Электронный предохранитель: Электронные предохранители. Вопросы и ответы

Содержание

Электронные предохранители. Вопросы и ответы

Электронный предохранитель является мощным и универсальным инструментом защиты от перегрузок по току. Вместе с тем, при проектировании электронных предохранителей приходится решать множество задач, например, выбирать оптимальный токовый усилитель. Впрочем, при использовании специализированных ИС самые сложные задачи оказываются решенными.

Традиционный плавкий предохранитель представляет собой простейший элемент защиты от коротких замыканий (рис. 1). Среди его достоинств можно выделить низкую стоимость, высокую доступность, максимальную предсказуемость поведения, высокую надежность, простоту применения. Между собой плавкие предохранители отличаются рейтингом тока, корпусным исполнением и другими характеристиками. Тем не менее, разработчики всегда ищут новые способы решения даже для уже решенных задач, особенно если новые подходы обеспечивают большую гибкость и функциональность. Это касается и проблемы защиты от коротких замыканий.

В данной статье в форме вопросов и ответов рассматриваются основные особенности электронных плавких предохранителей (e-fuse или efuse), особое внимание уделяется усилителю тока, который является наиболее важной частью схемы.

Рис. 1. Традиционные плавкие предохранители отличаются рейтингом тока, корпусным исполнением и другими характеристиками. Тип предохранителя выбирается, исходя из требований конкретного приложения

Где можно прочитать об основных характеристиках и особенностях традиционных плавких предохранителей?

В списке литературы приведены ссылки [1, 2], в которых подробно рассматриваются эти вопросы.

Если плавкие предохранители являются простым и надежным элементом защиты от КЗ, то зачем нужно искать альтернативные решения?

Традиционные плавкие предохранители имеют множество достоинств. Вместе с тем у них есть и недостатки, наиболее важными из которых являются: жесткое задание тока срабатывания, невысокое быстродействие (особенно в сравнении с новейшими электронными схемами), необходимость физической замены после срабатывания. Кроме того, точность таких предохранителей при малых токах (в диапазоне 100 мА) оказывается не такой высокой, как хотелось бы большинству разработчиков. В то же время электронные предохранители все чаще используются в автомобилях, платах расширения с возможностью горячей замены и многих других электронных устройствах.

Какая альтернатива существует для плавких предохранителей?

Альтернативой плавким предохранителям становятся полностью электронные предохранители, характеристики которых не так сильно зависят от температуры.

Как выглядит схема электронного предохранителя?

Для создания электронного предохранителя потребуется несколько основных аналоговых компонентов: прецизионный токовый резистор (шунт) [3], усилитель тока (current sense amplifier или CSA) с набором согласованных резисторов, компаратор для формирования сигнала отключения, полевой транзистор для выполнения коммутации нагрузки (рис. 2). Обратите внимание, что электронные предохранители имеют много общего с интеллектуальными силовыми ключами, о которых мы рассказывали в статье «Интеллектуальные ключи. Вопросы и ответы»[3, 4].

Рис. 2. Напряжение на шунте (прецизионном резисторе) измеряется дифференциальным усилителем тока, при этом напряжение на входах не привязано к «земле» усилителя.

Как работает электронный предохранитель?

Ток нагрузки протекает через шунт и создает на нем падение напряжения, которое усиливается дифференциальным усилителем тока. Поскольку сопротивление шунтового резистора известно, то с помощью несложной аналоговой схемы можно задать пороговое значение тока, с учетом закона Ома: I = V/ R (рис. 2).

Если пороговое значение тока превышено, компаратор формирует аварийный сигнал, и силовой полевой транзистор отключает нагрузку (рис. 3). Время отклика для такой схемы составляет всего несколько микросекунд, что намного меньше, чем у традиционных плавких предохранителей, для которых время срабатывания составляет десятки-сотни миллисекунд. Кроме того, поскольку параметры электронных компонентов слабо зависят от температуры, то температурная зависимость тока срабатывания для электронных предохранителей не является такой существенной проблемой, как для плавких предохранителей.

Рис. 3. Полевой транзистор подключен последовательно с нагрузкой и используется для коммутации тока в электронном предохранителе. Этот транзистор должен иметь очень низкое сопротивление открытого канала, чтобы обеспечивать минимальное падение напряжения и низкую рассеиваемую мощность.

Какие особенности есть у предложенной схемы электронного предохранителя?

Во-первых, резистор и усилитель тока должны обладать минимальной температурной зависимостью. При этом значительная погрешность измерения может быть вызвана как колебаниями температуры окружающей среды, так и саморазогревом шунта. Кроме того, для управления полевым транзистором во многих случаях потребуется драйвер, особенно если речь идет о мощных силовых ключах, работающих с большими токами и напряжениями.

Во-вторых, схема должна иметь некоторый гистерезис, чтобы избежать ложных переключений при возникновении перегрузки по току. Аварийный сигнал с гистерезисом может быть сформирован по-разному, например, с помощью простого аналогового компаратора. Для обнаружения перегрузки по току также могут быть применены алгоритмы цифровой обработки сигналов, для чего потребуется связка из АЦП и микроконтроллера (или процессора). Еще одним вариантом подстройки порога срабатывания становится программируемый цифровой потенциометр.

Однако усложнение схемы не идет на пользу надежности. Поэтому очень важно понять, является ли интеллектуальное поведение электронного предохранителя действительно необходимым или более критичным будет высокий уровень надежности.

Что такое усилитель тока?

Выбор усилителя тока (current sense amplifier или CSA) оказывается не таким простым, как может показаться с первого взгляда. Несмотря на название, в действительности усилитель тока фактически работает с напряжением. При этом на его выходе формируется напряжение, пропорциональное току, протекающему через шунтовой резистор. Тем не менее, многие производители используют термин «усилитель тока», что хорошо подходит в случае со схемой электронного предохранителя.

Чем усилитель тока отличается от обычного операционного усилителя?

Есть несколько важных отличий. Во-первых, усилитель тока по определению является дифференциальным усилителем (diff amp). Это связано с тем, что в большинстве схем шунтовой резистор не подключен к земле. Вместо этого он, как правило, располагается между источником питания и нагрузкой. Поэтому усилитель тока должен работать без привязки к земле, то есть измерять не синфазное, а дифференциальное напряжение.

Это единственное различие?

Нет. В отличие от обычных дифференциальных усилителей усилитель тока, должен обеспечивать работу с широким диапазоном синфазных напряжений. В качестве примера можно рассмотреть случай, когда шунтовой резистор включен последовательно с мощным электродвигателем с рабочим напряжением в несколько десятков вольт (или даже выше). Еще одним примером является схема защиты от КЗ батареи аккумуляторов с высоким суммарным напряжением.

Кроме того, усилитель тока должен гарантировать высокую точность измерений небольших дифференциальных напряжений даже при наличии высоких синфазных напряжений. Современные усилители тока способны выполнять измерения дифференциальных напряжений порядка 10…100 мВ в присутствии синфазных напряжений 50…100 В (а также отрицательных напряжений) без ухудшения точности или потери работоспособности.

Какие еще особенности есть у усилителей тока?

Усилитель тока должен обеспечивать высокую стабильность и точность усиления входного напряжения. Как уже было сказано, в большинстве случаев шунтовые резисторы имеют очень низкое собственное сопротивление. В результате, при протекании даже значительных токов, на них падает порядка 10…100 мВ. Это позволяет, с одной стороны, минимизировать падение напряжения питания, подаваемого на нагрузку, а с другой стороны — снизить уровень рассеиваемой мощности.

Однако столь низкое напряжение не подходит для большинства аналоговых схем из-за наличия шумов и помех. Таким образом, усилитель необходим для нормирования сигнала до приемлемого уровня, обычно 1…10 В. Для установки коэффициента усиления в схеме дифференциального усилителя используются точные и согласованные резисторы. Эти резисторы также должны иметь одинаковые температурные зависимости для того, чтобы любые колебания температуры оказывали минимальное влияние на точность. Другим важным требованием к усилителю тока является сверхнизкое входное напряжение смещения, которое должно быть во много раз меньше, чем измеряемое дифференциальное напряжение на шунтовом резисторе.

Какие еще преимущества есть у электронных предохранителей по сравнению с плавкими предохранителями?

Как и в случае с плавкими предохранителями, электронные предохранители включаются между источником питания и нагрузкой (рис. 4). При этом их функционал может быть гораздо шире. Интегральные электронные предохранители, такие, например, как TPS25925x от Texas Instruments, имеют целый ряд дополнительных функций и особенностей, в том числе программируемую пользователем защиту от просадки напряжения, защиту от перенапряжений, схему автоматического повторного включения, программируемое время включения, которое может быть установлено с помощью внешних компонентов (рис. 5). Возможность настройки времени включения оказывается полезной для осуществления контроля стартового тока при запуске и выполнении «горячей замены» модулей (рис. 6). Несмотря на сложную внутреннюю схему, электронные предохранители довольно просты в использовании и поставляются различными производителями, например, ST Microelectronics, Analog Devices, ON Semiconductor и т. д.

Рис. 4. Электронные предохранители просты в использовании. Как и в случае с плавкими предохранителями, они включаются между источником питания и нагрузкой

Рис. 5. Схема электронного предохранителя может включать множество различных блоков, которые добавляют такие функции, как программируемый порог тока отключения, задержка и скорость включения и т.д. Все это значительно расширяет функционал и универсальность электронных предохранителей по сравнению с традиционными плавкими предохранителями. 

Рис. 6. Электронные предохранители позволяют не только программировать значение тока отключения, но и обеспечивают быстрое отключение нагрузки, а также гистерезис тока при восстановлении после КЗ (слева). На рисунке справа: сверху представлена осциллограмма входного напряжения, под ним расположена осциллограмма выходного напряжения, а в самом низу помещена осциллограмма тока

Можно ли использовать электронный предохранитель совместно с обычным плавким предохранителем?

Да, это весьма популярная и распространенная схема. Электронный предохранитель действует как первый, быстрый и гибкий рубеж обороны. Плавкий предохранитель действует как второй и резервный механизм защиты, который гарантирует физическое размыкание цепи в случае катастрофических отказов, чего не может обеспечить электронный предохранитель. Это позволяет системе соответствовать требованиям различных нормативов и стандартов.

Заключение

В данной статье были рассмотрены основные особенности электронных плавких предохранителей, их функциональная схема, а также примеры реализации в виде ИС. В зависимости от требований конкретного приложения электронные предохранители могут использоваться автономно, либо совместно с традиционными плавкими предохранителями. Каждый из типов предохранителей имеет свои преимущества и недостатки, а совместно они способны обеспечить надежную и гибкую защиту от перегрузки по току.

Литература

  1. EEWorld Online, Fuses for power protection, Part 1
  2. EEWorld Online, Fuses for power protection, Part 2
  3. EEWorld Online, Options for current sensing, Part 1
  4. EEWorld Online, Load switches, Part 1: Basic role and principle

 

Автор: Билл Швебер Перевод: Гавриков Вячеслав (г. Смоленск)

Разделы: Микросхемы защиты, Демонстрационные платы, Формирователи импульса сброса

Опубликовано: 16.11.2018

Схемы электронных предохранителей для блоков питания

Эффективные средства защиты источников питания от КЗ и перегрузки по току на
мощных биполярных и полевых переключающих МОП-транзисторах.

С самого начала появления электрооборудования для его защиты от нештатных токовых перегрузок и короткого замыкания использовались плавкие предохранители. Они удовлетворительно справляются с выполнением большей части своих задач, но ввиду большой инерционности — не всегда способны защитить полупроводниковые компоненты (такие как транзисторы, диоды и т. д.) от серьёзных пиковых перегрузок.

Гораздо более эффективным средством защиты являются электронные предохранители.
Главными требованиями, предъявляемыми к данным электронным устройствам, являются: высокое быстродействие, относительная простота, экономичность и малые потери напряжения. А в качестве коммутирующих элементов для реализации этих параметров наиболее рациональным является использование мощных полевых переключающих транзисторов.

В интернете представлено множество схем, часть из которых совершенно бесполезны, другие не удовлетворяют необходимым требованиям, и как всегда, только лишь небольшая часть данных устройств может удостоиться нашего пристального внимания.
При этом необходимо заметить, что электронный предохранитель — это далеко не то же самое, что ограничитель тока. Ограничитель тока — это совсем другое устройство, не всегда способное избавить электронное устройство от выхода из строя, особенно в тех случаях, когда у него на выходе образуется короткозамкнутая нагрузка.

Поскольку главным плюсом электронной защиты является высокое быстродействие, то прежде, чем переходить к обсуждению разнообразных схем, необходимо сформулировать общее требование к устройствам, подключаемым к данному типу предохранителей.
Требование одно, но важное — все электролитические конденсаторы значительных ёмкостей следует помещать до предохранителя. В противном случае в начальный момент включения блока питания, в зависимости от импеданса входных цепей (сопротивление обмотки трансформатора, динамическое сопротивление выпрямительных диодов и т. д.), на выходе предохранителя возникнет импульс зарядного тока длительностью в несколько миллисекунд и величиной в десятки ампер (при мощном трансформаторе и ёмкости конденсатора в несколько тысяч микрофарад). Этого импульса может оказаться более чем достаточно для, не сказать, что ложного, но абсолютно ненужного срабатывания устройства защиты.

Начнём с простой, а потому популярной среди радиолюбителей схемы регулируемого электронного предохранителя, опубликованной в журнале Радио №5, 1988 г., стр.31, под авторством Н. Эсаулова.

Регулируемый электронный предохранитель

Рис.1

Это устройство предназначено для защиты цепей постоянного тока от перегрузки по току и замыканий цепи нагрузки. Его включают между источником питания и нагрузкой.

Предохранитель выполнен в виде двухполюсника и может работать совместно с блоком питания с регулируемым выходным напряжением в пределах 3…35 В. Максимальное полное падение напряжения на предохранителе не превышает 1,9 В при максимальном токе нагрузки. Ток срабатывания защитного устройства можно плавно регулировать в пределах от 0,1 до 1,5 А независимо от напряжения на нагрузке.

Электронный предохранитель обладает хорошими термостабильностью и быстродействием (3… 5 мкс), надежен в работе.

В рабочем режиме тринистор VS1 закрыт, а электронный ключ на транзисторах VT1, VT2 открыт током, протекающим через резистор R1 в базу транзистора VT1. При этом ток нагрузки протекает через электронный ключ, набор резисторов R3- R6, переменный резистор R8 и контакты кнопки SB1.

При перегрузке падение напряжения на цепи резисторов R3-R6, R8 достигает значения, достаточного для открывания тринистора VS1 по цепи управляющего электрода. Открывшийся тринистор замыкает цепь базы транзистора VT1, что приводит к закрыванию электронного ключа. Ток в цепи нагрузки резко уменьшается; остается незначительный остаточный ток, равный Iост=Uпит/R1. При Uпит=9 В Iост=12 мА, а при 35 В — 47 мА.

Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно на короткое время нажать на кнопку SB1 и отпустить.

При этом тринистор закроется, а транзисторы VT1 и VT2 вновь откроются.
В предохранителе лучше использовать тринисторы КУ103А с напряжением открывания 0,4…0,6 В.

Устройство, приведённое на схеме (Рис.1), является вполне себе работоспособным, но, тем не менее, удачным я бы его не назвал. Причина этого кроется в большей величине потери напряжения на предохранителе, которое складывается из суммы падений напряжений на эмиттерных переходах транзисторов VT1 и VT2 (1,2…1,4В), и падения напряжения на цепи резисторов, которое при максимальных токах будет близко к напряжению открывания тиристора. А напряжение открывания тиристора КУ103А 0,4…0,6 В — это величина, которую можно не обнаружить, даже перекопав сотню изделий, потому как паспортная величина отпирающего напряжение управления на прибор составляет 0,4…2 В.

На очереди следующая схема под авторством Игоря Нечаева (Журнал «Радио» №6 2005 г).

Электронный предохранитель


Рис. 2

Предохранитель включают между источником питания (выключателем) и нагрузкой. Устройство работоспособно при напряжении от 5 до 20 В и токе нагрузки до 40 А. Полевой транзистор Л»1 выполняет одновременно функции электронного ключа и датчика тока, микросхема ОУ DA1.1 — компаратора напряжения. На микросхеме DA2 собран источник образцового напряжения 2,5 В.

Для запуска устройства служит кнопка SB1, при кратковременном замыкании которой напряжение питания через диод VD2 и резистор R4 поступит на затвор транзистора, вследствие чего он откроется и подключит нагрузку к источнику питания. Выходное напряжение ОУ зависит от соотношения напряжений на его входах. Если ток нагрузки меньше тока срабатывания предохранителя, напряжение на неинвертирующем входе будет больше, чем на инвертирующем, поэтому на выходе ОУ будет напряжение, меньшее напряжения питания примерно на 1,5 В. Транзистор VT1 останется открытым, на неинвертирующем входе ОУ будет стабильное напряжение с резистивного делителя R2R1.

Особенность электронного предохранителя — использование сопротивления канала полевого транзистора в качестве датчика тока. Основные параметры примененного транзистора: сопротивление канала — 0,027 Ом, максимальный ток стока — 41 А, предельное напряжение сток-исток — 55 В, а максимальная рассеиваемая мощность — 110 Вт. Сопротивление канала открытого транзистора зависит от напряжения на его выводах и температуры корпуса, при напряжении питания более 5…6 В оно изменяется в пределах 20…30 %, что вполне допустимо для таких устройств.

С увеличением потребляемого тока будет расти напряжение и на транзисторе VT1. Когда оно превысит напряжение на резисторе R1, на выходе ОУ напряжение станет уменьшаться, транзистор будет закрываться, а напряжение на нем расти, что приведет к дальнейшему снижению напряжения на выходе ОУ и закрыванию транзистора. Следовательно, когда ток нагрузки достигает определенного значения, устройство скачком закрывает транзистор и обесточивает нагрузку. Светодиод HL1 сигнализирует о том, что устройство выключено.
Ток, потребляемый предохранителем в этом состоянии (без учета тока через светодиод), равен несколько миллиампер. Для включения нагрузки необходимо снова кратковременно нажать на кнопку SB 1.

Ток срабатывания предохранителя устанавливают подстроечным резистором R1. Если напряжение питания стабильно, микросхему DA2 и резистор R3 можно исключить, заменив последний проволочной перемычкой. Для устойчивого отключения нагрузки при малом токе срабатывания (менее 1…1.5А) следует увеличить сопротивление датчика тока, включив резистор сопротивлением около 0,1 Ом в цепь стока транзистора VT1 (в разрыв цепи в точке А на рис. 2).

К недостаткам приведённого устройства я бы отнёс расположение датчика тока и коммутирующего элемента в минусовой, т. е. в большинстве случаев — земляной шине блока питания. Это, с одной стороны, может создать сложности с межблоковым соединением (при необходимости) плат к общей земляной шине, с другой — усложнит изготовление защиты для двуполярного БП.

Похожие схемы электронных предохранителей (с теми или иными вариациями) можно встретить и в зарубежных источниках. Причём применение они находят в источниках питания с максимальными токами вплоть до десятков и сотен ампер. При столь высоких токах нагрузки, по цепям питания и земли могут наводиться существенные импульсные помехи, которые будут приводить к ложным срабатываниям быстродействующих электронных предохранителей. В таких ситуациях приходится значительно увеличивать порог срабатывания компаратора (вплоть до 0,5…1 В) и одновременно повышать сопротивление датчика тока, что в свою очередь приводит значительному выделению тепла на нём и резкому снижению КПД устройства.
Выходом из положения может стать датчик магнитного поля — геркон и несколько сантиметров толстого провода.

Рис.3

При прохождении тока через обмотку, намотанную поверх датчика (Рис.3), внутри неё возникает магнитное поле, которое приводит к замыканию контактов геркона.
Намотав обмотку из десяти (или любого другого количества) витков и измерив ток срабатывания геркона, можно масштабировать это значение на любой интересующий нас ток.
Так например, если геркон КЭМ-1 при десяти витках замыкается при токе через обмотку около 15А, то, намотав 2 витка, мы увеличим ток срабатывания в 5 раз, т. е. до 75 А, а перемещая геркон внутри катушки, сможем регулировать это ток в некоторых пределах вплоть до 85…90 А.
К достоинствам герконов также можно отнести и относительно высокое быстродействие. Время срабатывания у них, как правило, не превышает 1…2 миллисекунд.
Всё, что теперь остаётся — это нарисовать триггерную схему мощного транзисторного ключа, управляемого герконовым токовым датчиком.

Рис.4

Схема, приведённая на Рис.4, довольно универсальна и позволяет осуществлять защиту устройтв от перегрузки в широком диапазоне входных напряжений (9. ..80 вольт) без изменения номиналов элементов.
Устройство состоит из транзисторной защёлки, выполненной на элементах Т1 и Т2, и находится в устойчивом состоянии до момента подачи на базу транзистора Т2 короткого положительного или отрицательного импульса.
Для того, чтобы включить электронный предохранитель необходимо нажать на нефиксируемый включатель S1, подав на базу Т2 импульс положительной полярности.
Срабатывает защита от импульса отрицательной полярности, который формируют контакты геркона SF1.
Мощный P-канальный полевой транзистор Т1 следует выбирать с некоторым запасом, исходя из тока срабатывания электронного предохранителя.
Подробно рассмотрим данную схему, её достоинства и недостатки, а также возможности модификации на странице ссылка на страницу

Приведённая выше схема электронного предохранителя с герконовым датчиком хороша при высоких токах работы устройства, исчисляемых десятками и сотнями ампер.
При меньших токах я бы отдал предпочтение резистивным датчикам, позволяющим заранее произвести точный расчёт номиналов элементов, а также ввести плавную или ступенчатую регулировку тока срабатывания. И тут желательно определиться с оптимальной величиной падения напряжения на резистивном датчике, при котором происходит срабатывание порогового устройства и переход предохранителя из проводящего в закрытое состояние. На мой взгляд, величина этого напряжения ~ 0,5 В является компромиссной — как с точки зрения помехозащищённости и отсутствия ложных срабатываний, так и с точки зрения значений КПД электронного предохранителя и падения напряжения на нём.

Рис.5

На элементах Т1 и Т2 выполнен транзисторный аналог тиристора со стабильным напряжением срабатывания ~ 0,6В. Ток срабатывания этого тиристора, а соответственно и всего предохранителя зависит от номинала резистора R4, который рассчитывается по формуле: R4 (Ом) ≈ 0,6/Iср (А).
Эту схему, её достоинства, недостатки и различные модификации мы так же подробно рассмотрим на странице ссылка на страницу.

 

Электронный предохранитель 10 А обеспечивает компактную защиту от перегрузки по току для источников питания 48 В

по Пинкеш Сачдев

Таблица 1. Рекомендуемый C TMR для C LOAD(MAX) .
C НАГРУЗКА (МАКС.)
С ПМР
12 мкФ
10 нФ
47 мкФ
22 нФ
90 мкФ 33 нФ
140 мкФ
47 нФ
220 мкФ 68 нФ

Технический паспорт предохранителя 220

Специальные предохранители 2AG с различными номиналами напряжения обеспечивают специальные электрические характеристики по мере необходимости. ..

LF Сучжоу_ISO 14001_2015_ноябрь. 12-2020
LF Сучжоу_ISO_9001_2015_ноябрь. 12-2020
2021-06-25_IATF16949-2016_Сучжоу Сайт
Руководство по выбору принадлежностей для предохранителей

Краткое руководство по выбору блоков держателей и зажимов для предохранителей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *