Единицы измерения сопротивления изоляции – Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Содержание

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Подборка видео по теме

www.asutpp.ru

Мегаомметр — Википедия

Мегаомме́тр (от мегаом и -метр; устаревшее название — мего́мметр) — электроизмерительный прибор, предназначенный для измерения больших значений сопротивлений. Отличается от омметра тем, что при измерении сопротивления в измеряемую цепь подаётся относительно высокое напряжение (в большинстве моделей — 100, 500, 1000 или 2500 вольт).

Мегомметр — устаревшее название мегаомметра. В соответствии с ГОСТ 2.105 в документах не допускается применение оборотов разговорной речи, техницизмов, произвольных словообразований.

Имеется два типа мегаомметров — индукторный и безындукторный. В индукторных приборах для получения испытательных высоких напряжений используется встроенный электромеханический генератор (индуктор) постоянного напряжения с ручным приводом от рукоятки, работающий по принципу динамо-машины. В безындукторных мегаомметрах в качестве источника постоянного высокого испытательного напряжения применяется электронный инвертор с выпрямителем, питаемый от встроенных в прибор аккумуляторов или сменных гальванических элементов.

В качестве индикатора в индукторных мегаомметрах применяются стрелочные логометры, в безындукторных (электронных) — магнитоэлектрический прибор, либо ЖКИ.

Обычно мегаомметр используется для измерения сопротивления изоляции силовых кабелей, электрических разъёмов, межобмоточного сопротивления трансформаторов, электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов (диэлектриков).

По измеренным сопротивлениям вычисляют коэффициенты абсорбции (увлажненности) и поляризации (старения изоляции).

Достоинством индукторных (механических) мегаомметров является полная автономность и независимость от источников питания. Достоинством многих современных моделей безындукторных (электронных) — возможность автоматического вычисления коэффициента абсорбции, наличие регистров памяти, широкий диапазон установок испытательного напряжения и др.

Измерение мегаомметром сопротивления изоляции[править | править код]

Мегаомметр М1101М. Мегаомметр с ручным приводом генератора напряжения.

Сопротивление изоляции характеризует её состояние в данный момент времени и может изменяться от влияния внешних условий, так как зависит от ряда факторов, основными влияющими факторами являются температура и влажность изоляции в момент проведения измерения.

В ГОСТ 183-74 нормы на допустимое минимальное сопротивления изоляции не нормируются, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они обычно установливаются в стандартах на конкретные виды машин или в технических условиях на изделия или материалы с обязательным указанием температуры, при которой должны проводиться измерения, и методики пересчета измеренного сопротивления, приведенного к стандартным условиям, если измерения проводились при иной температуре обмоток.

Измерение сопротивления изоляции обмоток устанавливает возможность проведения испытаний изоляции рабочим высоким напряжением без риска электрического пробоя исправной, но имеющей повышенную влажность изоляции.

Измерения проводятся мегаомметром, испытательное напряжение которого выбирается в зависимости от номинального рабочего напряжения испытуемой изоляции. Для устройств с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для устройств с напряжением до 3000 В — мегаомметры на 1000 В, для устройств с номинальным напряжением 3000 В и более — мегаомметры на 2500 В и выше.

О степени увлажнённости изоляции судят не только по значению сопротивления в момент измерения, но и по характеру изменения показания мегаомметра в процессе измерения, которое обычно проводят в течение 1 мин. При этом запись показаний прибора производят спустя 15 с после подачи испытательного напряжения (время достаточное для установления показаний), это сопротивление обозначается R15" и в конце измерения — через 60 с после начала — обозначение R60". Отношение этих показаний R60"/R15" называют коэффициентом абсорбции (КА). Его значение определяет отношение тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции КА близок к 1. При сухой изоляции величина R60" на 30—50 % больше, чем величина R15".

Мегаомметром измеряется также сопротивление изоляции термопреобразователей, встроенных в электрические машины, и сопротивление изоляции проводов, соединяющих термопреобразователи с внешними зажимами.

Сопротивление изоляции термопреобразователей измеряется относительно корпуса устройства и относительно обмоток машины. Эта изоляция не предназначена для работы при высоких напряжениях обмоток машины, поэтому измерение её сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.

Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания токов подшипников машинах со стояковыми подшипниками[прояснить].

Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегаомметрами с различными номинальными напряжениями, либо мегаомметром с переключаемым испытательным напряжением.

ru.wikipedia.org

Измерение сопротивления изоляции: полное руководство

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Внешние загрязнения:

 

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

 

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение PI (нормы)

Состояние изоляции

<2

Проблемное

От 2 до 4

Хорошее

> 4

Отличное

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение DAR (нормы)

Состояние изоляции

<1,25

Неудовлетворительное

<1,6

Нормальное

>1,6

Отличное

 

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

DD (нормы)

Состояние

> 7

Очень плохое

От 4 до 7

Плохое

От 2 до 4

Сомнительное

<2

Нормальное

Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.

Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).

При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.

Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.

 

Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.

Нормы испытательного напряжения для кабелей/оборудования

Рабочее напряжение кабеля/оборудования

Нормы испытательного напряжения постоянного тока

От 24 до 50 В

От 50 до 100 В постоянного тока

От 50 до 100 В

От 100 до 250 В постоянного тока

От 100 до 240 В

От 250 до 500 В постоянного тока

От 440 до 550 В

От 500 до 1000 В постоянного тока

2400 В

От 1000 до 2500 В постоянного тока

4100 В

От 1000 до 5000 В постоянного тока

От 5000 до 12 000 В

От 2500 до 5000 В постоянного тока

> 12 000 В

От 5000 до 10 000 В постоянного тока

 

В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).

Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.

Безопасность при тестировании изоляции

Перед тестированием

A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.

B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).

C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.

D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.

E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.

После тестирования

К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.

Часто задаваемые вопросы

 

Результат моих измерений – x МОм. Это нормально?

Какое должно быть сопротивление изоляции - на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.

Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?

Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.

Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?

При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.

  • Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
  • Используйте чистые, сухие провода.
  • Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
  • Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
  • Для стабилизации измерения выждите необходимое время.

Почему два последовательных измерения не всегда дают одинаковый результат?

Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.

Как протестировать изоляцию, если я не могу отключить установку?

Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.

Как выбрать измеритель сопротивления изоляции (мегомметр)?

При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:

  • Какое максимальное испытательное напряжение необходимо?
  • Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
  • Какое максимальное значение сопротивления изоляции будет измеряться?
  • Как будет подаваться питание на мегомметр?
  • Каковы возможности хранения результатов измерений?

Примеры измерений сопротивления изоляции

Измерение изоляции на электрической установке, электрооборудовании

Измерение изоляции на вращающейся машине (электродвигатель)

Измерение изоляции на электроинструменте

Измерение изоляции на трансформаторе

Измерение сопротивления изоляции трансформатора производят следующим образом:

a. Между высоковольтной обмоткой и низковольтной обмоткой и землей

 

b. Между низковольтной обмоткой и высоковольтной обмоткой и землей

 

c. Между высоковольтной обмоткой и низковольтной обмоткой

 

d. Между высоковольтной обмоткой и землей

 

e. Между низковольтной обмоткой и землей

 

Подробнее о приборах для проверки изоляции высоковольтных кабелей смотрите в этом разделе.

 

skomplekt.com

сопротивления изоляции электрооборудования, кабеля мегаомметром, единицы и схема

Мегомметры используются для обнаружения сбоя изоляции внутри двигателей и трансформаторов. Замеры изоляции выполняются путем подачи высокого напряжения в обмотки этих электрических устройств. Подача его приведет к обнаружению ослабленной изоляции и потребует вывода из строя оборудования.

Напряжения, используемые в испытаниях изоляции мегомметров, могут варьироваться от 50 В до 5000 В. Подав такой ток в обмотки двигателя или трансформатора, можно определить, есть ли ухудшение изоляции электропроводки. Если это так, ток будет течь из обмоток. Выходящий ток приведет к замыканию на землю или КЗ обмоток двигателя и трансформатора.

Измерение сопротивления

Что это такое

Мегомметр — это омметр с особой конструкцией для тестирования сопротивления. Требование государственных норм по безопасности электроустановок обязывает проводить испытания на прочность изоляции до ввода электрооборудования в эксплуатацию, а также при обслуживании его электротехническим персоналом. Для этого цели используют мегомметры, обеспечивающих высокое напряжение постоянного тока от 500 В до 5 кВ и даже 15 кВ в соответствии с указанной токовой емкостью. Допустимые параметры по сопротивлению изолятора — от 1 до 10 МОм, в зависимости от условий эксплуатации.

Что такое мегомметр

Мегомметр имеет следующие элементы:

  1. В механических приборах динамомашина запускаемая измерителем с помощью вращения ручки с разрешённой частотой 2 об/сек, создает напряжение.
  2. Электронные приборы запитываются от источников: сеть, аккумуляторные устройства. Они работают с использованием закона Ома. Измеряется ток, проходящий между 2-мя включенными точками, например, 2 жилы кабеля, жилой и землей или другие варианты подключения.
  3. Замер осуществляются по эталонному напряжению, указанному изначально в режимных картах обслуживания электрооборудования.
  4. Прибор, использует напряжение и ток, и на их базе вычисляет сопротивление изоляции.
  5. Генератор вырабатывает постоянное напряжение.
  6. Устройство имеет возможность изменять диапазоны тестирования тумблером-переключателем, коммутирующим разные сопротивления изменяющих режим замеров и исходящее напряжение.

Принцип работы

Тестирование состояния изоляции, было разработано в начале 20-го века и является старейшим и наиболее широко используемым измерительным процессом в современной электротехнике и проводится согласно государственным стандартами электробезопасности. Это вызвано тем, что даже без видимых повреждений в изоляции кабельных сетей, ее сопротивление может стать недостаточным, чтобы защитить человека от воздействия токов высокого напряжения.

Принцип работы

Факторы, способствующие ухудшению изоляции:

  1. Температурный. Перепады температур с холодной на горячую, и наоборот с течением времени вызывают растрескивание изоляции.
  2. Электрический. Все кабели изготавливаются для определенных условий эксплуатации. Нарушений заводских условий использования может подвергнуть кабель к перенапряжению с потерей изоляции своих защитных свойств.
  3. Физический. Повреждение изоляции из-за нарушений эксплуатации или других неправомерных действий обслуживающего персонала.
  4. Химический. Моторное масло, грязь и пыль могут оказывать неблагоприятное химическое воздействие на изоляцию проводов.
  5. Окружающая среда. Этот фактор всегда воздействует на защитное покрытие кабелей: ультрафиолетовые лучи, влажность, снег и природные факторы, что должно учитываться разработчиками кабельной продукции.

Измерение сопротивления

Принцип работы меггера:

  1. Напряжение для тестирования ручным мегомметром получают путем вращения кривошипа, электронного типа — аккумулятором.
  2. 500В DC достаточно для выполнения тестирования систем работающих с напряжением до 440 В, а режим 1000 В до 5000 В — для испытаний высоковольтных электрических систем.
  3. Отклоняющая или токовая катушка соединена последовательно и позволяет пропускать электрический ток, принимаемый проверяемой цепью.
  4. Катушка управления, подключена к цепи.
  5. Токоограничивающий резистор (CCR и PCR) соединен последовательно с катушкой управления для защиты от повреждения в случае очень низкого сопротивления во внешней цепи.
  6. В мегомметре с ручным управлением эффект электромагнитной индукции используется для создания тестового напряжения. По мере увеличения его во внешней цепи, отклонение указателя увеличивается и уменьшается с увеличением тока.
  7. Работа тестера базируется на принципе омметра. Крутящий момент создается мегомметром из-за магнитного поля, создаваемого напряжением и током, аналогично закону Ома. Крутящий момент мегомметра меняется пропорционально V/I: V = IR или R = V / I, единица 1 Ом.
  8. Измеряемое электрическое сопротивление подключается через генератор и последовательно с отклоняющей катушкой. Когда проверяемая электроцепь разомкнута, крутящий момент из-за катушки напряжения будет максимальным, а стрелка показывать «бесконечность», что означает отсутствие короткого замыкания во всей цепи и имеет максимальное сопротивление в проверяемой цепи.

Важно! Если имеется КЗ, указатель показывает «ноль», что означает полное отсутствие сопротивление изоляционного покрытия.

Виды тестеров

При эксплуатации электрических устройств широко используются цифровые мегомметры модели: Ф4101/4102 от 100.0 до 1000.0 В. Наладчики до сих пор работают с марками тестеров М4100/1, 4100/5 и МС-05 м от 100.0 до 2500.0 В. Выбор типоразмера мегомметра базируется по номинальному сопротивлению тестируемого устройства: силовые кабели и трансформаторы, машины и изоляторы. Для определения состояния изоляции в электроустановках до 1000.0 В допускается применять мегомметры от 100.0-1000.0 В, а в установках более 1000.0 В — 1000.0-2500.0 В.

Устройства также классифицируются по генерируемому напряжению и пределам сопротивления в МОм:

  • 500.0 В — 500.0;
  • 1000.0 В — 1000.0;
  • 2500.0 В — 2500.0.

Дополнительная информация. Приборы также разнятся классами точности. У популярной модели М4100 погрешностью не более 1%, а у марки Ф4101 до 2,5%. Выбор приборов тестирования электроустановок выполняют с учетом допустимых эксплуатационных показателей.

Электронный измеритель

Электронный измеритель

Цифровой или электронный тестер — современный вид оборудования, оснащен производительным генератором с полевыми транзисторами. Замеры выполняются путем сопоставления падения напряжения в эталонной цепи с фиксированным сопротивлением. Результаты демонстрируются на панели. Функция сохранения результатов тестирования накапливает данные для последующего анализа. Эта модель отличается от аналоговых приборов компактными размерами и малым весом.
Преимущества цифрового тестера:

  • Высокий уровень точности, позволяет определять сопротивление на больших участках цепи;
  • удобная легко читаемая цифровая панель;
  • технологическая доступность для измерения одним пользователем;
  • прекрасно работает даже в очень загруженном пространстве;
  • удобный и безопасный в использовании.

Недостатки электронного типа мегомметра:

  • Требуется внешний источник энергии;
  • высокие цены на изделия.

Электромеханический измеритель

Электромеханический прибор

Эти модели имеют аналоговый дисплей на передней панели тестера и ручную рукоятку, используемую для вращения и выработки напряжения, которое проходит через электрическую систему.

Преимущества ручного мегомметра:

  1. Остается важным в современном высокотехнологичном мире, оставаясь самым старым методом определения значения сопротивления.
  2. Для работы не требуется внешний источник.
  3. Низкие цены на рынке.

Недостатки ручного мегомметра:

  1. Для работы требуется не менее 2 человек, один для вращения ручки, другой для подключения мегомметра к проверяемой электрической системе.
  2. Низкая точность измерения.
  3. Требует большое свободное место для размещения.
  4. Предоставляет аналоговый результат измерения.
  5. Высокие требования к безопасности при использовании.

Особенности конструкции схемы:

  1. Отклоняющая и управляющая катушка — подключены параллельно генератору, установлены под прямым углом друг к другу и поддерживают полярность таким образом, чтобы создавался крутящий момент в противоположном направлении.
  2. Постоянные магниты, создают магнитное поле для отклонения указателя с помощью магнитного полюса «Север-Юг».
  3. Указатель — один конец, связанный с катушкой, другой отклоняется по шкале от бесконечности до «0».
  4. Масштаб предоставляется в верхней части мегомметра от диапазона «ноль» до «бесконечности» и позволяет пользователю прочитать значение.
  5. Подключение источника постоянного тока (DC) или аккумулятора.
  6. Испытательный режим вырабатывается генератором для мегомметра с ручным управлением. Аккумулятор или электронное зарядное устройство предусмотрено для цифрового мегомметра с той же целью.

Обратите внимание! Сопротивление токовой катушки помогает защитить тестер от любых повреждений при испытании из-за низкого внешнего электросопротивления.

Инструкция по эксплуатации

Перед проведением тестирования сопротивления изоляции, проверяют исправность самого аппарата. Например, на тестере М 4100, устроено две шкалы: верх — для Мом, а низ — кОм.

Подготовительные работы

Методика измерения сопротивления изоляции электрооборудования в МОм:

  • Присоединяют щупы к 2-м клеммам, расположенным слева, при этом они между собой остаются не соединенными;
  • крутят ручку и снимают показания по указанию стрелки, при рабочем состоянии объекта измерения она идет влево к бесконечности;
  • соединяют щупы, при активации генератора тестера (проверки) стрелка будет двигаться вправо к «0».

Методика тестирования в кОм:

  1. Ставят перемычки на 2 левые клеммы, при этом щупы не соединены.
  2. Вращают рукоятку прибора и контролируют данные. При готовности тестера стрелка уходит вправо.
  3. Замыкают щупы и вращением рукоятки прибора заставляют стрелку двигаться влево к нулю на нижней шкале.
  4. После проверки исправности прибора подготавливают рабочее место и убеждаются, что токоведущие отключены.
  5. Проверяют отсутствие напряжения аттестованным прибором.
  6. Заземляют части оборудования, его можно будет снять только после завершения работ с тестером.
  7. Измерительные щупы тестера берутся исключительно за изолирующие части, а в установках 1000.0 В еще и с использованием диэлектрических перчаток.
  8. При проведении измерений — запрещено дотрагиваться к токоведущим частям.
  9. По окончанию тестирования — снимают заряд с подающих ток частей устройств с помощью кратковременного касания к ним заземляющим проводом, для предупреждения короткого замыкания, а также и с тестера, прикасаясь приборными щупами, друг к другу.

Измерение сопротивления

Инструкция по измерению сопротивления изоляции

К выполнению работ в электроустановках допускаются лица не моложе 18 лет, получивших обучение и аттестованных на знание правил безопасной эксплуатации электроустановок, наряд-допуск на выполнение работ.

Работа электрика по замеру сопротивления

Измерение сопротивления изоляции кабеля мегомметром:

  1. До начала тестирования очищают жилы отвнешних загрязнений, в точке замера иначе они дадут плохие результаты при исправном кабеле.
  2. Мегомметр обязан иметь госпроверку, а его провода надежную изоляцию не менее 10.0 МОм.
  3. Если при тестировании в цепи имеется электросчетчик, отключают все фазные и нулевую жилу от тестируемого объекта. В противном случае получатся показания с коротким замыканием.
  4. При последовательном тестировании участков кабеля, отсоединяют нулевые жилы от общей шины, иначе будут равные результаты на всех участках.
  5. Если протяженность емкостной цепи свыше 1000 м, то заряд снимают с использованием особой штанги.
  6. Допускается выполнять тестирование соединительных проводов, со значениями не меньше верхнего предела шкалы тестера.
  7. Выставляют предел измерения. Когда предварительно данные сопротивления отсутствует, чтобы прибор не «зашкаливал», начинают с минимального показателя.
  8. Он должен обеспечить показания напряжения в рабочей 2/3 части диапазона прибора.
  9. После отключения напряжения натестируемых устройствах ипроверки отсутствия, их надежно заземляют.
  10. Отключают или закорачивают все узлы с низкой рабочей изоляцией, например, конденсаторы и полупроводники.
  11. Нажимают кнопку «высокое напряжение» в электронных тестерах или вращая ручку аналогового со скоростью равной 110-120 об/мин.
  12. Примерно через минуту после начала замеров фиксируют показания по приборной шкале.
  13. Измеряют сопротивление для устройств с более высокой емкостью после стабилизации колебания стрелки.

Важность применения тестирования электросетей

Мегомметры на протяжении десятилетий оставались довольно схожими по конструкции и функциям. Различия возникли в основном в качестве изготовления. Революция в микроэлектронных схемах произвела взрыв в быстрой модернизации тестеров до лучших конструкций. В ответ новшествам измерения стали более точными и быстрыми, чем когда-либо прежде, а значит, в энергосистеме будут созданы безопасные условия эксплуатации.

rusenergetics.ru

допустимые значения измерений, минимальные нормы для кабелей и приборов

Во многом безопасность электрической сети определяется качеством изоляции. Периодическое ее испытание позволяет предотвратить возникновение различных аварий и даже поражение током живого организма. Суть тестирования заключается в замере сопротивления изоляции с помощью специальных приборов. Любое отклонение от требуемых норм является причиной замены или ремонта электрооборудования.

Суть измерений

Под сопротивлением изоляции понимается способность материала не пропускать через себя электрический ток. Для каждого диэлектрика, в зависимости от места использования, установлены свои нормативные требования. Периодичность проверки и необходимые значения указываются в «Правилах устройства электроустановок» (ПУЭ) и в «Правилах технической эксплуатации электроустановок потребителями» (ПТЭЭП).

Все виды испытаний можно условно разделить на три группы:

  • проводимые производителем на заводе;
  • выполняемые непосредственно на объекте после модернизации или проведения ремонта;
  • запланированные согласно требованиям правил безопасности и нормам.

Возможные повреждения, кроме заводских дефектов, чаще всего возникают из-за условий эксплуатации. Это воздействие сверхтоков, вызывающих перегрев защитной оболочки, влияние химических реагентов, механические разрывы, вызванные как ошибками монтажа, так и грызунами. Цель измерений заключается в предотвращении поражения человека электрическим током и обеспечения пожарной безопасности.

Повреждение изоляции вызывает пробой. Это ситуация, при которой между двумя изолированными друг от друга проводниками появляется электрический контакт. Например, между рядом лежащими проводами в кабеле или при прикосновении человека к частям электроустановки. Обычно при пробое наблюдается прожженное отверстие и изменение цвета изоляционного материала. В основе механизма пробоя твердого диэлектрика лежит электронный лавинообразный процесс. Наступает он из-за образования в материале так называемого плазменного газоразрядного канала.

К измерению изоляции допускается только специалист, имеющий удостоверение о проверке знаний и группу допуска не ниже третьей, если замеры проводятся в сети с напряжением до 1 кВ, и не ниже четвертой — при измерении выше 1 кВ.

После завершения измерения электрического сопротивления изоляции, полученные результаты обрабатываются и делается вывод о возможности дальнейшей эксплуатации сети. Так, большое значение для достоверности результата имеет температура окружающей среды. Нормирование измерений в ПУЭ указано для 20 °C, поэтому если работы выполняют при другой температуре, то полученные данные пересчитывают по формуле: R=K*Rиз, где K — коэффициент приведения указанный в дополнениях к ПУЭ.

Используемые приборы

Приборы, с помощью которых проводят измерения, условно разделяются на две группы: щитовые измерители и мегомметры. Первые применяются с подвижными или стационарными электроустановками с отдельной нейтралью. В типовую конструкцию приборов контроля изоляции щитовой входит индикаторная и релейная часть. Эти измерители могут работать в непрерывном режиме и использоваться в сетях переменного напряжения 220 В или 380 В разной частоты.

В большинстве же случаев проведение измерений осуществляется мегомметром. Его отличие от обыкновенного омметра в том, что он работает с довольно высокими значениями напряжения, которые прибор сам и генерирует. Существует два типа мегомметров:

  1. Аналоговые. В них для получения необходимой величины напряжения используется механический генератор, представляющий собой динамо-машину. Этот тип часто называют «стрелочным» из-за наличия градуированной шкалы и динамической головки со стрелкой. В принципе измерения лежит магнитоэлектрический эффект. Чем больше значение тока протекает через катушку, тем, в соответствии с законом электромагнитной индукции, на больший угол отклоняется и стрелка. Приборы относятся к простому типу устройств с хорошей надежностью. На сегодня уже морально устарели, так как обладают значительной массой и габаритами.
  2. Цифровые. В схеме современного устройства используется мощный генератор сигнала, собранный на интегральной микросхеме (ШИМ контроллер) и полевых транзисторах. Дискретные мегомметры, в зависимости от своей конструкции, могут работать от сетевого адаптера или независимого источника питания, например, аккумуляторной батареи. Результаты выводятся на жидкокристаллический дисплей. Работа построена на сравнении измеренного сигнала с эталонным и обработкой данных в специальном блоке — анализаторе. Прибор обладает небольшим весом и размерами, но для работы с ним необходима определенная квалификация.

Главным параметром, характеризующим работу измерителя, является погрешность выдаваемого результата. Кроме того, к его основным техническим параметрам относят: пределы сопротивления, величину генерируемого напряжения, температурный диапазон.

Методика испытания

Для того чтобы правильно измерить сопротивление изоляции, необходимо подготовить как предмет испытаний, так и сам прибор. Температура в помещении должна находиться в пределах 25±10 °C с относительной влажностью не более 80%. Перед началом работ следует отключить измеряемый объект от питающей сети. Убедиться в том, что на отключенной линии не выполняются работы и никто не прикасается к токоведущим частям. Все предохранители, лампы и тому подобные электрические приборы должны быть сняты.

Перед испытанием с отключенных токоведущих частей снимается остаточный заряд. Делается это путем их соединения с шиной заземления. Контактная перемычка убирается только после подключения измерителя. По окончании испытания остаточный заряд снова снимается кратковременным восстановлением заземления.

В стандартную комплектацию мегомметра входит три щупа. К ним подключается: защитное заземление, тестируемая линия, экран. Последний используется для исключения токов утечки.

Методику измерения можно представить следующим образом:

  1. В соответствии с требованиями ПУЭ, предъявляемыми к линии, выбирается тестовое напряжение. Например, для домашней проводки устанавливается значение от 100 В до 500 В. При работе с цифровым прибором для этого необходимо нажать кнопку «Тест», а на аналоговом покрутить ручку до того момента, пока индикатор не сообщит о появлении нужной величины напряжения.
  2. Линейный вывод тестера подключается к проверяемой жиле кабеля, а земляной — к остальным проводам, объединенным в жгут. То есть каждая жила проверяется относительно остальных проводов, электрически связанных между собой.
  3. Каждая жила испытывается относительно земли, при этом остальные провода к заземлению не подключаются.
  4. Если полученные данные оказываются неудовлетворительными, то измерения проводят отдельно для каждой жилы по отношению ко всем взятым проводникам в кабеле.
  5. Все полученные значения записывают, а затем их сравнивают с нормами ПУЭ и ПТЭЭП.

Следует отметить, что если по каким-либо причинам в низковольтной сети перед испытанием отключить нагрузку не представляется возможным, то замер фазного и нулевого проводников проводится только относительно РЕ (земли). При этом рабочие нули следует отключить от нейтральной шины. Если же это не выполнить, то полученные данные для любого провода будут одинаковы и равны сопротивлению проводника с наихудшими параметрами.

Допустимые значения

Минимальное показание измеренных напряжений должно быть выше нормированных значений. Необходимая величина сопротивления закладывается заводом изготовителем кабельной или электротехнической продукции, согласно действующим техническим условиям.

Выпускаемая электротехническая продукция различается на несколько типов и бывает: общего применения, силовой, контрольной и распределительной. Между собой изделия разделяют не только по физическим характеристикам, но и конструктивным. Их разнообразие обусловлено средой окружения, в которой они используются. Например, кабель, предназначенный для прокладки в земле, усиливается металлической лентой и состоит из нескольких слоев изоляции.

Измеряется сопротивление изоляции в Омах. Но из-за больших величин с показателем всегда используется приставка мега. Указываемое число обычно рассчитано для определенной длины, чаще всего это километр. Если же длина меньше, то просто выполняется перерасчет.

Для кабелей, использующихся в связи и передающих низкочастотный сигнал, сопротивление изоляции, должно быть не менее 5 тыс. МОм/км. А вот для магистральных линий — выше 10 тыс. МОм/км. Но при этом всегда минимальное необходимое значение указывается в паспорте на изделие.

В общем же случае приняты следующие нормы сопротивления изоляции:

  • кабель, проложенный в помещении с нормальными условиями окружающей среды, — 0,50 МОм;
  • электроплиты, не предназначенные для переноса, — 1 МОм;
  • электрощитовые, содержащие распределительные части и магистральные провода, — 1 МОм;
  • изделия, на которые подается напряжение до 50 В, — 0,3 МОм;
  • электромоторы и другие приборы, работающие при напряжении 100−380 вольт, — 0,5 МОм;
  • устройства, подключаемые к электрической линии, предназначенной для передачи сигнала с амплитудой до 1 кВ, — 1 МОм.

Для кабелей, подключенных к силовым линиям, действует немного другая норма. Так, провода, используемые в электрической сети с напряжением более 1 кВ, должны иметь значение сопротивления не менее 10 МОм. Для остальных же, кроме контрольных, минимальный порог снижен вдвое. Для контрольных проводов норматив требует значение сопротивления не менее 1 МОм.

Контроль над изоляцией

Сопротивление изоляции относится к важному параметру электротехнической продукции. Именно от нахождения параметра в установленных нормах зависит безопасность работы. Поэтому важно периодически замерять величину, вовремя выявляя отклонения. Кроме того, для промышленных объектов предусмотрена обязательная периодичность проведения измерений.

В соответствии с установленными нормами и правилами, измерения изоляции должны осуществляться:

  • для передвижных или переносных установок не реже одного раза в полугодии;
  • для внешних приборов и кабелей наружной прокладки, а также в помещениях с повышенной опасностью — не менее одного раза в год;
  • для всех остальных случаев не реже одного раза в три года.

То есть в помещениях, например, таких как офис, магазин, школа, измерение на сопротивление должно выполняться не реже одного раза в 36 месяцев. После окончания испытаний в обязательном порядке составляется акт, в котором указываются измеренные данные. Если замеры неудовлетворительные, то электрический участок выводится в ремонт до момента его приведения к требуемым нормам.

Требования безопасности

Одно из основополагающих правил при исследовании изоляции заключается в том, что приступать к работе, не удостоверившись в отсутствии напряжения на измеряемом участке, нельзя. Прибор, используемый для испытаний, должен быть поверенным или хотя бы быть сертифицированным.

Использовать необходимо лишь только тот мегомметр, выдаваемое напряжение которого соответствует установленным нормам. Так, для сетей или оборудования с напряжением до 50 В, используется тестер, выдающий 100 В. Применение прибора с меньшим значением не даст правдивости информации о состоянии участка, а большего — может привести к повреждениям.

Измерение сопротивления мегомметром необходимо выполнять только на отключенных токоведущих частях, с обязательным снятием остаточного заряда. При этом заземление с токопроводящих частей снимается лишь после подключения тестера. Соединительные провода подсоединяются с помощью изолирующих штанг. При работе прикасаться к токоведущим частям, даже в диэлектрических перчатках, запрещено.

Загрузка...

proagregat.com

прибор для измерения сопротивления изоляции

краткое содержание статьи:

Мегаомметр – это прибор для измерения сопротивления изоляции, который подает постоянное напряжение величиной 100, 250, 500, 1000, 2500, 5000В. Это универсальный переносной прибор, предназначенный также для испытаний повышенным напряжением. Мегаомметром испытывают обмотки электродвигателей, силовые кабельные линии, обмотки турбогенераторов и прочее электрооборудование. В общем, везде где есть изоляция, применяют мегаомметр. Данные приборы бывают ручные, цифровые, аналоговые, электронные, механические, высоковольтные.

Наиболее часто встречающимся видом измерения в моей практике является измерение сопротивление изоляции. Данный вид измерения можно производить на кабеле (до и после высоковольтных испытаний), обмотке статора турбогенератора, электродвигателе, трансформаторе, даже в релейной защите мегерить цепи приходится постоянно. В общем, на любом электрооборудовании, которое имеет изоляцию, необходимо следить за её величиной и выявлять возможные несоответствия для предотвращения возможных неблагоприятных для оборудования последствий.

Поговорим о физической модели сопротивления изоляции. Более подробно о классах и видах изоляции будет написано в отдельной статье. Уточним же, что факторами, портящими изоляцию являются токи, протекающие в оборудовании и сверхтоки (пусковые, токи кз). В этом материале я остановлюсь на схеме замещения изоляции. Это будет схема, состоящая из двух активных сопротивлений и двух емкостей. Значит, что мы имеем:

  • С1 - геометрическая емкость
  • С2- абсорбционная емкость
  • R1 – сопротивление изоляции
  • R2 – сопротивление, потери в котором вызываются абсорбционными токами

Зачем Вам это знать? Ну, я не знаю, возможно, покрасоваться перед не знающими эти основы людьми. Или же, чтобы понять характер прохождения постоянного тока через изоляцию.

Первая цепь состоит из емкости С1. Эта емкость называется геометрической, она характеризуется геометрическими характеристиками изоляции, её расположения относительно земли. Эта емкость разряжается мгновенно, при заземлении изоляции после испытания. Та самая бдыщ, искра при поднесении заземления к испытуемой фазе после опыта.

Вторая цепь имеет в своем составе два элемента – емкость С2 и активное сопротивление R2. Эта цепь имитирует потери при подаче на изоляцию переменного напряжения. R2 характеризует строение и качество изоляции. Чем более изоляция потрепана, тем меньшая величина R2. Емкость С2 называется абсорбционной емкостью. Эта емкость заряжается, при подаче постоянного напряжения, не мгновенно, а за время пропорциональное произведению R2 на С2. Чем лучше диэлектрические свойства изоляции, тем дольше будет заряжаться емкость С2, потому что величина R2 будет больше у здоровой изоляции. В общем, эта емкость отвечает на вопрос, почему после искры надо держать заземление еще пару минут на испытуемой жиле. Она разряжается медленно и заряжается не мгновенно.

Третья ветка состоит из активного сопротивления R3, которое характеризует ток утечки изоляции и потери. Ток возрастает при увлажнении изоляции, пропорционален площади изоляции и обратно пропорционален толщине изоляции. Вот такая электрическая модель изоляции.

Поговорим про историю развития мегаомметров. Откуда взялось такое название? Вероятно из-за названия измеряемой величины. Кстати, также мегаомметр называют мегер, или говорят промегерить цепь. Знакомо? Оказывается, и возможно, вы это знали, это название происходит от названия древнейшей фирмы по производству измерительного оборудования под названием «Megger». Эта компания появилась еще в 19 веке, а первые тестеры выпускали еще в 1951 году.

Первые мегаомметры, тогда еще мегомметры, были с ручками. Ты крутишь ручку, вырабатывается постоянное напряжение, и ты производишь испытания. Крутить надо было с частотой 120 об/мин. Однако, долго крутить могли не все. Ведь измерения необходимо производить одну минуту, для определения коэффициента абсорбции. Поэтому наука шагнула вперед, и появились аналогичные мегаомметры, но с питанием от сети и кнопкой подачи напряжения. Держать кнопку куда удобнее, чем крутить ручку. Однако тут встает неудобство в том плане, что необходимо найти розетку.

Однако и на этом прогресс не остановился, и появились электронные мегаомметры. Они уже с подсветкой, не обязательно держать кнопку подачи напряжения на протяжении всего испытания, однако, при испытании кабеля, остаточная емкость может спалить прибор (ну я не проверял, но так говорят некоторые инженера).

Внимание, говорю правду. Подробнее об этом писал вот тут, но повторюсь еще раз. Правильно прибор для измерения мегаОмов называется мегаомметр. Ранее он назывался мегомметр (например, в книге 1966 года он так и именуется). Новые времена, новые правила. Правильно называть его мегаомметр, так давайте же и будем использовать это название в своей электротехнической жизни. И если мегомметр - это название устаревшее, то прочие интерпретации являются просто неправильными и неграмотными. Хотя можно, например, старые приборы с ручкой, выпущенные в советском союзе называть мегомметры, а новые цифровые, например электронные типа Sonel именовать мегаомметрами. Но это моё личное мнение, скорее даже шутка, чем мнение.

Мегаомметр ЭСО-210

Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой - трансформатор, преобразующий переменное напряжение в постоянное.

Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».

Шкала «I» - нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.

Шкала «II» - верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.

Шкала «IIx10» - аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.

В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.

При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.

Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.

Мегаомметр sonel mic-2510

Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом "энтер" и всё – следи за показаниями и не подпускай никого под напряжение.

Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.

Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.

Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм - впечатляющая величина.

Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.

Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.

В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.

Как же производятся измерения сопротивления изоляции (самое популярное измерение, которое выполняют мегаомметром) у различного электрооборудования. Рассмотрим, как испытывать, на примере энергосистемы РБ. Хотя, нормы в принципе одни и те же, за минимальными различиями.

Замер сопротивления изоляции мегаомметром, прозвонка с помощью мегаомметра

Перед началом измерения необходимо проверить, что прибор рабочий, для этого необходимо произвести подачу напряжения при закороченных концах и замкнутых. При замкнутых мы должны получить «0», а в разомкнутом состоянии должны иметь бесконечность (так как мы меряем сопротивление изоляции воздуха). Далее сажаем один конец на землю (заземляющий болт, шина, заземленный корпус оборудования), а второй на испытываемую фазу, обмотку. Два человека производят испытания, один держит концы, а второй подает напряжение. Записывается показание через 15 секунд и через 60. По окончании заземляется жила, на которую подавалось напряжение и через минуту-другую (в зависимости от величины и времени подачи напряжения) снимаются концы и измерения производятся на другой жиле по аналогичной схеме.

Как же прозвонить что угодно с помощью мегаомметра, прозвонка это проверка на целостность цепи. Прозвонка – это первый прибор электрика, который он должен собрать сам из лампочки, батарейки и проводков. Как же прозвонить с помощью мегаомметра? Мегаомметр не совсем прозванивает, он показывает, что отсутствует связь между фазой и землей, то есть отсутствие замыкания обмотки на землю. Однако если подать большое напряжение, то вполне можно спалить обмотку реле или двигателя.

Замер сопротивления изоляции электродвигателей мегаомметром

Значит, подходим мы к электродвигателю, например это 380-вольтовый мотор какого-нибудь насоса. Снимаем крышку, отсоединяем питающий кабель. Далее подаем 500В и смотрим. Если в конце минуты сопротивление меньше 1МОм, значит, не соответствует нормам. Коэффициент абсорбции не нормируется для маленьких электродвигателей. Напряжение подается между одной фазой и землей. Две другие фазы соединяются с корпусом. По окончании испытания производится заземление испытанной жилы.

Замер сопротивления изоляции кабелей мегаомметром

Значит, имеем кабель. С одной стороны он, например, подключен к пускателю, а с другой стороны к электродвигателю или приводу, который пускает электродвигатель. Нам необходимо промегерить этот кабель. Мы отключаем его от пускателя и от электродвигателя. Ставим человека у электродвигателя, если он в другом помещении, чтобы не подпускал никого к открытым жилам, которые мы будем испытывать. Далее подаем напряжение между жилой и землей 2500 В в течение минуты. Величина сопротивления изоляции для кабелей напряжением до 1000В должна составлять не ниже 0,5 МОм. Для кабелей напряжением выше 1кВ величина сопротивления изоляции не нормируется. Если мегаомметр показывает ноль, значит, жила пробита и надо искать повреждение. Также измеряется сопротивление изоляции между жилами. Или объединяют три жилы и на землю и если величина неадекватная, то необходимо уже измерять каждую жилу на землю по отдельности.

Также в конце испытаний необходимо до снятия провода, по которому подавалось напряжение, повесить заземляющий провод на него. Чем больше напряжение подавалось, тем дольше необходимо ждать. Для высоковольтных кабелей это время достигает нескольких минут.

Так как мегаомметр подает высокое напряжение, то он является потенциальным источником опасности как для тех, кто это напряжение подает, так и для тех, кто находится рядом с оборудованием, кабелем, на который это напряжение подается.

О чем же необходимо помнить, при работе с мегаомметром? Во-первых, необходимо правильно подсоединять концы к прибору, во-вторых надо надежно закреплять концы, по которым подается напряжение к электрооборудованию. Также не стоит забывать про заземление испытываемого оборудования, как до измерения, так и по окончании для снятия остаточного заряда.

Про фокусы с мегаомметром могу только отметить, что есть у нас один работник, которого мы мегерили на 500 вольт, тут, как он говорит главное держать концы плотно и не отпускать. Внимание!!! Не советую вам это повторять !!!. Зрелище было стремное конечно. А теоретически ток небольшой и термическое воздействие не напрягает.

В общем, желаю вам удачи в вашей работе с мегаомметром, и будьте внимательны, ведь наша профессия не только очень интересная, но и достаточно опасная. ТБ превыше всего!!!

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

pomegerim.ru

Измерение сопротивления изоляции мегаомметром — методика

Неотъемлемой частью и показателем электрической сети является такое понятие, как изоляция. Защитная оболочка провода или кабеля, электрический изолятор воздушной линии, изолятор выводов трансформатора и прочие устройства препятствуют электрическому току контактировать там, где нам не нужно. Изолирующая оболочка обеспечивает защиту от короткого замыкания, возгорания, пробоя на корпус электрического устройства или машины, а также защиту человека от поражения током. Тем не мене изоляция подвержена воздействию внешних факторов, таких как время, солнце, мороз, вода, механический износ, контакт с агрессивной средой. Чтобы вовремя выявить дефект существует прибор — мегаомметр. Как пользоваться этим прибором, мы расскажем далее, предоставив методику измерения сопротивления изоляции мегаомметром.

Принцип действия прибора

Мегаомметр генерирует напряжение собственным высоковольтным преобразователем, а миллиамперметр фиксирует ток, в измеряемой цепи. Из школьного курса физики мы знаем закон Ома, и связь между сопротивлением R, которое равно U деленное на I.

В настоящее время распространение получили цифровые измерители приборы, благодаря своей компактности и легкости, но наравне с ними до сих пор ходят стрелочные модели с ручной динамо-машиной. Сейчас мы рассмотрим, как правильно пользоваться мегаомметром старого образца и нового.

Обращаем ваше внимание на то, что некоторые называют прибор для измерения сопротивления изоляции мегомметром. Это не совсем правильное название, т.к. если слово разбить по частям, получится приставка «мега», единица измерения «Ом» и «метр» (с греческого переводится как мера).

Инструкция по эксплуатации

Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к. замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ. Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.

Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми. Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях. При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.

Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.

Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.

Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.

Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой). Итак, порядок действий следующий:

  1. Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты.
  2. Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ.
  3. Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках. Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи.
  4. Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений.
  5. Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.
  6. Производим замер каждой линии между фазой и N, фазой и PE, N и PE. Результаты вносим в протокол измерений.
  7. В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.

По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой. Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий. Чтобы вам было более понятна информация, ниже мы предоставили видео, в которых наглядно демонстрируется порядок измерений при работе с определенными моделями приборов.

Видеоуроки

Первым делом предоставляем к вашему вниманию инструкцию по эксплуатации стрелочного мегаомметра ЭС0202/2-Г:

Работа с моделью старого образца

Еще один популярный стрелочный измеритель, который является аналогом указанной выше модели — м4100. Пользоваться им тоже достаточно просто, в чем можно убедиться, просмотрев данное видео:

Как использовать м4100

Цифровые мегаомметры с дисплеем еще проще в использовании. К примеру, выполнить измерение сопротивления изоляции кабеля современным измерителем UT512 UNI-T можно по такой технологии:

Инструкция по эксплуатации цифровой модели

Ну и последняя инструкция касается еще одного популярного устройства — Е6-32. На видео ниже достаточно подробно показывается, как пользоваться мегаомметром для измерения сопротивления изоляции трансформатора, кабеля и даже металлосвязи:

Применение Е6-32

Вот по такой методике осуществляют измерение сопротивления изоляции мегаомметром. Как вы видите, пользоваться данным прибором не сложно, однако нужно серьезно отнестись к технике безопасности и принять все необходимые меры защиты.

Будет интересно прочитать:

samelectrik.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о