Что такое элемент Пельтье. Как устроен термоэлектрический преобразователь. На каком принципе основана его работа. Где применяются элементы Пельтье. Можно ли сделать такой элемент своими руками.
Что такое элемент Пельтье и как он устроен
Элемент Пельтье представляет собой термоэлектрический преобразователь, работающий на основе эффекта Пельтье. Это устройство состоит из последовательно соединенных полупроводников p-типа и n-типа, расположенных между двумя керамическими пластинами.
Основные компоненты элемента Пельтье:
- Полупроводники p-типа и n-типа
- Медные проводники, соединяющие полупроводники
- Керамические пластины для изоляции
- Контакты для подключения питания
Количество пар полупроводников может варьироваться от нескольких десятков до сотен, в зависимости от назначения и мощности элемента. Например, популярный элемент TEC1-12706 содержит 127 пар полупроводников.
Принцип работы элемента Пельтье
Работа элемента Пельтье основана на одноименном эффекте — возникновении разности температур при прохождении электрического тока через контакт двух разнородных проводников. Как это происходит?
- При подаче постоянного тока электроны переходят с одного полупроводника на другой
- На контакте p-n происходит поглощение тепла, эта сторона охлаждается
- На контакте n-p выделяется тепло, эта сторона нагревается
- Чем больше ток, тем сильнее эффект охлаждения/нагрева
- При смене полярности тока холодная и горячая стороны меняются местами
Таким образом, элемент Пельтье позволяет перекачивать тепло с одной стороны на другую за счет электрической энергии. Максимальная разница температур может достигать 60-70°C.
Где применяются элементы Пельтье
Благодаря компактности и отсутствию движущихся частей, элементы Пельтье нашли широкое применение в различных областях:
- Охлаждение электронных компонентов (процессоры, видеокарты)
- Автомобильные холодильники
- Портативные охладители для напитков
- Осушители воздуха
- Охлаждение лазеров и светодиодов
- Термостаты для лабораторного оборудования
- Генерация электричества за счет разницы температур
Элементы Пельтье особенно эффективны там, где требуется точный контроль температуры в небольшом объеме.
Достоинства и недостатки элементов Пельтье
Как и любая технология, элементы Пельтье имеют свои плюсы и минусы. Каковы основные преимущества и недостатки этих устройств?
Достоинства:
- Компактные размеры
- Отсутствие движущихся частей и шума
- Возможность как охлаждения, так и нагрева
- Точный контроль температуры
- Быстрый выход на рабочий режим
- Долгий срок службы
Недостатки:
- Невысокий КПД (около 10-15%)
- Необходимость отвода тепла с горячей стороны
- Высокое энергопотребление
- Возможность конденсации влаги при сильном охлаждении
- Чувствительность к перепадам напряжения
Несмотря на недостатки, в определенных применениях преимущества элементов Пельтье перевешивают их минусы.
Можно ли сделать элемент Пельтье своими руками
Изготовить полноценный элемент Пельтье в домашних условиях практически невозможно. Почему не получится сделать его своими руками?
- Требуются специальные полупроводниковые материалы
- Необходима высокоточная технология соединения элементов
- Сложно обеспечить нужную изоляцию и герметичность
- Самодельный элемент будет иметь низкую эффективность
Однако можно собрать простое охлаждающее устройство на основе готового элемента Пельтье. Для этого понадобятся:
- Сам элемент Пельтье (например, TEC1-12706)
- Радиатор для отвода тепла
- Вентилятор для обдува радиатора
- Источник питания 12В
- Термопаста для улучшения теплопередачи
Такая конструкция позволит охладить небольшой объем на 20-30°C ниже комнатной температуры.
Перспективные направления развития технологии Пельтье
Хотя элементы Пельтье известны уже давно, исследования в этой области продолжаются. Какие направления развития этой технологии наиболее перспективны?
- Разработка новых полупроводниковых материалов с улучшенными характеристиками
- Увеличение КПД элементов за счет оптимизации конструкции
- Создание гибких и тонкопленочных элементов Пельтье
- Применение нанотехнологий для повышения эффективности
- Интеграция элементов Пельтье в микроэлектронные устройства
Эти разработки могут значительно расширить сферу применения элементов Пельтье и повысить их эффективность.
Заключение
Элементы Пельтье представляют собой интересную и перспективную технологию термоэлектрического преобразования. Несмотря на некоторые недостатки, они находят широкое применение в различных областях техники благодаря своей компактности и возможности точного контроля температуры. Хотя изготовить элемент Пельтье в домашних условиях практически невозможно, на его основе можно собрать простое охлаждающее устройство. Дальнейшие исследования и разработки в этой области могут привести к созданию еще более эффективных и универсальных термоэлектрических преобразователей.
Элементы Пельтье. Работа и применение. Обратный эффект
Элементы Пельтье называются специальные термоэлектрические преобразователи, работающие по принципу Пельтье. (образования разности температур при подключении электрического тока, другими словами, термоэлектрический охладитель).
Что такое элемент Пельтье
Ни для кого не секрет, что электронные устройства при работе греются. Нагрев отрицательно влияет на процесс работы, поэтому, чтобы как-то охладить приборы, в корпус устройств встраивают специальные элементы, называющиеся по имени изобретателя из Франции – Пельтье. Это малогабаритный элемент, который может охлаждать радиодетали на платах устройств. При его установке собственными силами никаких проблем не возникнет, монтаж в схему производится обычным паяльником.
1 — Изолятор керамический
2 — Проводник n — типа
3 — Проводник p — типа
4 — Проводник медный
В ранние времена вопросы охлаждения никого не интересовали, поэтому это изобретение осталось без применения. Два века спустя, при использовании электронных устройств в быту и промышленности, стали применять миниатюрные элементы Пельтье, вспомнив об эффекте французского изобретателя.
Принцип действияЧтобы понять, как работает элемент на основе изобретения Пельтье, необходимо разобраться в физических процессах. Эффект заключается в соединении двух материалов с токопроводящими свойствами, обладающими различной энергией электронов в районе проводимости. При подключении электрического тока к зоне связи, электроны получают высокую энергию, для перехода в зону с более высокой проводимости второго полупроводника. Во время поглощения энергии проводники охлаждаются. При течении тока в обратную сторону происходит обычный эффект нагревания контакта.
Вся работа осуществляется на уровне решетки атома материала. Чтобы лучше понять работу, представим газ из частиц – фононов. Температура газа имеет зависимость от параметров:
- Свойства металла.
- Температуры среды.
Предполагаем, что металл состоит из смеси электронного и фононного газа, находящегося в термодинамическом равновесии. Во время касания двух металлов с различной температурой, холодный электронный газ перемещается в теплый металл. Создается разность потенциалов.
На стыке контакта электроны поглощают энергию фононов и отдают ее на другой металл фононам. При смене полюсов источника тока, весь процесс будет обратного действия. Разность температур будет возрастать до того момента, пока имеются в наличии свободные электроны с большим потенциалом. При их отсутствии наступит уравновешивание температур в металлах.
Если на одну сторону пластины Пельтье установить качественный теплоотвод в виде радиатора, то вторая сторона пластины создаст более низкую температуру. Она будет ниже на несколько десятков градусов, чем окружающий воздух. Чем больше значение тока, тем сильнее будет охлаждение. При обратной полярности тока холодная и теплая сторона поменяются друг с другом.
При соединении элемента Пельтье с металлом, эффект становится незначительным, поэтому практически устанавливают два элемента. Их количество может быть любым, это зависит от потребности в мощности охлаждения.
Эффективность действия эффекта Пельтье зависит от того, насколько точно выбраны свойства металлов, силы тока, протекающей по прибору, скорости отвода тепла.
Сфера использованияЧтобы применить практически элемент Пельтье, ученые произвели несколько опытов, показавших, что повышение отвода тепла достигается увеличением числа соединений 2-х материалов. Чем больше число спаев материалов, тем выше эффект. Чаще в нашей жизни такой элемент служит для охлаждения электронных устройств, уменьшения температуры в микросхемах.
Вот их некоторые области использования:
- Устройства ночного видения.
- Цифровые камеры, приборы связи, микросхемы, нуждающиеся в качественном охлаждении, для лучшего эффекта картинки.
- Телескопы с охлаждением.
- Кондиционеры.
- Точные часовые системы охлаждения кварцевых электрических генераторов.
- Холодильники.
- Кулеры для воды.
- Автомобильные холодильники.
- Видеокарты.
Элементы Пельтье часто используются в системах охлаждения, кондиционирования. Есть возможность достижения довольно низких температур, что открывает возможность применения для охлаждения оборудования с повышенным нагревом.
В настоящее время специалисты используют элементы Пельтье в акустических системах, выполняющих роль кулера. Элементы Пельтье не создают никаких звуков, поэтому бесшумность является одним из их достоинств. Такая технология стала популярной из-за мощной отдачи тепла. Элементы, изготовленные по современной технологии, имеют компактные размеры, радиаторы охлаждения поддерживают определенную температуру долгое время.
Достоинством элементов является длительный срок службы, потому что они сделаны в виде монолитного корпуса, неисправности маловероятны. Простая конструкция обычного широко применяемого вида простая, состоит из двух медных проводов с клеммами и проводами, изоляции из керамики.
Это небольшой перечень мест применения. Он расширяется за счет устройств бытового назначения, компьютеров, автомобилей. Можно отметить использование элементов Пельтье в охлаждении микропроцессоров с высокой производительностью. Ранее в них устанавливались только вентиляторы. Теперь, при монтаже модуля с элементами Пельтье значительно снизился шум в работе устройств.
Будут ли меняться схемы охлаждения в обычных холодильниках на схемы с использованием эффекта Пельтье? Сегодня вряд ли это возможно, так как элементы имеют низкий КПД. Стоимость их также не позволит применить их в холодильниках, так как она достаточно высока. Будущее покажет, насколько будет развиваться это направление. Сегодня проводятся эксперименты с твердотельными растворами, аналогичными по строению и свойствам. При их использовании цена модуля охлаждения может уменьшиться.
Обратный эффект элементов ПельтьеТехнология подобного вида имеет особенность с интересными фактами. Это заключается в эффекте образования электрического тока путем охлаждения и нагревания пластины модуля Пельтье. Другими словами, он служит генератором электрической энергии, при обратном эффекте.
Такие генераторы электричества существуют пока чисто теоретически, но можно надеяться на будущее развитие этого направления. В свое время французский изобретатель не нашел применения своему открытию.
Сегодня этот термоэлектрический эффект широко используется в электронике. Границы применения постоянно расширяются, что подтверждается докладами и опытами исследователей и ученых. В будущем бытовая и электронная техника станет обладать совершенными инновационными возможностями. Холодильники станут бесшумными, так же, как и компьютеры. А пока модули Пельтье монтируют в разные схемы для охлаждения радиодеталей.
Преимущества и недостаткиДостоинствами элементов Пельтье можно назвать следующие факты:
- Компактный корпус элементов, позволяет монтировать его на плату с радиодеталями.
- Нет движущихся и трущихся частей, что повышает его срок службы.
- Позволяет соединение множества элементов в один каскад, по схеме, позволяющей уменьшать температуру очень горячих деталей.
- При смене полярности питающего напряжения элемент станет работать в обратном порядке, то есть, стороны охлаждения и нагрева поменяются местами.
Недостатками можно назвать такие моменты:
- Недостаточный коэффициент действия, влияющий на увеличение подводимого тока, для достижения необходимого перепада температур.
- Довольно сложная система отведения тепла от поверхности охлаждения.
Изготовить такие элементы Пельтье можно самому быстро и просто. Для начала нужно определиться с материалом пластин. Нужно взять пластины элементов из прочной керамики, приготовить проводники в количестве больше 20 штук, для того, чтобы обеспечить наибольший перепад температур. При достаточном числе элементов КПД произойдет значительное увеличение производительности холодильника.
Большую роль играет мощность применяемого холодильника. Если он действует на жидком фреоне, то с производительностью проблем не возникнет. Пластины элементов монтируются возле испарителя, смонтированного вместе с двигателем. Для такого монтажа понадобится некоторый набор прокладок и инструмента. Таким образом, обеспечится быстрое охлаждение нижней части холодильника.
Необходима тщательная изоляция проводников, только после этого их подключают к компрессору. После окончания монтажа нужно проверить напряжение мультиметром. При нарушении работы элементов (например, короткое замыкание), сработает терморегулятор.
Другие применения термоэлектрических модулейЭффект модуля Пельтье применяется сегодня, благодаря законам физики. Избыточная энергия элементов всегда пригодится там, где необходима бесшумный и быстрый обмен теплом.
Основные места использования модулей:
- Охлаждение микропроцессоров.
- Двигатели внутреннего сгорания выпускают отработанные газы, которые ученые стали применять для образования вспомогательной энергии с помощью термоэлектрических модулей. Полученная таким способом энергия подается снова в мотор, в виде электричества. Это создает экономию топлива.
- В бытовых устройствах, действующих на нагревание или охлаждение.
Охлаждающий кулер может превратиться в нагреватель, а холодильник может выполнять функцию теплового шкафа, если изменить полярность постоянного тока. Это называется обратимым эффектом.
Такой принцип применяют в рекуператорах. Он состоит из бокса из двух камер. Они между собой сообщаются вентилятором. Элементы Пельтье нагревают холодный воздух, поступающий снаружи, с помощью энергии, которая извлечена из теплого воздуха в помещении. Такое устройство экономит расходы на отопление помещений.
Похожие темы:
Элемент Пельтье, принцип работы
Что такое элемент Пельтье – электро-, термопреобразователь, который состоит из нескольких пар ( в отдельных случаях одной) полупроводников различных по свойству типов («n» и «р»), последние соединяются перемычками из металла – в основном это — медь. На практике данное устройство создает температурную разность на разных концах поверхности при протекании энергии электрического тока.
Одним из наиболее простейших вариантов данного устройства Пельтье в практическом использовании является модификация ТЕС1-12706, изображенная на рисунке 1.
Элемент Пельтье – преобразователь термический, электрический ТЕС1-12706
Принцип работы элемента Пельтье
В корне принципа работы положен термоэлектрический эффект Пельтье. Другими словами — при протекании и под действием электрического тока создается разница температур в местах контактов термопар — полупроводников «n» и «р» — типа.
Элементы Пельтье – доволи таки «чувствительные устройства» к перегреву и высоким температурам. К ним предъявляются высокие требования к эксплуатации, при невыполнении которых, устройство быстро выходит из строя. Очень важно отводить тепло, для этой цели необходимо устанавливать радиатор или вентилятор, в противном случае не достигается температура холодной стороны относительно горячей.
Как работает элемент Пельтье
Представим, что электрический ток проходит через термическую пару, как показано на рисунке 2.
Принцип работы элемента Пельтье
В этом случае происходит процесс поглощения энергии тепла на полупроводниковом контакте n — p и процесс выделения тепловой энергии на p — n контакте. В итоге часть термопары полупроводника, который сопрягается с n — p контактом, будет охлаждаться, а вторая часть с другой противоположной стороны — соответственно, нагреваться.
В том случае, когда поменяем полярность по току, то происходит процессы нагревания и охлаждения, соответственно, также поменяются.
Обратный процесс эффекта Пельтье приводит к тому, что при подводе теплоты к одной стороне термопреобразователя получают энергию электрического тока.
Конечно на практике, применение одной термопары не хватает для полного отвода тепловой энергии, поэтому в преобразователе применяют большое количество. Электрическая цепь собирается из термопар последовательно. В то же время в конструкции термопреобразовательных элементов: нагревающие термопары располагаются на другой стороне относительно охлаждающих.
Устройство элемента Пельтье очень простое. Термические пары конструируются между двумя платинами, выполненными из керамики. Соединение термопар производится медными проводниками (шинами). Количество термопар определяется назначением термопреобразователя, его мощности и места установки и может применяться от одной до нескольких сотен штук.
Устройство элемента Пельтье
Основными элементами термопреобразователя являются: полупроводники р — типа, n — типа, керамические пластины, медные сопряжения — проводники; контакты подвода электрического тока «плюс» и «минус». Для элемента Пельтье разница по температурам разных краев термопар достигает до 70 градусов по Цельсию. Чтобы увеличить данную разницу требуется увеличить каскад последовательного включения термопар.
Основные эксплуатационные характеристики элемента Пельтье
Данное устройство в целом идеально работает в тех случаях, когда хорошо и надежно контактируют термопары с охладительным устройством, будь то радиатор охлаждения или вентилятор охлаждения со змеевиком, то есть – хороший теплосъем.
Модули Пельтье, как их часто называют, очень чувствительны к перепадам по току и напряжению (не более 5 %). Под действием высоких температур (наиболее критическая для элементов до 150 градусов) эффективность снижается во много раз (до 40 %) и модуль очень быстро ломается.
Как правило, в схему работы полупроводниковых элементов недопустимым условием является приспособление релейных устройств: ограничивающих мощность или регулирующих. Это приводит к деградации кристаллических составляющих и к неисправности в скором времени элемента.
Частое включение и выключение устройств также негативно влияет на работу и срок эксплуатации, и его долговечность функционирования. Согласно законов физики — любой нагрев материала приводит к его тепловому расширению, а охлаждение — к сжатию. Соответственно, особенно слабыми местами в полупроводниковых элементах являются «паечные», где из-за механического движения возможно появление дефектов в виде микротрещин и в конце концов к разрыву цепи.
Коэффициент теплопроводности термических пар элемента Пельтье достаточно высок, что с одной стороны является достоинством, а с другой стороны ограничивает срок эксплуатации и расчетное число циклов «стоп-старт-стоп».
Достоинства и недостатки модуля Пельтье
Сравнивать устройство Пельтье с другими охладительными установками с различным приводом в принципе невозможно и нецелесообразно, так как в первом случае имеют полупроводниковые материалы в виде кристаллов, а во втором случае рабочее тело — газ или жидкость ( к примеру: компрессорный холодильник). В различных областях применяются и те и другие устройства.
К преимуществам элементов Пельтье можно отнести:
- полное отсутствие механики движения и вращающихся частей, а также жидкостей, газов;
- абсолютно нет шума работы устройств;
- сравнительно малые размеры;
- двухфункциональность: нагревание и охлаждение при изменении полярности;
К недостаткам можно отнести:
- относительно низкий коэффициент полезного действия;
- требование постоянного источника энергии, питания;
- число пусков и остановов ограничено;
- плавность отключения и включения термоэлектрических устройств;
- контроль нагрева с одной стороны или охлаждения с другой с помощью вентилятора.
Опрос: Понятно ли что такое и как устроен Элемент Пельтье (Кол-во голосов: 17)
Да, понял с первого раза
Пришлось перечитать несколько раз, чтобы понять
Нет, не понял вообще
Чтобы проголосовать, кликните на нужный вариант ответа. РезультатыОбласть применения элементов Пельтье
Основной и наиболее широким применением термоэлектрические преобразователи нашли в следующих приборах, аппаратах и устройствах:
- автохолодильники и бытовые аппараты;
- водо- и воздухоохладители;
- в электронных приборах и устройствах также в качестве охлаждения;
- в генераторах электротермических.
Проголосовавших: 6 чел.
Средний рейтинг: 4.5 из 5.
Что такое элемент пельтье и как его сделать своими руками?
Главная > Дополнительно > Что такое элемент пельтье, его устройство, принцип работы и практическое применениеЭлемент пельтье своими руками
Изготовить устройство в домашних условиях практически невозможно, тем более это не имеет особого смысла, учитывая его невысокую рыночную стоимость.
Но большинство умельцев все же предпочитает мастерить элемент пельтье своими руками, ссылаясь на ряд его достоинств:
- Компактность, удобство установки на самодельное электронное плато.
- Отсутствие движущихся деталей, что увеличивает сроки его эксплуатации.
- Возможность соединения нескольких элементов в каскадной схеме для снижения очень больших температур.
Тем не менее, пельтье своими руками имеет определенные недостатки: низкий коэффициент полезного действия (КПД), необходимость подачи высокого тока для получения заметного перепада температуры, сложность отведения тепловой энергии от охлаждаемой поверхности.
Рассмотрим на примере схем, как сделать пельтье своими руками:
- Задействовать его в качестве детали термоэлектрического генератора, согласно рисунку подключения.
- Собрать простой преобразователь на микросхеме ИМС L6920 (рисунок 1).
Рисунок 1. Элемент пельтье своими руками: универсальная схема
Далее стоит следовать простой инструкции, как сделать пельтье своими руками:
- Подать на вход получившегося преобразователя напряжение диапазоном 0.8-5.5В, чтобы иметь на выходе стабильные 5В.
- При использовании устройства обычного типа — поставить лимит температуры нагреваемой стороны в 150 градусов.
- Для калибровки — в качестве источника тепла использовать емкость с кипящей водой, которая точно не нагреется свыше 100 градусов.
Описание технологии и принцип действия
Способ работы термоэлектрического охладителя достаточно прост. Эффект пельтье своими руками основывается на контакте двух проводников тока, обладающих разным уровнем энергии электронов в зоне своей проводимости.
Рисунок 2. Принцип действия элемента
При подаче электротока через такую связь, электрон приобретает высокую энергию, позволяющую ему перейти в более высокоэнергетическую зону проводимости второго полупроводника. Когда эта энергия поглощается, происходит остуживание места охлаждения проводников (рисунок 2).
При протекании процесса в обратном направлении — реакция приводит к нагреванию контактного места и обычному тепловому эффекту.
Посмотрев пельтье своими руками видео, можно сделать определенные выводы о принципе его действия:
- Величина подаваемого тока будет пропорциональной степени охлаждения — если с одной стороны модуля сделать хороший теплоотвод, при использовании радиаторных схем, его холодная сторона обеспечит максимально низкую температуру.
- При смене полярности тока — нагревающая и охлаждающая плоскости меняются метами.
- При контакте объекта с металлической поверхностью, он становится настолько мал, что его нельзя увидеть на фоне омического нагрева, других эффектов теплопроводности, поэтому на практике применяют два полупроводника.
- Благодаря разнообразному количеству термопар — от 1 до 100, можно добиться практически любого показателя холодильных мощностей.
Технические характеристики элемента пельтье
Компонент получил широкое применение в различных холодильных схемах.
Что неудивительно, так как пельтье своими руками имеет следующие технические характеристики:
- Способен достигнуть низких температур, что служит отличным решением для охлаждения электрических приборов и тех оборудования, подвергающегося нагреву.
- Прекрасно выполняет работу обычного куллера, что делает возможным его установку в современные звуковые и акустические системы.
- Абсолютно бесшумен — в процессе работы не издает никаких посторонних и интенсивных звуков.
- Обладает мощной теплоотдачей при сохранении нужной температуры на радиаторе достаточно продолжительное время.
Эффект Томсона
На основании данных о коэффициентах Зеебека и Пельтье лорд Кельвин (Томсон) предсказал в 1856 году новый эффект: нагретый в центре проводник при пропускании электрического тока охлаждается с одной стороны и становится горячее с другой. Теоретические данные подтверждены опытным путём, открыв дорогу для создания климатической техники и прочего.
Коэффициент пропорциональности в формуле носит имя Томсона и связан с коэффициентами термоэлектричества и Пельтье. Выше авторы привели объяснения согласно кинетической (микроскопической) теории, оперирующей уровнями энергетических состояний носителей заряда
Лорд Кельвин придерживался термодинамической (макроскопической) концепции, где во внимание принимаются глобальные потоки и силы. Это различие применимо ко множеству отраслей физики
К примеру, закон Ома для участка цепи возможно рассматривать как вариант термодинамического взгляда на вещи.
Называют и общие черты. В термодинамической концепции массово применяются константы: речь о коэффициенте теплопроводности (закон Фурье) и изотермической проводимости (закон Ома).
TEC контроллеры / драйверы
Иногда вам нужен специальный контроллер / драйвер TEC. Конечно, для продвинутых приложений доступно множество устройств. На eBay вы можете найти несколько устройств, которые будут выполнять эту работу. На рис. 4 показано такое многофункциональное устройство, которое неожиданно имеет один канал обратной связи для приема входных сигналов от термистора NTC для стабилизации температуры.
Рис. 4: контроллер Пельтье sPLC-10
Контроллер TEC регулирует ток, подаваемый на микросхему Пельтье, в соответствии с требуемой температурой объекта и фактической измеренной температурой объекта. Чтобы иметь возможность контролировать температуру объекта, вы должны разместить датчик на объекте. Обратите внимание, что важно размещать датчик как можно ближе к критической точке на объекте, где необходимо поддерживать желаемую температуру. Поскольку охлаждение вентилятора радиатора снижает тепловое сопротивление от радиатора к окружающему воздуху, большинство высококачественных контроллеров TEC имеют выделенные выходы управления вентиляторами, поддерживаемые методом широтно-импульсной модуляции (ШИМ). Поэтому вентилятор увеличивает тепловые характеристики и уменьшает разницу температур (dT), позволяя использовать радиаторы меньшего размера
Поскольку охлаждение вентилятора радиатора снижает тепловое сопротивление от радиатора к окружающему воздуху, большинство высококачественных контроллеров TEC имеют выделенные выходы управления вентиляторами, поддерживаемые методом широтно-импульсной модуляции (ШИМ). Поэтому вентилятор увеличивает тепловые характеристики и уменьшает разницу температур (dT), позволяя использовать радиаторы меньшего размера.
Самый популярный модуль Пельтье TEC1-12706
Самым популярным среди практиков, увлеченных идеями свободной природной энергии и производителей технических устройств является элемент размером 40 на 40 миллиметров с маркировкой TEC1-12706. Это означает, что он состоит из 127 пар малюсеньких термоэлементов – полупроводников разного типа, которые попарно соединены при помощи медных перемычек в последовательную цепь и рассчитаны на постоянный ток до 5 А при напряжении 12 вольт.
Схема Элемента Пельтье
Некоторые думают что модули Peltier, это что-то типа солнечных панелей – ведь они такие же плоские, торчат проводки, и те и другие могут генерировать электрический ток. Увы, это не совсем так на самом деле. Чтобы понять, как функционируют загадочные пластинки, посмотрите видео И. Белецкого, описание в текстовом формате ниже.
Как изготовить генератор на основе элемента Пельтье?
Генераторы на основе элемента Пельтье особенно интересуют людей, которые ввиду достаточно продолжительной отрезанности от цивилизации нуждаются в простом и доступном источнике энергии. Также они широко применяются при критическом перегреве деталей персонального компьютера.
Рис.2: Генератор на основе элемента Пельтье.
Элементы Пельтье имеют достаточно интересный принцип действия, но помимо этого обладают одной любопытной особенностью: если к ним прилагается разность температур, то они продуцируют электричество. Один из вариантов генератора на базе этого устройства предполагает следующую конструкцию:
По двум трубкам (одна для входа, другая для выхода) движется пар, который направляется в полость теплообменника, сконструированный из пластины (материал: алюминий), имеющей толщину 1 см.
К каждому отверстию теплообменника подведено соединение с одним каналом. Габариты теплообменника точно дублируют габариты элементов Пельтье. Два элемента фиксируются на двух сторонах теплообменника с помощью четырёх винтов (по 2 на каждую сторону). В результате, благодаря отверстиям и канальцам теплообменника формируется полноценная система сообщающихся отделов, через которые проходит пар. Двигаясь вперёд, пар входит в камеру по одной трубке и выходит через другую, двигаясь к следующей камере. Транслируемое паром тепло достаётся элементам Пельтье, когда пар непосредственно соприкасается с их поверхностью , а также с материалом теплообменника.
Чтобы вплотную прижать элементы к корпусу теплообменника , а также для организации отвода тепловой энергии на «холодную» сторону применяются пластины из алюминия на 0,5 см в толщину. На последнем этапе вся конструкция герметизируется силиконовыми герметиками.
После этого через трубки пускают пар, а конструкция погружается в холодную воду. Вся система целиком начинает работать. Электрический ток будет образовываться до тех пор, пока разница между температурой «горячей» и «холодной» сторон не сократится до минимума.
Есть и более элементарный метод.
Элемент Пельтье выводами подсоединённый к зарядному телефонному кабелю закрепляется на алюминиевом радиаторе (который будет контактировать с «холодной» стороной) с помощь герметика. Сверху на устройство ставится любой горячий предмет, например, кружка с горячим чаем. Через пару секунд телефон можно ставить на зарядку. Зарядка будет продолжаться, пока чай не остынет.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните накарту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Устройство и принцип работы элемента Пельтье
Для того, чтобы получить максимальный эффект понижения температуры, применяется соединение термоэлементов в виде каскадов. Благодаря подобному устройству, на выходе стало возможным получить максимально низкую температуру и значительно увеличить саму эффективность охлаждения.
Для того, чтобы повысить холодопроводность не прибегая к значительному увеличению I, все элементы Пельтье соединяются последовательно в устройство, получившее название батареи.
Таким образом, нынешний модуль состоит из двух пластин, выполненных из керамики и играющих роль изоляторов, между которыми расположены термопары, соединенные последовательным образом.
При этом, расположение элементов в подобной батарее осуществляется следующим образом:
- Нижняя, горячая сторона.
- Верхняя, холодная сторона.
- Полупроводники, функционирующие на основе n-перехода.
- Полупроводники, функционирующие на основе p-перехода.
- Проводники из меди.
- Клеммы (контакты), служащие для присоединения к ИП (источнику питания).
Здесь p-n переходом (positive-negative) принято считать электронно-дырочный переход в месте соединения полупроводников n (носители зарядов – электроны) и p типа (дырки с положительным зарядом, возникающие в процессе отрыва электрона от атома).
При p-n возникает переход от одного вида проводимости к другому.
В зависимости от расположения, каждая из сторон (горячая или холодная) имеет контакт только с переходом p-n либо n-p. При этом осуществляются следующие функции:
- p-n – нагрев.
- n-p – охлаждение.
Благодаря переносу Q с одной стороны батареи на другую, между ними возникает дельта температур (DT). Как уже было сказано выше, если изменить полярность, то горячая и холодная поверхности просто поменяются местами.
На данном рисунке холодная сторона батареи обозначена как B (синим цветом), горячая – как А (красным цветом соответственно).
Технические характеристики элементов Пельтье
Всем термоэлектрическим модулям с элементом Пельтье присущи следующие характеристики:
- Qmax (холодопроизводительность) – представляет собой максимально допустимый I и разницу T двух сторон батареи. Единица измерения – Ватты. Принято считать, что количество тепловой Q, поступающей на холодную стороны, передается на горячую мгновенно, с нулевыми потерями.
- DTmax – максимум перепада температур между пластинами, измеряется в градусах. При этом, данный параметр учитывается при идеальных условиях работы: горячая сторона — 27C, холодная – отдача тепла равна нулю.
- Imax – максимальный I, необходимый для обеспечения DTmax, измеряется в Амперах.
- Umax – величина напряжения, которая будет иметь место при Imax и DTmax (измеряется в Вольтах).
- Resistance – внутреннее R модуля по постоянному току DC, измеряется в Омах.
- COP (Сoefficient Of Рerformance) – коэффициент, представляющий собой отношение Q охлаждения к Q, которое потребляет весь элемент и представляет собой не что иное, как КПД, при этом его величина колеблется от 0,3 до 0,5.
Каким образом маркируются элементы Пельтье
При маркировке подобных термоэлементов всегда используют стандартные обозначения, а именно:
- Две первые буквы означают непосредственно тип элемента, а именно – ТЕ – термоэлемент.
- Третья буква относится к размеру модуля и может быть выполнена в двух вариантах:
- С – classic, стандартный размер термоэлемента.
- S – small, маленький размер.
- Далее следует числовое значение, отражающее количество каскадов в ТЕ. Как правило, большинство из них относятся к однокаскадным.
- После тире следует число, означающее количество термопар внутри ТЕ.
- Последняя цифра – номинальное значение I (Амперы).
Иногда в маркировку после всех цифр добавляется значение, относящееся к размерам модуля.
Пример маркировки: ТЕС1-12706-40 (40х40 мм).
Охлаждение процессора
Основные компоненты компьютеров постоянно совершенствуются, что приводит к росту тепловыделения. Вместе с ними развиваются системы охлаждения с применением новаторских технологий, с современными средствами контроля. Модуль Пельтье применение в данной сфере нашел прежде всего в охлаждении микросхем и других радиодеталей. С форсированными режимами разгона микропроцессоров традиционные кулеры уже не справляются. А увеличение частоты работы процессоров дает возможность повысить их быстродействие.
Увеличение скорости вращения вентилятора приводит к значительному шуму. Его устраняют за счет использования модуля Пельтье в комбинированной системе охлаждения. Таким путем передовые фирмы быстро освоили производство эффективных охлаждающих систем, которые стали пользоваться большим спросом.
С процессоров тепло обычно отводится кулерами. Воздушный поток может засасываться снаружи или поступать изнутри системного блока. Главная проблема состоит в том, что температура воздуха порой оказывается недостаточной для теплоотвода. Поэтому ТЭМ стали использовать для охлаждения потока воздуха, поступающего в системный блок, тем самым повышая эффективность теплообмена. Таким образом, встроенный воздушный кондиционер является помощником традиционной системы охлаждения компьютера.
С обеих сторон модуля крепятся алюминиевые радиаторы. Со стороны холодной пластины нагнетается воздух на охлаждение к процессору. После того как он заберет тепло, его выдувает другой вентилятор через радиатор горячей пластины модуля.
Современный ТЭМ управляется электронным устройством с датчиком температуры, где степень охлаждения пропорциональна разогреву процессора.
Активизация охлаждения процессоров создает также некоторые проблемы.
- Простые охлаждающие модули Пельтье предназначены для непрерывной работы. При пониженном энергопотреблении также уменьшается тепловыделение, что может вызвать переохлаждение кристалла и последующее зависание процессора.
- Если работа кулера и холодильника не будет должным образом согласована, последний может перейти в режим нагрева вместо охлаждения. Источник дополнительного тепла вызовет перегрев процессора.
Таким образом, для современных процессоров нужны передовые технологии охлаждения с контролем работы самих модулей. Подобные изменения режимов работы не происходят с видеокартами, которые также требуют интенсивного охлаждения. Поэтому для них ТЭМ подходит идеально.
Что такое принцип Пельтье
Данный принцип был открыт почти 200 лет назад французом Жаном Пельтье, который обнаружил, что при протекании I по разнородным проводам происходит процесс выделения тепла, а при смене полярности – охлаждения, при этом наибольшее проявление подобного эффекта наблюдалось у полупроводниковых материалов. Причем тогда же была замечена обратимость процесса, при которой при возможности поддержании разных температур на проводах в месте контакта, в них фиксировалось появление электрического тока. Данный эффект также был очень важен и получил название эффекта Зеебека.
Чтобы попытаться объяснить данный эффект с точки зрения физики процесса, необходимо обратиться к классической теории электротехники и движению электротока в зависимости от разности потенциалов. При прикосновении двух разнородных проводов неизбежно возникает разность потенциалов U, создающая определенное поле. Таким образом, если по проводу пропустить I, то созданное разностью U поле будет или способствовать протеканию тока, или являться препятствием к этому.
Если полярность поля и тока противоположны, то необходимо найти дополнительную энергию, способствующую протеканию I, за счет чего контакт будет греться. Если поле и I однонаправлены, то ток поддерживается самим полем. Для этого требуется энергия, забираемая у вещества, что и вызывает охлаждение контакта. Таким образом, то количество тепла, которое выделяется или забирается при прохождении I, будет прямо пропорционально величине заряда, проходящего через место соединения проводников и рассчитывается как произведение I на время его прохождения.
Данное произведение называется коэффициентом Пельтье, величина которого зависит от материала и температур проводников, соприкасающихся между собой.
Если ранее эффект Пельтье не нашел себе широкого применения за неимением необходимых материалов, то на сегодняшний день, с учетом развития новых технологий, найдены типы проводников, которые способны обеспечить максимальный термоэлектрический эффект.
Эффект с позиций термодинамики
Эффект Пельтье описывается формулой, показывающей, какая энергия переносится при определённой величине электрического тока. Выражая её во временных единицах, находят мощность устройства, исходя из которой определяют потребности холодильника. Сегодня популярны бесшумные элементы Пельтье для кулеров процессоров. Небольшая пластина охлаждает кристалл и охлаждается радиатором кулера. Элемент Пельтье служит тепловым насосом, гарантированно отводящим тепло от центрального процессора, не давая перегреваться.
В формуле на рисунке через альфа обозначены коэффициенты термо-ЭДС половинок (составных частей) элемента. Т – рабочая температура в градусах Кельвина. В каждом элементе, как правило, присутствует побочный эффект Томсона: если по проводнику течёт ток, и вдоль линии имеется градиент (направленная разница) температур, станет, помимо джоулевой, выделяться и иная теплота. Последняя носит имя Томсона. В отдельных участках цепи энергия станет поглощаться. Значит, эффект Томсона оказывает сильное влияние на работу нагревателей и холодильников. Но является, как уже сказано, побочным, неучтённым фактором.
Теплота, переносимая эффектом Томсона, прямо пропорциональна разнице температур на концах проводника и зависит от величины протекающего тока. Явление проявляется лишь в веществах с ярко выраженной зависимостью коэффициента термо-ЭДС от температуры. В некоторых расчётах эффект Томсона считается нулевым, это близко к истине. В термодинамической теории процесс отдачи и отбора тепла рассматривается с точки зрения двух тепловых потоков:
Поток тепла, забираемый охлаждающимся спаем, сопровождается двумя параллельно идущими процессами:
- Паразитное выделение тепла по закону Джоуля-Ленца. В термодинамике берётся как половина произведения квадрата тока на сопротивление. Вторая половина падает на горячем спае.
- Поток нагрева теплом, идущим от тёплой части. Равен разнице температур, перемноженной с полной теплопроводностью ветвей термоэлемента.
На горячем спае идут обратные процессы по второму пункту (тепло уносится к охлаждаемой части) и аналогичные по первому – выделяется джоулева теплота.
Из формулировок следует, что действенным решением добиться максимального КПД станет теплоизоляция между спаями. В паре используются полупроводники, способные генерировать термо-ЭДС, электрическому току приходится преодолевать её сопротивление. Затрачиваемая энергия пропорциональна разнице температур и разнице коэффициентов термо-ЭДС веществ и зависит от протекающего тока. Графики зависимости представляют кривые, и дифференцируя их с целью найти экстремумы, возможно получить условия достижения максимальной разницы температур (между комнатой и холодильником).
На рисунках показаны результаты операции взятия производной, где вычислены оптимальные токи для сопротивления R термопары и предельного увеличения холодильного эффекта. Из указанных формул следует, что идеальная машина получится, если:
- Электропроводность материалов термопары одинакова.
- Теплопроводность материалов термопары одинакова.
- Коэффициенты термо-ЭДС одинаковы, но противоположны по знаку.
- Сечения и длины ветвей термопары одинаковы.
Реализовать эти условия на практике сложно. В этом случае предельный холодильный коэффициент равен отношению температуры холодного спая, к разнице температур. Напомним, это характеристика идеальной машины, в реальности пока недостижимая.
Изготовление автомобильного холодильника.
Охлаждать воздух в холодильнике мы будем с помощью элемента Пельтье.
По сути это термоэлектрический преобразователь в форме небольшой пластины, при подключении его к электрическому току в пластине возникает разность температур, одна сторона пластины нагревается, вторая наоборот остывает. Эту особенность мы и будем использовать для работы холодильника.
Материалы для изготовления:
- Пенополистирол (автор использовал лист размером 1200х600х50 мм).
- Элемент Пельтье (можно приобрести в радиомагазинах).
- Два радиатора с кулерами от старых компьютеров.
- Термопаста.
- Регулятор температуры с датчиком (продаются в радиомагазинах).
- Кусок провода и штекер для подключения в прикуриватель авто.
- Пена монтажная.
Инструменты:
- Нож канцелярский.
- Линейка, карандаш.
- Паяльник с паяльными принадлежностями.
Приступаем к изготовлению, первым делом из листов пенополистирола сделаем корпус будущего мини холодильника.
Пенополистирол очень хороший теплоизолятор, даже после отключения холодильника от электричества, он будет удерживать холод внутри контейнера продолжительное время.
На рисунке показаны размеры корпуса, но вы можете сделать короб по своим размерам в зависимости от требуемого объёма холодильника.
Лист пенополистирола легко разрезается канцелярским ножом, все части коробки склеиваются монтажной пеной, после нанесения пены, детали нужно прижать на 5 минут пока пена схватится.
Теперь в холодильник установим охлаждающий элемент.
Для охлаждения будем использовать элемент Пельтье, при подключении его в сеть 12 V, одна сторона его становится очень холодной, она и будет охлаждать воздух внутри холодильника. Вторая сторона элемента будет сильно нагреваться, чтобы устройство не перегорело, нужно отводить тепло, сделать это можно с помощью радиатора и кулера от компьютера.
Схема охлаждающего устройства для автомобильного холодильника.
Но если с внутренней стороны на элемент Пельтье просто поставить радиатор, то он начнёт обмерзать, оптимально установить кулер для равномерного отвода холода от радиатора.
Для хорошей теплоотдачи, между радиаторами и элементом Пельтье наносим слой термопасты. Радиаторы соединяем между собой стандартными скобами, которые используются для крепления к системной плате компьютера.
Тестируем работоспособность устройства, подключаем его к аккумулятору на 12 V.
По сути устройство представляет собой пластину, по бокам которой с обеих сторон закреплены радиаторы с кулерами, работающими на выдув.
Устанавливаем прибор в отверстие коробки, охлаждающей стороной во внутрь, щели между отверстием корпуса и прибора замазываются герметиком.
Наружный блок, радиатор с кулером для отвода горячего воздуха.
Для регулировки температуры установим регулятор температуры с датчиком, сам провод с датчиком нужно протянуть через отверстие в контейнер. Холодильник готов, включаем его в гнездо прикуривателя авто или напрямую к аккумулятору на 12 V и пользуемся.
Один элемент Пельтье охлаждает холодильник до температуры – 3 °С, при температуре окружающего воздуха +25 °С.
При +30°С на улице, в холодильнике стабильно поддерживается температура +6 °С как и в обычном холодильнике.
Автор самоделки Виктор Борисов.
Материалы для создания термопар
Очевидно, обычные металлы для создания мощных систем не годятся. Требуются пары с мощностью от 100 мкВ на 1 градус. В последнем случае достигается высокий КПД. Материалами становятся сплавы висмута, сурьмы, теллурия, кремния, селена. К недостаткам компонентов относятся хрупкость и сравнительно малая температура работы. Низкий КПД добавляет ограничений, но с внедрением нанотехнологий появляется надежда, что привычные рамки окажутся преодолены. Учёные среди перспективных направлений называют разработку принципиально новой полупроводниковой базы с поистине уникальными свойствами, включая точное значение энергетических уровней материалов.
Генератор пельтье своими руками
Самостоятельно собрать подобный прибор не так и сложно. Генератор пельтье своими руками имеет свои особенности: производительность собранного устройства поднимается на 10% за счет большего охлаждения мотора, но нагревать основные комплектующие до показателя свыше 200 градусов не рекомендуется. Прибор выдерживает максимальную нагрузку в 30А, а его сопротивление способно составлять 4Ом благодаря большему количеству проводников (рисунок 5).
Стоит помнить, что генератор на элементах пельтье своими руками:
- Имеет температурное отклонение в системе, примерно равное 13 градусам.
- В большинстве случаев сборки и разборки конструкции, статор им не мешает.
- Модуль крепится непосредственно к ротору, для чего нужно отсоединять центральный вал.
- Во избежание нагрева роторной обмотки от индуктора, следует использовать керамические пластины.
Рисунок 5. Элемент пельтье поможет создать походный генератор
Теплогенератор на пельтье своими руками собирается из двух пластин 10*10см, толщиной в 1мм, закрепленных термопастой, которые закрывают собой четыре искомых модуля. Поверх них ставится консервная банка или любая другая емкость для розжига огня, которая обеспечит 170-180 градусов. К нижней части одной из пластин прикрепляется при помощи винтов медный или алюминиевый радиатор. К нему присоединяется еще одна пластинка 20*12см, к которой крепится еще одна такая деталь. На нее устанавливается заводской кожух от аккумулятора, к которому припаивается разъем для зарядки смартфона.
Оцените статью:Элемент Пельтье | Практическая электроника
Все вы знаете, что с помощью электрического тока можно нагревать какие-либо предметы. Это может быть паяльник, электрочайник, утюг, фен, различного рода обогревашки и тд. Но слышали ли вы, что с помощью электрического тока можно охлаждать? “Ну а как же, например, бытовой холодильник” – скажите вы. И будете не правы. В бытовом холодильнике электрический ток оказывает только вспомогательную функцию: гоняет фреон по кругу.
Что такое элемент Пельтье
Но существуют ли такие радиоэлементы, которые при подаче на них электрического тока вырабатывают холод? Оказывается существуют ;-). В 1834 году французский физик Жан Пельтье обнаружил поглощение тепла при прохождении электрического тока через контакт двух разнородных проводников. Или, иными словами, в этом месте наблюдалась пониженная температура. Ну и как положено в физике, чтобы не придумывать новое название этому эффекту, его называют в честь того, кто его открыл. Открыл что-то новое? Отвечай за базар)). С тех пор зовется такой эффект эффектом Пельтье.
Ну и как тоже ни странно, элемент, который вырабатывает холодок, называют элементом Пельтье. Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого основан на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. ThermoElectric Cooler — термоэлектрический охладитель).
Практический опыт с элементом Пельтье
Выглядеть он может по-разному, но основной его вид – это прямоугольная или квадратная площадка с двумя выводами. Сразу же отметил сторону “А” и сторону “Б” для дальнейших экспериментов
Почему я пометил стороны?
Вы думаете, если мы просто тупо подадим напряжение на этот элемент, он у нас будет полностью охлаждаться? Не хочу вас разочаровывать, но это не так… Еще раз внимательно читаем определение про элемент Пельтье. Видите там словосочетание “разности температур”? То то и оно. Значит, у нас какая-то сторона будет греться, а какая-то охлаждаться. Нет в нашем мире ничего идеального.
Для того, чтобы определить температуру каждой стороны элемента Пельтье, я буду использовать мультиметр, который шел в комплекте с термопарой
Сейчас он показывает комнатную температуру. Да, у меня тепло ;-).
Для того, чтобы определить, какая сторона элемента Пельтье греется, а какая охлаждается, для этого цепляем красный вывод на плюс, черный – на минус и подаем чуток напряжения, вольта два-три. Я узнал, что у меня сторона “А” охлаждается, а сторона “Б” греется, пощупав их рукой. Если перепутать полярность, ничего страшного не случится. Просто сторона А будет нагреваться, а сторона Б охлаждаться, то есть они поменяются ролями.
Итак, номинальное (нормальное) напряжение для работы элемента Пельтье – это 12 Вольт. Так как я подключил на красный – плюс, а на черный – минус, то у меня сторона Б греется. Давайте замеряем ее температуру. Подаем напряжение 12 Вольт и смотрим на показания мультиметра:
77 градусов по Цельсию – это не шутки. Эта сторона нагрелась так, что когда ее трогаешь, она обжигает пальцы.
[quads id=1]
Поэтому главной фишкой использования элемента Пельтье в своих электронных устройствах является большой радиатор. Желательно, чтобы радиатор обдувался вентилятором. Я пока что взял радиатор от усилителя, который дали в ремонт. Намазал термопасту КПТ-8 и прикрепил элемент Пельтье к радиатору.
Подаем 12 Вольт и замеряем температуру стороны А:
7 градусов по Цельсию). Когда трогаешь, пальцы замерзают.
Но также есть и обратный эффект, при котором можно вырабатывать электроэнергию с помощью элемента Пельтье, если одну сторону охлаждать, а другую нагревать. Очень показательный пример – это фонарик, работающий от тепла руки
Потребляемая мощность элемента Пельтье
Элемент Пельтье сам по себе считается очень энергозатратным. Регулировка температуры его сторон достигается напряжением. Чем больше напряжение, тем большую силу тока он потребляет. А чем больше силы тока он потребляет, тем быстрее набирает температуру. Поэтому, можно регулировать холодок, тупо меняя значение напряжения).
Вот некоторые значения по потреблению электрического тока элементом Пельтье:
При напряжении в 1 Вольт он кушает 0,3 Ампера. Неплохо)
Повышаю напряжение до 3 Вольт
Кушает уже почти 1 Ампер.
Повышаю до 5 Вольт
Чуть больше полтора Ампера.
Даю 12 Вольт, то есть его рабочее напряжение:
Жрет уже почти 4 Ампера! Грабеж).
Давайте грубо посчитаем его мощность. 4х12=48 Ватт. Это даже больше, чем 40 Ваттная лампочка, которая висит у вас в кладовке). Если элемент Пельтье такой прожорливый, целесообразно ли из него делать бытовые холодильники и холодильные камеры? Конечно же нет! Такой холодильник у вас будет жрать Киловатт 10 не меньше! Но зато есть один маленький плюс – он будет абсолютно бесшумен :-). Но если нет никакой возможности, то делают холодильники даже из элементов Пельтье. Это в основном мини холодильники для автомобилей. Также элемент Пельтье некоторые используют для охлаждения процессора на ПК. Получается очень эффективно, но по энергозатратам лучше все-таки ставить старый добрый вентилятор.
Где купить элемент Пельтье
На Али можно найти даже мини-кондиционер из элемента Пельтье вот по этой ссылке.
На Али этих элементов Пельтье можете выбрать сколь душе угодно!
Вот ссылка на них
Элемент Пельтье(генератор Зеебека) принцип действия, обознач…
Привет, Вы узнаете про элемент пельтье, Разберем основные ее виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое элемент пельтье,генератор зеебека , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база
элемент пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler — термоэлектрический охладитель).
Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.
Конструкция
Структурный пример элемента Пельтье. Металлические электроды и полупроводники p-типа и n-типа попеременно соединены в π-форме между верхней и нижней пластинами теплового излучения.
Схематический рисунок элемента Пельтье
Принцип действия
Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.
Вид сбоку на элемент Пельтье. Электрический ток протекает через полупроводники в форме куба между верхней и нижней частью.
Вскрытый элемент
В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.
При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.
Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута Bi2Te3 и твердого раствора SiGe), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей пленкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу — противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создает разность температур.
Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится еще ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.
Достоинства и недостатки
Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это дает возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования. Также достоинством является отсутствие шума.
Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведет к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.
Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.
В батареях элементов Пельтье возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы . Об этом говорит сайт https://intellect.icu . При этом желательно сглаживать пульсации тока – это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.
Эксплуатационные требования к элементам Пельтье.Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.
- Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор. Иначе:
- Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
- Допустимый нагрев горячей стороны как правило + 80 °C ( в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
- При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
- Важен надежный тепловой контакт модуля с радиатором охлаждения.
- Источник питания для модуля должен обеспечивать ток с пульсациями не более 5%. При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
- Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
- К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
- Недопустимо, для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию.
- Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность, т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
- Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В, или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
- Модули имеют герметичное исполнение, их можно использовать даже в воде.
- Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.
Многокаскадные термоэлектрические модули
Многокаскадные модули применяются в системах глубокого охлаждения, холодильниках с большим перепадом температур, системах охлаждения научных, исследовательских и специальных приборов. Также используются для охлаждения ИК фотоприемников, детекторов рентгеновского излучения и других датчиков.
Основные области применения:
- охлаждение ПЗС матриц и ИК фотоприемников
- камеры холода и замораживатели
- термостаты
- научные лабораторные приборы
- термокалибраторы
- ступенчатые охладители
- охладители и термостабилизаторы датчиков различного назначения
- приборы ночного видения
Технологические особенности
Для верхних каскадов многокаскадных модулей мы используем оптимизированный термоэлектрический материал, который позволяет получать большую величину ?Т при меньшем количестве каскадов. Это позволяет производить многокаскадные модули с оптимальными весо-габаритными характеристиками и низким энергопотреблением.
Мы также предлагаем нашим заказчикам термоэлектрические модули установленные или непосредственно интегрированные в стандартные — ТО (ТО3, ТО8 и др.), HHL, DIL, butterfly или специальные корпуса.
Таблица используемых сокращений
ТЭМ | термоэлектрический модуль |
ТГМ | термоэлектрический генераторный модуль |
DTmax | максимально достижимая разница температур между сторонами термоэлектрического модуля |
Imax | максимальный электрический ток через термоэлектрический модуль, соответствующий режиму максимальной разницы температур |
Umax | максимальное электрическое напряжение на контактах термоэлектрического модуля, соответствующее режиму максимальной разницы температур |
Qmax | максимальная холодопроизводительность (холодильная мощность) термоэлектрического модуля. Определяется при максимальном токе через термоэлектрический модуль и нулевой разности температур между его сторонами |
Rac | электрическое сопротивление термоэлектрического модуля, измеренное на переменном токе с частотой 1 кГц |
Примеры схем с элементами Пельтье и обозначение
Рис.1. Схемы подключения нагревательных элементов к микроконтроллеру:
а) охлаждение объектов модулем Пельтье EK1 фирмы «Криотерм» (размеры 40x40x3.4 мм). Светодиод HL1 индицирует состояние «Заморозить/Разморозить». Транзистор K77 подключается к MK напрямую, без резисторов, поскольку элемент EK1 весьма инерционный и помехи , которые теоретически могут открыть транзистор VT1 при рестарте MK, на него мало влияют;
б) подключение к MK низковольтного элемента Пельтье фирмы Melcor. Параметры EK1: мощность 5.3 Вт, рабочий ток 2.5 А при напряжении 3.75 В, максимальная разность температур между «холодной» и «горячей» поверхностями 67°С, габаритные размеры 15x15x4 мм.
Применение
Элементы Пельтье можно использовать везде, где требуется охлаждение с небольшой разницей температур или без экономических требований. Термоэлектрические элементы используются, например, в холодных ящиках , в которых использование холодильной машины запрещены по соображениям пространства или не было бы выгодно , так как требуемая мощность охлаждения невелика. Разница температур внутри и снаружи просто возникает неконтролируемым образом. КПД низкий. Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, малогабаритных автомобильных холодильниках, охлаждаемых банкетных тележках, применяемых в общественном питании, так как применение компрессорной холодильной установки в этом случае невозможно или нецелесообразно из-за габаритных ограничений, и, кроме того, требуемая мощность охлаждения невелика.
Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счет этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приемников излучения в инфракрасных сенсорах.
Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.
В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30—40 градусов ниже, чем с помощью обычных компрессионных охладителей (до −80 °C для одностадийных холодильников и до −120 °C для двухстадийных).
Некоторые энтузиасты используют модуль Пельтье для охлаждения процессоров при необходимости экстремального охлаждения без азота. До азотного охлаждения использовали именно такой способ.
«Электрогенератор Пельтье» (более корректно было бы « генератор зеебека », но неточное название устоялось) — модуль для генерации электричества, термоэлектрический генераторный модуль, аббревиатура GM, ТGM. Данный термогенератор состоит из двух основных частей:
- непосредственно преобразователь разницы температур в электричество на модуле Пельтье,
- источник тепловой энергии для нагрева преобразователя (например, газовая или бензиновая горелка, твердотопливная печь и т. д.)
Элементы Пельтье используются для охлаждения особо длинноволновых или чувствительных ПЗС-датчиков . Это значительно снижает шум изображения при длительной выдержке (например, в астрофотографии ) . Многоступенчатые элементы Пельтье используются для охлаждения приемников излучения в инфракрасных датчиках.
Элементы Пельтье также все чаще используются в лабораторных измерительных приборах, для которых температура является важным параметром, таких как устройства измерения плотности , вискозиметры , реометры или рефрактометры .
В гигрометрах с охлаждаемыми зеркалами один или несколько элементов Пельтье, соединенных последовательно, обычно охлаждают зеркало до -100 ° C. Здесь используется то обстоятельство, что охлаждающая способность элементов Пельтье может быстро регулироваться электрически.
Диодные лазеры часто охлаждаются и термостатируются с помощью элементов Пельтье , чтобы сохранить постоянную длину волны излучения и / или эффективность. Последующие оптические элементы диодных и других лазеров часто термостатируются элементами Пельтье.
Элементы Пельтье можно использовать как для охлаждения, так и — при изменении направления тока — для нагрева.
Элементы Пельтье иногда используются в составе кулеров ЦП . Элемент Пельтье позволяет процессору остыть до температур ниже температуры внутри корпуса, что либо позволяет разгонять процессор без ущерба для стабильности, либо увеличивает срок службы процессора. Элемент устанавливается на дне радиатора с вентилятором и питается от блока питания необходимой мощностью. Однако до настоящего времени такие решения не принесли успеха из-за их дополнительного потребления энергии, используемая электрическая энергия выделяется внутрь корпуса в виде отработанного тепла.
Фотодиоды , например B. для считывающих сцинтилляторов , из-за их небольшой площади могут охлаждаться элементами Пельтье и, таким образом, уменьшать шум и темновой ток.
Элементы Пельтье используются в камерах диффузионного тумана для поддержания разницы температур между дном и крышкой.
В термоциклерах , которые сегодня являются частью основного оборудования в молекулярной биологии , используются элементы Пельтье для быстрого нагрева и охлаждения образцов, что необходимо, например, в полимеразной цепной реакции .
Элементы Пельтье иногда используются в небольших осушителях воздуха . Здесь влажный воздух проходит через охлаждающий элемент, а содержащаяся в нем вода конденсируется по мере охлаждения и затем собирается в сборный контейнер.
На этом все! Теперь вы знаете все про элемент пельтье, Помните, что это теперь будет проще использовать на практике. Надеюсь, что теперь ты понял что такое элемент пельтье,генератор зеебека и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база
принцип работы, области применения, сборка
В электротехнике используется много разных физических эффектов, процессов и свойств материалов. Достаточно вспомнить магнетизм, емкостные характеристики диэлектриков, сопротивление металлов прохождению тока. Определенный интерес представляют конструкции, содержащие связки двух полупроводников p- и n- типа, физические состояния которых, — под действием электрического тока — меняются. Речь идет об элементах Пельтье, названых так по имени первооткрывателя эффекта.
При подаче электроэнергии в устройство названого типа, место соприкосновения пластин разной энергетической проводимости нагревается или охлаждается в зависимости от направления движения тока. Причем разница температур может быть весьма велика и зависит в большей степени только от поступающего напряжения. Доступность конструкции позволяет изготовить самодельный элемент Пельтье даже в домашних условиях силами заинтересованного любителя электроники из вполне доступных материалов.
Самодельный холодильник с использованием элемента Пельтье:
Ниши применения аппарата довольно широки, от создания разогревающих поверхностей, до систем охлаждения процессоров, напитков или даже создания мини-холодильников. Единственный минус элемента — стоимость исходных материалов. Для миниатюрных конструкций еще можно найти необходимое их количество в компонентах электроники. В случае больших и соответственно мощных аппаратов, цена полупроводников будет дороже.
Теперь что касается выработки тока на биметаллических пластинах. Физическое явление ошибочно относят конкретно к элементам Пельтье, что не совсем точно соответствует истине. Изначально эффект открыт был Т. И. Зеебеком от фамилии которого и получил свое название. В проведенных исследованиях было выявлено, что в двух связанных проводниках из различных металлов (не обязательно p- и n- типа), для которых создается разница температур в отношении каждого, методом нагрева одного и охлаждением другого, возникает электрический ток. Правда, КПД процесса выше у полупроводниковой конструкции, больше напоминающей классический элемент Пельтье.
Генератор на основе эффекта Зеебека:
К сожалению, несмотря на видимые преимущества термических генераторов, производящих электричество и работающих на основе эффекта Зеебека, широкого распространения они не получили. Во всем виновата изначальная цена материалов, от которых непосредственно зависит коэффициент полезного действия на каждую единицу площади устройства. Кроме того, не стоит забывать о разнице температур, резкость которой в природе получить достаточно сложно. Есть конечно варианты, когда генератор названого типа работает на принудительном нагреве одной пластины и охлаждении другой. Причем первое действие производится не только за счет сгорания ископаемого топлива, но и к примеру, при распаде радиоактивных элементов или воздействия солнечных лучей. К сожалению, мощность таких устройств относительно мала по сравнению с энергозатратами, нужными для конечного производства тока. Классические виды генераторов в названом случае более эффективны при весьма солидной экономии топлива, необходимого для работы, или же при слабом действии природных факторов.
Еще один генератор, использующий тепло для питания слабого потребителя:
Краткая история открытия и обоснование физики работы
В основе работы элемента Пельтье находится физический принцип прохождения тока через две соприкасающиеся пластины, изготовленные из материалов с различными уровнями энергии тока прохождения, или другими словами — полупроводниками отличающихся типов. В месте их соединения будет наблюдаться нагрев при подаче тока в одну сторону, и понижение температуры при движении его в обратную.
Открыт эффект был еще в 18 веке Жан-Шарлем Пельтье, который получил его случайно, соединив контакты из висмута и сурьмы от источника тока. Капля воды, находящаяся в точке соприкосновения, превратилась в лед, что и вызвало интерес исследователя. Практическое применение открытие не получило по причине слабой распространенности электротехники в указанный период времени. Вспомнили о нем уже позднее, в век развития микроэлектроники, компонентам которой нужно было миниатюрное охлаждение, желательно без жидкостей и подвижных частей (насосов, вентиляторов и прочих).
Продаваемые сборки элементов Пельтье:
Элемент Пельтье можно создать не только из полупроводников. Но, к сожалению, эффект от использования различных проводящих металлов будет ниже, и практически полностью потеряется за счёт нагревания их в месте соприкосновения и общей теплопроводности материала.
Внутреннее устройство элемента Пельтье:
В общем виде конструкция выглядит как набор электродов кубической формы, изготовленных из полупроводников n- и p-типа. Каждый из них соединен с противоположными проводящими контактами, а все указанные пары соединены между собой последовательно. Причем расположение элементов выполняется так, чтобы связующие металлы между сборками полупроводников одного типа, соприкасались с первой стороной устройства в общем, а второго с противоположной. Сами p- и n- кубы зачастую изготавливаются из теллурида висмута и сплава кремния с германием. Соединительные контакты обычно из меди, алюминия или железа. Здесь главное требование — хорошая теплопроводность. Количество же пар в одной конструкции не ограничивается, и чем их больше, тем эффективнее работает элемент Пельтье. При подаче напряжения на сборку одна ее сторона нагревается, вторая охлаждается.
Принципиальная схема соединений в элементе Пельтье:
Годом нахождения обратного эффекта, выражающегося в выработке тока при охлаждении и нагреве соединенных проводников из разных металлов, принято считать 1821. Открытие было сделано Т. И. Зеебеком, который уже на следующий год опубликовал его в статье, предназначенной для Прусской академии наук, с названием «К вопросу о магнитной поляризации некоторых металлов и руд, возникающей в условиях разности температур».
Хотя согласно его работе, система генерации действует не только при использовании полупроводников, с ними ее КПД намного выше.
Элемент Пельтье, предназначенный целям генерации тока:
Где применяется
Миниатюрность настоящих элементов и относительно низкое их энергопотребление, — вкупе с отсутствием движущихся частей или различных жидкостей, применяемых в целях переноса тепла — предоставляет широкий спектр ниш использования. Сюда входят автомобильные кондиционеры, системы охлаждения микросхем и элементов электроники, мини-холодильники, подставки поддерживающие определенную температуру размещенных сверху емкостей. Кроме названых используется оборудование на элементах Пельтье в специфичных сферах, на подобии ПЦР-амплификаторов, нагревающихся систем вспышки фотоаппаратов, телескопах (для снижения теплового шума) и приемниках излучения инфракрасных устройств.
Реже можно заметить настоящий элемент в роли части конструкции генераторов. Хотя на рынках периодически всплывают аппараты аналогичного класса, к примеру, в виде фонариков, работающих от тепла человеческого тела или слабых машин, производящих электрический ток в целях подзарядки аккумуляторов смартфонов или ноутбуков.
Напряжение, получаемое на выходе элементов Пельтье:
Достоинства и недостатки
Как уже говорилось ранее, основным плюсом элементов Пельтье служит их миниатюрность, вкупе с отсутствием движущихся частей и агрегатных сред, используемых для передачи температуры. Соответственно, нет различных вентиляторов и насосов, хотя первые и могут использоваться для создания более быстрой конвекции тепла устройства и внешней среды. Кроме названых можно вспомнить простоту конструкции, которую в принципе может повторить каждый, изготовив элемент Пельтье своими руками.
Есть и минусы, основным из которых можно назвать низкий КПД, требующий повышения силы тока для создания действительно значимой разницы температур между горячей и холодной частью.
Эффект охлаждения достигаемый при использовании элементов Пельтье:
Элементы Пельтье своими руками
Получив теоретические знания о функционировании биметаллического устройства, пора перейти к тому, как сделать элемент Пельтье своими руками. Вот только сначала нужно выбрать нишу его применения. Хотя бы потому, что использовать устройство можно для охлаждения чего-либо, нагрева, или в качестве генератора с целью выработки электроэнергии. Последний вариант предпочтительнее по причине ненужности большого количества исходных материалов, хотя бы потому что многовольтное и высокоамперное устройство изготовить в любом случае сложно, особенно дома, ну а для целей подзарядки чего-либо подойдет и меньший его вариант. Хотя лучше купить готовый элемент Пельтье требуемой мощности с торговых интернет-площадок, чем заниматься его изначальным и достаточно невыгодным изготовлением.
Из диодов и транзисторов
Фактически любой элемент Пельтье представляет собой гирлянду из последовательно соединенных диодов, работающих в режиме пробоя. В сущности, любой электронный компонент, пропускающий ток в одном направлении и препятствующий его прохождению в обратном, построен на принципах соединения полупроводников p-n типа. Что в свою очередь наводит на мысли о схожести системы на искомую конструкцию, аналогичную той, которую имеет модуль Пельтье. Если брать во внимание диоды с пластмассовой оболочкой (включая излучающие свет), мешает доступу к самим контактным пластинам из разных металлов только сам корпус устройства.
Вот они, две пластины полупроводника в прозрачном диоде:
Случай транзисторов аналогичен, конечно учитывая то, что в большинстве из них три контакта, два из полупроводника одного типа и один (меньший) другого. Хотя избавиться от корпуса, если он металлический, проще, что довольно распространено у элементов названого типа — достаточно срезать верхнюю крышку и получить доступ к открытым контактным пластинам.
Металлический транзистор со снятой крышкой:
Саму процедуру избавления от корпуса возложим на читателей, с рекомендацией попробовать нагрев, кислоту или механическое снятие преграды. Что касается соединения контактных площадок, здесь некоторые фанаты, судя по имеющейся информации, использовали меднение их верхушек электрическим методом. Впоследствии к подготовленным участкам осуществлялась пайка проводящих контактов.
После получения требуемых металлов, главное, что нужно помнить при их подключении — направление прохождения тока и последовательное соединение, выглядящее, как p-n-p-n-p-n, учитывая тип полупроводников. Кроме того, чем больше будет использовано элементов в конструкции, вне зависимости от их размера, тем и выше КПД получившегося генератора или устройства создающего тепло вместе с холодом.
В окончании
Статья полностью объясняет, как работает элемент Пельтье и можно ли его повторить своими руками, используя только доступные материалы. Целесообразность самоличной сборки в практических целях оставляем на совести интересующихся вопросом. Хотя устройство, сделанное лично, безусловно более полно удовлетворит внутреннего любителя все делать самостоятельно, в отличие от покупного.
Видео по теме
Что такое элемент Пельтье, его характеристики и принцип работы | Энергофиксик
Вы, конечно, прекрасно знаете, что с помощью электрического тока возможно производить нагрев предметов, например, паяльник, чайник и т.п. А вы знаете, что с электричеством можно также и охлаждать? И я сейчас говорю не о холодильниках, где компрессором гоняется фреон, а речь идет о так называемом элементе Пельтье. В этом материале я расскажу вам об этом изделии подробно. Итак, начнем.
СодержаниеИсторическая справка
Как работает термоэлемент
Внутреннее устройство термоэлемента Пельтье
Недостатки и достоинства такого элемента
Маркировка изделия и ее расшифровка
Технические параметры элемента Пельтье
Область применения данных элементов
Как проверить исправность модуля Пельтье
Заключение
Историческая справкаВ далеком 1834 году ученым из Франции Ж. Ш. Пельтье был открыт крайне любопытный эффект при протекании электрического тока по проводнику. Так, если через близко расположенные разнородные проводники пропускать электрический ток, то один из них сильно нагревается, а другой напротив охлаждается. И величина вырабатываемого тепла и холода прямо пропорционально связана с величиной пропускаемого тока.
Если же вектор направления тока изменить, то и стороны нагрева и охлаждения так же поменяются местами. Про это открытие, которое впоследствии назвали эффект Пельтье, на долгие годы просто напросто забыли, пока во второй половине двадцатого столетия не были произведены первые полупроводниковые элементы Пельтье.
Как работает термоэлементВ основе абсолютно любого термоэлектрического модуля положен принцип разности уровня энергии электронов, то есть один проводящий элемент представляет из себя область с высокой проводимостью, а другой с низкой проводимостью. И если совместить такие проводники и пропустить через них ток, то электрону, чтобы пройти из низкоэнергетической области в высокоэнергетическую нужно накопить энергию. При этом та область где происходит поглощение энергии электроном начинает охлаждаться.
Если изменить полярность подключения элемента, то эффект охлаждения сменится на нагревание.
Этот эффект наблюдается у абсолютно любых элементов, но реальные следы данного явления начинают проявляться, когда используются полупроводники.
Внутреннее устройство термоэлемента Пельтьеyandex.ruyandex.ru
Термоэлектрический модуль (ТЭМ) реализован из N-ого числа термопар. Причем сама термопара выполнена из пары полупроводников разнородного типа, которые соединены между собой пластиной из меди.
Данные полупроводники выполнены из солей таких металлов как: теллур, висмут, селен или сурьма.
Таких термопар соединенных в последовательную цепь может быть в одном устройстве сколь угодно много. И вся эта конструкция закрывается с обеих сторон керамическими пластинами.
Так как число термопар может быть различным, то значит и мощность элемента Пельтье также может варьироваться и очень сильно.
Протекающий постоянный ток нагревает одну часть элемента (например, верхнюю), а вторую (нижнюю) наоборот охлаждает. Если сменить полярность, то нагреваемая и охлаждаемая стороны поменяются местами.
Есть одна очень любопытная особенность функционирования такого элемента. Если в процессе работы принудительно охлаждать ту сторону, что подвергается нагреву, то сторона охлаждающаяся еще больше охладится и разница температур с воздухом может быть десятки градусов.
yandex.ruyandex.ru
Недостатки и достоинства такого элементаК сожалению, еще не придумано таких изделий, у которых были бы только плюсы, поэтому давайте рассмотрим положительные и отрицательные стороны элемента Пельтье.
Плюсы изделия
1. По размеру данное изделие может быть абсолютно любым.
2. В изделии нет движущихся деталей, а это значит что оно полностью бесшумно.
3. Лишь изменив полярность питания элемента нагревательная поверхность превращается в охлаждающую.
Минусы изделия
1. Единственным, но самым существенным недостатком ТЭМа считается его маленький КПД. И проблема низкого КПД заключена в том, что по своей сути электроны обладают двойной природой и переносят как заряд, так и тепловую энергию и для того, чтобы создать высокоэффективный элемент Пельтье, нужен материал с высокой проводимостью электрического тока и низкой проводимостью тепла, а такой материал пока не придуман.
Маркировка изделия и ее расшифровка
На любом элементе присутствует буквенно-циферный код, который выглядит так:
И вот как он расшифровывается:
Первые две буквы всегда «ТЕ» всегда неизменны и означают что перед нами термоэлемент.
Третья буква указывает на размерность модуля «С» — стандартный модуль, «S» — малый модуль
А первая цифра, идущая после букв, говорит о количестве слоев (каскадов) в элементе.
Далее три идущие цифры говорят о числе термопар в модуле (в данном элементе 127 пар).
Последние две цифры указывают на номинальный ток, в нашем варианте ток равен 10 Амперам.
Технические параметры элемента ПельтьеГлавные параметры у элементов таковы:
— Q max – производительность холода. Данный параметр рассчитывается из максимального тока и разности температур между противолежащими обкладками модуля Пельтье.
— Imax – ток, при котором перепад температур достигает своего максимума.
— U max — предельное напряжение.
— Resistence – сопротивление внутренних элементов изделия.
— COP – это КПД нашего изделия. Данный показатель только у самых «крутых» модулей едва дотягивается до 50 %, а те элементы, которые нам могут предложить китайские производители, имеют КПД от 20% до 30%.
Область применения данных элементовДанные термоэлектрические модули нашли свое применение в следующих областях:
Мобильные (автомобильные) холодильники.
Мобильные термогенераторы. В таких изделиях применяется обратный эффект, то есть при нагревании одной стороны элемента и охлаждении другой, происходит вырабатывание электрической энергии.
Осушители воздуха.
Лабораторные инкубаторы.
Кулеры для воды.
Как проверить исправность модуля Пельтье
ЗаключениеЭто все, что я хотел сегодня вам рассказать об элементе Пельтье. Если вы захотели приобрести такой элемент, то покупал я его в этом магазине. В следующих статьях я расскажу о том, как собрать на основе этого элемента термогенератор, так что если вам статья понравилась, то присоединяйтесь к каналу и оцените ее лайком и репостом. Спасибо за ваше внимание!
Эффект Пельтье — обзор
2.3.1 Тепловые электрогенераторы.
Работа термоэлектрических генераторов (ТЭГ) основана на термоэлектрическом эффекте, открытом в прошлом веке: эффекте Пельтье и Зеебека.
Рассмотрим эффект Пельтье . Если после соединения разнородных проводников (металлов и полупроводников) постоянный ток I пропускается, переход зависит от направления выделяемого или поглощаемого тока тепла:
Qp = αIT.
где α — коэффициент, зависящий от свойств выбранных проводников, а T — температура перехода.
Рассмотрим эффект Зеебека . Если соединение состоит из двух разнородных стыков проводов при разных температурах, T 1 и T 2 , электродвижущая сила (ЭДС) E пропорциональна разнице температур:
E = α (T1 − T2)
где α — коэффициент термоэдс. или коэффициент Зеебека.
Оба эффекта дополняют друг друга и имеют одинаковую физическую природу: если в каком-либо из них есть свободные электроны, он стремится прийти к тепловому равновесию с окружающими ядрами материала. Следовательно, в обеих формулах коэффициент α один и тот же.
Схема одного ТЭГ представлена на рис. 1.5. Термоэлектроды 1 и 2 изготовлены из разных материалов и электрически соединены с переходами A и B. Электрод 2 сломан, в нем есть зазор (поз. 3) и нагрузка R.
Рисунок 1.5. Термоэлектрический генератор.
Если переходы A и B поддерживаются при разных температурах, T1> T2, разомкнутая цепь будет иметь значение для разницы (E). Когда потенциалы замыкают ключ 3, цепь и ток нагрузки протекает (I). Однако, согласно эффекту Пельтье, когда ток течет через переход I, разнородные проводники в этом переходе поглощают или выделяют тепло (Q n ). Например, в соединении A ток течет от проводника 1 к проводнику 2 и, таким образом, поглощается тепло, Q1 = αIT1, которое должно выйти из строя.Тогда в переходе B, наоборот, ток течет от проводника 1 к проводнику 2, в результате чего переход генерирует тепло Q2 = αIT2, которое необходимо отвести.
Когда в цепи течет ток I, где э.д.с. эффект E — это электрическая энергия, производимая Lel = EI, т.е.
Lel = α (T1 − T2) I
в идеальном случае
Lel = Q1 − Q2
для такого идеального ТЭГ эффективность была бы
ηideal = LEL / Q1 = α (T1 − T2) I / αT1I = 1 − T2 / T1 = ηt, max
В этом случае эффективность равна эффективности цикла Карно.
Однако в реальности такой эффективности получить нельзя. Наряду с процессами, описанными ранее для ТЭГ, другие существенно снижают эффективность. Во-первых, из-за разницы температур между спаями электродов на 1 и 2 удельная теплопроводность от горячего спая к холодному теплу приводит к потоку Q T . Эта жара бесполезна. Именно при постоянной L EL увеличивается требуемое тепло Q 1 (т.е. снижается КПД). Количество тепла при заданной разности Q T T 1 -T 2 пропорционально коэффициенту теплопроводности λ и площади поперечного сечения проводника и обратно пропорционально его длине.
Эффект Пельтье — обзор
Объясните возникновение эффектов Зеебека, Пельтье и Томсона в неоднородных проводниках, используя инструменты феноменологической линейной термодинамики. Каков физический смысл параметров, определяющих величину этих эффектов?
Объясните движение ионов через мембрану под действием приложенного к ней электрического потенциала, используя инструменты линейной термодинамики.
Выведите уравнение для феноменологического описания активного транспорта вещества через мембрану (раздел 2.3.2) для случая сопряженного переноса вещества через мембрану и химических процессов, далеких от равновесия (т. Е. При | A rij |> RT).
Какие свойства присущи обратным коэффициентам Онзагера? Что можно сказать о значениях обратных коэффициентов Онзагера, учитывающих взаимосвязь диффузии и ступенчатых химических превращений?
Что можно сказать о значениях обратных коэффициентов Онзагера, учитывающих взаимосвязь теплопроводности и ступенчатых химических превращений? В чем разница между коэффициентами «классического» и «модифицированного» коэффициентов Онзагера?
Напишите феноменологические уравнения Хориути-Борескова-Онзагера для трех параллельных взаимодействующих ступенчатых реакций
A ⇄ B
A ⇄ C
A ⇄ D,
Найдите коэффициенты взаимности Λ ij для случая стационарной скорости параллельных ступенчатых реакций, описываемых схемами:
Стационарное состояние устанавливается по отношению к промежуточным соединениям, обозначенным Y i .
Найдите выражение для уравнений Хориути-Борескова-Онзагера, описывающее взаимное влияние данных ступенчатых реакций в присутствии диффузии химических компонентов.Коэффициент диффузии одинаков для всех компонентов.
Ступенчатая реакция R + A 1 ⇄ P 1 сопровождается параллельной ступенчатой реакцией R + A 2 ⇄ P 2 . Найти коэффициенты взаимности Λ ij для случая взаимного влияния этих ступенчатых реакций, протекающих в стационарном режиме, по отношению к их промежуточным продуктам. Реакции следуют механизму
R ⇄ X,
A 1 + X ⇄ P 1 ,
R ⇄ Y 1 ⇄ Y 2 ⇄ Y 3 ⇄ Y 4 ⇄ Y 5 ,
Y 4 + A 2 ⇄ P 2 ,
Найти коэффициенты Λ ij для стационарного режима прямоточных ступенчатых реакций, достигаемых механизмом с интермедиатами X i и Y j :
R 1 ⇄ X 1 ⇄ → X 2 ⇄ X 3 ⇄ → X 4 ,
X 2 + R 2 ⇄ Y 1 ⇄ Y 2 ⇄ Y 3 ⇄ Y 4 ⇄ Y 5 ,
Y 2 ⇄ P 1 ,
Y 2 ⇄ P 2 .
Биотехнологический синтез фермента AHD 80 осуществляется хорошо клонированным штаммом микроорганизмов в ходе процессов, сопряженных с реакцией ассимиляции глюкозы, химическое сродство реакции 42 кДж. / моль. Оцените требуемую скорость ассимиляции глюкозы в закрытом ферментере при 37 ° C, если скорость снижения энтропии из-за реакции синтеза фермента составляет 8 кДж / ч · К в ферментере.
В гомогенной реакционной системе параллельные ступенчатые реакции
A 1 + A 2 ⇄ B 1
A 1 + A 2 ⇄ B 2
перейти в стационарный режим через механизм
A 1 ⇄ Y 1 ⇄ Y 2 ⇄ Y 3 ⇄ Y 4 ,
Y 3 + A 2 ⇄ Y 5 ⇄ B 1 ,
Y 4 + A 2 ⇄ B 2 ,
где Y и — промежуточные звенья.
Найдите выражение для модифицированных уравнений Онзагера, описывающее взаимное влияние данных ступенчатых реакций при наличии диффузии химических компонентов, порождаемой неоднородностью системы. Коэффициент диффузии одинаков для всех компонентов.
Почему теорема Пригожина о скорости производства энтропии важна для области химии и каковы условия ее применимости?
Превращение исходных компонентов R i в продукт P следует по схеме
Выразить взаимосвязь между химическими потенциалами и концентрациями промежуточных продуктов реакции A i в стационарном режиме процесса. Напишите выражение для скорости производства энтропии. Сформулируйте теорему Пригожина о скорости производства энтропии в стационарном состоянии для данной системы. Насколько применима эта теорема для данной системы при температуре 1200 К, если сродство ступенчатой реакции R 1 + R 2 ← P равно 2 кДж / моль? 50 кДж / моль?
Преобразование исходного компонента R в продукт P происходит по схеме R + A 1 ⇄ 2 A 1
Здесь A i являются промежуточными продуктами. Покажите взаимосвязь между химическими потенциалами и концентрациями промежуточных продуктов реакции в стационарном режиме процесса. Напишите выражение для скорости производства энтропии. Сформулируйте теорему Пригожина о скорости производства энтропии в стационарном состоянии для данной системы.Насколько эта теорема применима для данной системы при температуре 500 К, если сродство ступенчатой реакции R → P равно 2 кДж / моль? 50 кДж / моль?
Преобразование исходного компонента R в продукт P происходит по схеме
R ⇄ A 1 ⇄ A 2 ⇄ A 3 ⇄ P,
A 1 + 2 S ⇄ 2A 4 ⇄ A 2 + 2 S ⇄ A 5 .
Здесь A и — промежуточные соединения, а S — молекула растворителя.Покажите взаимосвязь между химическими потенциалами и концентрациями промежуточных продуктов реакции S и в стационарном режиме процесса. Напишите выражение для скорости производства энтропии. Сформулируйте теорему Пригожина о скорости производства энтропии в стационарном состоянии для данной системы. Насколько применима эта теорема для данной системы при температуре 300 К, если сродство ступенчатой реакции R ← P равно 2 кДж / моль? 30 кДж / моль?
Как работает модуль Пельтье — TOMSON ELECTRONICS
ЭФФЕКТ ПЕЛЬТЬЕ
Термоэлектрические охладители работают по эффекту Пельтье .Эффект создает разницу температур за счет передачи тепла между двумя электрическими соединениями. Напряжение прикладывается к соединенным проводникам для создания электрического тока. Когда ток течет через соединения двух проводников, тепло отводится на одном соединении и происходит охлаждение. На другом стыке выделяется тепло.
Основное применение эффекта Peltie r — охлаждение. Однако эффект Пельтье также можно использовать для нагрева или регулирования температуры.В любом случае требуется постоянное напряжение.
ЭЛЕМЕНТЫ ТЕРМОЭЛЕКТРИЧЕСКОГО ОХЛАДИТЕЛЯ
Термоэлектрические охладители от II-IV Marlow действуют как твердотельные тепловые насосы. Каждый из них имеет массив чередующихся полупроводников n- и p-типа. Полупроводники разных типов имеют дополнительные коэффициенты Пелти r. Набор элементов припаян между двумя керамическими пластинами последовательно и термически параллельно. Твердые растворы теллурида висмута, теллурида сурьмы и селенида висмута являются предпочтительными материалами для устройств с эффектом Пельтье , поскольку они обеспечивают наилучшие характеристики при температуре от 180 до 400 K и могут быть изготовлены как n-типа, так и p-типа.
Эффект охлаждения любого блока, в котором используются термоэлектрические охладители , пропорционален количеству используемых охладителей. Обычно несколько термоэлектрических охладителей соединяются рядом и затем помещаются между двумя металлическими пластинами. II-VI Marlow предлагает три различных типа термоэлектрических охладителей, включая термоциклеры, одноступенчатые и многоступенчатые.
ПОГЛОЩЕНИЕ ТЕПЛА
Охлаждение происходит, когда через одну или несколько пар элементов проходит ток от n- к p-типу; происходит снижение температуры на стыке («холодная сторона»), что приводит к поглощению тепла из окружающей среды.Тепло переносится вместе с элементами электронным транспортом и выделяется на противоположной («горячей») стороне, когда электроны переходят из состояния с высокой энергией в состояние с низкой энергией.
Поглощение тепла Пельтье определяется как Q = P ( Коэффициент Пельтье ) I (ток) t (время). Одноступенчатый термоэлектрический охладитель может обеспечивать максимальную разницу температур около 70 градусов Цельсия. Однако термоэлектрический охладитель Triton ICE компании II-VI Marlow охлаждает электронику на 2 градуса Цельсия по сравнению с текущими рыночными предложениями.
Купите у нас модуль Пельтье лучшего качества и получите больше интересных предложений
Элементы Пельтье
Элементы Пельтье / термоэлектрические охладители (ТЭО) — это тепловые насосы, передающие тепло от одной стороны к другой в зависимости от направления электрического тока. Контроллеры TEC используются для управления элементами Пельтье.
В этой статье объясняется, как работают элементы Пельтье / термоэлектрические охладители, описываются особенности и упоминаются производители элементов Пельтье.
Контроллер ТЕС Обзор продукта
Состав
Основы элемента Пельтье
Элемент Пельтье может переносить тепло с помощью эффекта Пельтье. Внутри элемента Пельтье эффект Пельтье создает разницу температур между двумя сторонами при протекании тока.
В зависимости от направления протекания постоянного тока возможно охлаждение и нагрев с помощью элементов Пельтье без изменения разъемов или механической настройки.Дополнительные преимущества заключаются в том, что можно реализовать небольшие конструкции и нет движущихся частей. Ток, подаваемый на элемент Пельтье, контролируется контроллером TEC.
Левая сторона: Стандартный элемент Пельтье Правая сторона: Специальные типы элементов Пельтье
Обычно идентификация производителя печатается на холодной стороне элемента Пельтье. Это холодная сторона, если положительное напряжение питания подключено к красному кабелю элемента Пельтье
.Поскольку кабели обладают теплоемкостью, они подключаются к горячей стороне элемента Пельтье, чтобы не снизить охлаждающую способность элемента.
Как вы можете видеть на правом рисунке, существуют разные типы элементов Пельтье, они различаются по размеру и форме, мощности и температурному диапазону.
Диапазон размеров: от 1 мм x 1 мм до 60 мм x 60 мм
Формы: квадратные, кольцевые, многоступенчатые, одноступенчатые, герметичные или негерметичные, нестандартные формы
Диапазон температур: разница температур dT макс до 130 ° C (многоступенчатый), макс. температура до 200 ° C
Максимальная холодопроизводительность: до 290 Вт
Модель элемента Пельтье
Элементы Пельтье можно охарактеризовать с помощью модели.Модель
обладает следующими тремя эффектами.- Эффект Пельтье Q p : Передача тепла от одной стороны к другой. Описанный в этом уравнении Q p = I * α * T
- Обратный поток тепла Q Rth : Тепловой поток от горячей стороны к холодной. Описанный в этом уравнении Q Rth = dT / Rth
- Джоулевое нагревание / потери Q Rv представляют в сопротивлении R v : Описанное в этом уравнении Q Rv = I 2 * R v /2.
Тепло, выделяемое R v , поровну распределяется между горячей и холодной стороной. Тепло, выделяемое на горячей стороне, непосредственно рассеивается радиатором и поэтому не учитывается в этом уравнении.
Результирующая перекачиваемая тепловая нагрузка Q c зависит от трех эффектов: Q p , Q Rth и Q Rv .
В случае охлаждения уравнение для Q c . Имеет следующий вид: Q c = Q p — Q Rth — Q Rv .
Параметры элемента Пельтье
Помимо механических свойств, элементы Пельтье характеризуются четырьмя важными параметрами. Которые предоставляет производитель: Q max , dT max , U max , I max
- Q max : Максимальная мощность теплового насоса при разнице температур между горячей и холодной стороной 0 ° K
- dT max : максимальная разница температур на элементе Пельтье, когда тепло не перекачивается
- I макс. : ток через элемент Пельтье при Q макс.
- U max : Напряжение через элемент Пельтье при Q max
Параметры Q max и dT max являются теоретическими значениями и используются для описания поведения элементов Пельтье.Однако эти максимальные значения никогда не достигаются в термоэлектрических устройствах. Они предоставляются производителем для характеристики производительности модуля Пельтье.
В термоэлектрических устройствах всегда существует компромисс между производительностью теплового насоса Q c и разностью температур dT.
Свойства и поведение элементов Пельтье
Следующие четыре диаграммы характеризуют товар с элементом Пельтье. Они полезны для понимания свойств и поведения элементов Пельтье.Подобные диаграммы когда-то используются производителями, например Ferrotec. Все значения в диаграммах относительны.
Тепловой насос в сравнении с текущим
Эта нормализованная диаграмма описывает взаимосвязь между мощностью теплового насоса по оси Y и током по оси X для различных значений разницы температур между горячей и холодной стороной (dT = T hot — T cold ) в случае охлаждения.
Динамика системы. Нормализованная диаграмма Тепловой насос vs.Текущий
Только при относительно небольших перепадах температур dT может передаваться значительное количество тепла. Многоступенчатые элементы Пельтье используются, когда требуется более высокая разница температур.
Перекачиваемое тепло Q C и разность температур dT обратно пропорциональны друг другу, поскольку тепло подается на холодную сторону, разница температур подавляется.
Обычно сквозной ток для элемента Пельтье должен быть в пределах от 0 до 0,7 от I max .
Динамика системы
Динамика системы. Нормализованная диаграмма зависимости теплоносителя от тока
Чтобы понять динамику системы, мы можем наблюдать, что происходит при изменении температуры — и, следовательно, dT — или при увеличении тепловой нагрузки.
Если мы эксплуатируем элемент Пельтье с током около 25% от I max , то можно скомпенсировать повышение dT на 10 Кельвинов — точка A — B — чтобы гарантировать, что производительность теплового насоса остается постоянной, ток должен быть увеличенным.Производительность теплового насоса также может быть увеличена без изменения dT, если перейти от A к C.
Если рабочая точка составляет около 60% от I max , нам потребуется больший ток, чем в предыдущем примере, чтобы компенсировать повышение dT на 10 Кельвинов — точка D в E — когда производительность теплового насоса не должна измениться. Производительность теплового насоса все еще может быть увеличена без потери разницы температур, если перейти от D к F.
Однако, если элемент Пельтье работает с близким к максимальному току, изменение температуры не может быть компенсировано увеличением тока.Переход от более низкой к более высокой разнице температур приведет к снижению производительности теплового насоса.
Коэффициент полезного действия (COP) (КПД)
Определение COP — это тепло, поглощенное на холодной стороне Q C , деленное на входную мощность P el элемента Пельтье: COP = Q C / P el . COP — это, в основном, эффективность элемента Пельтье при охлаждении.
На следующей диаграмме показана зависимость производительности (COP) от отношения тока I / I max , значения на этой диаграмме являются относительными и нормализованными.
На этой диаграмме показана зависимость производительности (COP) от текущей зависимости. Используйте его, чтобы найти рабочий ток, обеспечивающий максимальную производительность при соответствующей разнице температур dT.
С левой стороны мы видим, что КПД максимален при минимальном перепаде температур. Следовательно, мы получаем большое количество тепла, перекачиваемого на единицу электроэнергии. Как мы видим, в зависимости от dT соответствующий максимум COP находится на разных уровнях тока — при более высоком dT он смещается вправо.Если мы проследим кривую вправо, мы обнаружим, что мы должны вложить в систему много электроэнергии, чтобы получить лишь небольшое количество тепла, что соответствует низкому значению COP. Мы также можем заметить, что более высокие токи необходимы для создания более высоких температурных перепадов.
Причина, по которой COP не начинается с нуля при dT> 0 K, заключается в том, что сначала необходимо компенсировать обратный поток тепла Q Rth за счет эффекта Пельтье Q p , прежде чем элемент Пельтье остынет.
Отвод тепла элемента Пельтье
На следующей диаграмме показана зависимость тепла Q h , рассеиваемого на теплой стороне элемента Пельтье, от тока при охлаждении.
Нормализованная диаграмма, показывающая тепло, отводимое радиатором, в зависимости от тока для различных температурных перепадов dT.
Значения нормированные и относительные. Как вы можете видеть, Q h , отклоненный элементом Пельтье, может быть до 2,6 раз больше Q max . Количество тепла на горячей стороне Q h может быть настолько большим, потому что тепло от эффекта Пельтье Q p и тепло сопротивления потерь Q Rv должны рассеиваться.Q h = Q p + Q Применяется Rv .
Зависимость отклоненного тепла от dT
На следующей диаграмме показано соотношение между Q h и Q C для различных dT в случае охлаждения. Отношение Q h / Q c является фактором того, насколько больше тепла должно рассеиваться на горячей стороне, чем на холодной.
Нормализованная диаграмма, показывающая тепло, отводимое радиатором, на количество перекачиваемого тепла по сравнению сток для разных dT.
Это означает, что при большом dT большое количество тепла рассеивается радиатором, а на холодной стороне элемента Пельтье поглощается сравнительно небольшое количество тепла.
Например, если вы хотите охладить один ватт на холодной стороне Q C = 1 Вт. Это дает 1,75 Вт тепла на горячей стороне Q h = 1,75 Вт, если dt = 20 К. При dT = 40 К это примерно 3,5 Вт на горячей стороне Q ч = 3,5 Вт
Напряжение vs.Текущий
Эта нормализованная диаграмма описывает взаимосвязь между напряжением на оси y и током на оси x для различных значений разницы температур между горячей и холодной стороной (dT = T hot — T cold ) в корпус охлаждения.
Нормализованная диаграмма, показывающая зависимость напряжения от тока для различных dT.
Как видите, кривая линейная. Поведение элемента Пельтье такое же, как у резистора с источником напряжения.Наклон кривой уменьшается с увеличением dT. Смещение по оси ординат связано с эффектом Зеебека.
Многоступенчатые элементы Пельтье
Многоступенчатый элемент Пельтье
Все приведенные выше диаграммы относятся к стандартным элементам Пельтье, но поведение многоступенчатых элементов Пельтье аналогично. Многоступенчатые элементы Пельтье используются, когда требуются более высокие значения dT (до 125 K). Но Q max ниже, т.е. меньше тепла может рассеиваться.Это недостаток многоступенчатых элементов Пельтье.
Производителей
Принцип работы | PS9888 | Устройство точечного охлаждения
В нашем проекте используются термоэлектрические охладители для снижения температуры окружающей среды с 30 ° C в жарком и влажном Сингапуре до 24 ° C холодного воздуха, который затем может быть продуман на человека для охлаждения локализованного места. В этом разделе мы обсуждаем принципы и теорию термоэлектрического охлаждения и радиационного охлаждения.
Термоэлектрические охладители (ТЭО)
Термоэлектрические охладители (ТЭО) работают по эффекту Пельтье.
Эффект Пельтье создает разницу температур за счет передачи тепла между двумя электрическими соединениями. Напряжение, приложенное к двум соединенным вместе проводникам, создает электрический ток. Когда ток течет через соединения проводников, тепло отводится с одной стороны, а тепло отводится с другой. Это создает охлаждающий эффект с одной стороны и нагревательный эффект с противоположной стороны. Присоединение радиатора к горячей стороне позволяет быстро рассеивать тепло, позволяя горячей стороне ТЕС оставаться близкой к температуре окружающей среды.С другой стороны, холодная сторона может достигать температуры ниже комнатной.
В пластине TEC есть два уникальных полупроводника, один n-типа и один p-типа. Они выбраны из-за разницы в плотности электронов. Чередующиеся полупроводниковые опоры n-типа и p-типа размещены последовательно друг с другом в электрическом ряду. Затем они соединяются с помощью теплопроводящей пластины с обеих сторон. При подаче постоянного тока сторона с охлаждающей пластиной поглощает тепло, которое затем переносится полупроводником на одну сторону устройства.Сторона с нагревательной пластиной отводит тепло, которое затем также переносится полупроводником на другую сторону устройства, тем самым создавая разницу температур.
Рис.1: Как работает термоэлектрический охладитель
Радиационное охлаждение
Радиационное охлаждение — это процесс, при котором тело теряет тепло из-за излучения.
Используя воду для отвода отбрасываемого тепла с горячей стороны пластины Пельтье, тепло от горячей воды можно затем отвести от установки посредством радиационного охлаждения.Вентилятор используется для перемещения воздуха через радиатор, отводящего тепло от радиатора и, следовательно, от воды. Вода в горячем резервуаре также действует как теплоотвод из-за высокой удельной емкости воды. Это охлаждает горячую сторону Пельтье, позволяя снизить температуру горячей стороны. С другой стороны, воду можно охладить с помощью холодной стороны Пельтье и пропустить через радиатор. Затем движущийся воздух охлаждается, проходя через радиатор, и направляется к пользователю.
Использование радиаторов с большей площадью поверхности означает, что тепло может быстрее рассеиваться на горячей стороне, а воздух может соответственно охлаждаться в большей степени на холодной стороне.Для горячего резервуара используется больший объем воды, в то время как количество воды для холодной стороны сведено к минимуму. Это усиливает эффект Пельтье, позволяя горячему воздуху, выходящему из системы, иметь температуру, близкую к температуре окружающей среды, в то время как холодный воздух, дующий в сторону пользователя, имеет температуру ниже комнатной.
Теория эффекта Пельтье — Inst Tools
В 1821 году немецкий ученый Томас Зеебек провел несколько экспериментов с электричеством. Он обнаружил, что электрический ток будет течь по цепи, состоящей из двух разнородных проводников, при условии, что стыки, в которых соединяются эти проводники, поддерживаются при разных температурах.Однако Сибак не смог объяснить настоящую научную причину этого явления и ошибочно пришел к выводу, что протекающее тепло производит тот же эффект, что и протекающее электричество.
Позже, в 1834 году, Жан Пельтье, французский часовщик и физик по совместительству, анализируя эффект Зеебака, заметил, что тепло может поглощаться на одном стыке разнородных металлов и разряжаться на другом стыке той же цепи. Спустя двадцать лет после этого Уильям Томсон (лорд Кельвин) смог с научной точки зрения объяснить оба эффекта, эффект Сибака и Пельтье, и доказать связь между ними.
Однако, как это ни интересно, в то время это явление считалось не более чем лабораторным экспериментом. Затем, в 1930 году, когда российские ученые начали заново исследовать более ранние работы по термоэлектрическому эффекту, мировой интерес к этому явлению снова пробудился, что привело к разработке практических термоэлектрических устройств.
Эффект Пельтье называется обратным эффекту Зеебэка. Поэтому, чтобы понять, как работает эффект Пельтье, давайте сначала рассмотрим эффект Seeback.
Эффект Seeback
Эффект Зеебака — это явление, при котором температурный градиент, возникающий между двумя переходами, образованными двумя разнородными электрическими проводниками или полупроводниками, вызывает возникновение разности потенциалов между ними. Эта разность потенциалов позволяет электрическому току проходить через цепь. Таким образом, эффект Зеебэка утверждает, что температурный градиент заставит электрический ток течь через цепь.
Математически, если (T1 — T2) представляет собой разность температур между двумя соединениями разнородных металлов, то, в соответствии с эффектом Зеебэка, это создаст электродвижущую силу (напряжение), определяемую следующим образом:
E = α (Т1 — Т2)
Примечание: α — это дифференциальный коэффициент Зеебека или (коэффициент термоэлектрической мощности) между двумя проводниками / полупроводниками.Положительно, когда направление электрического тока совпадает с направлением теплового тока.
Эффект Пельтье
Эффект Пельтье утверждает, что, когда электрический ток течет через цепь, содержащую разнородные проводники, тепловая энергия поглощается одним переходом и разряжается на другом, делая первый более холодным, а второй — более горячим. Таким образом, в результате протекающего тока возникает тепловой градиент, что делает эффект Пельтье инверсией эффекта Зеебака.
Если QC — это скорость охлаждения в ваттах, а QH — скорость нагрева в ваттах, I — это ток, протекающий через замкнутый контур.
QC или QC = β x I
Примечание: β — это дифференциальный коэффициент Пельтье между двумя материалами A и B в вольтах.
Эффект Пельтье можно проверить экспериментально, используя следующую установку:
Как показано, два куска медного провода подключены к двум клеммам батареи. Затем эти две части соединяются между собой с помощью висмутовой проволоки, что завершает настройку.
Замечено, что когда цепь замкнута, как описано выше, возникает температурный градиент, предсказанный эффектом Пельтье. В переходе, где ток проходит от меди к висмуту, температура повышается, а в переходе, где ток проходит от висмута к меди, температура падает.
Как работает эффект Пельтье?
Эффект Пельтье возникает из-за того, что средняя энергия электронов, участвующих в передаче электрического тока, различна для разных проводников.Это зависит от нескольких факторов, включая энергетический спектр электронов, их концентрацию в проводнике и их рассеяние под действием приложенного напряжения.
На стыке двух разнородных проводников электроны переходят от одного проводника к другому. В зависимости от направления потока электрического заряда эти электроны либо передают свою избыточную энергию окружающим атомам, либо поглощают энергию от них. Таким образом, в первом случае тепло рассеивается, а во втором — поглощается.
Преимущества эффекта Пельтье
1) Основным преимуществом эффекта Пельтье является то, что он позволяет нам создавать охлаждающие / нагревательные устройства, которые не имеют движущихся частей и, следовательно, с гораздо меньшей вероятностью выходят из строя по сравнению с обычными охладителями и нагревателями. Они также почти не требуют обслуживания.
2) Устройства Пельтье работают бесшумно и теоретически могут достигать низких температур до -80 ° C (-176 ° F).
3) Эффект Пельтье можно эффективно использовать на микроскопическом уровне, где обычные методы охлаждения не работают.
Недостатки эффекта Пельтье
1) Главный недостаток эффекта Пельтье в том, что он неэффективен. Сам протекающий ток имеет тенденцию генерировать значительное количество тепла, которое добавляется к общему тепловыделению. В больших приложениях это приводит к чрезмерному нагреву, о котором необходимо позаботиться. Как правило, для решения этой проблемы необходимо использовать дополнительные вентиляторы.
2) Этот эффект также потребляет много электроэнергии, что может сделать его использование для крупномасштабных приложений очень дорогим.
3) Слишком сильное охлаждение компонентов устройств Пельтье может привести к конденсации, что может вызвать короткое замыкание.
Применение эффекта Пельтье
Эффект Пельтье используется для создания устройств Пельтье. Это твердотельные устройства, которые используют этот эффект для охлаждения или нагрева. Обычно используемые устройства включают нагреватель Пельтье, тепловой насос, охладитель и твердотельный холодильник.
Когда через устройство Пельтье протекает постоянный ток, тепло проходит от одной стороны устройства к другой, позволяя ему действовать как нагреватель или охладитель.Все устройства Пельтье работают таким образом, передавая тепло от одной стороны устройства к другой против температурного градиента с помощью электрического тока.
Ниже приведены несколько вариантов использования устройств Пельтье:
1) Удаление воды: Эффект Пельтье используется в осушителях для удаления воды из воздуха.
2) Синтез ДНК: термоциклер использует этот эффект для процесса синтеза ДНК.
3) Космические аппараты: Эффект Пельтье используется в космических аппаратах для уравновешивания эффектов солнечного света с обеих сторон корабля.Он помогает рассеивать тепло, вызванное прямым солнечным светом с одной стороны космического корабля, на другую сторону, которая не получает солнечного света, и поэтому намного прохладнее.
Также читайте: Введение в RTD
Эффект Пельтье и термоэлектрическое охлаждение
Эффект Пельтье это явление, которое потенциально разница применяется через термопара вызывает температуру разница между стыками разных материалы в термопаре.
Этот эффект противоположен
Эффект Зеебека
(назван в честь ученого, открывшего его в 1821 году). В
Эффект Зеебека заключается в том, что если разные металлы соединены в двух
отдельные места, а перекрестки хранятся в разных
температуры, то разность потенциалов между «спаями» (
перекрестки).
Так как горячий спай можно разместить вне утепленная область, а холодный спай может быть размещен внутри области, Пельтье эффект можно использовать для охлаждения области (или объекта).
Элементы Пельтье (термоэлектрические охладителей)
Метод термоэлектрического
охлаждение
(с использованием эффекта Пельтье) полезен, потому что он может охладить объект
без каких-либо движущихся частей или другого сложного оборудования, которое изолирует
прохладнее из окружающей среды.Устройства, которые
построенные, чтобы воспользоваться этим явлением, известны как Пельтье.
элементы, или термоэлектрические
кулеры (ТИК). Основные идеи из простых
Элементы Пельтье можно соединять последовательно, чтобы получить гораздо больше
сложный Пельтье
модули (также
известные как практические ТИК),
которые обладают большей охлаждающей способностью. Тем не менее
величайший
разница температур между радиатором и прохладной областью для
Устройство Пельтье имеет температуру порядка 50 ° C.
Общие области применения элементов Пелье включают:
охлаждение компонентов компьютера, особенно процессора.
Наиболее распространенное сочетание материалов в термопарах Элементами Пельтье (ТЕС) являются два полупроводника висмут и Теллурид. Как правило, TEC состоит из кубиков или гранул. сделали полупроводников, каждый из которых контактирует с радиаторами на горячей и холодной стороне элемента Пельтье. Эти кубики являются «легированный» — то есть добавляются дополнительные примеси, так что там лишние или меньшее количество свободных электронов в каждом кубе. В полупроводник кубы с лишними свободными электронами (и поэтому несут в основном отрицательный заряд) известны как полупроводники N-типа, а те, у которых мало свободных электронов (и несут в основном положительный заряд) являются полупроводниками P-типа.В пары полупроводниковых кубов P и N устанавливаются и соединяются в массив так, чтобы пары имели электрическое последовательное соединение, но тепловое параллельное соединение. Когда ток подается на это система (TEC), как ток течет через полупроводники вызывает разность температур и приводит к тому, что сторона радиатора Элемент Пельтье для нагрева, а холодная сторона — для охлаждения (или охлаждения). все, что находится в тепловом контакте с этой стороной).
Ан
вид ТЕС изнутри (элемент Пельтье). | Элемент Пельтье, с
керамические пластины для частичной изоляции |
Сторона радиатора TEC становится очень
горячо, поэтому необходимо иметь
вентилятор и / или какой-то радиатор, чтобы рассеять это
высокая температура.В противном случае весь ТЭО начнет нагреваться, и
куски
слились бы вместе.
«Нормальные» элементы Пельтье примерно
несколько сантиметров толщиной и
сторона в несколько миллиметров или сантиметров. Чтобы получить больше
охлаждение
способностей, отдельные элементы соединяются в стеки, или они могут
быть подключенными в некоторой комбинации последовательного и параллельного электрического
соединения.
Модуль Пельтье с Вентилятор и радиатор отводят тепло от радиатора. |
.
S H Цена 26 марта 2007 Веб-проект Physics 212 |