Мощность электрического тока. Виды и работа. Особенности
Мощность электрического тока — это количество работы, которая выполняется за определенный период. Так как работа представляет параметр изменения энергии, то мощность можно назвать характеристикой скорости передачи либо преобразования электроэнергии. С мощностью электротока человеку приходится сталкиваться и в быту и на производстве, где применяются электрические приборы. Каждый из них потребляет электроток, поэтому при их использовании всегда необходимо учитывать возможности этих приборов, в том числе заложенные в них технические характеристики.
Мощность электрического прибора имеет важнейшее значение, ведь данный показатель используется не только для расчета электрической проводки, автоматов и предохранителей, но и для решения других задач. Чем мощность электрического прибора будет больше, тем за более короткое время он сможет осуществить необходимую работу. Если сравнить между собой электрическую плитку, тепловую электропушку или электрокамин, то у них у всех разные показатели мощности. То есть они будут обогревать площадь помещения за совершенно разное время.
Виды
Мощность электрического тока также может быть вычислена по формуле:
P=A/t, которая характеризует интенсивность передачи электроэнергии, то есть работа, совершаемая током по перемещению зарядов за определенный период времени.
Здесь A – это работа, t — время, за которое работа была выполнена.
Мощность может быть двух видов: реактивной и активной.
При активной мощности осуществляется преобразование мощности электротока в энергию движения, тепла, света и иные виды. Данный перевод тока в указанные виды невозможно выполнить обратно. Активная мощность измеряется в ваттах. Один ватт равняется один Вольт умноженный на один ампер. Для бытового и производственного применения задействуются показатели на порядок больших значений: это мегаватты в киловатты.
Реактивная мощность электрического тока представляет электронагрузку, создаваемую в приборах посредством емкостной и (или) индуктивной нагрузкой.
В случае переменного тока, указанный параметр характеризуется формулой:
Q=UIsinφ
Здесь синус φ выражается сдвигом фаз, который образуется между снижением напряжения и действующим электротоком. Значение угла может находиться в пределах от 0 до 90 градусов или от 0 до -90 градусов.
Параметр Q характеризует реактивную мощность, ее можно измерить в вольт-амперах. При помощи указанной формулы можно быстро определить мощность электротока.
Реактивные и активные показатели мощности можно продемонстрировать на обычном примере: Прибор может одновременно иметь нагревающие элементы: электрический двигатель и ТЭН. На изготовление ТЭНов применяется материал, который обладает большим сопротивлением, вследствие чего при прохождении по нему тока, электроэнергия становится тепловой. В данном случае довольно-таки точно характеризуется активная мощность электротока. Если брать за основу электродвигатель то внутри него располагается обмотка из меди, которая обладает индуктивностью, что, как правило, также вызывает эффект самоиндукции.
Эффект самоиндукции обеспечивает некоторое возвращение электроэнергии непосредственно в электросеть. Данную энергию можно охарактеризовать определенным смещением в показателях по электротоку и напряжению, что приводит к нежелательным последствиям на сеть в качестве определенных перегрузок. Подобными показателями выделяются и конденсаторы вследствие собственной емкости в момент, когда весь собранный заряд направляется обратно.
В данном случае происходит смещение тока и напряжения, но в обратном перемещении. Энергия индуктивности и емкости, которые смещаются по фазе относительно параметров электрической сети и называется реактивной электромощностью. Именно обратный эффект к сдвигу фазы позволяет осуществить компенсирование мощности реактивного параметра. В результате повышается качество и эффективность электрического снабжения.
Полная мощность электрического тока характеризуется величиной, которая соответствует произведению тока и напряжения и связана с активной и реактивной мощностью следующим уравнением:
S=˅P2+Q2
Где S – полная мощность, вычисляемая корнем из произведений квадратов активной и реактивной мощностей.
Для простоты восприятия активная мощность есть там, где присутствует активная нагрузка, к примеру, спиральные нагреватели, сопротивление проводов и тому подобное. Реактивная мощность наблюдается там, где имеется реактивная нагрузка, то есть элементы индуктивности и емкости, к примеру, конденсаторы.
Принцип действия
Когда заряд движется по проводнику, то электромагнитное поле выполняет над ним работу. Данная величина характеризуется напряжением. Заряды направляются в сторону снижения потенциалов, однако для поддержания указанного процесса необходим некоторый источник энергии. Напряжение по своему показателю соответствует работе поля, которое необходимо для перемещения единичного заряда Кулона на рассматриваемом участке. При перемещении заряда возникают явления, при которых электроэнергия может приходить в другие виды энергии.
Для доставки электроэнергии от электростанции до конечного потребителя необходимо выполнить определенную работу. Для создания требуемого напряжения, то есть возможности выполнения работы электротока по перемещению заряда, применяется трансформатор. Данное устройство производит увеличение показателя напряжения. Полученный ток под высоким напряжением, иногда достигающим 10 тысяч Вольт, движется по высоковольтным проводам. При достижении места назначения, он попадает на трансформатор, который уменьшает напряжение до промышленных или бытовых показателей. Далее ток направляется на производства, в квартиры и дома.
Применение
Одним из основных элементов электроцепи является приемник электроэнергии. Именно электрические приемники служат для преобразования электроэнергии в другие виды энергии:
Указанные преобразования возможны лишь в том случае, если ток проходит через сопротивление необходимого уровня. То есть при перемещении зарядов по проводнику наблюдается потеря энергии, что как раз и вызвано наличием сопротивления. Если рассматривать это дело на атомарном уровне, то электроны сталкиваются с ионами кристаллической решетки. Это приводит к возбуждению и тепловому движению, вследствие чего происходит потеря энергии.
Особенности
Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу, то есть за определенное время. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.
Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.
Поэтому так важно знать мощности электрических приборов, чтобы правильно подобрать сечение и материал проводов или не допускать одновременного включения в сеть приборов, имеющих большую мощность.
В качества примера можно привести следующие показатели:
- Сетевой роутер требует 10-20 Вт.
- Бытовой сварочный аппарат имеет мощность 1500-5500 Вт.
- Стиральная машина потребляет мощность 350-2000 Вт.
- Электрическая плитка имеет мощность 1000-2000 Вт.
- Холодильник бытовой потребляет мощность 15-700 Вт.
- Монитор жидкокристаллический имеет мощность 2-40 Вт.
- Монитор с электролучевой трубкой потребляет 15-200 Вт.
- Системный блок ПК потребляет 100-1200 Вт.
- Электрический пылесос имеет мощность 100-3000 Вт.
- Лампа накаливания бытовая – 25-200 Вт.
- Электрический утюг – 300-2000 Вт.
Интересные особенности
Мощность электрического тока раньше благодаря Джеймсу Уатту измерялась в лошадиных силах. Однако в конце девятнадцатого века было решено присвоить мощности название Ватт, чтобы увековечить имя известного ученого и изобретателя. На тот период это случилось впервые, когда единице измерения присвоили имя ученого. Именно с этого времени пошла традиция присвоения имен ученых единицам измерения.
Мощность электрического тока молнии составляет порядка один ТераВатт, при этом происходит ее преобразование в световую и тепловую энергию. Температура внутри молнии при этом составляет 25 тысяч градусов. Молния способна ударять в одно и то же место. А согласно статистике молния попадает в мужчин примерно в 5 раз больше, чем в представителей женского пола.
Похожие темы:
Мощность в электрических цепях
Добавлено 1 октября 2020 в 05:59
Сохранить или поделиться
Помимо напряжения и тока, есть еще один важный параметр, связанный с электрическими цепями: мощность. Во-первых, прежде чем анализировать мощность в каких-либо схемах, нам нужно понять, что это такое.
Что такое мощность и как ее измерить?
Мощность – это мера того, сколько работы можно выполнить за определенный промежуток времени. Работа обычно определяется как поднятие груза против силы тяжести. Чем больше масса, и/или чем выше она поднимается, тем больше работы должно быть выполнено. Мощность – это мера того, насколько быстро выполняется стандартный объем работы.
Для американских автомобилей мощность двигателя оценивается в единицах, называемых «лошадиные силы», которые изначально были придуманы производителями паровых двигателей для количественной оценки работоспособности своих машин с точки зрения самого распространенного в их время источника энергии: лошадей. Одна лошадиная сила определяется в британских единицах как 550 фут·фунтов работы в секунду. Мощность двигателя автомобиля не будет указывать на высоту холма, на которую он может подняться, или какую массу он может тащить, но она указывает, насколько быстро он может подняться на определенный холм или протащить определенную массу.
Мощность механического двигателя зависит как от скорости двигателя, так и от его крутящего момента на выходном валу. Скорость выходного вала двигателя измеряется в оборотах в минуту или об/мин (RPM). Крутящий момент – это величина вращательной силы, создаваемой двигателем, и обычно измеряется в ньютон-метрах (или в фунт-футах). Ни скорость, ни крутящий момент сами по себе не являются мерой мощности двигателя.
Дизельный тракторный двигатель мощностью 100 лошадиных сил вращает вал относительно медленно, но обеспечивает большой крутящий момент. Двигатель мотоцикла мощностью 100 лошадиных сил вращает вал очень быстро, но обеспечивает относительно небольшой крутящий момент. Оба будут производить 100 лошадиных сил, но с разной скоростью и разным крутящим моментом. Уравнение для мощности на валу простое:
\[\text{Лошадиная сила} = \frac{2 \pi ST}{33 000}\]
где
- S – скорость вращения вала в об/мин;
- T – крутящий момент в фунт-футах.
Обратите внимание на то, что в правой части уравнения есть только две переменных, S и T. Все остальные члены в этой части постоянны: 2, π и 33 000 – константы (они не меняют своего значения). Мощность в лошадиных силах меняется только при изменении скорости и крутящего момента, больше ничего. Мы можем переписать уравнение, чтобы показать эту взаимосвязь:
Лошадинная сила ∝ ST
∝ – означает «пропорциональна»
Поскольку единица «лошадиных сил» не совпадает в точности со скоростью в оборотах в минуту, умноженной на крутящий момент в фунт-футах, мы не можем сказать, что мощность равна ST. Однако они пропорциональны друг другу. По мере изменения математического произведения ST значение мощности изменится в той же пропорции.
Мощность как функция напряжения и тока
В электрических цепях мощность зависит как от напряжения, так и от тока. Неудивительно, что это соотношение имеет поразительное сходство с приведенной выше формулой «пропорциональной» мощности в лошадиных силах:
\[P= IE\]
Однако в этом случае мощность (P) точно равна силе тока (I), умноженной на напряжение (E), а не просто пропорциональна IE. При использовании этой формулы единицей измерения мощности является ватт, обозначаемый как «Вт» (или в англоязычной литературе «W»).
Следует понимать, что ни напряжение, ни ток сами по себе не составляют мощность. Скорее, мощность – это комбинация напряжения и тока в цепи. Помните, что напряжение – это удельная работа (или потенциальная энергия) на единицу заряда, а сила тока – это скорость, с которой электрические заряды проходят через проводник. Напряжение (удельная работа) аналогична работе, выполняемой при поднятии веса против силы тяжести. Сила тока (скорость) аналогична скорости, с которой поднимается этот груз. Вместе, как произведение, напряжение (работа) и ток (скорость) составляют мощность.
Так же, как в случае дизельного двигателя трактора и двигателя мотоцикла, цепь с высоким напряжением и низким током может рассеивать такое же количество мощности, что и цепь с низким напряжением и большим током. Ни напряжение, ни сила тока по отдельности не указывают на величину мощности в электрической цепи.
Мощность при разомкнутой / короткозамкнутой цепи
В разомкнутой цепи, когда между клеммами источника присутствует напряжение и нулевой ток, рассеиваемая мощность равна нулю, независимо от того, насколько велико это напряжение. Поскольку P = IE, и I = 0, и всё, что умножается на ноль, равно нулю, мощность, рассеиваемая в любой разомкнутой цепи, должна быть равна нулю. Точно так же, если бы у нас было короткое замыкание, состоящее из петли из сверхпроводящего провода (абсолютно нулевое сопротивление), у нас могло бы быть состояние с током в петле и нулевым напряжением, и аналогично, никакая мощность не рассеивалась бы. Поскольку P = IE, и E = 0, и всё, что умножается на ноль, равно нулю, мощность, рассеиваемая в сверхпроводящем контуре, должна быть равна нулю (мы рассмотрим тему сверхпроводимости в следующей главе).
Как лошадиная сила связана с ваттами?
Независимо от того, измеряем ли мы мощность в «лошадиных силах» или в «ваттах», мы всё равно говорим об одном и том же: сколько работы можно выполнить за данный промежуток времени. Эти две единицы численно не равны, но они выражают одно и то же. Фактически, европейские производители автомобилей обычно рекламируют мощность своих двигателей в киловаттах (кВт) или тысячах ватт, а не в лошадиных силах! Эти две единицы мощности связаны друг с другом простой формулой:
\[1\ \text{лошадиная сила} = 745,7 \ Вт\]
Таким образом, наши 100-сильные дизельные и мотоциклетные двигатели также могут быть оценены как двигатели мощностью «74570 Вт», или, точнее, как двигатели «74,57 кВт». В европейской технической документации этот параметр был бы скорее нормой, чем исключением.
Резюме
- Мощность – это мера того, сколько работы можно выполнить за определенный промежуток времени.
- Механическая мощность обычно измеряется (в Америке) в «лошадиных силах».
- Электрическая мощность почти всегда измеряется в «ваттах» и может быть рассчитана по формуле P = IE.
- Электрическая мощность зависит и от напряжения, и от тока одновременно, а не по отдельности.
- Лошадиная сила и ватт – это всего лишь две разные единицы для описания одного и того же физического параметра, при этом 1 лошадиная сила равна 745,7 Вт.
Оригинал статьи:
Теги
МощностьОбучениеРассеиваемая мощностьСхемотехникаЭлектрический токЭлектрическое напряжениеЭлектричествоСохранить или поделиться
Мощность постоянного электрического тока | Формула мощности
Разомкнутые и замкнутые цепи
Начнем с самой простой схемы фонарика и от нее уже будет отталкиваться
Здесь мы видим три радиоэлемента: источник питания Bat, выключатель S и кругляшок с крестиком внутри, то есть лампочку. Все это вместе называется электрической цепью. Так как по цепи не бежит электрический ток, то такую цепь называют разомкнутой.
Но стоит нам щелкнуть выключатель, и у нас тут же загорится лампочка. Такая цепь уже будет называться замкнутой.
Электроэнергия и источник питания
Теперь давайте подробнее разберем нашу схему. Немного развернем ее в пространстве для удобства, игнорируя ГОСТ по обозначению источника питания:
Как мы помним с прошлой статьи, электрический ток бежит от точки с бОльшим потенциалом, то есть от плюса, к точке с мЕньшим потенциалом, то есть к минусу. Или говоря простым языком: от плюса к минусу. В настоящий момент у нас выключатель разомкнут. Можно сказать, что мы “оборвали” нашу цепь выключателем. В среде электриков и электронщиков говорят, что цепь ” в обрыве”. Ток не бежит, лампочка не горит.
Но вот мы ловким движением руки щелкаем выключатель и у нас цепь замыкается:
Дорога для электрического тока открыта, и он течет от плюса к минусу через лампочку накаливания, которая начинает ярко светиться.
Вроде бы все понятно, но не совсем. Кто или что заставляет светиться лампочку? Мало того, что она светит, она еще и греет!
Что самое первое появилось во Вселенной? Говорят, что время, хотя я думаю, что энергия). Энергия ниоткуда просто так не берется и никуда просто так не исчезает. Это и есть закон сохранения энергии, так что “побрейтесь” фанаты вечных двигателей).
В данном опыте у нас лампочка светит и греет. Получается, что лампочка излучает и тепловую и световую энергию. Вы ведь не забыли, что световые лучи передают энергию? В быту, например, мы используем солнечные панели, чтобы из лучиков получить электрический ток.
Но теперь вопрос такой. Если лампочка излучает световую и тепловую энергию, то откуда она ее получает? Разумеется, от источника питания. Фраза “источник питания” уже говорит сама за себя. Берет энергию наша лампочка прямо от источника питания через проводкИ. Энергия, которая течет через проводочки, называется электроэнергией.
А откуда берет электроэнергию источник питания? Здесь уже есть разные способы добычи электроэнергии. Это может быть падающий поток воды, который крутит мощные лопасти вертушки, которая работает как генератор. Это могут быть химические реакции в батарейках и акумах. Это может быть даже солнечная панелька или вообще какой-нибудь элемент, типа Пельтье, который может вырабатывать электрический ток под действием разности температур. Способов много, а эффект один. Сделать так, чтобы появилась ЭДС.
Электрический ток и нагрузка
В дело идет Закон Ома. Как я уже писал, это самый значимый закон во всей электронике. Что такое по сути лампочка? Это вольфрамовый проводок в стеклянной колбе с вакуумом. Вольфрам – это металл, следовательно, он может через себя проводить электрический ток. Но весь прикол в том, что при определенном напряжении он раскаляется и начинает светиться. То есть отдавать энергию в пространство в виде тепла и излучения.
В холодном состоянии вольфрамовая нить обладает меньшим сопротивлением, чем в раскаленном, более чем в десять раз. Следовательно, лампочка – это просто как сопротивление для электрической цепи. В этой статье я взял лампочку, чтобы визуально показать нагрузку. Нагрузка – от слова “нагружать”. Источнику питания не нравится, когда ему приходится отдавать электроэнергию. Он любит работать без нагрузки 😉
Теперь давайте представим все это с точки зрения гидравлики и механики.
Имеем трубу, по которой бурным поток течет вода. К трубе приделана вертушка, типа водяного колеса. Лопасти вертушки крутят вал.
Рисунок я чертил по всем догмам черчения: главный вид, и справа его разрез.
Если к валу ничего не цепляется, то поток воды бурно бежит по трубе и крутит колесо, а оно в свою очередь крутит вал. Такой режим можно назвать холостым режимом работы водяного колеса, то есть режимом без нагрузки.
Но что будет, если мы начнем использовать вращение вала себе во благо? Например, соединим с помощью муфты вал водяного колеса с валом мини-мельницы?
Думаю, многие из моих читателей сразу догадаются, что водяное колесо начнет притормаживать, так как мы его заставили работать. Крутиться со скоростью холостого хода у нашего вала уже не получится. Скорость будет меньше. То есть в нашем случае у нас на валу есть
А если нагрузить вал, чтобы тот поднимал грузовой лифт?
Думаю, вся конструкция тут же встанет колом. То есть большая нагрузка станет непосильна для вала. А если бы мы сделали лопасти вертушки такие, чтобы они полностью перекрывали диаметр трубы, то поток жидкости вообще бы остановился.
Давайте разберем еще один пример для понимания. Все тот же самый рисунок:
Предположим, что мы прицепили к валу наждак, а электродвигатель убрали с этой конструкции. И вот мы решили что-нибудь шлифануть.
Итак, что у нас в результате получается? Если мы будем слабо давить на шлифовальный круг, то у нас круг начнет притормаживаться и уже будет крутиться с другой скоростью. Если мы сильнее будем давить на круг, то скорость вала еще больше упадет. Если же мощность нашего вала слабовата, мы можем добиться того, что при сильном давлении на круг вообще остановить вал. Тогда и точиться ничего не будет…
Давайте снова вернемся к мини-мельнице
Что будет если поток воды в трубе увеличить в несколько раз? Мельница будет крутиться так, что ее порвет нахрен! А если поток воды в трубе будет очень слабый? Разумеется, мельница будет молоть одно-два зернышка в час. Хотя, опять же, с большим потоком воды мы вполне можем поднять лифт.
Понимаете к чему я веду? Все завязано друг с другом! Давление в трубе, скорость потока жидкости и нагрузка… Все они связаны воедино.
Мощность электрического тока
Для того, чтобы это показать что к чему, мы возьмем две лампы на 12 Вольт, но разной мощности. На блоке питания выставляю также 12 Вольт и собираю все это дело по схеме, которая мелькала в начале статьи
Мой блок питания может выдать в нагрузку 150 Ватт, не парясь. Беру лампочку от мопеда и цепляю ее к блоку питания
Смотрим потребление тока. 0,71 Ампер
Высчитываем сопротивление раскаленной нити лампочки из закона Ома I=U/R, отсюда R=U/I=12/0,71=16,9 Ом.
Беру галогенную лампу от фары авто и также цепляю ее к блоку питания
Смотрим потребление. 4,42 Ампера
Аналогично высчитываем сопротивление нити лампы. R=U/I=12/4,42=2,7 Ом.
А теперь давайте посчитаем, какая лампочка больше всех Ватт “отбирает” у источника питания. Вспоминаем школьную формулу P=UI. Итак, для маленькой лампочки мощность составит P=12×0,71=8,52 Ватта. А для большой лампочки мощность будет Р=12х4,42=53 Ватта. Ого! У нас получилось, что лампочка, которая обладала меньшим сопротивлением, на самом деле очень даже прожорливая.
Итак, если кто не помнит, что такое мощность, могу напомнить. Мощность – это отношение какой-то полезной работы к времени, в течение которого эта работа совершалась. Например, надо вскопать яму определенных размеров. Вы с лопатой, а ваш друг – на экскаваторе:
Кто быстрее справится с задачей за одинаковый промежуток времени? Разумеется экскаватор. В этом случае, можно сказать, что его мощность намного больше, чем мощность человека с лопатой.
А теперь представьте, что нам надо полностью под ноль сточить эту железяку:
Подумайте вот над таким вопросом… У нас есть в запасе 5 мин и нам надо сточить железяку по-максимому. В каком случае железяка сточится быстрее всего: если прижимать ее к абразивному кругу со всей дури, прижимать слегка, либо прижимать в полсилы? Не забывайте, что у нас абразивный круг подцеплен к валу, который крутит поток воды в трубе. И да, труба у нас небольшого диаметра.
Кто ответил, что если прижимать в полсилы, то оказался прав. Железяка в этом случае сточится быстрее. Если прижимать ее со всей дури, то можно вообще остановить круг. Еще раз, что у нас такое мощность? Полезная работа, совершаемая за какой-то промежуток времени. А в нашем опыте полезная работа это и есть стачивание железяки по максималке. Также не забывайте и тот момент, что если мы будем слегка прижимать железяку, то мы будем ее стачивать пол дня. Поэтому, золотая середина – это давить железяку в полсилы.
Ну вот мы и снова переходим к электронике 😉
Поток воды – сила тока, давление в трубе – напряжение, давление железяки на круг – сопротивление. И что в результате мы получили? А то, что лампочка с меньшим сопротивлением обладает большей мощностью, чем лампочка с большим сопротивлением. Не трудно догадаться, если просто посмотреть на фото, но вживую эффект лучше
Но обязательно ли то, что чем меньше сопротивление, тем больше мощности выделяется на нагрузке? Конечно же нет. Во всем нужен расчет, как и в прошлом опыте, где мы стачивали железяку за определенное время.
И еще один фактор, конечно, тоже надо учитывать. Это давление в трубе. Прикиньте, точим-точим мы железяку, и вдруг давление в трубе стало повышаться. Может быть переполнилась башня, или кто-то открыл краник на полную катушку. Что станет с наждаком? Его обороты ускорятся, так как сила потока воды в трубе увеличится, а следовательно, мы еще быстрее сточим нашу железку.
Формула мощности для постоянного электрического тока
Поэтому формулы мощности в электронике имеют вот такой вид:
Отсюда A=IUt
где,
А – это полезная работа, Джоули
t – время, секунды
U – напряжение, Вольты
I – сила тока, Амперы
P – собственно сама мощность, Ватты
R – сопротивление, Омы
Как вы можете заметить, формула P=I2 R говорит нам о том, что не всегда на маленьком сопротивлении вырабатывается большая мощность и то, что мощность очень сильно зависит от силы тока. А как поднять силу тока? Добавить напряжения ;-). Закон Ома работает всегда и везде.
А из формулы P=U2/R, можно увидеть, что чем меньше сопротивление и больше напряжение в цепи, тем больше мощность будет выделяться на нагрузке. А что такое выделение мощности на нагрузке? Это может быть тепло, свет, какая-либо механическая работа и тд. Короче говоря, выработка какой-либо полезной энергии для наших нужд.
Электрическая мощность. Мощность электрического тока.
Тема: что такое электрическая мощность, её определение и вычисление.
В этой теме хотелось бы раскрыть понятие электрической мощности в простой и понятной форме. И, пожалуй, прежде чем говорить об электрической мощности, сперва следует определиться с понятием мощности в общем смысле. Обычно, когда люди говорят о мощности, они подразумевают некую «силу», которой обладает тот или иной предмет (мощный электродвигатель) либо действие (мощный взрыв). Но как мы знаем из школьной физики, сила и мощность — это разные понятия, но зависимость у них есть.
Первоначально мощность (N), это характеристика, относящаяся к определённому событию (действию), а если оно привязано к некоторому предмету, то с ним также условно соотносят понятие мощности. Любое физическое действие подразумевает воздействие силы. Сила (F), с помощью которой был пройден определённый путь (S) будет равняться совершенной работе (А). Ну, а работа, проделанная за определённое время (t) и будет приравниваться к мощности.
Мощность — это физическая величина, которая равна отношению совершенной работы, что выполняется за некоторый промежуток времени, к этому же промежутку времени. Поскольку работа является мерой изменения энергии, то ещё можно сказать так: мощность — это скорость преобразования энергии системы.
Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.
Анализируя приведённую формулу, можно сделать очень простой вывод: поскольку электрическая мощность «P» в одинаковой степени зависит от тока «I» и от напряжения «U», то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе (Это используется при передачи электроэнергии на удалённые расстояния от электростанций к местам потребления, путём трансформаторного преобразования на повышающих и понижающих электроподстанциях).
Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).
Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».
Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.
Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).
Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.
Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.
P.S. Говоря об электрической мощности электротехнических устройств мы должны помнить, что она в них ограничивается номинальными и максимальными значениями тока и напряжения, а эти ограничения уже зависят от материала, рабочих частот, технологии изготовления и прочих факторов.
Ватты, киловатты, киловатты в час – разбираемся в понятиях
На чтение 4 мин. Просмотров 470
Александр Георгиевич Кондратьев
По образованию инженер-электрик, работал электронщиком, главным инженером на пищевом предприятии, генеральным директором строительной организации.
Знать установленную мощность электроприборов важно для правильного выбора электропроводки, устройств защиты. Это необходимо, чтобы обеспечить безопасную работу приборов в доме.
Мощность бытовых электроприборов измеряется в ваттах, а в расчетах мощных электросетей используется понятие киловатт. Поэтому собственнику, прежде чем производить расчеты, необходимо знать, какая установлена аппаратура в доме, какой мощности. А для проектирования нужно разобраться, сколько ватт в киловатте.
Что такое ватт
Величина единицы электрической энергии совершаемой работы за промежуток времени называется ваттом.
Названа в честь механика — изобретателя Джеймса Уатта. Обозначается Вт или W. Он впервые предложил применять лошадиную силу как универсальную единицу измерения характеристик машин.
Можно представить формулой:
Вт= джоуль/секунду, или 1Вт=1 дж/сек.
Для определения мощности электрических машин применяется следующая формула:
P=U*I. Напряжение умноженное на ток.
Электроэнергия измеряется «U» в вольтах, а «I» в амперах получаемая мощность в ваттах.
Как перевести ватты в киловатты
Бытовые электроприборы имеют разную мощность. Она колеблется от нескольких Вт до нескольких тысяч ватт. Для удобства расчета приводят к единому значению. Обычно это киловатт, обозначается кВт.
Для перевода ваттов в киловатты необходимо знать, сколько ватт содержится в 1 кВт. Само слово «кило» обозначает тысячу. То есть один киловатт электроэнергии содержит 1000 ватт.
Для удобства перевода одной единицы в другую существуют различные программы. Но перевод из одной величины в другую несложно выполнить самостоятельно.
Например, в доме имеется несколько потребителей электроэнергии, люстра с тремя лампами по 60 Вт, телевизор 150 Вт и музыкальный центр 100 Вт. Получаем 3*60+150+100, результат равен 430 Вт. Мы знаем, что 1КВт содержит 1000 Вт. Делим это значение на 1000, получаем 0,43 Квт.
Для наглядности произведем несколько расчетов. Полученный перевод из Вт в кВт сведем в таблицу.
Вт | 5 | 90 | 100 | 250 | 500 | 750 | 1000 | 2500 | 10500 |
кВт | 0,005 | 0,09 | 0,1 | 0,25 | 0,5 | 0,75 | 1 | 2,5 | 10,5 |
Зачастую требуется произвести обратную функцию. Перевод из Квт в Вт. Для этого мощность в киловаттах необходимо умножить на 1 000. Произведем вычисления и для наглядности сведем в таблицу.
кВт | 5 | 2,5 | 1 | 0,85 | 0,4 | 0,25 | 0,08 | 0,007 |
Вт | 5 000 | 2500 | 1000 | 850 | 400 | 250 | 80 | 7 |
На промышленных предприятиях используются потребители электроэнергии мощностью в несколько тысяч киловатт. Для удобства введено понятие мегаватт, обозначается как мВт. Приставка «мега» обозначает 1 000 000. То есть в 1 мВт содержится 1 000 000 Вт, или 1 000 кВт.
Киловатт и киловатт-час — в чем разница
Наряду с обозначением киловатт можно встретить единицу киловатт в час. Например, в величинах КВт ч отображаются показания электросчетчиков. Неспециалисты эти понятия не различают, считают, что это одно и то же. Однако это совершенно разные величины.
Ватт в час — это количество электроэнергии, произведенное или потребленное за единицу времени, обозначается Вт/ч.
Например, 1 кВт час говорит о том, что энергоприемник за 1 час потребляет 1 КВт электроэнергии.
Киловатт в отличие от кВтч представляет величину, обозначающую потребленную или сгенерированную мгновенную мощность.
Как посчитать общую мощность бытовых приборов
Установленная мощность дома или коттеджа важна при выполнении расчета и подбора электропроводки и автоматов. Без этого параметра невозможно спроектировать электроснабжение дома.
Чтобы узнать установленную мощность, необходимо из паспортов на оборудование выбрать данные о потребляемой мощности. Например, как указано в табличке.
Наименование | Мощность, Вт |
Телевизор | 150 |
Бойлер | 1 500 |
Электропечь | 2 000 |
Стиральная машина | |
Светильники (общее количество лампочек во всем доме) | 1 000 |
Компьютер | 100 |
В С Е Г О: | 3 750 Вт или 3,75 КВт |
Для правильного расчета электроснабжения дома учитывают коэффициент совмещения. Он обозначает, сколько потребителей работает одновременно.
Для установленной мощности в доме, коттедже, квартире до 14 кВт, в расчетах применяется коэффициент, равный 0,8. То есть берется общая величина нагрузок и умножается на 0,8. Для нашего примера в расчетах берут мощность равную 3,75*0,8=3 кВт.
Мне нравится2Не нравится Полезная статья? Оцените и поделитесь с друзьями!Мощность электрического тока. Это просто
Вопрос о том, что такое мощность электрического тока, не самый простой. Если быть уж абсолютно точным, он очень непростой. Но это одно из основных понятий как физики, так и других научных дисциплин, связанных с электричеством. В повседневной жизни нам также часто приходится пользоваться этим понятием.
Не вдаваясь в подробное выяснение, что такое электрический ток и какова его природа, для понимания связанных с ним процессов воспользуемся аналогией с ручьем. Вода протекает от более высоко расположенного участка вниз. Для электрического тока ситуация примерно такая же, он протекает от точки с высоким потенциалом к точке с низким потенциалом. Величина разности потенциалов называется напряжением, обозначается буквой U и измеряется в единицах, именуемых вольт.
Вернемся опять к ручью. При протекании воды с высоты в низину происходит перенос определённого ее количества с одного места на другое. При протекании тока происходит примерно то же самое: определённое количество электричества переносится с одного места на другое. Для измерения этого процесса существует термин сила тока, определяется он как количество электричества, прошедшее в единицу времени через сечение проводника. По аналогии с ручьем это означает, какое количество воды прошло через выбранный участок за единицу времени. Обозначается сила тока символом I, для ее измерения существует специальная единица – ампер.
Вот эти два понятия — электрическое напряжение и сила тока — выступают как основные характеристики электрического тока.
Вода, протекая сверху вниз, несёт с собой определённую энергию. Попадая, например, на лопатки турбины, она будет вызывать вращение последней и совершать определенную работу. Точно так же электрический ток может совершать работу. Эта работа, выполняемая за одну секунду, и есть мощность электрического тока. Принято ее обозначать буквой P, и измеряется она в ваттах.
Работа, выполняемая водой при падении, определяется ее количеством, попадающим на лопатки турбины, и высотой, с которой она падает. Чем больше воды и чем больше высота, с которой она падает, тем большая выполняется работа. Точно так же, чем больше напряжение (разность высот для воды) и сила тока (т.е. количество воды), тем больше выполняемая работа и, значит, мощность электрического тока.
Если попытаться формализовать это понятие, то все можно выразить простой формулой:
P=I*U,
где: P – мощность электрического тока, в ваттах;
I – сила тока, в амперах;
U – напряжение, в вольтах.
Вот это и есть основная формула, по которой можно определить мощность электрического тока.
Однако электрический ток протекает не где-то в абстрактных условиях, а в реальных цепях, у которых есть свои характеристики. В частности, у проводника есть сопротивление, а напряжение U и сила тока I связаны между собой в цепи, где протекает постоянный ток через сопротивление по закону Ома. Так что мощность в цепи постоянного тока при необходимости можно выразить через сопротивление, или учесть характеристики цепи в выражении для мощности через ток и напряжение, связанные законом Ома.
Вследствие того, что цепь обладает сопротивлением, не вся энергия используется на выполнение полезной работы. Часть ее теряется при прохождении по цепи. Поэтому поступающая энергия, т.е. мощность источника энергии должна быть больше той мощности, которая необходима для выполнения определённой работы. Должен выполняться так называемый энергетический баланс – мощность, отдаваемая источником, должна быть равна мощности потребляемой нагрузки и мощности, теряемой в проводнике электрического тока.
Примерно так можно получить общее представление о том, что такое мощность электрического тока, как она определяется, от чего зависит.
Electric Power — learn.sparkfun.com
Добавлено в избранное Любимый 45С большой силой …
Почему нам важна власть? Мощность — это измерение передачи энергии во времени, а энергия стоит денег. Батареи не бесплатны, и они тоже не выходят из розетки. Итак, мощность измеряет, насколько быстро из вашего кошелька уходят гроши!
Также энергия есть…энергия. Он бывает во многих потенциально вредных формах — тепловом, радиационном, звуковом, ядерном и т. Д. — и чем больше мощность, тем больше энергии. Итак, важно иметь представление о том, с какой мощностью вы работаете, играя с электроникой. К счастью, когда вы играете с Arduinos, зажигаете светодиоды и вращаете маленькие моторы, потеря информации о том, сколько энергии вы потребляете, означает лишь выжигание резистора или плавление микросхемы. Тем не менее, совет дяди Бена применим не только к супергероям.
Рассматривается в этом учебном пособии
- Определение мощности
- Примеры передачи электроэнергии
- Вт, единица мощности в системе СИ
- Расчет мощности с использованием напряжения, тока и сопротивления
- Максимальная номинальная мощность
Рекомендуемая литература
Power — одно из наиболее фундаментальных понятий в электронике.Но перед тем, как узнать о мощности, возможно, вам стоит сначала прочитать несколько других руководств. Если вы не знакомы с некоторыми из этих тем, сначала подумайте о том, чтобы ознакомиться с этими учебниками:
Что такое электроэнергия?
Есть много типов силы — физическая, социальная, супер, блокировка запаха, любовь — но в этом уроке мы сосредоточимся на электроэнергии. Так что же такое электроэнергия?
В общих физических терминах мощность определяется как скорость , с которой энергия передается (или преобразуется) .
Итак, во-первых, что такое энергия и как она передается? Трудно сказать просто, но энергия — это в основном способность чего-то, от до перемещать чего-то другого. Есть много форм энергии: механическая, электрическая, химическая, электромагнитная, тепловая и многие другие.
Энергия не может быть создана или уничтожена, ее можно только передать в другую форму. Многое из того, что мы делаем в электронике, — это преобразование различных форм энергии в электрическую энергию и обратно.Светодиоды превращают электрическую энергию в электромагнитную. Прядильные двигатели превращают электрическую энергию в механическую. Жужжание зуммеров создает звуковую энергию. Питание цепи от щелочной батареи 9 В превращает химическую энергию в электрическую. Все это формы передачи энергии .
Преобразованный тип энергии | Преобразованный |
---|---|
Механический | Электродвигатель |
Электромагнитный | Светодиод |
Нагрев | Резистор |
Химический | Батарея |
Ветер | Мельница |
Пример электрических компонентов, передающих электрическую энергию в другую форму.
В частности, электрическая энергия начинается как электрическая потенциальная энергия — то, что мы с любовью называем напряжением. Когда электроны проходят через эту потенциальную энергию, она превращается в электрическую. В большинстве полезных цепей эта электрическая энергия преобразуется в какую-то другую форму энергии. Электрическая мощность измеряется путем объединения того, сколько электроэнергии передается, и того, как быстро происходит эта передача.
Производители и потребители
Каждый компонент в цепи потребляет или производит электроэнергии.Потребитель преобразует электрическую энергию в другую форму. Например, когда загорается светодиод, электрическая энергия преобразуется в электромагнитную. В этом случае лампочка потребляет энергии. Электроэнергия — это произведенная при передаче энергии на электрическую из какой-либо другой формы. Батарея, подающая питание на схему, является примером источника питания .
Мощность
Энергия измеряется в джоулях (Дж).Поскольку мощность — это мера энергии за установленный промежуток времени, мы можем измерить ее в джоулей в секунду . Единица СИ для джоулей в секунду — Вт , сокращенно Вт .
Очень часто перед словом «ватт» стоит один из стандартных префиксов SI: микроватты (мкВт), миливатты (мВт), киловатты (кВт), мегаватты (МВт) и гигаватты (ГВт) являются обычными в зависимости от ситуация.
Имя префикса | Аббревиатура префикса | Вес | |
---|---|---|---|
Нановатт | нВт | 10 -9 | |
Микроватт | мкВт | 10 -6 | |
Милливат | Милливатт | 10 -3 | |
Ватт | Вт | 10 0 | |
Киловатт | кВт | 10 3 | |
Мегаватт | МВт6|||
ГВт | ГВт | 10 9 |
, такие как Arduino, обычно работают в диапазоне мкВт или мВт.Портативные и настольные компьютеры работают в стандартном диапазоне мощности. Энергопотребление дома обычно составляет киловатт. Большие стадионы могут работать в мегаваттном масштабе. А гигаватты нужны для крупных электростанций и машин времени.
Расчетная мощность
Электроэнергия — это скорость передачи энергии. Он измеряется в джоулях в секунду (Дж / с) — ватт (Вт). Учитывая несколько известных нам основных терминов, связанных с электричеством, как мы можем рассчитать мощность в цепи? Итак, у нас есть очень стандартное измерение, включающее потенциальную энергию — вольты (В), — которые определяются в джоулях на единицу заряда (кулон) (Дж / Кл).Ток, еще один из наших любимых терминов, связанных с электричеством, измеряет поток заряда во времени в амперах (А) — кулонах в секунду (Кл / с). Соедините их вместе и что мы получим ?! Мощность!
Чтобы рассчитать мощность любого конкретного компонента в цепи, умножьте падение напряжения на нем на ток, протекающий через него.
Например,
Ниже представлена простая (хотя и не полностью функциональная) схема: батарея на 9 В, подключенная к клемме 10 Ом; резистор.
Как рассчитать мощность на резисторе? Сначала мы должны найти ток, проходящий через него. Достаточно просто … Закон Ома!
Хорошо, 900 мА (0,9 А) проходит через резистор и 9 В. Какая же тогда мощность подается на резистор?
Резистор преобразует электрическую энергию в тепло. Таким образом, эта схема каждую секунду преобразует 8,1 джоулей электрической энергии в тепло.
Расчет мощности в резистивных цепях
Когда дело доходит до расчета мощности в чисто резистивной цепи, знать два из трех значений (напряжение, ток и / или сопротивление) — это все, что вам действительно нужно.
Подставляя закон Ома (V = IR или I = V / R) в наше традиционное уравнение мощности, мы можем создать два новых уравнения. Первый, чисто по напряжению и сопротивлению:
Итак, в нашем предыдущем примере 9V 2 /10 & ohm; (V 2 / R) составляет 8,1 Вт, и нам никогда не нужно рассчитывать ток, протекающий через резистор.
Второе уравнение мощности может быть составлено исключительно с точки зрения тока и сопротивления:
Зачем нам нужна мощность, упавшая на резистор? Или любой другой компонент в этом отношении.Помните, что мощность — это передача энергии от одного типа к другому. Когда эта электрическая энергия, идущая от источника питания, попадает в резистор, энергия превращается в тепло. Возможно, больше тепла, чем может выдержать резистор. Это приводит нас к … номинальной мощности.
Номинальная мощность
Все электронные компоненты передают энергию от одного типа к другому. Требуется некоторая передача энергии: светодиоды излучают свет, моторы вращаются, аккумуляторы заряжаются.Другие передачи энергии нежелательны, но также неизбежны. Эти нежелательные передачи энергии составляют потерь мощности , которые обычно проявляются в виде тепла. Слишком большие потери мощности — слишком много тепла на компоненте — могут стать очень нежелательными для .
Даже когда передача энергии является основной целью компонента, все равно будут потери в другие формы энергии. Например, светодиоды и двигатели по-прежнему будут выделять тепло как побочный продукт при передаче другой энергии.
Большинство компонентов рассчитаны на максимальную мощность, которую они могут рассеять, и важно поддерживать их работу ниже этого значения.Это поможет вам избежать того, что мы с любовью называем «выпустить волшебный дым».
Номинальная мощность резистора
Резисторыявляются одними из самых известных виновников потери мощности. Когда вы понижаете напряжение на резисторе, вы также индуцируете ток через него. Чем больше напряжение, тем больше ток, тем больше мощность.
Вспомните наш первый пример расчета мощности, где мы обнаружили, что если 9V упадет на 10 & ohm; резистор, этот резистор рассеивает 8.1Вт. 8.1 — это лот Вт для большинства резисторов. Большинство резисторов имеют номинал от & frac18; W (0,125 Вт) до 1/2 Вт (0,5 Вт). Если вы уроните 8 Вт на стандартный резистор ½ Вт, приготовьте огнетушитель.
Если вы видели резисторы раньше, вы наверняка видели их. Сверху — резистор ½ Вт, ниже — Вт. Они не предназначены для рассеивания большого количества энергии.
Существуют резисторы, рассчитанные на большие перепады мощности. Они специально называются резисторами мощности .
Эти большие резисторы предназначены для рассеивания большого количества энергии. Слева направо: два 3Вт 22кОм; резисторы, два 5W 0.1 & Ом; резисторы, и 25Вт 3 & Ом; и 2 & Ом; резисторы.
Если вы когда-нибудь столкнетесь с выбором номинала резистора. Не забывайте и о номинальной мощности. И, если ваша цель — что-то нагреть (нагревательные элементы в основном представляют собой действительно мощные резисторы), постарайтесь минимизировать потери мощности в резисторе.
Например
Номинальная мощность резистораможет иметь значение, когда вы пытаетесь выбрать номинал для токоограничивающего резистора светодиода.Скажем, например, вы хотите зажечь сверхяркий красный светодиод диаметром 10 мм на максимальной яркости, используя батарею 9 В.
Этот светодиод имеет максимальный прямой ток 80 мА и прямое напряжение около 2,2 В. Таким образом, чтобы подать на светодиод 80 мА, вам понадобится 85 Ом; резистор сделать так.
6,8 В на резисторе упало, а прохождение 80 мА через него означает потерю мощности 0,544 Вт (6,8 В * 0,08 А). Полуваттный резистор это не очень понравится! Он, наверное, не растает, но будет горячим .Не рискуйте и выберите резистор 1 Вт (или сэкономьте энергию и используйте специальный драйвер светодиода).
Резисторы, безусловно, не единственные компоненты, для которых необходимо учитывать максимальную номинальную мощность. Любой компонент, обладающий резистивным свойством, будет производить тепловые потери. Работа с компонентами, которые обычно подвергаются воздействию высокой мощности — например, регуляторами напряжения, диодами, усилителями и драйверами двигателей — означает уделять особое внимание потерям мощности и тепловым нагрузкам.
Ресурсы и движение вперед
Теперь, когда вы знакомы с концепцией электроэнергии, ознакомьтесь с некоторыми из этих руководств по теме!
- Как активизировать ваш проект — Вы знаете, что такое «мощность». Но как сделать это в своем проекте?
- Light — Light — полезный инструмент для инженера-электрика. Понимание того, как свет соотносится с электроникой, является фундаментальным навыком для многих проектов.
- Что такое Arduino — Мы много говорили об этой Arduino в этом уроке. Если вам все еще неясно, что это такое, ознакомьтесь с этим руководством! Диоды
- — преобразуют ли они переменный ток в постоянный или просто зажигают светодиодный индикатор питания, диоды — особенно удобный компонент для питания проектов. Резисторы
- — самые основные электронные компоненты, резисторы необходимы практически в каждой цепи.
- MP3 Player Shield Music Box — Поговорим о передаче энергии! Этот проект сочетает электричество, движение и звук, чтобы создать музыкальную шкатулку на тему «Доктор Кто» .
электроэнергии | Определение, использование и факты
Электроэнергия , энергия, вырабатываемая путем преобразования других форм энергии, например механической, тепловой или химической энергии. Электроэнергия не имеет себе равных для многих областей применения, таких как освещение, работа с компьютером, движущая сила и развлекательные приложения. Для других целей он конкурентоспособен, например, для многих промышленных систем отопления, приготовления пищи, отопления помещений и железнодорожного транспорта.
ЭлектроэнергияГидроэлектростанция, Новая Зеландия.
© Джо Гоф / Shutterstock.comПодробнее по этой теме
История техники: Электричество
Развитие электричества как источника энергии предшествовало этому соединению с паровой энергией в конце XIX века. Новаторский …
Электрическая мощность характеризуется током или потоком электрического заряда и напряжением или потенциалом заряда для передачи энергии.Данное значение мощности может быть получено любой комбинацией значений тока и напряжения. Если ток постоянный, электронный заряд всегда движется в одном и том же направлении через устройство, получающее питание. Если ток переменный, электронный заряд перемещается вперед и назад в устройстве и в подключенных к нему проводах. Для многих приложений подходит любой тип тока, но переменный ток (AC) наиболее широко доступен из-за большей эффективности, с которой он может генерироваться и распределяться.Постоянный ток (DC) требуется для определенных промышленных применений, таких как гальваника и электрометаллургические процессы, а также для большинства электронных устройств.
Широкомасштабное производство и распределение электроэнергии стало возможным благодаря разработке электрического генератора — устройства, работающего на основе принципа индукции, сформулированного в 1831 году английским ученым Майклом Фарадеем и независимо американским ученым Джозефом. Генри. Первая государственная электростанция, использующая электрический генератор, начала работу в Лондоне в январе 1882 года.Вторая такая станция открылась позже в том же году в Нью-Йорке. Оба использовали системы постоянного тока, которые оказались неэффективными для передачи электроэнергии на большие расстояния. К началу 1890-х годов первый практический генератор переменного тока был построен на электростанции Лауффен в Германии, а в 1891 году было начато обслуживание Франкфурта-на-Майне.
Есть два основных источника для привода генераторов — гидро и тепловой. Гидроэнергетика вырабатывается генераторами и турбинами, приводимыми в движение падающей водой. Большая часть другой электроэнергии получается из генераторов, соединенных с турбинами, приводимых в действие паром, производимым ядерным реактором или сжиганием ископаемого топлива, а именно угля, нефти и природного газа.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчасДо 1930-х годов гидроэлектростанции, оборудованные гидроагрегатами, производили наибольший процент электроэнергии, поскольку они были менее дорогими в эксплуатации, чем тепловые электростанции, использующие паротурбинные установки. С тех пор крупные технологические достижения снизили стоимость производства тепловой энергии, в то время как стоимость разработки более удаленных гидроэлектростанций увеличилась.К 1990 году производство гидроэлектроэнергии составляло лишь 18 процентов мирового производства электроэнергии. Тепловые установки, использующие ядерную энергию или газовые турбины для работы пароэлектрических установок, относятся к числу таких технологических достижений. Альтернативные источники электроэнергии включают солнечные батареи, ветряные турбины, топливные элементы и геотермальные электростанции.
Свидетели, работающие на вертолете, ремонтируют поврежденную высоковольтную линию электропередачи.Наблюдают, как вертолетчики ремонтируют высоковольтную линию электропередачи.
Contunico © ZDF Enterprises GmbH, Майнц Посмотреть все видеоролики к этой статьеЭлектроэнергия, вырабатываемая на центральной электростанции, передается в пункты оптовой поставки или подстанции, откуда она распределяется между потребителями.Передача осуществляется по разветвленной сети высоковольтных линий электропередачи, включая воздушные провода, подземные и подводные кабели. При передаче переменного тока на большие расстояния требуются более высокие напряжения, чем те, которые подходят для генераторов электростанций, чтобы уменьшить потери мощности, возникающие из-за сопротивления линий передачи. На электростанции используются повышающие трансформаторы для увеличения передаваемого напряжения. На подстанциях другие трансформаторы понижают напряжение до уровней, подходящих для распределительных сетей.
Электроэнергия — определение электроэнергии по The Free Dictionary
Были установлены электрические электростанции, и его рабочие места были освещены, а также приводились в действие электричеством. [USPRwire, среда, 4 сентября 2019 г.] Рынок автомобильного электроусилителя рулевого управления: введение Автомобиль. Резюме: Fact.MR объявил о добавлении к своему предложению отчета «Прогноз рынка автомобильного электроусилителя рулевого управления, анализ тенденций и отслеживание конкуренции — глобальный обзор с 2019 по 2029 год».M2 PRESSWIRE — 2 сентября 2019 г .: Глобальные рынки производства, передачи и распределения электроэнергии, 2014-2018 и 2019-2022 (TSE: 6501, Hitachi) сегодня объявили о получении заказа на систему рынка балансировки электроэнергии ( «система»), которая будет создана путем совместных закупок для TEPCO Power Grid, Inc. («TEPCO PG») и Chubu Electric Power Co. («Chubu Electric Power») Международные новости ресурсов — 13 июня 2019 г. — The Smart Electric Power Alliance награждает PPL Electric Utilities Это касается финансирования, проектирования и инжиниринга, создания, строительства, развития, эксплуатации и технического обслуживания системы распределения электроэнергии в Нью-Кларк-Сити на начальный период в 25 лет с возможностью продления еще на 25 лет.ИСЛАМАБАД — Председатель Shanghai Electric Power (SEP) Ван Юньдан Пятница продемонстрировал большой интерес своей компании к инвестициям в энергетический сектор Пакистана. Ван Юньдан, председатель Shanghai Electric Power (SEP), вместе со своей делегацией обратился к премьер-министру Имрану Хану в канцелярии премьер-министра в пятницу. Г-н ЛАХОР — The Shanghai Electric Power Company Limited в уведомлении фондового рынка, отправленном через своего менеджера с предложением Арифу Хабибу во вторник, снова выразила общественный интерес к приобретению контрольного пакета акций K-Electric в размере 66,4%.1 (Петра). По словам представителя электроэнергетической компании, потребление электроэнергии в Иордании составило 18 689 ГВт / час в 2015 году по сравнению с 17 764 ГВт / час в 2014 году, увеличившись на 5,1 процента.Что такое электростанция? (с иллюстрациями)
Электростанция — это объект, который существует для выработки электроэнергии и отправки ее туда, где она необходима. Существует несколько различных методов производства электроэнергии, но обычно электростанция сжигает ископаемое топливо, такое как уголь, для нагрева воды и производства пара.Этот пар сжимается и используется для вращения турбины, а электрическая энергия получается из механической энергии вращающейся турбины за счет использования ряда магнитов. В результате взаимодействия электроны проходят через линии электропередач, пока не достигают домов и предприятий, где они необходимы.
Гидроэлектростанция.Уголь является наиболее часто используемым ископаемым топливом для производства электроэнергии из-за его высокого содержания энергии и высокой горючести. Однако при этом образуется большое количество отходов ископаемого топлива. При сжигании угля в атмосферу выделяется огромное количество углекислого газа, и считается, что он вносит значительный вклад в глобальное потепление и парниковый эффект. Таким образом, ученые постоянно ищут самый чистый и эффективный метод производства энергии на электростанции.
Турбина, предназначенная для выработки энергии из ветра.Электростанция может иметь множество различных форм, в зависимости от вида топлива, которое она использует, и методов, используемых для преобразования этого топлива в электрическую энергию.Например, атомные электростанции используют тепло ядерных реакторов, а геотермальные электростанции используют пар, генерируемый чрезвычайно горячими породами, расположенными глубоко под землей. Обычно электростанция использует паровые турбины для передачи механической энергии в электрическую. Однако иногда на заводе есть газовая турбина, работающая на природном газе. В некоторых из них также используются недорогие микротурбины, которые могут использовать различные виды топлива.
Электростанции поставляют энергию потребителям через электросеть.Возобновляемые формы производства электроэнергии приобретают все большее значение, поскольку стоимость и ограниченность ископаемых видов топлива становятся все более очевидными.Энергию можно получать от ветра, используя ветряные мельницы, которые напрямую используют энергию ветра для вращения турбин и генерирования механической энергии, которая, в свою очередь, может быть преобразована в электрическую энергию. Солнечная тепловая электростанция использует тепловую энергию солнца для кипячения воды и вращения турбин. Эти методы производства энергии являются возобновляемыми и чистыми, но, как правило, они менее эффективны при выработке электроэнергии, чем станции, работающие на ископаемом топливе. Запасы ископаемого топлива иссякнут, но на Земле по-прежнему будет много ветра и солнечного света.
Атомные электростанции используют тепло, вырабатываемое ядерными реакторами, для производства электроэнергии.