако это решение не было мгновенным.В конце 1880-х годов различные изобретения в Соединенных Штатах и ​​Европе привели к полномасштабной битве между распределением переменного и постоянного тока.

В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссии в следующем году. .

переменного тока и постоянного тока

Томас Эдисон (Изображение любезно предоставлено biography.com)

В конце 1800-х годов постоянный ток было нелегко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые питали бы отдельные кварталы или участки города. Электроэнергия распределялась по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Освещение и двигатели можно подключить между розеткой + 110 В или 110 В и 0 В (нейтраль). 110 В допускает некоторое падение напряжения между установкой и нагрузкой (дома, в офисе и т. Д.).).

Несмотря на то, что падение напряжения на линиях электропередач было учтено, электростанции необходимо было располагать в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

Используя патенты Tesla, компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и его снижения до приемлемого уровня. При более высоких напряжениях та же мощность могла передаваться при гораздо меньшем токе, что означало меньшие потери мощности из-за сопротивления проводов.В результате крупные электростанции могут быть расположены за много миль и обслуживать большее количество людей и зданий.

Кампания по выявлению мазков Эдисона

В течение следующих нескольких лет Эдисон провел кампанию по категорическому противодействию использованию AC в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации о AC. Эдисон также приказал нескольким техникам публично казнить животных переменным током, пытаясь показать, что переменный ток опаснее постоянного тока. Пытаясь показать эти опасности, Гарольд П.Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк с использованием переменного тока.

Возвышение AC

В 1891 году Международная электротехническая выставка проводилась во Франкфурте, Германия, и на ней была показана первая передача трехфазного переменного тока на большие расстояния, которая питала фары и двигатели на выставке. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены выставкой. В следующем году была создана компания General Electric, которая начала инвестировать в технологии переменного тока.

Электростанция Эдварда Дина Адамса на Ниагарском водопаде, 1896 г. (Изображение предоставлено teslasociety.com)

Westinghouse выиграл контракт в 1893 году на строительство плотины гидроэлектростанции, чтобы использовать энергию Ниагарского водопада и передавать переменный ток в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и в Буффало начали использовать переменный ток. Эта веха ознаменовала упадок DC в США. В то время как Европа примет стандарт переменного тока 220–240 В при 50 Гц, стандартом в Северной Америке станет 120 В при 60 Гц.

Высоковольтный постоянный ток (HVDC)

Швейцарский инженер Рене Тюри в 1880-х годах использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока, которую можно было использовать для передачи постоянного тока на большие расстояния. Однако из-за высокой стоимости и высокой стоимости обслуживания систем Thury HVDC никогда не применялся в течение почти столетия.

С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование между переменным и постоянным током. Для генерации постоянного тока высокого напряжения (иногда до 800 кВ) можно использовать специальное оборудование.Некоторые страны Европы начали использовать линии HVDC для электрического соединения различных стран.

В линиях

HVDC потери меньше, чем в аналогичных линиях переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.

В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания. Переменный ток и постоянный ток могут сосуществовать, и каждый служит определенной цели.


← Предыдущая страница
Постоянный ток (DC)

Переменный ток (AC) против постоянного тока (DC), руководство для вас

Вы когда-нибудь задумывались, какие токи проходят по вашим проводам? Это руководство проведет вас через 2 типа токов; Альтернативный ток (AC), постоянный ток (DC) и что все это значит.

В этом руководстве я расскажу о самых важных вещах, начиная с:
  • Что такое переменный и постоянный ток
  • Различия между переменным и постоянным током
  • Преобразование переменного тока в постоянный
  • Использование переменного или постоянного тока
  • Приложения переменного и постоянного тока
  • Связь с переменным и постоянным током

Переменный ток и постоянный ток

Переменный ток (AC)
  • Форма тока, которая периодически меняет направление, колеблясь вперед и назад
Постоянный ток (DC)
  • Форма тока, которая течет только в одном направлении, обеспечивая постоянное напряжение / ток

В чем различия?

AC DC
Форма волны
произведено
Чаще всего дает синусоидальную волну При постоянном напряжении / токе появляются горизонтальные волны
Сгенерировано Генератор, электрический генератор, предназначенный для производства переменного тока Коммутатор
Выпрямитель, преобразует переменный ток в постоянный ток
Батареи за счет выработки в результате внутренней химической реакции
Пригодность для передачи на большие расстояния Подходит, потери передачи небольшие Менее подходит, потери передачи больше, если напряжение не достаточно высокое.
Использование Менее подходит для электронных продуктов, если питание не переключается на постоянный ток через выпрямитель Подходит для электронных продуктов
Уровень безопасности Нижний уровень безопасности
Переменное напряжение может вызвать попадание тока в тело человека без замкнутого контура
Более высокий уровень безопасности
Постоянный ток, обычно встречающийся в электрических приборах, обычно более безопасен

Преобразование переменного тока в постоянный?

Хотя переменный и постоянный ток работают по-разному, они не должны работать как отдельная цепь из-за наличия преобразователя переменного тока в постоянный.

Преобразователь называется выпрямителем, где он преобразует входной переменный ток в выходной постоянный ток путем изменения направленного потока тока.

AC vs DC, что использовать?

Передача энергии на большие расстояния:
  • переменного тока: возможность увеличения напряжения через трансформаторы приводит к меньшему сопротивлению в проводах, что может обеспечить эффективную передачу электроэнергии на большие расстояния
  • постоянного тока: высокая сложность и стоимость эффективного создания высокого напряжения постоянного тока

Победитель: переменного тока , тот, который выполняет свою работу, если вы хотите передавать мощность на большие расстояния

Легкость использования / Простота:
  • AC: простой в эксплуатации за счет использования проводов и трансформаторов для регулировки напряжения
  • DC: невозможно удобно преобразовать напряжения из-за сложных схем

Победитель: переменный ток, удобство и гибкость, которые он может принести, сбивают его с толку оппозиция.

Совместимость с электроникой:
  • AC: Менее совместим с электроникой из-за изменения направления тока.
  • DC: Больше совместим с электроникой, так как ток течет в одном направлении.

Победитель: DC, решение для питания вашей электроники.

Применение переменного и постоянного тока

AC
постоянного тока

Муфта: AC и DC

AC и DC также могут называться переменным (емкостным) соединением и прямым соединением.Муфта позволяет наблюдать напряжения и длины волн источника питания. Каждая форма связи приводит к разным результатам в данных при подключении к осциллографу.

Соединение переменного тока и соединение постоянного тока
Муфта переменного тока Муфта постоянного тока
Показывать и разрешать прохождение только сигналов переменного тока через соединение Обеспечивает прохождение сигналов переменного и постоянного тока через соединение
Подходит для следующих датчиков:
Микрофоны ICP
Акселерометры ICP
Тензометры (только для упругих или динамических характеристик)
ВСЕ преобразователи ICP / IEPE
Подходит для следующих датчиков:
Термопары
Акселерометр постоянного тока
Тензометрические датчики
Пусковое соединение с:

DSO Nano V3: портативный осциллограф с функцией связи по постоянному току для измерения напряжения

DSO Nano V3 - это простой в использовании и компактный осциллограф, отвечающий основным требованиям пользователей, начиная от лабораторных испытаний в школе, заканчивая электротехникой и т. Д.

Характеристики продукта:

  • Портативный и легкий
  • Цветной дисплей
  • Сохранение и воспроизведение сигналов
  • 6 режимов запуска
  • Аналоговая полоса пропускания 200 кГц
  • Полные маркеры измерения и характеристики сигнала
  • Встроенный генератор сигналов
  • Доступные аксессуары
  • Открытый исходный код
  • Сводка

    Выбор между использованием постоянного и переменного тока зависит от цели и требований вашего проекта.Постоянный ток рекомендуется для питания электронных устройств из-за того, что батареи питаются постоянным током. С другой стороны, простота модуляции переменного напряжения по-прежнему не имеет себе равных. С учетом сказанного, оба тока действительно превосходны в своей области, и все сводится к выбору правильного из пользовательского приложения.

    Следите за нами и ставьте лайки:

    Продолжить чтение

    Разница между переменным током (AC) и постоянным током (DC)

    В проводящих материалах есть свободные электроны, которые перемещаются от одного атома к другому, когда к ним прикладывается разность потенциалов.Этот поток электронов в замкнутой цепи называется током. В зависимости от направления движения электронов в замкнутой цепи электрический ток в основном подразделяется на два типа: переменный ток и постоянный ток.

    Одно из основных различий между переменным и постоянным током состоит в том, что в переменном токе полярность и величина тока меняются через равные промежутки времени, тогда как в постоянном токе они остаются постоянными.Некоторые различия объясняются ниже в форме сравнительной таблицы с учетом различных факторов;

    Содержание: переменный ток (AC) против постоянного (DC)

    1. Сравнительная таблица
    2. Определение
    3. Ключевые отличия
    4. Запомните

    Сравнительная таблица

    Basis Переменный ток Постоянный ток
    Определение Направление тока периодически меняется. Направление тока остается прежним.
    Причины потока электронов Вращение катушки в однородном магнитном поле или вращение однородного магнитного поля внутри неподвижной катушки Постоянное магнитное поле поперек провода
    Частота 50 или 60 Гц Ноль
    Направление потока электронов. Двунаправленный Однонаправленный
    Коэффициент мощности В пределах от 0 до 1 Всегда 1
    Полярность Имеет полярность (+, -) Не имеет полярности
    Получено из Генераторы переменного тока Генераторы, батареи, солнечные элементы и т. Д.
    Тип нагрузки Их нагрузка резистивная, индуктивная или емкостная. Их нагрузка обычно резистивная.
    Графическое представление Оно представлено нерегулярными волнами, такими как треугольная волна, квадратная волна, квадратная волна, синусоида. Представлен прямой линией.
    Передача Может передаваться на большие расстояния с некоторыми потерями. Его можно передавать на очень большие расстояния с незначительными потерями.
    Трансформируемый Легко преобразовать в постоянный ток Легко преобразовать в переменный ток
    Подстанция Для генерации и передачи требуется несколько подстанций Для генерации и передачи требуется больше подстанций
    Пассивный параметр Импеданс Сопротивление
    Harazdous Опасно Очень опасно
    Приложение Заводы, промышленность и бытовые цели. Гальваника, электролиз, электронное оборудование и т. Д.

    Определение переменного тока

    Ток, который периодически меняет свое направление, такой вид тока называется переменным током. Их величина и полярность также меняются со временем. В таких типах тока свободные электроны (электрический заряд) движутся как в прямом, так и в обратном направлении.

    Частота (количество циклов, завершенных за одну секунду) переменного тока от 50 до 60 Гц, зависит от страны.Переменный ток легко преобразуется из высокого значения в низкое и наоборот с помощью трансформатора. Таким образом, он в основном используется для передачи и распределения.

    Определение постоянного тока

    Когда электрический заряд внутри проводника течет в одном направлении, такой тип тока называется постоянным током. Величина постоянного тока всегда остается постоянной, а частота тока равна нулю. Он используется в сотовых телефонах, электромобилях, сварке, электронном оборудовании и т. Д.

    Графическое представление переменного тока показано на рисунке ниже.


    Ключевые различия между переменным током и постоянным током

    • Ток, который периодически меняет свое направление, такой вид тока называется переменным током. Постоянный ток однонаправлен или течет только в одном направлении.
    • Заряды в переменном токе протекают либо за счет вращения катушки в магнитном поле, либо путем вращения магнитного поля внутри неподвижной катушки.При постоянном токе заряды текут, поддерживая постоянный магнетизм вдоль провода.
    • Частота переменного тока составляет от 50 до 60 Гц в зависимости от стандарта страны, тогда как частота постоянного тока всегда остается нулевой.
    • Коэффициент мощности переменного тока находится в пределах от нуля до единицы, тогда как коэффициент мощности постоянного тока всегда остается равным единице.
    • Генератор переменного тока вырабатывает ток генератора. Постоянный ток вырабатывается генератором, батареей и элементами.
    • Нагрузка переменного тока бывает емкостной, индуктивной или резистивной. Нагрузка постоянного тока всегда имеет резистивный характер.
    • Переменный ток может быть графически представлен в виде волны различной неправильной формы, такой как треугольная волна, прямоугольная волна, периодическая волна, пилообразная волна, синусоида и т. Д. Постоянный ток графически представлен прямой линией.
    • Переменный ток передается на большие расстояния с некоторыми потерями, тогда как постоянный ток проходит на очень большие расстояния с незначительными потерями.
    • Переменный ток преобразуется в постоянный с помощью выпрямителя, а постоянный ток преобразуется в переменный ток с помощью инвертора.
    • Немногие подстанции требуют производства и передачи переменного тока. Для передачи постоянного тока требуются дополнительные подстанции.
    • Переменный ток используется в промышленности, на фабриках и в быту. Постоянный ток в основном используется в электронном оборудовании, импульсном освещении, гибридных транспортных средствах, гальванике, электролизе, для возбуждения обмотки возбуждения ротора и т. Д.

    Запомните

    Постоянный ток опаснее переменного тока. При переменном токе величина тока становится высокой и низкой через равные промежутки времени, а при постоянном токе величина остается неизменной. Когда человеческое тело подвергается электрошоку, переменный ток входит в тело и выходит из него через равные промежутки времени, тогда как постоянный ток воздействует на тело непрерывно.

    переменного и постоянного тока | Электричество переменного и постоянного тока

    Переменный ток, переменный ток и постоянный ток, постоянный ток - это две формы электрического тока, каждая из которых имеет свои преимущества и недостатки.Выбор переменного или постоянного тока зависит от применения и свойств переменного и постоянного тока.


    Учебное пособие по электрическому току Включает:
    Что такое электрический ток Единица измерения тока - Ампер ПЕРЕМЕННЫЙ ТОК


    Одно из основных различий в типе протекания тока в цепи заключается в том, является ли ток переменным, переменным или постоянным, постоянным.

    Электричество переменного и постоянного тока широко используются в электрических и электронных схемах, каждая из которых используется для разных целей.

    И переменный, и постоянный ток имеют свои особенности и дают разные преимущества, которые можно использовать в разных ситуациях.

    Что такое постоянный ток, DC

    Поскольку название подразумевает постоянный ток, постоянный ток - это форма электричества, которое течет в одном направлении - оно прямое, и это дало ему название.

    Постоянный ток в базовой схеме

    Характеристика постоянного тока, постоянного тока может быть отображена на графике. Здесь видно, что ток может быть либо положительным, либо отрицательным.

    График атрибутов постоянного тока

    Применения постоянный ток, постоянный ток

    Постоянный ток, DC используется во многих сферах:

    • Батареи: Батареи, как неперезаряжаемые, так и перезаряжаемые, могут питать только постоянный ток. Аккумуляторы также нуждаются в подзарядке постоянным током.
    • Электронное оборудование: Все оборудование, такое как компьютеры, радио, мобильные телефоны, и фактически все электронное оборудование использует постоянный ток для питания электронных схем.Биполярные транзисторы, полевые транзисторы и интегральные схемы, в которых используются эти компоненты, нуждаются в постоянном токе для питания их и будут повреждены, если будет установлена ​​обратная полярность. Хотя многие из этих элементов питаются от сети переменного тока, внутри устройства есть блок, называемый источником питания, который преобразует входящий переменный ток в постоянный ток с правильным напряжением (-ями) внутри электронного элемента.
    • Некоторое электрическое оборудование: Хотя во многих электрооборудовании используется переменный ток, в некоторых используется постоянный ток.
    • Солнечные панели: Солнечные панели, используемые для выработки электроэнергии, вырабатывают постоянный ток непосредственно от самих солнечных батарей. При использовании с сетью переменного тока для подачи в сеть или подачи местного питания переменного тока для источников переменного тока требуется блок, известный как инвертор, для обеспечения постоянного тока, постоянного тока от солнечных панелей для преобразования в переменный ток.

    Что такое переменный ток, AC

    Переменный ток, переменный ток отличается от постоянного.Как следует из названия, он течет сначала в одном направлении, а затем в другом.

    График, поясняющий переменный ток

    На приведенном выше графике показана форма волны тока, изменяющаяся как синусоида, при этом ток сначала движется в одном направлении, а затем в другом.

    Чаще всего наблюдаются колебания напряжения. Опять же, для переменного сигнала напряжение будет изменяться в положительную и отрицательную сторону.

    Как для тока, так и для напряжения видно, что форма сигнала меняется, становясь в этом примере сначала положительной, а затем отрицательной.

    Напряжение для синусоидальной волны переменного тока

    Синусоидальную волну легко представить и понять, но большое количество других форм волны также могут составлять переменную форму волны с переменным током.

    Есть несколько важных моментов в отношении чередующихся сигналов. Первый - это период времени для сигнала. Это время от точки в одном цикле формы волны до идентичной пинты в следующем цикле. Часто пик легче всего увидеть, как показано, но можно взять любую точку - например, когда определенное напряжение достигается в заданном направлении - это может быть точка срабатывания напряжения и т. Д.Нулевые переходы - еще одна возможность, которую легко определить.

    Еще одна особенность переменного сигнала - его частота. Это количество раз, когда заданная точка формы сигнала видна в течение секунды, и измеряется в герцах, Гц, где 1 Гц - это один цикл в секунду. Показанный пример имеет частоту 3 Гц, так как в течение секунды наблюдаются три цикла.

    В качестве других примеров частота сети электропитания составляет 50 или 60 Гц в зависимости от страны. В Европе и многих других странах используется 50 Гц, тогда как в Северной Америке, странах Карибского бассейна и некоторых странах Южной Америки используется 60 Гц.

    Приложения переменного тока

    Переменный ток обычно используется для распределения энергии. Его преимущество заключается в том, что его можно легко преобразовать в другие напряжения с помощью простого трансформатора - трансформаторы не работают с постоянным током.

    Если мощность распределяется при высоком напряжении, потери намного ниже. Возьмем, к примеру, источник питания на 250 В с током 4 А и сопротивлением провода 1 Ом. В качестве мощности, Вт = вольт x ампер, передаваемая мощность составляет 1000 Вт.Потери мощности составляют I 2 x R = 16 Вт.

    При передаче электроэнергии высокого напряжения используется переменный ток

    Если линия напряжения передает 4 А, но имеет напряжение 250 000 вольт, т. Е. 250 кВ, и линия передает 4 А, тогда потери мощности остаются такими же, но в целом Система передачи несет 1 МВт, а 16 Вт - это почти незначительные потери.

    Именно по этой причине для передачи энергии используются высокие напряжения, которые затем снижаются до относительно безопасного уровня для использования в жилых и коммерческих помещениях.

    Ввиду того, что в системе питания используется переменный ток, он также используется в двигателях, для отопления и во многих других изделиях без необходимости его преобразования в постоянный ток.

    переменного тока и постоянного тока

    Во многих областях может быть принято решение о выборе переменного или постоянного тока и о том, какая форма питания лучше всего подходит для данного приложения.

    Переменный ток, переменный и постоянный ток, постоянный ток имеют свои преимущества и недостатки, но это означает, что есть возможность выбрать лучший вариант для любого конкретного использования или применения.Переменный ток, переменный ток обычно используется для распределения электроэнергии, поэтому сетевые розетки в наших домах и на работе обеспечивают переменный ток для питания всего необходимого, но постоянный ток более широко используется для самих плат электроники и для многих другие приложения.

    Источники переменного и постоянного тока широко используются в электротехнической и электронной промышленности, каждый в своей области.

    И переменный, и постоянный ток могут обеспечивать передачу электроэнергии, но с немного разными преимуществами.

    Дополнительные основные понятия:
    Напряжение Текущий Сопротивление Емкость Мощность Трансформеры RF шум Децибел, дБ Q, добротность
    Вернуться в меню «Основные понятия». . .

    Переменный ток и постоянный ток и его приложения

    И переменный ток, и постоянный ток описывает два типа тока, протекающего в цепи. В постоянном токе электрический заряд или ток течет в одном направлении.В переменном токе электрический заряд периодически меняет направление. Напряжение в цепях переменного тока также иногда меняется на противоположное, потому что ток меняет направление. Большая часть цифровой электроники, которую вы создаете, используя постоянный ток. Тем не менее, некоторые концепции переменного тока легко понять. Большинство домов подключены к сети переменного тока, поэтому, если у вас есть идея подключить свой проект мелодической коробки Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный. У переменного тока также есть некоторые полезные свойства, такие как возможность преобразовывать уровни напряжения с помощью одного компонента, например трансформатора, поэтому изначально мы должны выбрать средства переменного тока для передачи электричества на большие расстояния.

    Что такое переменный ток (AC)

    Переменный ток означает поток заряда, который периодически меняет направление. В результате уровень напряжения также меняется на противоположный вместе с током. Переменный ток используется для подачи энергии в дома, здания, офисы и т. Д.


    Генерация переменного тока

    Переменный ток можно производить с помощью устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.

    Генерация переменного тока

    Проволочная петля вращается внутри магнитного поля, которое индуцирует ток по проводу.Вращение провода происходит от различных источников, таких как паровая турбина, ветряная турбина, проточная вода и так далее. Поскольку провод периодически поворачивается и меняет магнитную полярность, напряжение и ток на проводе чередуются. Вот небольшая анимация, демонстрирующая этот принцип:

    Чтобы генерировать переменный ток в наборе водопроводных труб, мы подключаем механические характеристики поршня, который перемещает воду по трубам вперед и назад (наш «переменный» ток).

    Формы сигналов

    Переменный ток может поступать в нескольких формах сигналов, если ток и напряжение чередуются.Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения, в течение длительного времени мы можем увидеть несколько различных форм сигналов. Синусоидальная волна - наиболее распространенный тип переменного тока. Переменный ток в большинстве домов и офисов имеет колебательное напряжение, которое создает синусоидальную волну.


    Синусоидальная волна

    Другие формы переменного тока включают прямоугольную волну и треугольную волну. Прямоугольные волны часто используются в цифровой и переключающей электронике, а также используются для тестирования их работы.

    Прямоугольная волна

    Треугольная волна полезна для тестирования линейной электроники, такой как усилители.

    Треугольная волна
    Описание синусоидальной волны

    Нам часто требуется описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоиду. Синусоидальная волна состоит из трех частей: частоты, амплитуды и фазы.

    Рассматривая только напряжение, мы можем описать математическое уравнение синусоидальной волны:

    В (t) = Vp sin (2πft + Ø)

    В (t) - это наше напряжение как функция времени, что означает что наше напряжение меняется со временем.

    VP - амплитуда. Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, означает, что наше напряжение может быть + VP вольт, -VP вольт.

    Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

    2π - постоянная, преобразующая частоту из циклов или герц в угловую частоту (радиан в секунду).

    f указывает частоту синусоидальной волны. Это указывается в герцах или единицах в секунду.

    t - наша зависимая переменная: время (измеряется в секундах). Со временем меняется и форма нашего сигнала.

    φ описывает фазу синусоидальной волны. Фаза - это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360 и измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °. Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

    Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем вставить эти числа в нашу формулу, чтобы получить уравнение

    V (t) = 170 sin (2π60t)

    Мы можем использовать наш удобный графический калькулятор для построения графика этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos.

    Приложения

    Домашние и офисные розетки почти всегда используются в сети переменного тока. Это связано с тем, что создание и транспортировка переменного тока на большие расстояния относительно просты. При высоком напряжении, например, более 110 кВ, меньше энергии теряется при передаче электроэнергии. Более высокое напряжение означает более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовать из высокого напряжения с помощью трансформаторов.

    AC также может питать электродвигатели.Двигатели и генераторы - это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую. Это полезно для многих крупных бытовых приборов, таких как холодильники, посудомоечные машины и т. Д., Которые работают от переменного тока.

    Что такое постоянный ток (DC)

    Постоянный ток означает однонаправленный поток электрического заряда. Он производится из таких источников, как батареи, источники питания, солнечные элементы, термопары или динамо-машины. Постоянный ток может течь в проводнике, таком как провод, но также может течь через изоляторы, полупроводники или вакуум, как в электронных или ионных пучках.

    Генерация постоянного тока

    Постоянный ток может генерироваться несколькими способами

    • Генератор переменного тока, подготовленный с помощью устройства, называемого «коммутатор», может производить постоянный ток
    • Преобразование переменного тока в постоянное с помощью устройства, называемого «выпрямителем»
    • Батареи вырабатывают постоянный ток, который образуется в результате химической реакции внутри батареи.

    Используя нашу аналогию с водой, можно сказать, что постоянный ток похож на резервуар с водой со шлангом на конце.

    Генерация постоянного тока

    Бак может выталкивать воду только в одном направлении: из шланга.Как и в случае с нашей батареей постоянного тока, когда резервуар пуст, вода больше не течет по трубам.

    Описание постоянного тока

    Постоянный ток определяется как «однонаправленный» ток; и ток течет только в одном направлении. Напряжение и ток могут изменяться в течение длительного времени, поэтому направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, батарея обеспечивает 1,5 В, что можно описать математическим уравнением как:

    В (t) = 1.5V

    Если мы построим график с течением времени, мы увидим постоянное напряжение

    График постоянного тока

    Приведенный выше график означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение с течением времени. На самом деле батарея будет медленно разряжаться, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.

    Приложения

    Все проекты в области электроники и запчасти для продажи на SparkFun работают на DC.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *