Электромеханические реле времени: Электромеханические реле времени | Электрические аппараты

Электромеханические реле времени | Электрические аппараты

Сторінка 18 із 54

Глава десятая
ЭЛЕКТРОМЕХАНИЧЕСКИЕ РЕЛЕ ВРЕМЕНИ
10.1. ОБЩИЕ СВЕДЕНИЯ

В схемах защиты и автоматики часто требуется выдержка времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость в определенной временной последовательности операций. Для создания выдержки времени служат электрические аппараты, называемые реле времени.
Общими требованиями для реле времени являются:
а) стабильность выдержки времени при колебаниях напряжения, частоты питания, температуры окружающей среды и воздействии других факторов;
б) малые потребляемая мощность, масса и габариты. Возврат реле в исходное положение происходит, как правило, при его обесточивании. Поэтому коэффициент возврата может быть очень низким.
В зависимости от назначения к реле времени предъявляются различные специфические требования. Для схем автоматического управления электроприводом при большой частоте включений требуются реле с высокой механической износостойкостью — до (5-г-10) — 10е срабатываний. Требуемые выдержки времени находятся в пределах 0,25—10 с. К этим реле не предъявляются требования относительно высокой стабильности выдержки времени. Разброс времени срабатывания может достигать 10 %. Реле должны работать в производственных условиях при наличии интенсивных механических воздействий.

Реле для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Износостойкость реле времени защиты порядка (5ч-10) • 103 срабатываний. Выдержки времени таких реле составляют 0,1—20 с.
Для автоматизации технологических процессов необходимы реле с большой выдержкой времени — от нескольких минут до нескольких часов. В этом случае, как правило, используются моторные реле времени. В настоящее время созданы также полупроводниковые реле с таким же большим диапазоном выдержки времени (см.
§ 12.4).

а) Устройство реле и влияние различных факторов на его работу. Принцип электромагнитного замедления рассмотрен в § 5.7. Конструкция реле с таким замедлением типа РЭВ-800 (рис. 10.1) содержит П-образный магнитопровод / и якорь 2 с немагнитной прокладкой 3. Магнитопровод укрепляется на плите 4 с помощью литого алюминиевого цоколя 5, на котором устанавливается контактная система 6.
На магнитопроводе установлена намагничивающая обмотка 7 и короткозамкнутая обмотка в виде овальной гильзы 8. Усилие возвратной пружины 9 изменяется с помощью регулировочной гайки 10, которая фиксируется шплинтом.
Для получения большой выдержки времени при отпускании необходима высокая магнитная проводимость рабочего и паразитного зазоров в замкнутом состоянии магнитной системы (см. § 5.7). С этой целью все соприкасающиеся детали магнитопровода и якоря тщательно шлифуются. Литой алюминиевый цоколь создает дополнительный короткозамкнутый виток, увеличивающий выдержку времени.

У реальных магнитных материалов после отключения намагничивающей обмотки поток спадает до Ф0сг, который определяется свойствами материала магнитопровода, геометрическими размерами магнитной цепи и магнитной проводимостью рабочего зазора (см. § 5.8). Чем меньше коэрцитивная сила магнитного материала при заданных размерах магнитной цепи и магнитной проводимости рабочего зазора, тем ниже остаточная индукция, а следовательно, и остаточный поток. При этом возрастает наибольшая выдержка времени, которая может быть получена от реле. Применение стали с низким значением Яс позволяет увеличить выдержку времени.


Рис. 10.1. Реле времени с электромагнитным замедлением


Рис. 10.2.

Схемы включения реле с выдержкой времени

б) Схемы включения реле. Время срабатывания реле с электромагнитным замедлением очень мало, так как постоянная времени мала из-за большого начального рабочего зазора, и трогание реле происходит при малом значении МДС обмотки. МДС трогания значительно меньше установившегося значения. Это время составляет 0,05— 0,2 с при наличии короткозамкнутого витка и 0,02—0,05 с ври его отсутствии. Таким образом, возможности электромагнитного замедления при срабатывании весьма ограничены. Поэтому используются специальные схемы включения электромагнитных реле (рис. 10.2). Если необходима большая выдержка времени при замыкании контактов, то целесообразна схема с промежуточным реле К (рис. 10.2, а). Обмотка реле времени КТ все время подключена к напряжению через размыкающий контакт реле К. При подаче напряжения на обмотку К последнее размыкает свой контакт и обесточивает реле КТ. Якорь КТ отпадает, и его размыкающие контакты срабатывают с необходимой выдержкой времени, обусловленной временем срабатывания реле К и временем отпускания реле КТ. В схеме рис. 10.2, б роль короткозамкнутого витка играет сама намагничивающая обмотка, которая питается через резистор Рдоб. Напряжение, приложенное к обмотке, должно быть достаточным для насыщения магнитной цепи при притянутом якоре. При замыкании управляющего контакта S обмотка реле закорачивается и обеспечивается медленный спад потока в магнитной цепи. Отсутствие специальной короткозамкнутой обмотки позволяет все окно магнитопровода занять намагничивающей обмоткой и создать большой запас по МДС.

При этом выдержка времени неизменна при снижении питающего напряжения на обмотке до 0,5(7ноМ. Такая схема широко применяется в электроприводе. Обмотка реле включается параллельно ступени пускового реостата в цепи якоря. При закорачивании этой ступени обмотка реле замыкается, а его контакты с выдержкой времени включают контактор, шунтирующий следующую ступень пускового реостата (рис. 7.18).
Применение полупроводникового вентиля также позволяет использовать реле без короткозамкнутого витка (рис. 10.2, е). При включении обмотки ток через вентиль практически равен нулю. При отключении управляющего контакта S поток в магнитной цепи спадает и в обмотке наводится ЭДС с полярностью, указанной на рис. 10.2, е. При этом через вентиль протекает ток, определяемый этой ЭДС, активным сопротивлением обмотки и вентиля и индуктивностью обмотки.
Для того чтобы прямое сопротивление вентиля не приводило к уменьшению выдержки времени (растет активное сопротивление короткозамкнутой цепи), оно должно быть на один-два порядка ниже сопротивления обмотки.

При любых схемах обмотки реле питаются от источника либо постоянного, либо переменного тока с мостовой схемой выпрямления.
в) Регулирование выдержки времени. Время срабатывания реле можно плавно регулировать с помощью возвратной пружины 9 (рис. 10.1). С увеличением сжатия этой пружины увеличивается электромагнитное усилие, необходимое для трогания якоря и определяемое потоком в магнитной цепи. При большем сжатии пружины поток трогания возрастает. Следовательно, возрастает время трогания.
При разомкнутой магнитной цепи постоянная времени обмотки мала и максимальная выдержка времени также незначительна (около 0,2 с). Выдержка времени значительно увеличивается, если поток трогания близок к установившемуся значению. Однако в этом случае реле работает на пологой части кривой Ф(0, что вызывает большие разбросы времени срабатывания.
Для получения выдержки времени 1 с и более, необходимо использовать отпускание якоря. Регулировка выдержки реле при отпускании может производиться плавно и ступенчато (грубо).

Плавное регулирование выдержки времени производится изменением усилия пружины 11 (рис. 10.1). Эта пружина верхним концом упирается в шайбу 14, которая удерживается шпилькой 15, ввернутой в якорь реле. Нижний конец пружины посредством специальной пластины 16 передает силу через два латунных штифта 12, которые могут свободно перемещаться в отверстиях якоря. Оси латунных штифтов 12 смещены относительно оси пружины. В притянутом положении якоря 2 штифты 12 перемещаются вверх и пружина 11 дополнительно сжимается. Пружина 11 создает основную силу, отрывающую якорь от сердечника. •Начальное сжатие пружины изменяется с помощью гайки 13. С увеличением силы пружины 11 электромагнитное усилие, при котором происходит отрыв якоря, увеличивается и возрастает поток отпускания ФОТп- При этом время отпускания уменьшается (рис. 10.3). Чем меньше сила пружины, тем больше выдержка времени. Следует отметить, что при ФОТп, близком к Ф0ст, якорь реле вообще может не отпадать от сердечника.
Возвратная пружина 9 регулируется так, чтобы обеспечить необходимое нажатие размыкающих контактов реле и четкий возврат якоря в положение, показанное на рис. 10 1 (после того как якорь оторвется от сердечника).
Грубое регулирование выдержки времени осуществляется изменением толщины немагнитной прокладки б. Поскольку при притянутом якоре магнитная цепь насыщена, толщина немагнитной прокладки мало сказывается на установившемся потоке. С уменьшением толщины немагнитной прокладки (6o<6i) растет индуктивность катушки при ненасыщенном магнитопроводе и уменьшается скорость спадания магнитного потока. В результате при неизменном усилии пружины 11 (рис. 10.1) выдержка времени увеличивается (рис. 10.4).

Рис. 10.3.

Регулирование времени отпускания с помощью пружины  
Рис. 10.4. Регулирование времени отпускания изменением немагнитного зазора

Толщину немагнитной прокладки не рекомендуется брать менее 0,1 мм. В противном случае при повторно-кратковременном режиме работы якорь расклепывает немагнитную прокладку и толщина ее уменьшается, что ведет к изменению выдержки времени. При толщине прокладки 6^0,1 мм этим явлением можно пренебречь.
Следует отметить, что электромеханические реле времени достаточно просты по конструкции и обладают большой ударо-, вибро- и износостойкостью. Допустимое число включений достигает 600 в час. Они могут использоваться в схемах автоматики и электропривода как реле тока, напряжения и промежуточные. Коэффициент возврата их низок и составляет 0,1—0,3. Короткозамкнутые витки создают электромагнитное замедление как при притяжении, так и при отпускании якоря. Поэтому токовые реле с короткозамкнутым витком не реагируют на кратковременные перегрузки. При кратковременных перегрузках МДС обмотки пропорциональна этим перегрузкам.
Поток в магнитопроводе нарастает с постоянной времени Тк, определяемой параметрами короткозамкнутого витка LJRK. Если перегрузка кратковременна и ее длительность гпер<Гср, то поток к моменту tnep не достигнет значения потока срабатывания и якорь останется неподвижным. Если Гпер>Гср, то реле сработает. Таким образом, предотвращается отключение нагрузки (двигателя) при больших, но кратковременных токовых перегрузках, не опасных для двигателя.
Промышленностью выпускаются многочисленные модификации реле с электромагнитным замедлением и выдержкой времени при отпускании 0,3—5 с. Современные реле имеют один или два унифицированных контактных узла. Каждый узел имеет один замыкающий и один размыкающий контакты с общей точкой. Постоянный ток включения контактов составляет 10 А при напряжении 110 В и 5 А при 220 В. Ток отключения для индуктивной нагрузки (катушки реле, контакторов) составляет 0,2, для активной 0,5 А.

  • Попередня
  • Наступна

1.2 Электромеханические реле времени

В схемах защиты и автоматики часто требуется выдержка времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость в определенной временной последовательности операций. Для создания выдержки времени служат электрические аппараты, называемые реле времени. Общими требованиями для реле времени являются:

а) стабильность выдержки времени при колебаниях напряжения, частоты питания, температуры окружающей среды и воздействии других факторов;

б) малые потребляемая мощность, масса и габариты.

Возврат реле в исходное положение происходит, как правило, при его обесточивании. Поэтому коэффициент возврата может быть очень низким.

В зависимости от назначения к реле времени предъявляются раз­личные специфические требования. Для схем автоматического управления электроприводом при большой частоте включений требуются реле с высо­кой механической износостойкостью — до (5-10)-106 срабатываний. Требуемые выдержки времени находятся в пределах 0,25-10 с. К этим реле не предъявляются требования относительно высокой стабильности выдержки времени. Разброс времени срабатывания может достигать 10 %. Реле должны работать в производственных условиях при наличии интенсивных механических воздействий.

Реле для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Износостой­кость реле времени защиты порядка (5-10)-103 срабатываний. Выдержки времени таких реле составляют 0,1-20 с.

Для автоматизации технологических процессов необходимы реле с большой выдержкой времени — от нескольких минут до нескольких часов. В этом случае, как правило, используются моторные реле времени. В настоящее время созданы также полупроводниковые реле с таким же большим диапазоном выдержки времени.

Увеличение времени срабатывания или отпускания можно достичь воздействием на время трогания и времени движения до момента замыкания или размыкания. Увеличение времени трогания возможно двумя способами: электрическим или магнитным. При электрическом методе реле включают в схемы (рис. 1.4), изменяющие скорость нарастания или спадания тока в его обмотке.

При магнитном методе замедление достигается с помощью различных медных втулок, коротко замкнутых витков и т. п., уменьшающих скорость нарастания или спадания тока в обмотке реле. Втулки или коротко-замкнутые витки насаживают непосредственно на сердечники под обмотку или рядом с ней, у конца пли начала сердечника.

Втулки, надетые на конце сердечника, увеличивают в основном время срабатывания, а надетые на основание — время отпускания.

Для увеличения второй составляющей (времени движения) обычно применяют воздушные и масляные демпферы или часовые механизмы.

Рассмотрим электрические методы замедления срабатывания и от­пускания реле.

а б в г

Рис. 1.4. Электрические методы образования реле времени

На рис. 1.4, а показана схема замедления срабатывания реле с ис­пользованием лампы накаливания, включенной параллельно обмотке реле и добавочного резистора R. В холодном состоянии лампа имеет небольшое сопротивление, поэтому при замыкании ключа К в цепи лампы будет протекать большой ток, на резисторе R будет большое падение напряжения и, следовательно, малое напряжение па обмотке реле.

По мере разогрева нити лампы током сопротивление ее уве­личивается, растет напряжение на обмотке реле, и оно срабатывает с за­медлением.

На рис. 1.4, б показана схема замедления срабатывания реле с помощью шунтирования его обмотки конденсатором С. В этом случае при замыкании ключа К заряд конденсатора происходит по времени. Напряжение заряда конденсатора постепенно возрастает, а время срабатывания реле увеличивается. Эта схема тоже увеличивает время отпускания реле, так как якорь некоторое время остается притянутым за счет энергии, накопленной в конденсаторе.

На рис. 3, в показана схема замедления отпускания реле. После размыкания ключа К через обмотку реле и диод VD некоторое время протекает ток, созданный за счет ЭДС самоиндукции обмотки реле. Этот ток постепенно уменьшается, и реле отключается с замедлением.

В схеме (рис.1,4, г) время отпускания реле увеличивается за счет того что при размыкании ключа К в цепи, состоящей из обмотки реле, кон­денсатора С и резистора R некоторое время сохраняется ток разряда кон­денсатора. Чтобы переходной процесс в этой цепи имел апериодический характер, применяют достаточно большой емкости конденсатор и большой величины резистор R.

Работа реле времени с магнитными демпферами осуществляется следующим образом. При появлении тока в рабочей обмотке реле начинает нарастать магнитный поток в сердечнике. Изменение магнитного потока обусловливает появление в короткозамкнутой обмотке (втулке) ЭДС, под действием которой образуется ток, создающий, в свою очередь, магнитный поток. Новый магнитный поток направлен противоположно магнитному потоку рабочей обмотки и поэтому замедляет скорость увеличения резуль­тирующего потока в рабочем зазоре. Если короткозамкнутая обмотка (втулка) расположена на конце сердечника, то при подаче питания на реле магнитный поток, образуемый токами во втулке, направлен навстречу основному потоку рабочей обмотки и как бы отталкивает его из рабочего зазора. В результате возрастают потоки рассеяния в сердечнике и у основания, а поток в рабочем зазоре сильно ослабляется.

Таким образом, усиливается влияние короткозамкнутой обмотки на время срабатывания реле (одновременно увеличивался время отпускания).

С помощью магнитного демпфирования можно получить выдержку времени при срабатывании реле 0,1- 0,3 с.

Большие выдержки времени получить невозможно, так как нарастание магнитного потока происходит при большом зазоре между якорем и сердечником. Это определяет индуктивность системы, а следовательно, быстрый рост магнитного потока.

Магнитное демпфирование удобно применять для замедления от­пускания реле, так как спад магнитного потока происходит при малом ра­бочем зазоре, т. е. при большой индуктивности системы, что определяет ее большую инерционность и позволяет получить выдержку времени от 0,2 до 10 с.

Для увеличения времени отпускания реле короткозамкнутую обмотку (втулку) располагают у основания сердечника.

При подаче питания на обмотку реле магнитный поток, образуемый током во втулке, смещает результирующий магнитный поток системы к рабочему зазору, поэтому втулка меньше влияет на время срабатывания реле. включения реле. Время срабатывания реле с электромагнитным замедлением очень мало, так как постоянная времени мала из-за большого начального рабочего зазора, и трогание реле происходит при малом значении МДС обмотки. МДС трогания значительно меньше установившегося значения. Это время составляет 0,05-0,2с при наличии короткозамкнутого витка и 0,02-0,05с при его отсутствии. Таким образом, возможности электромагнитного замедления при срабатывании весьма ограничены. Поэтому используются специальные схемы включения электромагнитных реле (рис. 1.5).

Если необходима большая выдержка времени при замыкании конактов, то целесообразна схема с промежуточным реле К (рис. 1.5,а). Обмотка реле времени КТ все время подключена к напряжению через размыкающий контакт реле К. При подаче напряжения на обмотку К последнее размыкает свой контакт и обесточивает реле КТ. Якорь КТ отпадает, и его размыкающие контакты срабатывают с необходимой выдержкой времени, обусловленной временем срабатывания реле К и временем отпускания реле КТ. В схеме (рис. 1.5, б) роль короткозамкнутого витка играет сама намагничивающая обмотка, которая питается через резистор R

доб. Напряжение, приложенное к обмотке, должно быть достаточным для насыщения магнитной цепи при притянутом якоре. При замыкании управляющего контакта 5 обмотка реле закорачивается и обеспечивается медленный спад потока в магнитной цепи. Отсутствие специальной короткозамкнутой обмотки позволяет все окно магнитопровода занять намагничивающей обмоткой и создать большой запас по МДС. При этом выдержка времени неизменна при снижении питающего напряжения на обмотке до 0,5 Uhom. Такая схема широко применяется в электроприводе. Обмотка реле включается параллельно ступени пускового реостата в цепи якоря. При закорачивании этой ступени обмотка реле замыкается, а его контакты с выдержкой времени включают контактор, шунтирующий следующую ступень пускового реостата.

Применение полупроводникового вентиля также позволяет использовать реле без короткозамкнутого витка. При включении обмотки ток через вентиль практически равен нулю. При этом через вентиль протекает ток, определяемый этой ЭДС, активным сопротивлением обмотки и вентиля и индуктивностью обмотки.

Для того чтобы прямое сопротивление вентиля не приводило к уменьшению выдержки времени (растет активное сопротивление коротко-замкнутой цепи), оно должно быть на один-два порядка ниже сопротивления обмотки.

При любых схемах обмотки реле питаются от источника либо по­стоянного, либо переменного тока с мостовой схемой выпрямления.

Реле времени с электромагнитным замедлением.

Конструкция реле с таким замедлением типа РЭВ-800 (рис.1.6) содержит П-образный магнитопровод 1 и якорь 2 с немагнитной прокладкой 3. Маг-нитопровод укрепляется на плите 4 с помощью литого алюминиевого цоколя 5, на котором устанавливается контактная система 6.

На магнитопроводе установлена намагничивающая обмотка 7 и короткозамкнутая обмотка в виде овальной гильзы 8. Усилие возвратной пружины 9 изменяется с помощью регулировочной гайки 10, которая фик­сируется шплинтом.

Д

Рис.1.6 Реле времени с электромагнитным замедлением

ля получения большой выдержки времени при отпускании необходима высокая магнитная проводимость рабочего и паразитного зазоров в замкнутом состоянии магнитной системы. С этой целью все соприкасающиеся детали магнитопровода и якоря тщательно шлифуются. Литой алюминиевый цоколь создает дополнительный коротко-замкнутый виток, увеличивающий выдержку времени. У реальных магнитных материалов после отключения намагничивающей обмотки поток спадает до Фост, который определяется свойствами материала магнитопровода, геометрическими размерами магнитной цепи и магнитной проводимостью рабочего зазора. Чем меньше коэрцитивная сила магнитного материала при заданных размерах магнитной цепи и магнитной проводимости рабочего зазора, тем ниже остаточная индукция, а следовательно, и остаточный поток. При этом возрастает наибольшая выдержка времени, которая может быть получена от реле.

Применение стали с низким значением Нс позволяет увеличить выдержку времени.

Для получения большой выдержки времени материал магнитопровода должен иметь высокую магнитную проницаемость на ненасыщенном участке кривой намагничивания.

Регулирование выдержки времени. Время срабатывания реле можно плавно регулировать с помощью возвратной пружины 9 (рис. 1.6.) С увеличением сжатия этой пружины увеличивается электромагнитное усилие, необходимое дня трогания якоря и определяемое потоком в магнитной цепи. При большем сжатии пружины поток трогания возрастает. Следовательно, возрастает время трогания.

При разомкнутой магнитной цепи постоянная времени обмотки мала и максимальная выдержка времени также незначительна (около 0,2 с). Выдержка времени значительно увеличивается, если поток трогания близок к установившемуся значению. Однако в этом случае реле работает на пологой части кривой O(t). что вызывает большие разбросы времени срабатывания.

Для получения выдержки времени 1 с и более, необходимо исполь­зовать отпускание якоря. Регулировка выдержки реле при отпускании мо­жет производиться плавно и ступенчато (грубо).

Плавное регулирование выдержки времени производится изменением усилия пружины 11 (рис. 1.6). Эта пружина верхним концом упирается в шайбу 14, которая удерживается шпилькой 15, ввернутой в якорь реле. Нижний конец пружины посредством специальной пластины 16 передает силу через два латунных штифта 12, которые могут свободно перемещаться в отверстиях якоря. Оси латунных штифтов 12 смещены относительно оси пружины. В притянутом положении якоря 2 штифты 12 перемещаются вверх и пружина 11 дополнительно сжимается. Пружина 11 создает основную силу, отрывающую якорь от сердечника. Начальное сжатие пружины изменяется с помощью гайки 13. С увеличением силы пружины 11 электромагнитное усилие, при котором происходит отрыв якоря, увеличивается и возрастает поток отпускания Фотп. При этом время отпускания уменьшается (рис.1.7.). Чем меньше сила пружины, тем больше выдержка времени. Следует отметить, что при Фотп близком к Фост якорь реле вообще может не отпадать от сердечника.

Возвратная пружина 9 регулируется так, чтобы обеспечить необхо­димое нажатие размыкающих контактов реле и четкий возврат якоря в по­ложение, показанное на рис. 1.6.(после того как якорь оторвется от сердеч­ника).

Грубое регулирование выдержки времени осуществляется изменением толщины немагнитной прокладки 8. Поскольку при притянутом якоре магнитная цепь насыщена, толщина немагнитной прокладки мало сказывается на установившемся потоке. С уменьшением толщины немагнитной прокладки <растет индуктивность катушки при ненасыщенном магнитопроводе и уменьшается скорость спадания магнитного потока. В результате при неизменном усилии пружины 11 (рис.1.6.) выдержка времени увеличивается (рис.1.8.).

Толщину немагнитной прокладки не рекомендуется брать менее 0,1мм. В противном случае при повторно-кратковременном режиме работы якорь расклепывает немагнитную прокладку и толщина ее уменьшается, что ведет к изменению выдержки времени. При толщине прокладки более 0,1мм этим явлением можно пренебречь.

Следует отметить, что электромеханические реле времени достаточно просты по конструкции и обладают большой ударо-, вибро- и изно­состойкостью. Допустимое число включений достигает 600 в час. Они могут использоваться в схемах автоматики и электропривода как реле тока, напряжения и промежуточные. Коэффициент возврата их низок и составляет 0,1-0,3. Короткозамкнутые витки создают электромагнитное замедление как при притяжении, так и при отпускании якоря. Поэтому токовые реле с короткозамкнутым витком не реагируют на кратковременные перегрузки. При кратковременных перегрузках МДС обмотки пропорциональна этим перегрузкам.

Поток в магнитопроводе нарастает с постоянной времени Тк, опре­деляемой параметрами короткозамкнутого витка LK /Rk.

Если перегрузка кратковременна и ее длительность tПEP<tсp, то поток к моменту tПEP не достигнет значения потока срабатывания и якорь останется неподвижным. Если tПEP>tсp, то реле сработает. Таким образом, предотвращается отключение нагрузки (двигателя) при больших, но кратковременных токовых перегрузках, не опасных для двигателя.

Промышленностью выпускаются многочисленные модификации реле с электромагнитным замедлением и выдержкой времени при отпускании 0,3-5 с. Современные реле имеют один или два унифицированных контактных узла. Каждый узел имеет один замыкающий и один размыкающий контакты с общей точкой. Постоянный ток включения контактов составляет 10 А при напряжении 110 В и 5 А при 220 В. Ток отключения для индуктивной нагрузки (катушки реле, контакторов) составляет 0,2, для активной 0,5 А.

Реле времени с механическим замедлением

Реле с пневматическим замедлением. В таких реле электромагнит постоянного или переменного тока воздействует на контактную систему через замедляющее устройство в виде пневматического демпфера. Выдержка времени меняется при регулировке этого устройства. Преимуществом такого реле является возможность питания как переменным, так и постоянным током и независимость от напряжения и частоты питания, температуры. Пневматическое реле РВП, применяемое в схемах электропривода станков и других механизмов, показано на рис. 1.9. При срабатывании электромагнита 1 колодка 2 под действием пружины опускается и воздействует на микропереключатель 4. Колонка 2 свя: зана с резиновой диафрагмой 5 пневма­тического замедлителя. Скорость движения колодки определяется сечением отверстия, через которое засасывается воздух в верхнюю полость замедлите­ля. Выдержка времени регулируется иглой 6, меняющей сечение этого отверстия. Контактная система 7 срабатывает без выдержки времени.

Реле с пневматическим замедлением позволяет регулировать выдержку времени в диапазоне от 0,4 до 180с с точностью ±10 %. Контактная система микропереключателя допускает длительный ток ЗА, ток отключения 0,2 А при переменном напряжении 380 В

Рис. 1.9. Реле времени с пневматическим замедлением.

В замедлителях в виде анкерного механизма его пружина заводится под воздействием электромагнита. Контакты реле приходят в движение лишь после того, как связанный с ними анкерный механизм отсчитает определенное время уставки.

Выдержка времени у этих реле регулируется в пределах от 7 до 17с с точностью ±10% уставки. В реле имеются и нерегулируемые контакты, которые связаны с якорем электромагнита и используются в цепях, не требующих выдержки времени. Реле надежно работают при напряжении питания до 0,85 Uhom. Так как износостойкость анкерного механизма составляет всего 15000 срабатываний, такие реле не применяются при частых включениях. Моторные реле. Для создания выдержки времени 20-30 мин исполь­зуются так называемые моторные реле времени, в состав которых входит электродвигатель с заданной частотой вращения. Промышленностью выпус­каются большие серии этих реле на выдержки времени от 1 с до 26 мин и с различным исполнением контактов

.

Начальное положение кулачка

при обесточенном реле

Рис. 1.10. Моторное реле времени

Рис. 1.11. Кинематическая схема реле времени ЭВ-215

На рис. 1.10 показано устройство моторного реле. Для пуска реле подается напряжение на электромагнит 1 и двигатель 2. С помощью рычага 12 электромагнит без выдержки времени включает муфту 3, 4 и замыкает выходной контакт 5. Через муфту и зубчатую передачу 6 двигатель начинает вращать диски 7 с кулачками 8 и 9, воздействующими на промежуточные кулачки 10 и 11 и выходные контакты 16 и 13. При соприкосновении кулачков 8 и 10 последний поворачивается против часовой стрелки и дает возмож­ность контактной пластине 14 опуститься вниз под действием силы упругости. При этом контакт 16 размыкается. При соприкосновении кулачков 9 и 11 последний поворачивается и освобождает пластину 15, что вызывает замыкание контакта 13. Выдержка времени работы контактов 16 и 13 регулируется путем изменения начального положения дисков 7. При снятии напряжения с реле диски 7 поворачиваются в начальное положение с помощью спираль­ной возвратной пружины 17.

Точность работы реле ± 5 с. Реле позволяет устанавливать различую выдержку времени в пяти независимых цепях. Выходные контакты реле допускают длительный ток 10 А и при переменном токе могут отключать нагрузку мощностью 800 ВА при напряжении 220 В и 100 Вт при том же напряжении и индуктивной нагрузке постоянного тока. Допустимые колебания напряжения составляют (0,9-1,12) Uном . Износостойкость не менее 1000 циклов. Время возврата не более 1 с.

Реле времени часового (анкерного) механизма. Реле времени предназначено для замедления действия МТЗ с целью обеспечения селективности или избирательности её действия, заключающегося в отключении к ближайшему месту повреждения сети выключателя. Устройство электромагнитного реле времени типа

ЭВ-215 с анкерным часовым механизмом показано на рис. 1.11.

При подаче напряжения на катушку 1 её сердечник втягивается, сжимает пружину 2 и освобождает рычаг 3. Под действием пружины 6 зубчатый сектор 5 поворачивается на оси 4 по часовой стрелке. Шестерня 7 и подвижный контакт 9 будут вращаться в противоположную сторону. Постоянная скорость вращения контакта обеспечивается часовым механизмом 8. Через некоторое время (временя выдержки) контакт 9 замкнет неподвижные контакты 10. Регулируют выдержку времени изменением длины прохождения пути контакта 9 за счет перемещения контактов 10 по шкале выдержек 12, к которой они крепятся винтом 11. Кроме контактов, замыкающихся с выдержкой времени, реле имеет вспомогательные контакты 13,14 мгновенного действия.

Изображение катушки реле времени КТ и его контактов (замыкающего с выдержкой времени при замыкании КТ. 1 размыкающего с выдержкой времени при размыкании КТ. 2) показаны на рис. 1.11. В общем случае направление выдержки времени на изображаемом контакте совпадает с направлением «рожек» дуги («рожки» препятствуют движению контакта).

Электромеханические, полупроводниковые реле и реле с выдержкой времени

Доступны дополнительные опции! Звоните 801-532-2706

  • Меню продукта
  • Инженерные решения
  • Производители
  • Образование
  • Панельные услуги

Главная Реле, таймеры и счетчики

Контакторы представляют собой электрические устройства управления, используемые для включения или выключения цепи. Они считаются специальным типом реле, которые используются в приложениях с большей мощностью. Эти сверхмощные реле позволяют более низким токам и напряжениям переключать цепи гораздо большей мощности в течение многих тысяч циклов. Это делает их отличным выбором для управления электродвигателями.

Электромеханические реле представляют собой переключатели, передающие сигналы через соединение механических контактов на размыкание и замыкание выходной цепи. Эти реле используются, когда необходим маломощный сигнал для управления одной или несколькими цепями.

Реле с принудительным управлением представляют собой электромеханические переключающие устройства, которые сконструированы таким образом, что невозможно одновременное замыкание всех контактов. Если нормально разомкнутый контакт не удается разомкнуть, соответствующий нормально замкнутый контакт не может замкнуться при отключении питания.

Реле контроля – это защитные устройства управления, которые принимают входные сигналы, измеряют их по заданному параметру и выдают сигнал тревоги при достижении порогового значения. Реле контроля более сложны, чем обычные реле, потому что они имеют настраиваемые рабочие условия, которые могут контролировать напряжение, температуру, ток и другие аналоговые сигналы.

Реле безопасности представляют собой электромеханические переключающие устройства, предназначенные для реализации функций безопасности и снижения риска. При возникновении ошибки или нарушении зоны обнаружения реле безопасности инициирует безопасную и надежную реакцию.

Твердотельные реле — это электронные переключающие устройства, которые включаются и выключаются при небольшом входном напряжении для управления большим выходным напряжением или током. Поскольку в твердотельных реле для передачи сигналов используются полупроводники или электроника, в них нет подвижных компонентов, что обеспечивает более высокую производительность, меньший уровень шума и более длительный срок службы.

Интеллектуальные реле — это малогабаритные ПЛК, предназначенные для простых задач автоматизации, где требуется меньше точек ввода-вывода. Эти задачи включают в себя: подсчет, синхронизацию, арифметические функции, хранение и т. д. Одно интеллектуальное реле может заменить множество устройств управления за счет упрощения и объединения элементов управления от многих единиц оборудования.

Электромеханические реле

Конечно управляемые реле

Мониторинг реле

Реле модули реле

Реле безопасности

Старшие контакты

Сплошные ретрансляции

Relay Assoysory

Smart Relays

Занятые сроки

.

Поболтай с нами, на базе LiveChat

Что такое реле времени? Определение, работа и использование

Цифровое реле времени
Ресурс: https://www.youtube.com/watch?v=4TTvfSYy204

Когда электрическую систему или устройство необходимо включить или выключить в определенное время, обычно используется реле времени. Эти устройства находят применение в широком спектре электрических устройств и систем, от тех, которые используются в домах, коммерческих зданиях, до промышленных установок. Вот все, что вам нужно знать о релейных переключателях, основанных на времени, включая их различные варианты использования.

Что такое реле времени?

Реле времени, также называемое реле времени или реле времени, представляет собой устройство, которое контролирует время события. Он размыкает или замыкает контакты по истечении заданного времени, тем самым обеспечивая функцию управления по времени.

Реле времени используются в приложениях, где необходимо задержать выполнение некоторого события. Это могут быть промышленные схемы управления, системы безопасности, охранная сигнализация и автоматизированные системы управления освещением.

Реле времени могут быть электромеханическими или полупроводниковыми, аналоговыми или цифровыми. Хотя они выполняют одну основную функцию, эти типы реле времени используют разные интерфейсы и другие характеристики, такие как преимущества и недостатки.

Электромеханический таймер

Электромеханический таймер или реле времени использует электромагнит для управления набором контактов переключателя. Временная задержка управляется специальной схемой и регулируется с помощью ручки или диска, расположенного на устройстве. Эти таймеры прочны и могут использоваться в различных промышленных приложениях.

Твердотельное реле времени

Твердотельное реле времени использует полупроводниковые компоненты вместо движущихся частей для контроля времени события. Временная задержка регулируется и может быть установлена ​​с помощью потенциометра на устройстве. Твердотельное реле задержки времени имеет небольшие размеры и компактные размеры, что делает его идеальным для использования в приложениях с ограниченным пространством.

Аналоговое реле времени

Аналоговое реле времени представляет собой электромеханическое или полупроводниковое устройство, использующее аналоговые входы для управления временем включения и выключения. В основном он поставляется с циферблатом для установки требуемой задержки времени и может позволять устанавливать различные временные диапазоны. Эти реле времени предлагают меньше настроек, но просты в использовании.

Цифровое реле времени

Цифровое реле времени использует цифровой вход для управления временем включения и выключения. Эти таймеры обычно поставляются со светодиодными дисплеями или ЖК-дисплеем, чтобы вы могли установить свою функцию времени, которая может быть отдельным устройством от реле. Эти типы реле времени могут быть запрограммированы для обеспечения широкого диапазона настроек и часто являются многофункциональными устройствами.

Для чего используется реле времени?

Основной функцией реле времени является управление событием по времени. Таким образом, устройство используется в различных приложениях, требующих временных последовательностей или интервалов. Они варьируются от простых таймеров до сложных элементов управления последовательностью. Некоторые из наиболее распространенных применений реле задержки времени перечислены ниже:

  • Реле времени устанавливаются в зданиях для включения и выключения света в определенное время.
  • В домах реле времени может использоваться для управления различными приборами и системами, такими как система HVAC.
  • Реле задержки времени находят широкое применение в ряде промышленных систем, таких как управление пуском двигателя, управление конвейерной лентой и включение/выключение клапанов.
  • В системах безопасности эти реле управляют охранной сигнализацией и другими охранными установками.
  • Телекоммуникационные компании используют реле времени для управления различными системами и процессами.
  • В автомобильной промышленности реле времени используется в ряде функций, таких как управление указателями поворота.
Схема подключения реле времени, показывающая, как оно работает
Ресурс: https://www.electrician-1.com

Как работает реле времени?

Теперь посмотрим, как работает реле времени. Реле времени используется для управления событием по времени. Временная задержка может быть установлена ​​пользователем, и после ее активации реле будет ждать указанное количество времени перед выполнением события.

Событием может быть все, для чего предназначено реле, например, размыкание или замыкание цепи, включение или выключение устройства и т. д. Вот принцип работы реле времени.

  • Реле времени использует электромагнит для управления набором контактов, или это может быть полупроводниковое реле времени (электронная схема).
  • При срабатывании реле времени на электромагнит подается напряжение и контакты замыкаются.
  • По истечении времени задержки реле выполнит событие, а затем вернется в исходное состояние, ожидая повторной активации.
  • По истечении заданного времени электромагнит обесточивается и контакты размыкаются.

Задержка реле времени обычно регулируется. Существуют также реле времени, которые позволяют пользователям устанавливать несколько функций, например, различные события по времени.

Реле времени с задержкой включения

Реле времени с задержкой включения — это устройство, которое включает нагрузку по истечении заданного времени. Реле времени с задержкой на включение используется в приложениях, где необходимо включить нагрузку в определенное время.

Например, реле можно использовать для управления освещением. Когда активировано реле задержки времени задержки включения, освещение включится по истечении заданного времени.

Реле задержки отключения

Реле задержки отключения отключает нагрузку по истечении заданного времени. В основном это происходит, когда пусковой переключатель выключен или питание реле прервано.

Некоторыми приложениями, для которых требуется реле времени с задержкой отключения, являются системы управления технологическими процессами, системы безопасности и системы отопления, вентиляции и кондиционирования воздуха. В этих системах может потребоваться отключение нагрузки в определенное время.

Многофункциональное реле времени

Многофункциональное реле с выдержкой времени — это тип реле, которое можно использовать как реле с выдержкой времени для включения или реле с выдержкой времени для выключения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *