Емкость стабилитрона: Стабилитроны

Содержание

Стабилитроны | Основы электроакустики

К специальным полупроводниковым диодам относятся приборы, в которых используются особые свойства p-n переходов: управляемая полупроводниковая емкость – варикапы; лавинный пробой – стабилитроны; туннельный эффект – туннельные и обращенные диоды; фотоэффект – фотодиоды; фотонная рекомбинация носителей зарядов – светодиоды; многослойные диоды – динисторы; приборы на переходе металл – полупроводник – диоды Шоттки. Кроме того, к диодам относят некоторые типы приборов с тремя выводами, такие как тиристоры. Рассмотрим наиболее часто применяемые диоды – стабилитроны и варикапы.

Стабилитроны – это полупроводниковые диоды, работающие в области лавинного пробоя. При обратном смещении полупроводникового диода возникает электрический лавинный пробой p-n перехода. При этом в широком диапазоне изменения тока через диод напряжение на нем меняется очень незначительно. Для ограничения тока через стабилитрон последовательно с ним включают сопротивление. Если в режиме пробоя мощность, рассеиваемая на нем, не превышает предельно допустимую, то в таком режиме стабилитрон может работать неограниченно долго. На рис.выше показано схемотехническое обозначение стабилитрона, а на рис.ниже приведена его вольтамперная характеристика.

Основными параметрами стабилитронов являются:

  • напряжение стабилизации номинальное UСТ;
  • напряжение стабилизации минимальное UСТ. мин;
  • напряжение стабилизации максимальное UСТ. макс;
  • дифференциальное сопротивление RСТ;
  • температурный коэффициент напряжения стабилизации αСТ;
  • минимальный ток стабилизации IСТ. мин;
  • максимальный ток стабилизации IСТ. макс;
  • рассеиваемая мощность PРАС.   
   ВАХ стабилитрона  Чаще всего стабилитрон используется для стабилизации постоянного напряжения. Для оценки стабильности схемы используется такой параметр, как дифференциальное сопротивление стабилитрона. Этот параметр измеряется в единицах сопротивления и во многих расчетах играет роль сопротивления. Дифференциальное сопротивление равно отношению изменения приложенного напряжения к соответствующему изменению тока через схему. Стабилизация тем лучше, чем круче идет кривая и соответственно тем меньше дифференциальное сопротивление стабилитрона.

Простейшая схема стабилизатора напряжения (рис.4.15) включает в себя балластный резистор R0, стабилитрон VD и нагрузку RН, напряжение на которой требуется поддерживать постоянным.

Если изменится входное напряжение UВХ, то это приведет к изменению тока через стабилитрон VD, при этом изменяется сопротивление стабилитрона и соответственно изменится падение напряжения на резисторе R0, в результате чего произойдет компенсация изменения UВХ. 

Стабилизатор напряжения.  Для установления и поддержания правильного режима стабилизации сопротивление R0  должно иметь определенное значение, которое обычно рассчитывают для средней точки вертикального участка рабочей ветви ВАХ стабилитрона. Также необходимо учитывать, чтобы при любом возможном изменении входного напряжения ток через стабилитрон находился на вертикальном участке ВАХ. Рассмотрим основные параметры стабилитронов. Напряжение стабилизации может изменяться примерно от 3 до 200В, изменение тока стабилитрона от Iмин до Iмакс составляет десятки и даже сотни миллиампер. Максимальная допустимая мощность, рассеиваемая на стабилитроне – от сотен милливатт до единиц ватт. Дифференциальное сопротивление RДв режиме стабилизации может быть от десятых долей Ома для низковольтных мощных стабилитронов до 200 Ом для стабилитронов на более высокие напряжения. Низковольтные стабилитроны малой мощности имеют сопротивление RД от единиц до десятков Ом. Для получения более высоких стабильных напряжений применяется последовательное соединение стабилитронов, рассчитанных на одинаковые токи (рис.4.16). Вследствие разброса характеристик и параметров у отдельных экземпляров стабилитронов данного типа их параллельное соединение с целью получения больших токов не рекомендуется.
Последовательное включение стабилитронов
  Для повышения стабильности напряжения может применяться схема каскадного соединения стабилитронов , в которой стабилитрон VD1 должен иметь более высокое напряжение стабилизации, чем стабилитрон VD2. Эффективная стабилизация характеризуется коэффициентом стабилизации КСТ, который показывает, во сколько раз относительное изменение напряжения на выходе схемы стабилизации меньше, чем относительное изменение напряжения на входе. Для простейшей схемы на рис.4.15 можно записать:  КCТ = (ΔUВХ / UВХ) / (ΔUВЫХ / UВЫХ).  Каскадное включение стабилитронов  Практически полупроводниковый стабилитрон может обеспечить КСТ, равный нескольким десяткам. А при каскадном соединении (рис. 4.17) общий коэффициент стабилизации равен произведению коэффициентов стабилизации отдельных звеньев:  КСТ = КСТ1∙КСТ2∙…∙КСТN     и уже при двух звеньях составляет несколько сотен.

Недостатком рассматриваемых схем является то, что потери мощности в самом стабилитроне и на R0 велики, особенно в схемах каскадного соединения. Другой недостаток – схема не стабилизирует выходное напряжение при изменении сопротивления нагрузки и при изменении параметров самого стабилитрона.

 

Стабилитроны (Диод Зенера), Стабисторы Электроника, Микроэлектроника ,...

Сразу хочу сказать, что здесь никакой воды про стабилитрон, и только нужная информация. Для того чтобы лучше понимать что такое стабилитрон, диод зенера,защитный диод,стабисторы,стабистор,презиционные стабилитроны , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база

Существуует большое многообразие полупроводниковых приборов, - Диоды Шоттки, диоды Ганна, стабилитрон ы, светодиоды, фотодиоды, туннельные диоды и еще много разных типов и областей применения.

Полупроводниковые диоды, для которых характерна слабая зависимость напряжения от тока в области электрического пробоя при обратном смещении, называют стабилитронами.

Стабилитроном называется полупроводниковый диод , напряжение на котором в области электрического пробоя при обратном смещении слабо зависит от тока в заданном его диапазоне, и который предназначен для стабилизации уровня напряжения в схеме. Стабилитроном - радиокомпонент, конструктивно напоминающий диод, но кардинально отличающийся от него характером функционирования. Ключевым элементом так же, как и в обычном полупроводниковом вентиле, является полупроводниковый p-n-переход. И реакции обоих элементов на подачу обратного напряжения схожи – они оба запираются. Разница заключается в том, что пробой p-n-переходной зоны, который наступает при достижении обратным смещением некоего критического значения и выводит диод из строя, для стабилитрона является рабочим режимом.

Исходным материалом служит кремний, обеспечивающий малые обратные токи, широкий диапазон температур, высокую крутизну ВАХ в области напряжения стабилизации. Принцип работы стабилитронов основан на использовании свойства p-n-перехода при электрическом пробое сохранять практически постоянную величину напряжения в определенном диапазоне изменения обратного тока. Механизм пробоя может быть туннельным, лавинным или смешанным.

Основа функциональности стабилитрона состоит в том, что при довольно больших изменениях обратного тока напряжение на элементе остается практически неизменным. Другими словами, насколько бы существенным ни было обратное смещение, радиокомпонент будет поддерживать постоянный уровень выходной разности потенциалов. Эта стабилизированное напряжение может использоваться в качестве опорного, что и находит применение в реальных радиоэлектронных устройствах, критичных к электрическим характеристикам сигнала.

У полупроводникового стабилитрона (рис. 11.4, а) — в рабочем режиме используется обратная ветвь его ВАХ (рис. 11.4, б), причем на участке, соответствующем электрическому пробою.

Рис. 11.4. Полупроводниковый стабилитрон:

а — условное изображение; б — ВАХ стабилитрона

Туннельный и лавинный пробой


Пробой p-n-перехода, при котором работают стабилитроны, может быть лавинным или туннельным. Они являются электрическими и носят обратимый характер. То есть при отключении обратного смещения физико-химические свойства полупроводников восстанавливаются, и диод продолжает исполнять свои функции. Однако в случае стабилитронов условия возникновения пробоя создаются и поддерживаются искусственно.

В основе лавинного и туннельного пробоя лежат одноименные квантовые эффекты, наблюдаемые в кристаллической структуре полупроводника при возбуждении электрического поля. При разной природе и механизмах данных процессов их последствия одинаковы – электроны приобретают энергию, достаточную для прохождения через p-n-переход. Возникает пробой, и через диод начинает протекать обратный ток.

Именно в этом режиме и работает стабилитрон. При этом существует различие между радиокомпонентами, в которых используются разные эффекты. Стабилитроны, функционирующие при лавинном пробое, оперируют разностями потенциалов свыше 7 Вольт. В элементах, рассчитанных на напряжение стабилизации 3-7 Вольт, провоцируется туннельный пробой. Для стабилизации более низких разностей потенциалов применяются стабистор ы , о которых мы расскажем ниже.

Классификация стабилитронов


В настоящее время выпускается широкая номенклатура стабилитронов, но вся их масса классифицируется по функциональным характеристикам и конструкции. В зависимости от параметров данные радиокомпоненты подразделяются на следующие классы:

  1. прецизионные;
  2. двуханодные;
  3. быстродействующие.

Прецизионные отличаются высокой точностью стабилизации напряжения . Об этом говорит сайт https://intellect.icu . Отклонения стабилизируемой разности потенциалов на выходе такой детали не превышают 0,0001%. Точность сильно зависит от времени жизни прецизионного стабилитрона и температуры полупроводника. В связи с этим в отношении этих радиокомпонентов введены эксплуатационные нормы, которые должны постоянно контролироваться в процессе использования аппаратуры.

Двуханодный стабилитрон исполняет функцию двух стабилитронов, включенных встречно. Это позволяет элементу обрабатывать сигналы и с одинаковой эффективностью обрабатывать напряжения разной полярности. Такая радиодеталь изготавливается в едином технологическом цикле, когда на одном кристалле кремния выращивается два встречных p-n-перехода, но, в принципе, роль двуханодного радиокомпонента могут играть и два дискретных стабилитрона, взаимно соединенных катодами.

И, наконец, стабилитроны третьего типа – быстродействующие – отличаются пониженной барьерной емкостью, вследствие чего сокращается продолжительность переходных процессов, протекающих в полупроводнике. Эти радиокомпоненты являются наилучшим решением для работы с импульсными сигналами. Конструктивная особенность данных элементов состоит в небольшой ширине p-n-перехода, которая обеспечивается применением особой технологии легирования полупроводника.

Стабистор


Немного по-другому функционируют радиокомпоненты, называемые стабисторами, о которых мы говорили выше. Они исполняют ту же функцию, то есть стабилизируют выходное напряжение, но являются низковольтными. Обычные стабилитроны не способны оперировать малыми разностями потенциалов. При напряжениях до 3 Вольт не возникает условий ни для лавинного, ни для туннельного пробоя p-n-перехода. Для стабилизации меньших напряжений прибегают к другому решению, а именно к использованию не обратного, а прямого смещения.

Установлено, что в сильно легированном p-n-переходе дырки и электроны рекомбинируют таким образом, что при значительном прямом токе наблюдается эффект стабилизации выходного напряжения на уровне 2,5-3 Вольт. Это обуславливает ключевое технологическое различие стабилитронов и стабисторов. Вторые предназначены для работы только в низковольтных радиосхемах.

Устройство маломощного стабилитрона

с гибкими выводами в пластиковом (вверху) и стеклянном (внизу) корпусах

Рис Устройство маломощного стабилитрона с гибкими выводами в пластиковом корпусе

Рис. Устройство маломощного стабилитрона с гибкими выводами в стеклянном корпусе

У низковольтных стабилитронов (с низким сопротивлением базы) более вероятен туннельный пробой. У стабилитронов с высокоомной базой пробой носит лавинный характер. Для обеспечения электрического пробоя при относительно небольших обратных напряжениях напряженность электрического поля в p-n-переходе должна быть значительно выше, чем у обычных диодов, поэтому при изготовлении стабилитронов используют материалы с высокой концентрацией примесей.

обычных (вверху) и двуханодных (внизу) стабилитронов на принципиальных схемах

Вольт-амперная характеристика и схема включения стабилитрона.


ВАХ стабилитрона реальная

Идеальная ВАХ стабилитрона

Основные параметры стабилитронов

1. Uст
2. Дифференциальное сопротивление Rдиф = 0.5 – 200 Ом
3. Iст min ток стабилизации минимальный
4. Iст max ток стабилизации максимальный
Imax≈ Pmax/Uст

В качестве стабилитронов применяют кремниевые диоды, обладающие большой устойчивостью к тепловому пробою.

Кремниевые стабилитроны используются для стабилизации напряжений источников питания, а также для фиксации уровней U в различных схемах

Группы маломощных диодов в виде диодных матриц и диодных сборок используются в логических устройствах дешифраторах и других элементах ВТ.

Стабилитрон в схему стабилизации обычно включают так, чтобы p-n-переход был смещен в обратном направлении.

Для стабилизации малых напряжений U = 1 - 1.5B используют стабисторы

Презиционные и двунаправленные стабилитроны

В прецизионных стабилитронах используют три последовательно соединенных p-n-перехода, один из которых – стабилизирующий, два других – термокомпенсирующие. Если стабилизирующий переход работает в режиме лавинного пробоя, то с увеличением температуры напряжение на нем растет. Одновременно прямое напряжение на двух термокомпенсирующих переходах уменьшается, поэтому общее напряжение на стабилитроне меняется незначительно.

Для обеспечения стабилизации двуполярных напряжений стабилитроны общего назначения включают последовательно, а прецизионные – параллельно.

Двуханодные стабилитроны имеют структуру, формируемую диффузией примесей в пластину n-кремния одновременно с двух сторон. Образующиеся при этом два p-n-перехода включены встречно. Внешние выводы имеют только анодные p-области структуры. При подаче на стабилитрон напряжения любой полярности один переход работает в режиме электрического пробоя, а другой является термокомпенсирующим

Области применения стабилитронов и стабисторов


Хорошие стабилизирующие свойства стабилитронов и стабисторов обуславливают основную сферу применения этих радиокомпонентов – создание фиксированного питающего и опорного напряжения в различных радиоэлектронных устройствах. На первом месте по распространенности стоят стабилитроны, используемые в источниках питания. Применение этих специализированных диодов обеспечивает стабильные выходные параметры питающего напряжения и одновременно упрощает схему.

В блоках питания с повышенными требованиями по точности выходных характеристик находят применение прецизионные стабилитроны. Эти элементы устанавливаются в высокоточной измерительной аппаратуре и аналого-цифровых преобразователях. Двуханодные стабилитроны используются в подавителях импульсных помех. Данные радиокомпоненты в реальных схемах нередко сочетаются с импульсными диодами. Быстродействующие стабилитроны в сочетании с СВЧ-диодами применяются в аппаратуре, работающей на сверхвысоких частотах – передатчиках, радиолокаторах и так далее.

Защитные стабилитроны в «умном» МДП-транзисторе семейства Intelligent Power Switch компании International Rectifier

Основная область применения стабилитрона — стабилизация постоянного напряжения источников питания. В простейшей схеме линейного параметрического стабилизатора стабилитрон выступает одновременно и источником опорного напряжения, и силовым регулирующим элементом. В более сложных схемах стабилитрону отводится только функция источника опорного напряжения, а регулирующим элементом служит внешний силовой транзистор .

Прецизионные термокомпенсированные стабилитроны и стабилитроны со скрытой структурой широко применяются в качестве дискретных и интегральных источников опорного напряжения (ИОН), в том числе в наиболее требовательных к стабильности напряжения схемах измерительных аналого-цифровых преобразователей. C середины 1970-х годов и по сей день (2012 год) стабилитроны со скрытой структурой являются наиболее точными и стабильными твердотельными ИОН. Точностные показатели лабораторных эталонов напряжения на специально отобранных интегральных стабилитронах приближаются к показателям нормального элемента Вестона[38].

Особые импульсные лавинные стабилитроны («подавители переходных импульсных помех», «супрессоры», «TVS-диоды») применяются для защиты электроаппаратуры от перенапряжений, вызываемых разрядами молний и статического электричества, а также от выбросов напряжения на индуктивных нагрузках. Такие приборы номинальной мощностью 1 Вт выдерживают импульсы тока в десятки и сотни ампер намного лучше, чем «обычные» пятидесятиваттные силовые стабилитроны. Для защиты входов электроизмерительных приборов и затворов полевых транзисторов используются обычные маломощные стабилитроны. В современных «умных» МДП-транзисторах защитные стабилитроны выполняются на одном кристалле с силовым транзистором.

В прошлом стабилитроны выполняли и иные задачи, которые впоследствии потеряли прежнее значение:

  • Ограничение, формирование, амплитудная селекция и детектирование импульсов. Еще в эпоху электронных ламп кремниевые стабилитроны широко применялись для ограничения размаха импульсов и преобразования сигналов произвольной формы в импульсы заданной полярности. С развитием интегральных технологий эту функцию взяли на себя устройства на быстродействующих компараторах, а затем цифровые процессоры обработки сигналов.
  • Стабилизация напряжения переменного тока также сводилась к ограничению размаха синусоидального напряжения двусторонним стабилитроном. При изменении входного напряжении амплитуда выходного напряжения поддерживалась постоянной, а его действующее значение лишь незначительно отставало от действующего значения входного напряжения.
  • Задание напряжений срабатывания реле . При необходимости установить нестандартный порог срабатывания реле последовательно с его обмоткой включали стабилитрон, доводивший порог срабатывания до требуемого значения. С развитием полупроводниковых переключательных схем сфера применения реле сузилась, а функцию управления реле взяли на себя транзисторные и интегральные пороговые схемы.
  • Задание рабочих точек усилительных каскадов. В ламповых усилителях 1960-х годов стабилитроны использовались как замена RC-цепочек автоматического смещения. На нижних частотах звукового диапазона и на инфразвуковых частотах расчетные емкости конденсаторов таких цепей становились неприемлемо велики, поэтому стабилитрон стал экономичной альтернативой дорогому конденсатору.
  • Межкаскадный сдвиг уровней. Сдвиг уровней в ламповых усилителях постоянного тока обычно осуществлялся с помощью газонаполненных стабилитронов или обычных неоновых ламп. C изобретением полупроводниковых стабилитронов они стали применяться вместо газонаполненных. Аналогичные решения применялись и в транзисторной аппаратуре, но были быстро вытеснены более совершенными схемами сдвига уровней на транзисторах.
  • Стабилитроны с высоким ТКН использовались как датчики температуры в мостовых измерительных схемах. По мере снижения напряжений питания и потребляемых мощностей эту функцию приняли на себя прямо смещенные диоды, транзисторные PTAT-цепи и интегральные схемы на их основе.

В среде моделирования SPICE модель элементарного стабилитрона используется не только по прямому назначению, но и для описания режима пробоя в моделях «реальных» биполярных транзисторов. Стандартная для SPICE модель транзистора Эберса—Молла режим пробоя не рассматривает

См. также

А как ты думаешь, при улучшении стабилитрон, будет лучше нам? Надеюсь, что теперь ты понял что такое стабилитрон, диод зенера,защитный диод,стабисторы,стабистор,презиционные стабилитроны и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база

Как узнать на сколько вольт стабилитрон — MOREREMONTA

Предлагаемая схема служит для простого определения номинала напряжения стабилизации стабилитрона с помощью вольтметра, а также для определения его исправности.

Сейчас промышленностью выпускается невероятное количество различных электронных компонентов и зачастую при сборке радиоэлектронного изделия возникает множество затруднений по определению номинала компонента. Особенно в этом плане «отличилась» отечественная промышленность — в частности стабилитроны в стеклянном корпусе имеют, порой, очень похожую маркировку, отличить которую не представляется возможным. Хороший пример это стабилитроны КС211 и КС175 — иногда встречаются варианты маркировки, в которых оба выглядят как маленький выводной стеклянный диод с чёрной полосой. Их также можно спутать, например, со стабилитроном Д814. Так или иначе, запоминать цветовую маркировку стабилитронов не самая лучшая идея, учитывая насколько просто их можно проверить.

Для определения напряжения стабилизации понадобится простая схема:

Обычно диапазон рабочего тока маломощных стабилитронов лежит в пределах 1-10 мА, поэтому сопротивление резистора выбрано 2.2 кОм. Это оптимально для проверки маломощных стабилитронов. Для проверки мощных стабилитронов сопротивление возможно придётся уменьшить — для этого в схеме предусмотрена перемычка. Для проверки маломощных стабилитронов перемычку нужно ставить в верхнее положение, для проверки мощных — в нижнее.

Оптимальное напряжение питания — 25В.

Если стабилитрон подсоединён правильно — анодом к X1, катодом к X2, то вольтметр покажет его напряжение стабилизации, а если неправильно — какое-то очень малое напряжение около нуля. Если при одном подключении мультиметр показывает минимум напряжения, а при другом — максимальное, равное напряжению источника питания, значит испытуемый радиоэлемент либо простой диод, либо стабилитрон с напряжением стабилизации выше напряжения источника питания. Если вы уверены что это стабилитрон — нужно увеличить напряжение источника до предполагаемой величины и проверить ещё раз.

Если вольтметр показывает минимальное напряжение, либо напряжение питания при любом подключении — значит данный стабилитрон или диод неисправен.

Если напряжение стабилизации показывается при любом подключении — значит это двусторонний стабилитрон.

Аналогичным способом можно проверять исправность диодов и светодиодов, только полярность будет противоположная. Способ хорош тем, что позволяет узнать падение напряжения, что бывает очень важно. Проверяя светодиоды необходимо помнить, что некоторые светодиоды очень чувствительны к завышенному обратному напряжению, поэтому напряжение источника при их проверке желательно выставлять не выше 9В.

Многие люди сталкиваются с проблемой частого отключения электроэнергии, перегрузки сети и короткого замыкания, в результате действия которого ломается дорогая аппаратура в доме. В качестве решения проблемы осуществляется установка стабилизатора напряжения или стабилитрона. Что собой представляет устройство, каков принцип его работы, какова сфера его применения и как проверить стабилитрон? Об этом и другом далее.

Описание устройства

Стабилизатор напряжения считается коммутационным устройством, главное предназначение которого кроется в защите сети от большого количества электричества, образующегося из-за короткого замыкания и перегрузки. Данный аппарат включается и отключается от электроцепи. Оснащен магнитным видом расцепителя или электромагнитным. Главным его плюсом служит тот факт, что он позволяет защитить электрическую установку или трансформаторную подстанцию от перенапряжения, перегрузки сети и поломки в результате частого отключения сети.

Назначение проверки

Стабилизатор напряжения — аппарат, используемый в качестве вводного устройства. Его ставят перед счетчиком. Используется в сети с одной, двумя и тремя фазами. Может быть применен для одного электроприбора с мощностью более 6 киловатт. Трехполюсный может быть использован для оборудования более 9 киловатт.

Чаще всего его используют, чтобы защитить бытовые электрические или нагревательные приборы. Также он может быть использован, чтобы уберечь систему освещения, двигатель, трансформатор и электронные электроприборы промышленного масштаба.

Обратите внимание! Проверять стабилизатор напряжения нужно, чтобы он мог исправно работать и помогать пользователю защищать электрическую цепь от перенапряжения, короткого замыкания и прочих неприятностей. Делать это нужно обязательно, поскольку иногда сам стабилизатор может стать причиной поломки электроцепи и всего бытового оборудования.

Емкость стабилитрона

Как правило, информация о том, сколько вольт имеет стабилитрон, указана на корпусе самого аппарата. Также эти данные указываются в технической документации. В случае, если надписи и документации нет, есть третий вариант того, как узнать, на сколько вольт стабилитрон — поискать эту информацию в интернете. Старые модели можно отыскать в интернет-справочниках. Зарубежные модели имеют более простую маркировку, нежели российские аналоги. Все сведения отражаются на корпусе устройства под буквой V.

Проверка мультиметром

Перед тем как проверить стабилизатор напряжения мультиметром, стоит ознакомиться с инструкцией проверки классического диода на плате и схеме. Вначале нужно выставить переключатель на положение диодной проверки и соединить щупы с детальными контактами и кренком. Затем нажать на кнопку старта и начинать узнавать по индикатору определенный показатель.

Прямой вид подключения мультиметрового индикатора показывает, как протекает ток, а обратный — в каком состоянии находится проводниковый переход и кренка.

Обратите внимание! Проводное напряжение должно быть ниже, чем значение радиоэлементного срабатывания. В противном случае проверка не будет осуществлена. Он будет открыт одинаково в каждом направлении. Этот тест говорит об отсутствии пробитого элемента системы. Замерить подобные параметры не получится.

Стоит указать, что стабилитрон можно проветрить, не выпаивая светодиод из сети. Однако таким образом тестирование происходит не во всех радиоэлементных режимах. Аппарат всегда взаимосвязан с другими элементами цепи, поэтому проверить его на пробой, не выпаивая контакты, невозможно.

Для тестирования двухстороннего стабилитрона необходимо увеличение напряжения, изменение полярности и измерения токов и сравнение ВАХ исследуемой модели. Благодаря совокупности этих действий можно понять исправность диодов.

Стабилитрон — современный аппарат, который сегодня используют люди, чтобы защищать электрическую сеть от перенапряжения, скачков электроэнергии и короткого замыкания. Перед тем как его подсоединить к сети, стоит проверить его работоспособность и проверить технические параметры на соответствие сети. Эти данные указаны в технической документации. Проверить работоспособность стабилитрона можно с помощью мультиметра, руководствуясь соответствующей пошаговой инструкцией к измерительному тестеру.

Имея дома радиоэлектронную лабораторию, можно своими руками сделать самые различные приспособления для электрооборудования или сами приборы, что позволит значительно сэкономить на покупке техники. Важным элементом многих электрических схем приборов является стабилитрон.

Такой элемент (smd, смд) является необходимой частью многих электросхем. Благодаря обширной области применения, стабилитрон имеет различную маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную, информацию о данном элементе. Наша сегодняшняя статья поможет вам разобраться в том, какая цветовая маркировка встречается на корпусе (стеклянном и нет) импортных стабилитронов.

Что представляет собой данный элемент электрических схем

Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.

Вольт-амперная характеристика стабилитрона

Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.

Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.

Обратите внимание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.

Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:

  • UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
  • ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
  • IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
  • IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
  • IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.

Такая маркировка важна при выборе элемента под определенную электросхему.

Обозначения работы элемента электросхемы

Схематическое обозначение стабилитрона

Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:

Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.

На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.

Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.

Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.

Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.

Принцип функционирования стабилизационных диодов

Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.

Стабилитрон и диод

Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.

Обратите внимание! При включении такого smd диода нужно соблюдать обратную полярность. Это означает, что подключение проводится анодом к минусу.

Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.

Как отличить стабилизационный диод от обычного полупроводника

Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции.
Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В).
Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:

Схема приставки мультиметра

В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В.
При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение.
При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.

Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.

Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой.
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4
Вот так можно выяснить, стабилитрон у вас или обычный диод.

Подробно о цветовой маркировке стабилизирующего диода

Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:

Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия.
Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:

Пример маркировки микросхем

Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.

Цветовая маркировка стабилитрона

  • первая полоска обозначает тип устройства;
  • вторая – полупроводник;
  • третья – что это за прибор, а также, какая у него проводимость;
  • четвертая — номер разработки;
  • пятая — модификация устройства.

Нужно отметить, что четвертая и пятая полоски не очень важны для выбора изделия.

Заключение

Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.

Диод. Светодиод. Стабилитрон / Хабр

Не влезай. Убьет! (с)

Постараюсь объяснить работу с диодами, светодиодами, а также стабилитронами на пальцах. Опытные электронщики могут пропустить статью, поскольку ничего нового для себя не обнаружат. Не буду вдаваться в теорию электронно-дырочной проводимости pn-перехода. Я считаю, что такой подход обучения только запутает начинающих. Это голая теория, почти не имеющая отношения к практике. Впрочем, интересующимся теорией предлагаю

эту статью

. Всем желающим добро пожаловать под кат.


Это вторая статья из цикла электроники. Рекомендую к прочтению также

первую

, которая повествует о том, что такое электрический ток и напряжение.

Диод – полупроводниковый прибор, имеющий 2 вывода для подключения. Изготавливается, упрощенно говоря, путем соединения 2х полупроводников с разным типом примеси, их называют донорной и акцепторной, n и p соответственно, поэтому диод содержит внутри pn-переход. Выводы, обычно состоящие из луженой меди, называют анод (А) и катод (К). Эти термины пошли еще со времен электронных ламп и используются в письменном виде, для обозначения направленности диода. Гораздо проще графическое обозначение. Названия выводов диода запомнятся сами собой при применении на практике.

Как я уже писал, мы не будем использовать теорию электронно-дырочной проводимости диода. Просто инкапсулируем эту теорию до черного ящика с двумя зажимами для подключения. Примерно так же программисты инкапсулируют работу со сторонними библиотеками, не вдаваясь в е… подробности их работы. Или, например, когда, пользуясь пылесосом, мы не вдаёмся в подробности, как он устроен внутри, он просто работает и нам важно одно из свойств пылесоса – сосать пыль.

Рассмотрим свойства диода, самые очевидные:

  • От анода к катоду, такое направление называется прямым, диод пропускает ток.
  • От катода к аноду, в обратном направлении, диод ток не пропускает. (Вообще-то нет. Но об этом позже.)
  • При протекании тока, в прямом направлении, на диоде падает некоторое напряжение.

Возможно эти свойства вам и так хорошо известны. Но есть некоторые дополнения. Что же считать прямым, а что обратным направлением? Прямым называют такое включение, когда на аноде напряжение больше, чем на катоде. Обратное, наоборот. Прямое и обратное включение – это условность. В реальных схемах напряжение на одном и том же диоде может меняться с прямого на обратное и наоборот.

Кремниевый диод начинает пропускать хоть какой-либо значимый ток только тогда, когда на аноде напряжение будет больше примерно на 0,65 В, чем на катоде. Нет, не так. При протекании хоть какого-либо тока, на диоде образуется падение напряжения, примерно равное 0,65 В и выше.

Напряжение 0,65 В – называют прямым падением напряжения на pn-переходе. Это лишь примерная средняя величина, она зависит от тока, температуры кристалла и технологии изготовления диода. При изменении протекающего тока, она изменяется нелинейно. Чтобы как-то обозначить эту нелинейность графически, производители снимают вольтамперные характеристики диода. В мощных высоковольтных диодах падение напряжения может быть больше в 2, 3 и т.д. раза. Это означает, что внутри диода включено несколько pn-переходов последовательно.

Для определения падения напряжения можно использовать вольтамперную характеристику (ВАХ) диода в виде графика. Иногда эти графики приводятся в дата-листах (datasheets) на реальные модели диода, но чаще их нет. На первом мне попавшемся графике ниже приведены ВАХ КД243А, хотя это не важно, они все примерно похожи.

На графике Uпр – это прямое падение напряжения на диоде. Iпр – протекающий через диод ток. График показывает какое падение напряжения на диоде будет, при протекании n-го тока. Но чаще всего в даталистах не показываются реальные ВАХ, а приводится прямое падение напряжения, указанное при определенном токе. В английской литературе падение напряжения обозначается как forward voltage.

Как применять

Падение напряжения на диоде – для нас плохая характеристика, поскольку это напряжение не совершает полезной работы и рассеивается в виде тепла на корпусе диода. Чем меньше падение, тем лучше. Обычно падение напряжения на диоде определяют исходя из тока, протекающего через диод. Например, включим диод последовательно с нагрузкой. По сути это будет защита схемы от переплюсовки, на случай, если блок питания отсоединяемый. На рисунке ниже в качестве защищаемой схемы взят резистор 47 Ом, хотя в реальности это может быть все, что угодно, например, участок большой схемы. В качестве блока питания – батарея на 12 В.

Допустим, нагрузка без диода потребляет 255 мА. В данном случае это можно посчитать по закону Ома: I= U / R = 12 / 47 = 0,255 А или 255 мА. Хотя обычно потребление сферической схемы в вакууме уже известно, хотя бы по максимальным характеристикам блока питания. Найдем на графике ВАХ, указанный выше, падение напряжения для диода КД243А при 0,255 А протекающего тока, при 25 градусах. Оно равно примерно 0,75 В. Эти 0,75 В упадут на диоде, и для питания схемы останется 12 — 0,75 = 11,25 В — иногда может и не хватить. Как бонус, можно найти мощность, в виде тепла и потерь выделяющуюся на диоде по формуле P = I * U = 0,75 * 0,255 = 0,19 Вт, где I и U – ток через диод и падение напряжения на диоде.

Что же делать, когда график ВАХ недоступен? Например, для популярного диода 1n4007 указано только прямое напряжения forward voltage 1 В при токе 1 А. Нужно и использовать это значение, либо измерить реальное падение. А если для какого-либо диода это значение не указано, то сойдет среднее 0,65 В. В реальности проще это падение напряжения измерить вольтметром в схеме, чем выискивать в графиках. Думаю, не надо объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода.

Немного про другие характеристики

В предыдущем примере, если перевернуть батарейку, я имею ввиду поменять полярность, см. нижний рисунок, ток не потечет и падение напряжения на диоде в худшем случае составит 12 В — напряжение батареи. Главное, чтобы это напряжение не превышало напряжение пробоя нашего диода, оно же обратное напряжение, оно же breakdown voltage. А также важно еще одно условие: ток в прямом направлении через диод не превышал номинальный ток диода, он же forward current. Это два основных параметра по которых выбирается диод: прямой ток и обратное напряжение.

Иногда в даталистах также указывается рассеиваемая мощность диодом или номинальная мощность (power dissipation). Если она указана, то ее нельзя превышать. Как ее посчитать, мы уже разобрались на предыдущем примере. Но если мощность не указана, тогда надо ориентироваться по току.

Говорят, что в обратном направлении ток через диод не течет, ну или почти не потечет. На самом деле через него протекает ток утечки, reverse current в английской литературе. Этот ток очень маленький, от нескольких наноампер у маломощных диодов до нескольких сот микроампер, у мощных. Также этот ток зависит от температуры и приложенного напряжения. В большинстве случаем ток утечки не играет никакой роли, например, в как в предыдущем примере, но, когда вы будете работать с наноамперами и поставите какой-либо защитный диод на входе операционного усилителя, тогда может случиться ой… Схема поведет себя совсем не так, как задумывалась.

У диодов так же есть некоторая маленькая паразитная емкость capacitance. Т.е., по сути, это конденсатор, параллельно включенный с диодом. Эту емкость надо учитывать при быстрых процессах при работе диода в схеме с десятками-сотнями мегагерц.

Также несколько слов по поводу термина «номинал». Обычно номинальные ток и напряжение обозначают, что при превышении этих параметров производитель не гарантирует работу изделия, если не сказано другое. И это для всех электронных компонентов, а не только для диода.

Что еще можно сделать

Применений диодов существует множество. Разработчики-радиоэлектронщики обычно выдумывают свои схемы из кусочков других схем, так называемых строительных кирпичиков. Вот несколько вариантов.

Например, схема защиты цифровых или аналоговых входов от перенапряжения:

Диоды в этой схеме при нормальной работе не пропускают ток. Только ток утечки. Но когда по входу возникает перенапряжение с положительной полуволной, т.е. напряжение входа становится больше чем Uпит плюс прямое падение напряжения на диоде, то верхний диод открывается и вход замыкается на шину питания. Если возникает отрицательная полуволна напряжения, то открывается нижний диод и вход замыкается на землю. В этой схеме, кстати, чем меньше утечки и емкость у диодов, тем лучше. Такие схемы защиты уже, как правило, стоят во всех современных цифровых микросхемах внутри кристалла. А внешними мощными сборками TVS-диодов защищают, например, USB порты на материнских платах.

Также из диодов можно собрать выпрямитель. Это очень распространённый тип схем и вряд ли кто-то из читателей про них не слышал. Выпрямители бывают однополупериодные, двухполупериодные и мостовые. С однополупериодным выпрямителем мы уже познакомились в нашем самом первом многострадальном примере, когда рассматривали защиту от переплюсовки. Никакими особыми плюсами не обладает, кроме плюса на батарейке. Один из самых важных минусов, который ограничивает применение схемы однополупериодного выпрямителя на практике: схема работает только с положительной полуволной напряжения. Отрицательное напряжение напрочь отсекает и ток при этом не течет. «Ну и что?», скажете вы, «Такой мощности мне будет достаточно!». Но нет, если такой выпрямитель стоит после трансформатора, то ток будет протекать только в одну сторону через обмотки трансформатора и, таким образом, трансформаторное железо будет дополнительно подмагничиваться. Трансформатор может войти в насыщение и греться намного больше положенного.

Двухполупериодные выпрямители этого недостатка лишены, но им необходим средний вывод обмотки трансформатора. Здесь при положительной полярности переменного напряжения открыт верхний диод, а при отрицательной – нижний. КПД трансформатора используется не полностью.

Мостовые схемы лишены обоих недостатков. Но теперь на пути тока включены два диода в любой момент времени: прямой диод и обратный. Падение напряжения на диодах удваивается и составляет не 0,65-1В, а в среднем 1,3-2В. С учетом этого падения считается выпрямленное напряжение.

Например, нам надо получить 18 вольт выпрямленного напряжения, какой трансформатор для этого выбрать? 18 вольт плюс падение на диодах, возьмем среднее 1,4 В, равно 19,4 В. Мы знаем из

предыдущей статьи

, что амплитудное значение переменного напряжения в корень из 2 раз больше его действующего значения. Поэтому во вторичной цепи трансформатора переменное действующее напряжение равно 19,4 / 1,41 = 13,75В. С учетом того, что напряжение в сети может гулять на 10%, а также под нагрузкой напряжение немного просядет, выберем трансформатор 230/15 В.

Мощность требуемого нам трансформатора можно посчитать от тока нагрузки. Например, мы собираемся подключать к трансформатору нагрузку в один ампер. Это если с запасом. Всегда оставляйте небольшой запас, в 20-40%. Просто по формуле мощности можно найти P = U * I = 15 * 1 = 15 ВА, где U и I – напряжение и ток вторичной обмотки. Если вторичных обмоток несколько, то их мощности складываются. Плюс потери на трансформацию, плюс запас, поэтому выберем трансформатор 20-40 ВА. Хотя часто трансформаторы продаются с указанием тока вторичных обмоток, но проверить по габаритной мощности не помешает.

После выпрямительного моста необходим сглаживающий конденсатор, на рисунке не показан. Не забывайте про него! Есть умные формулы по расчету этого конденсатора в зависимости от количества пульсаций, но порекомендую такое правило: ставить конденсатор 10000мкФ на один ампер потребления тока. Вольтаж конденсатора не меньше, чем выпрямленное без нагрузки напряжение. В данном примере можно взять конденсатор с номиналом 25В.

Диоды в этой схеме выберем на ток >=1А и обратное напряжение, с запасом, больше 19,4 В, например, 50-1000 В. Можно применить диоды Шоттки. Это те же диоды, только с очень маленьким падением напряжения, которое часто составляет десятки милливольт. Но недостаток диодов Шоттки – их не выпускают на более-менее высокие напряжения, больше 100В. Точнее с недавнего времени выпускают, но их стоимость заоблачная, а плюсы уже не так очевидны.

Светодиод

Внутри устроен совсем по другому, чем диод, но имеет те же самые свойства. Только еще и светится при протекании тока в прямом направлении.

Все отличие от диода в некоторых характеристиках. Самое важное – прямое падение напряжения. Оно гораздо больше, чем 0,65 В у обычного диода и зависит в основном от цвета светодиода. Начиная от красного, падение напряжения которого составляет в среднем 1,8 В, и заканчивая белым или синим светодиодом, падение у которых около 3,5 В. Впрочем, у невидимого спектра эти значения шире.

По сути падение напряжения здесь – минимальное напряжение зажигания диода. При меньшем напряжении, у источника питания, тока не будет и диод просто не загорится. У мощных осветительных светодиодов падение напряжения может составлять десятки вольт, но это значит лишь, что внутри кристалла много последовательно-параллельных сборок диодов.

Но сейчас поговорим об индикаторных светодиодах, как наиболее простых. Их выпускают в различных корпусах, наиболее часто в полуокруглых, диаметром 3, 5, 10 мм.

Любой диод светится в зависимости от протекающего тока. По сути это токовый прибор. Падение напряжения получается автоматически. Ток мы задаем сами. Современные индикаторные диоды более-менее начинают светиться при токе 1 мА, а при 10 мА уже выжигают глаза. Для мощных осветительных диодов надо смотреть документацию.

Применение светодиода

Имея лишь соответствующий резистор можно задать нужный ток через диод. Конечно, понадобится еще и блок питания постоянного напряжения, например, батарейка 4,5 В или любой другой БП.

Например, зададим ток 1мА через красный светодиод с падением напряжения 1,8 В.

На схеме показаны узловые потенциалы, т.е. напряжения относительно нуля. В каком направлении включать светодиод нам подскажет лучше всего мультиметр в режиме прозвонки, поскольку иногда попадаются напрочь китайские светодиоды с перепутанными ногами. При касании щупов мультиметра, в правильном направлении, светодиод должен слабо светиться.

Поскольку применен красный светодиод, то на резисторе упадет 4,5 — 1,8 = 2,7В. Это известно по второму закону Кирхгофа: сумма падений напряжения на последовательных участках схемы равно ЭДС батарейки, т.е. 2,7 + 1,8 = 4,5В. Чтобы ограничить ток в 1мА, резистор по закону Ома должен обладать сопротивлением R = U / I = 2,7 / 0,001 = 2700 Ом, где U и I – напряжение на резисторе и необходимый нам ток. Не забываем переводить величины в единицы СИ, в амперы и вольты. Поскольку выпускаемые номиналы сопротивлений стандартизованы выберем ближайший стандартный номинал 3,3кОм. Конечно, при этом ток изменится и его можно пересчитать по закону Ома I = U / R. Но зачастую это не принципиально.

В этом примере ток, отдаваемый батарейкой, мал, так что внутренним сопротивлением батареи можно пренебречь.

С осветительными светодиодами все тоже самое, только токи и напряжения выше. Но иногда им уже не требуется резистор, надо смотреть документацию.

Что-то еще про светодиод

По сути, светить – это основное назначение светодиода. Но есть и другое применение. Например, светодиод может выступать в качестве источника опорного напряжения. Они необходимы, например, для получения источников тока. В качестве источников опорного напряжения, как менее шумные, применяют красные светодиоды. Их включают в схему так же, как и в предыдущем примере. Поскольку напряжение батарейки относительно постоянное, ток через резистор и светодиод тоже постоянный, поэтому падение напряжения остается постоянным. От анода светодиода, где 1,8В, делается отвод и используется это опорное напряжение в других участках схемы.

Для более надежной стабилизации тока на светодиоде, при пульсирующем напряжении источника питания, вместо резистора в схему ставят источник тока. Но источники тока и источники опорного напряжения – это тема еще одной статьи. Возможно, когда-нибудь я ее напишу.

Стабилитрон

В английской литературе стабилитрон называется Zener diode. Все тоже самое, что и диод, в прямом включении. Но сейчас поговорим только про обратное включение. В обратном включении под действием определенного напряжения на стабилитроне возникает обратимый пробой, т.е. начинает течь ток. Этот пробой полностью штатный и рабочий режим стабилитрона, в отличие от диода, где при достижении номинального обратного напряжения диод просто выходил из строя. При этом, ток через стабилитрон в режиме пробоя может меняться, а падение напряжение на стабилитроне остается практически неизменным.

Что нам это дает? По сути это маломощный стабилизатор напряжения. Стабилитрон имеет все те же характеристики, что и диод, плюс добавляется так же напряжение стабилизации Uст или nominal zener voltage. Оно указывается при определенном токе стабилизации Iст или test current. Также в документации на стабилитроны указываются минимальный и максимальный ток стабилизации. При изменении тока от минимального до максимального, напряжение стабилизации несколько плавает, но незначительно. См. вольт-амперные характеристики.

Рабочая зона стабилитрона обозначена зеленым цветом. На рисунке видно, что напряжение на рабочей зоне практически неизменно, при широком диапазоне изменения тока через стабилитрон.

Чтобы выйти на рабочую зону, нам надо установить ток стабилитрона между [Iст. min – Iст. max] с помощью резистора точно так же, как это делалось в примере со светодиодом (кстати, можно также с помощью источника тока). Только, в отличие от светодиода, стабилитрон включен в обратном направлении.

При меньшем токе, чем Iст. min стабилитрон не откроется, а при большем, чем Iст. max – возникнет необратимый тепловой пробой, т.е. стабилитрон просто сгорит.

Расчёт стабилитрона

Рассмотрим на примере нашего рассчитанного трансформаторного БП. У нас есть блок питания, выдающий минимум 18 В (по сути там больше, из-за трансформатора 230/15 В, лучше мерить в реальной схеме, но суть сейчас не в этом), способный отдавать ток 1 А. Нужно запитать нагрузку с максимальным потреблением 50 мА стабилизированным напряжением 15 В (например, пусть это будет какой-нибудь абстрактный операционный усилитель – ОУ, у них примерно такое потребление).

Такая слабая нагрузка выбрана неспроста. Стабилитроны довольно маломощные стабилизаторы. Они должны проектироваться так, чтобы через них мог проходить без перегрева весь ток нагрузки плюс минимальный ток стабилизации Iст. min. Это необходимо, потому что ток после резистора R1 делится между стабилитроном и нагрузкой. В нагрузке ток может быть непостоянным, либо нагрузка может выключаться из схемы совсем. По сути это параллельный стабилизатор, т.е. весь ток, который не уйдет в нагрузку, примет на себя стабилитрон. Это как первый закон Кирхгофа I = I1 + I2, только здесь I = Iнагр + Iст. min.

Итак, выберем стабилитрон с напряжением стабилизации 15 В. Для установки тока через стабилитрон всегда необходим резистор (или источник тока). На резисторе R1 упадет 18 – 15 = 3 В. Через резистор R1 будет протекать ток Iнагр. + Iст. min. Примем Iст. min = 5 мА, это примерно достаточный ток для всех стабилитронов с напряжением стабилизации до 100 В. Выше 100 В можно принимать 1мА и меньше. Можно взять Iст. min и больше, но это только будет бесполезно греть стабилитрон.

Итак, через R1 течет Ir1 = Iнагр. + Iст. min = 50 + 5 = 55 мА. По закону Ома находим сопротивление R1 = U / I = 3 / 0,055 = 54,5 Ом, где U и I – напряжение на резисторе и ток через резистор. Выберем из ближайшего стандартного ряда сопротивление 47 Ом, будет чуть больше ток через стабилитрон, но ничего страшного. Его даже можно посчитать, общий ток: Ir1 = U / R = 3 / 47 = 0,063А, далее минимальный ток стабилитрона: 63 — 50 = 13 мА. Мощность резистора R1: P = U * I = 3 * 0,063 = 0,189 Вт. Выберем стандартный резистор на 0,5 Вт. Советую, кстати, не превышать мощность резисторов примерно Pmax/2, дольше проживут.

На стабилитроне тоже рассеивается мощность в виде тепла, при этом в самом худшем случае она будет равна P = Uст * (Iнагр + Iст.) = 15 * (0,050 + 0,013) = 0,945 Вт. Стабилитроны выпускают на разную мощность, ближайшая 1Вт, но тогда температура корпуса при потреблении около 1Вт будет где-то 125 градусов С, лучше взять с запасом, на 3 Вт. Стабилитроны выпускают на 0,25, 0,5, 1, 3, 5 Вт и т.д.

Первый же запрос в гугле «стабилитрон 3Вт 15В» выдал 1N5929BG. Далее ищем «datasheet 1N5929BG». По даташиту у него минимальный ток стабилизации 0,25 мА, что меньше 13 мА, а максимальный ток 100 мА, что больше 63 мА, т.е. укладывается в его рабочий режим, поэтому он нам подходит.

В общем-то, это весь расчёт. Да, стабилизатор это неидеальный, внутреннее сопротивление у него не нулевое, но он простой и дешевый и работает гарантировано в указанном диапазоне токов. А также поскольку это параллельный стабилизатор, то ток блока питания будет постоянным. Более мощные стабилизаторы можно получить, умощнив стабилитрон транзистором, но это уже тема следующей статьи, про транзисторы.

Проверить стабилитрон на пробой обычным мультиметром, как правило, нельзя. При более-менее высоковольтном стабилитроне просто не хватит напряжения на щупах. Единственное, что удастся сделать, это прозвонить его на наличие обычной диодной проводимости в прямом направлении. Но это косвенно гарантирует работоспособность прибора.

Еще стабилитроны можно использовать как источники опорного напряжения, но они шумные. Для этих целей выпускают специальные малошумящие стабилитроны, но их цена в моем понимании зашкаливает за кусочек кремния, лучше немного добавить и купить интегральный источник с лучшими параметрами.

Также существует много полупроводниковых приборов, похожих на диод: тиристор (управляемый диод), симистор (симметричный тиристор), динистор (открываемый импульсно только по достижении определенного напряжения), варикап (с изменяемой емкостью), что-то еще. Первые вам понадобятся в силовой электронике при постройки управляемых выпрямителей или регуляторов активной нагрузки. А с последними я уже лет 10 не сталкивался, поэтому оставляю эту тему для самостоятельного чтения в вики, хотя бы про тиристор.

принцип работы стабилитрона, ВАХ, маркировка, характеристики

У полупроводникового диода множество «профессий». Он может выпрямлять напряжение, развязывать электрические цепи, предохранять оборудование от неправильной подачи питания. Но есть не совсем обычный вид «работы» диода, когда его свойство односторонней проводимости используется очень косвенно. Полупроводниковый прибор, для которого нормальным режимом является обратное смещение, называется стабилитроном.

Что такое стабилитрон, где используется и какие бывают

Стабилитрон, или диод Зенера (по имени американского ученого, первым изучившим и описавшим свойства этого полупроводникового прибора), представляет собой обычный диод с p-n переходом. Его особенность – работа на участке характеристики с отрицательным смещением, то есть, когда напряжение прикладывается в обратной полярности. Используется такой диод в качестве самостоятельного стабилизатора, поддерживающего напряжение потребителя постоянным вне зависимости от изменения тока нагрузки и колебаний входного напряжения. Также узлы на стабилитронах применяются в качестве источников опорного напряжения для других стабилизаторов с развитой схемой. Реже диод с обратным включением используется в качестве элемента формирования импульсов или защитного ограничителя от перенапряжений.

Существуют обычные стабилитроны и двуханодные. Двуханодный стабилитрон — это два диода, включенные встречно в одном корпусе. Его можно заменить двумя отдельными приборами, включив их по соответствующей схеме.

Вольт-амперная характеристика стабилитрона и его принцип работы

Чтобы разобраться с принципом работы стабилитрона, надо изучить его типовую вольт-амперную характеристику (ВАХ).

Если к зенеру приложить напряжение в прямом направлении, как к обычному диоду, то он и вести себя будет подобно обычному диоду. При напряжении около 0,6 В (для кремниевого прибора) он откроется и выйдет на линейный участок ВАХ. По теме статьи более интересно поведение стабилитрона при приложении напряжения обратной полярности (отрицательная ветвь характеристики). Сначала сопротивление его резко возрастет, и прибор перестанет пропускать ток. Но при достижении определенного значения напряжения произойдет резкий рост тока, называемый пробоем. Он носит лавинный характер, и исчезает после снятия питания. Если продолжать увеличивать обратное напряжение, то p-n переход начнет нагреваться и выйдет в режим теплового пробоя. Тепловой пробой необратим и означает выход стабилитрона из строя, поэтому вводить диод в такой режим не следует.

Интересен участок работы полупроводникового прибора в режиме лавинного пробоя. Его форма близка к линейной, и он имеет высокую крутизну. Это означает, что при большом изменении тока (ΔI) изменение падения напряжения на стабилитроне относительно невелико (ΔU). А это и есть стабилизация.

Такое поведение при подаче обратного напряжения характерно для любого диода. Но особенность стабилитрона в том, что его параметры на этом участке ВАХ нормированы. Его напряжение стабилизации и крутизна характеристики заданы (с определенным разбросом) и являются важными параметрами, определяющими пригодность использования прибора в схеме. Найти их можно в справочниках. Обычные диоды также можно использовать в качестве стабилитронов – если снять их ВАХ и среди них найдется с подходящей характеристикой. Но это долгий, трудоёмкий процесс с негарантированным результатом.

Основные характеристики стабилитрона

Чтобы подобрать диод Зенера под существующие цели, надо знать несколько важных параметров. Эти характеристики определят пригодность выбранного прибора для решения поставленных задач.

Номинальное напряжение стабилизации

Первый параметр зенера, на который надо обратить внимание при выборе – напряжение стабилизации, определяемое точкой начала лавинного пробоя. С него начинают выбор прибора для использования в схеме. У разных экземпляров ординарных стабилитронов, даже одного типа, напряжение имеет разброс в районе нескольких процентов, у прецизионных разница ниже. Если номинальное напряжение неизвестно, его можно определить, собрав простую схему. Следует подготовить:

  • балластный резистор в 1…3 кОм;
  • регулируемый источник напряжения;
  • вольтметр (можно использовать тестер).

Надо поднимать напряжение источника питания с нуля, контролируя по вольтметру рост напряжения на стабилитроне. В какой-то момент он остановится, несмотря на дальнейшее увеличение входного напряжения. Это и есть фактическое напряжение стабилизации. Если регулируемого источника нет, можно использовать блок питания с постоянным выходным напряжением заведомо выше Uстабилизации. Схема и принцип измерения остаются теми же. Но есть риск выхода полупроводникового прибора из строя из-за превышения рабочего тока.

Стабилитроны применяются для работы с напряжениями от 2…3 В до 200 В. Для формирования стабильного напряжения ниже данного диапазона, используются другие приборы – стабисторы, работающие на прямом участке ВАХ.

Диапазон рабочих токов

Ток, при котором стабилитроны исполняют свою функцию, ограничен сверху и снизу. Снизу он ограничен началом линейного участка обратной ветви ВАХ. При меньших токах характеристика не обеспечивает режима неизменности напряжения.

Верхнее значение лимитировано максимальной мощностью рассеяния, на которую способен полупроводниковый прибор и зависит от его конструкции. Стабилитроны в металлическом корпусе рассчитаны на больший ток, но не надо забывать об использовании радиаторов. Без них наибольшая допустимая мощность рассеяния будет существенно меньше.

Дифференциальное сопротивление

Еще один параметр, определяющий работу стабилитрона – дифференциальное сопротивление Rст. Оно определяется как отношение изменения напряжения ΔU к вызвавшему его изменение тока ΔI. Эта величина имеет размерность сопротивления и измеряется в омах. Графически — это тангенс угла наклона рабочего участка характеристики. Очевидно, что чем меньше сопротивление, тем лучше качество стабилизации. У идеального (не существующего на практике) стабилитрона Rст равно нулю – любое приращение тока не вызовет никакого изменения напряжения, и участок ВАХ будет параллелен оси ординат.

Маркировка стабилитронов

Отечественные и импортные стабилитроны в металлическом корпусе маркируются просто и наглядно. На них наносится наименование прибора и расположение анода и катода в виде схематического обозначения.

Приборы в пластиковом корпусе маркируются кольцами и точками различных цветов со стороны катода и анода. По цвету и сочетанию знаков можно определить тип прибора, но для этого придётся заглянуть в справочники или использовать программы-калькуляторы. И то, и другое можно найти в интернете.

Иногда на маломощных стабилитронах наносят напряжение стабилизации.

Схемы включения стабилитрона

Основная схема включения стабилитрона – последовательно с резистором, который задает ток через полупроводниковый прибор и берет на себя излишек напряжения. Два элемента составляют обычный делитель. При изменении входного напряжения падение на стабилитроне остается постоянным, а на резисторе изменяется.

Такая схема может использоваться самостоятельно и называется параметрическим стабилизатором. Он поддерживает напряжение на нагрузке постоянным, несмотря на колебания входного напряжения или потребляемого тока (в определенных пределах). Подобный блок ещё используют в качестве вспомогательной схемы там, где нужен источник образцового напряжения.

Подобное включение также применяется в качестве защиты чувствительного оборудования (датчиков и т.п.) от нештатного появления высокого напряжения в линии питания или измерения (постоянного или случайных импульсов). Все, что выше напряжения стабилизации полупроводникового прибора, «срезается». Такая схема называется «барьером Зенера».

Раньше свойство стабилитрона «срезать» верхушки напряжения широко использовалось в схемах формирователей импульсов. В цепях переменного тока применялись двуханодные приборы.

Но с развитием транзисторной техники и появлением интегральных микросхем такой принцип стал использоваться редко.

Если под рукой отсутствует стабилитрон на нужное напряжение, его можно составить из двух. Общее напряжение стабилизации будет равно сумме двух напряжений.

Важно! Нельзя включать стабилитроны параллельно для увеличения рабочего тока! Разброс вольтамперных характеристик приведет к выводу в зону теплового пробоя один стабилитрон, далее выйдет из строя второй из-за превышения тока нагрузки.

Хотя в технической документации времен СССР разрешается параллельное включение зенеров в параллель, но с оговоркой, что приборы должны быть однотипные и суммарная фактическая мощность рассеяния в процессе эксплуатации не должна превышать допустимую для единичного стабилитрона. То есть, увеличения рабочего тока при таком условии не добиться.

Для повышения допустимого тока нагрузки используется другая схема. Параметрический стабилизатор дополняется транзистором, и получается эмиттерный повторитель с нагрузкой в цепи эмиттера и стабильным напряжением на базе транзистора.

В этом случае выходное напряжение стабилизатора будет меньше Uстабилизации на величину падения напряжения на эмиттерном переходе – для кремниевого транзистора около 0,6 В. Чтобы скомпенсировать это уменьшение, можно включить последовательно со стабилитроном диод в прямом направлении.

Таким способом (включением одного или нескольких диодов) можно подкорректировать выходное напряжение стабилизатора в большую сторону в небольших пределах. Если надо радикально повысить Uвых, лучше включить последовательно ещё одни стабилитрон.

Сфера применения стабилитрона в электронных схемах обширна. При осознанном подходе к выбору этот полупроводниковый прибор поможет решить множество задач, поставленных перед разработчиком.

Диод | Страница 3 из 5 | Electronov.net

Диод Зенера (стабилитрон)

Данный тип диодов назван в честь американского физика Кларенса Зенера. В отечественной литературе диод Зенера более известен под названием «стабилитрон».

Основное назначение – стабилизация напряжения. Работает данный тип диодов при обратном включении в режиме электрического пробоя. При этом в зависимости от конкретной модели прибора может преобладать как лавинный, так и туннельный механизм электрического пробоя. Если Вы внимательно читали материал выше, то легко можете заметить, что стабилитрон использует основной недостаток реального p-n перехода себе во благо. Стоит заметить, что примерно в половине полупроводниковых приборов используются или даже лежат в основе их функционирования какие-либо недостатки или паразитные свойства p-n перехода или чистого полупроводника. Исходя из этого, можно сказать, что в электронике хоть и приходится за все платить, но ничего даром не пропадает.

ВАХ стабилитрона: Рисунок 4 — ВАХ стабилитрона.

Напряжение пробоя стабилитрона определяется концентрациями акцепторов и доноров, и профилем легирования области p-n-перехода. Чем выше концентрации примесей и чем больше их градиент в переходе, тем больше напряженность электрического поля в области пространственного заряда при равном обратном напряжении, и тем меньше обратное напряжение, при котором возникает пробой:

  • Туннельный (Зенеровский).

Возникает в полупроводнике только тогда, когда напряженность электрического поля в p-n-переходе достигает уровня в 106 В/см. Такие уровни напряженности возможны только в высоколегированных диодах с напряжением пробоя не более шестикратной ширины запрещенной зоны (6 EG ≈ 6.7 В), при этом в диапазоне от 4 EG до 6 EG (4.5…6.7 В) туннельный пробой сосуществует с лавинным, а при напряжении пробоя менее 4 EG (≈4.5 В) полностью вытесняет его. С ростом температуры перехода ширина запрещенной зоны, а вместе с ней и напряжение пробоя, уменьшается: низковольтные стабилитроны с преобладанием туннельного пробоя имеют отрицательный температурный коэффициент напряжения (ТКН).

Возникает в диодах с меньшими уровнями легирования, или меньшими градиентами легирующих примесей, и, как следствие, большими напряжениями пробоя. Он возникает при концентрациях примесей, примерно соответствующих напряжению пробоя в 4 EG (≈4.5 В), а при напряжениях пробоя выше 4 EG (≈7.2 В) полностью вытесняет туннельный механизм. Напряжение, при котором возникает лавинный пробой, с ростом температуры возрастает, а наибольшая величина ТКН пробоя наблюдается в низколегированных, относительно высоковольтных, переходах.

Основные параметры стабилитронов:
  • Номинальное значение напряжения и тока стабилизации;

Эти значения обычно находятся по середине между минимальными и максимальными.

  • Минимальное и максимальное значения напряжения и тока стабилизации;
  • Температурный коэффициент напряжения.

Величина ТКН обычно порядка Для стабилитронов туннельного пробоя ТКН отрицателен, а для стабилитронов лавинного пробоя — положителен.

  • Максимально допустимая рассеиваемая мощность;
  • Диапазон рабочих температур.

Варикап

Название прибора происходит от англ. vari(able) — «переменный», и cap(acity) — «емкость». Работа данного типа диодов основана на зависимости барьерной емкости p-n перехода от обратного напряжения. Как Мы видим, очередной паразитный параметр p-n перехода работает нам на пользу. Варикапы применяются в качестве элементов с электрически управляемой емкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.

В данном случае используется принцип простого плоского конденсатора, в котором емкость зависит от расстояния между обкладками, роль которых в варикапе играют p и n области. При увеличении обратного напряжения увеличивается геометрический размер запирающего слоя (обедненной области p-n перехода), т.е. увеличивается расстояние между обкладками, что приводит к уменьшению емкости p-n-перехода. Диапазон изменения емкости ограничен лишь толщиной полупроводника, далее которой p-n переход расширяться не может.

Основные параметры варикапов:
  • Номинальная емкость;

Нормируется при заданном обратном напряжении.

  • Коэффициент перекрытия по емкости;

Отношение емкостей при двух заданных значениях обратного напряжения на варикапе.

Отношение реактивного сопротивления варикапа на заданной частоте к сопротивлению потерь при заданном значении емкости или обратного напряжения.

  • Максимально допустимый продолжительный обратный ток;
  • Максимально допустимое продолжительное обратное напряжение;
  • Предельная частота варикапа;

Значение частоты, на которой реактивная составляющая проводимости варикапа становится равной активной составляющей. Нормируется при заданном обратном напряжении и температуре.

  • Максимально допустимая рассеиваемая мощность;
  • Диапазон рабочих температур.
Страниц: 1 2 3 4 5

Стабилитроны. Справочник.

Стабилитроны. Справочник. ☰

Zener diodes

Для удобства можно воспользоваться поиском на странице (Ctrl+F).
Список в алфавитном порядке есть здесь.

Внимание!
Буквенный индекс A, B, C, D в конце маркировки характеризует разброс параметров по напряжению стабилизации.
В отдельных случаях индекс может указывать на температурный коэффициент.
Подробности необходимо уточнять в приложенной технической документации.

POWER(Watts)

Volt0.25-0.4W0.4-0.5W0.5W1.0W1.5W5.0W10.0W50.0W
1.81N46141N4678 1N4614,A-----
2.01N46151N4679 1N4615,A-----
2.21N46161N4680 1N4616,A-----
2.41N46171N4681 1N4617,A-----
2.4--IN4370,A-----
2.4--1N5221,A-----
2.4--1N5837,A-----
2.4--1N5985,A-----
2.5--1N5222,A-----
2.5--1N5838,A-----
2.6-1N702------
2.71N46181N46821N4371,A-----
2.7 1N702A-1N5223,A-----
2.7--1N5839,A-----
2.7--1N5986,A-----
2.8--1N5224,A-----
2.8--1N5840,A-----
3.01N46191N4683 1N4372,A-----
3.0--1N5225,A-----
3.0--1N5841,A-----
3.0--1N5987,A-----
3.31N46201N4684 1N746,A 1N3821,A1N5913 1N5333,A,B--
3.3--1N5226,A 1N4728,A----
3.3-1N5518 1N5842,A-----
3.3--1N5988,A-----
3.61N46211N4685 1N747,A 1N3822,A1N5914 1N5334,A,B--
3.6 1N703A1N55191N5227,A 1N4729,A----
3.6--1N5843,A-----
3.6--1N5989,A-----
3.91N46221N4686 1N748,A 1N3823,A1N5915 1N5335,A,B1N3993,A,B 1N4549,A,B
3.9-1N55201N5228,A 1N4730,A--- 1N4557,A,B
3.9--1N5844,A-----
3.9--1N5990,A-----
4.1-1N704------
4.31N46231N4687 1N749,A 1N3824,A1N5916 1N5336,A,B1N3994,A,B 1N4550,A,B
4.31N704A 1N55211N5229,A 1N4731,A---1N4558,A,B
4.3--1N5845,A-----
4.3--1N5991,A-----
4.71N4624 1N5728,B1N750,A 1N3825,A1N5917 1N5337,A,B1N3995,A,B 1N4551,A,B
4.7-1N55221N5230,A 1N4732,A---1N4559,A,B
4.7-1N705 1N5846,A-----
4.7-1N4688 1N5992,A-----
5.11N4625 1N5729,B1N751,A 1N3826,A1N5918 1N5338,A,B1N3996,A,B 1N4552,A,B
5.1-1N55231N5231,A 1N4733,A---1N4560,A,B
5.11N705A1N4689 1N5847,A-----
5.1--1N5993,A-----
5.61N708 1N5730,B1N752,A 1N3827,A1N5919 1N5339,A,B1N3997,A,B 1N4553,A,B
5.61N4626 1N55241N5232,A 1N4734,A---1N4561,A,B
5.6-1N46901N5848,A-----
5.6--1N5994,A-----
5.81N706-------
6.0 1N706A-1N5233,A-- 1N5340,A,B--
6.0--1N5849,A-----
6.21N709 1N5731,B1N753,A 1N3828,A1N5920 1N5341,A,B1N3998,A,B 1N4554,A,B
6.21N4627 1N821,A1N5234,A 1N4735,A---1N4562,A,B
6.2MZ6051N823,A 1N5850,A-----
6.2MZ6101N825,A 1N5995,A-----
6.2MZ6201N827,A 1N4691-----
6.2MZ6401N829,A------
6.2-1N5525------
6.4--1N4565-84,A-----
6.81N4099 1N5732,B1N754,A 1N3016,A,B1N3785,A,B 1N5342,A,B1N2970,A,B 1N2804,A,B
6.81N7101N4692 1N957B 1N3829,A1N5921- 1N3999,A,B1N3305,A,B
6.8-1N55261N5235,A 1N4736,A--- 1N4555,A,B
6.8--1N5851,A---- 1N4563,A,B
6.8--1N5996,A-----
7.1-1N707------
7.51N4100 1N5733,B1N755,A 1N3017,A,B1N3786,A,B 1N5343,A,B1N2971,A,B 1N2805,A,B
7.51N7111N4693 1N958B 1N3830,A1N5922- 1N3940,A,B1N3306,A,B
7.5-1N55271N5236,A 1N4737,A--- 1N4556,A,B
7.5--1N5852,A---- 1N4564,A,B
7.5--1N5997,A-----
8.21N712 1N5734,B1N756,A 1N3018,A,B1N3787,A,B 1N5344,A,B1N2972,A,B 1N2806,A,B
8.21N41011N4694 1N959B 1N4738,A1N5923-- 1N3307,A,B
8.2-1N5528 1N5237,A-----
8.2--1N5853,A-----
8.2--1N5998,A-----
8.4--IN3154-57,A-----
8.51N4775-84,A- 1N5238,A-----
8.5--1N5854,A-----
8.71N41021N4695--- 1N5345,A,B--
8.8--------
9.0--1N935-8;A,B-----
9.11N4103 1N5735,B1N757,A 1N3019,A,B1N3788,A,B 1N5346,A,B1N2973,A,B 1N2807,A,B
9.11N7131N4696 1N960B 1N4739,A1N5924-- 1N3308,A,B
9.1-1N55291N5239,A-----
9.1--1N5855,A-----
9.1--1N5999,A-----
10.01N4104 1N5736,B1N758,A 1N3020,A,B1N3789,A,B 1N5347,A,B1N2974,A,B 1N2808,A,B
10.01N7141N4697 1N961B 1N4740,A1N5925-- 1N3309,A,B
10.0-1N5530 1N5240,A-----
10.0--1N5856,A-----
10.0--1N6000,A-----
11.01N715 1N5737,B1N962B 1N3021,A,B1N3790,A,B 1N5348,A,B1N2975,A,B 1N2809,A,B
11.01N41051N4698- 1N4741,A1N5926-- 1N3310,A,B
11.0-1N5531 1N5241,A-----
11.0--1N5857,A-----
11.0--1N6001,A-----
11.7--1N941-5;A,B-----
11.7--------
12.01N716 1N5738,B1N759,A 1N3022,A,B1N3791,A,B 1N5349,A,B1N2976,A,B 1N2810,A,B
12.01N41061N4699 1N963B 1N4742,A1N5927-- 1N3311,A,B
12.0-1N5532 1N5242,A- ----
12.0--1N5858,A-----
12.0--1N6002,A-----
13.01N4107 1N5739,B1N964B 1N3023,A,B1N3792,A,B 1N5350,A,B1N2977,A,B 1N2811,A,B
13.01N7171N5533 1N5243,A 1N4743,A1N5928-- 1N3312,A,B
13.0-1N4700 1N5859,A-----
13.0--1N6003,A-----
14.01N4108 1N55341N5244,A-- 1N5351,A,B1N2978,A,B 1N2812,A,B
14.0-1N4701 1N5860,A---- 1N3313,A,B
15.01N4109 1N5740,B1N965B 1N3024,A,B1N3793,A,B 1N5352,A,B1N2979,A,B 1N2813,A,B
15.01N718 1N55351N5245,A 1N4744,A1N5929---
15.0-1N4702 1N5861,A---- 1N3314,A,B
15.0--1N6004,A-----
16.01N4110 1N5741,B1N966B 1N3025,A,B1N3794,A,B 1N5353,A,B1N2980,A,B 1N2814,A,B
16.01N719 1N55361N5246,A 1N4745,A1N5930-- 1N3315,A,B
16.0-1N4703 1N5862,A-----
16.0--1N6005,A-----
17.01N4111 1N55371N5247,A-- 1N5354,A,B1N2981,A,B 1N2815,A,B
17.0-1N4704 1N5863,A---- 1N3316,A,B
18.01N4112 1N5742,B1N967B 1N3026,A,B1N3795,A,B 1N5355,A,B1N2982,A,B 1N2816,A,B
18.01N720 1N55381N5248,A 1N4746,A1N5931-- 1N3317,A,B
18.0-1N4705 1N5864,A-----
18.0--1N6006,A-----
19.01N4113 1N55391N5249,A-- 1N5356,A,B1N2983,A,B 1N2817,A,B
19.0-1N47061N5865,A---- 1N3318,A,B
20.01N4114 1N5743,B1N968B 1N3027,A,B1N3796,A,B 1N5357,A,B1N2984,A,B 1N2818,A,B
20.01N721 1N55401N5250,A 1N4747,A1N5932-- 1N3319,A,B
20.0-1N4707 1N5866,A-----
20.0--1N6007,A-----
22.01N4115 1N5744,B1N969B 1N3028,A,B1N3797,A,B 1N5358,A,B1N2985,A,B 1N2819,A,B
22.01N722 1N55411N5251,A 1N4748,A1N5933---
22.0-1N4708 1N5867,A---- 1N3320,A,B
22.0--1N6008,A-----
24.01N4116 1N55421N970B 1N3029,A,B1N3798,A,B 1N5359,A,B1N2986,A,B 1N2820,A,B
24.01N723-1N5252,A 1N4749,A1N5934-- 1N3321,A,B
24.0-1N5745,B1N5868,A-----
24.0-1N4709 1N6009,A-----
25.01N4117 1N55431N5253,A-- 1N5360,A,B1N2987,A,B 1N2821,A,B
25.0-1N4710 1N5869,A---- 1N3322,A,B
27.01N4118-1N971B 1N3030,A,B1N3799,A,B 1N5361,A,B1N2988,A,B 1N2822,A,B
27.01N724-1N5254,A 1N4750,A1N5935-- 1N3323,A,B
27.0-1N5746,B1N5870,A-----
27.0-1N4711 1N6010,A-----
28.01N4119 1N55441N5255,A-- 1N5362,A,B--
28.0-1N4712 1N5871,A-----
30.01N4120-1N972B 1N3031,A,B1N3800,A,B 1N5363,A,B1N2989,A,B 1N2823,A,B
30.01N725 1N55451N5256,A 1N4751,A1N5936-- 1N3324,A,B
30.0-1N5747,B 1N5872,A-----
30.0-1N4713 1N6011,A-----
33.01N4121-1N973B 1N3032,A,B1N3801,A,B 1N5364,A,B1N2990,A,B 1N2824,A,B
33.01N726 1N55461N5257,A 1N4752,A1N5937-- 1N3325,A,B
33.0-1N5748,B 1N5873,A-----
33.0-1N4714 1N6012,A-----
36.01N4122 1N5749,B1N974B 1N3033,A,B1N3802,A,B 1N5365,A,B1N2991,A,B 1N2825,A,B
36.0 1N727-1N5258,A 1N4753,A1N5938-- 1N3326,A,B
36.0-1N4715 1N5874,A-----
36.0--1N6013,A-----
39.01N4123 1N5750,B1N975B 1N3034,A,B1N3803,A,B 1N5366,A,B1N2992,A,B 1N2826,A,B
39.01N728-1N5259,A 1N4754,A1N5939-- 1N3327,A,B
39.0-1N4716 1N5875,A-----
39.0--1N6014,A-----
43.01N4124 1N5751,B1N976B 1N3035,A,B1N3804,A,B 1N5367,A,B1N2993,A,B 1N2827,A,B
43.01N729-1N5260,A 1N4755,A1N5940-- 1N3328,A,B
43.0-1N4717 1N5876,A-----
43.0--1N6015,A-----
45.0------1N2994,A,B 1N2828,A,B
45.0------- 1N3329,A,B
47.01N4125 1N5752,B1N977B 1N3036,A,B1N3805,A,B 1N5368,A,B1N2995,A,B 1N2829,A,B
47.01N730-1N5261,A 1N4756,A1N5941-- 1N3330,A,B
47.0--1N5877,A-----
47.0--1N6016,A-----
50.0------1N2996,A,B 1N2830,A,B
50.0------- 1N3331,A,B
51.01N4126 1N5753,B1N978B 1N3037,A,B1N3806,A,B 1N5369,A,B11N2997,A,B 1N2831,A,B
51.01N731-1N5262,A 1N4757,A1N5942-- 1N3332,A,B
51.0--1N5878,A-----
51.0--1N6017,A-----
52.0------1N2998,A,B 1N3333,A,B
56.01N4127 1N5754,B1N979B 1N3038,A,B1N3807,A,B 1N53670,A,B1N2999,A,B 1N2832,A,B
56.01N732-1N5263,A 1N4758,A1N5943-- 1N3334,A,B
56.0--1N5879,A-----
56.0--1N6018,A-----
60.01N4128-1N5264,A-- 1N5371,A,B--
60.0--1N5880,A-----
62.01N4129 1N5755,B1N980B 1N3039,A,B1N3808,A,B 1N5372,A,B1N3000,A,B 1N2833,A,B
62.01N733-1N5265,A 1N4759,A1N5944-- 1N3335,A,B
62.0--1N5881,A-----
62.0--1N6019,A-----
68.01N4130 1N5756,B1N981B 1N3040,A,B1N3809,A,B 1N5373,A,B1N3001,A,B 1N2834,A,B
68.01N734-1N5266,A 1N4760,A1N5945-- 1N3336,A,B
68.0--1N6020,A-----
75.01N4131 1N5757,B1N982B 1N3041,A,B1N3810,A,B 1N5374,A,B1N3002,A,B 1N2835,A,B
75.01N735-1N5267,A 1N4761,A1N5946-- 1N3337,A,B
75.0--1N6021,A-----
82.01N4132-1N983B 1N3042,A,B1N3811,A,B 1N5375,A,B1N3003,A,B 1N2836,A,B
82.01N736-1N5268,A 1N4762,A1N5947- - 1N3338,A,B
82.0--1N6022,A-----
87.01N4133-1N5269,A-- 1N5376,A,B--
91.01N4134-1N984B 1N3043,A,B1N3812,A,B 1N5377,A,B1N3004,A,B 1N2837,A,B
91.0--1N5270,A 1N4763,A1N5948-- 1N3339,A,B
91.0--1N6023,A-----
100.01N4135-1N985B 1N3044,A,B1N3813,A,B 1N5378,A,B1N3005,A,B 1N2838,A,B
100.0--1N5271,A 1N4764,A1N5949-- 1N3340,A,B
100.0--1N6024,A-----
105.0------1N3006,A,B 1N2839,A,B
105.0------- 1N3341,A,B
110.0--1N986B 1N3045,A,B1N3814,A,B 1N5379,A,B1N3007,A,B 1N2840,A,B
110.0--1N5272,A1M110ZS10 1N5950-- 1N3342,A,B
110.0--1N6025,A-----
120.0--1N987B 1N3046,A,B 1N3815,A,B 1N5380,A,B1N3008,A,B 1N2841,A,B
120.0--1N5273,A1M120ZS10 1N5951-- 1N3343,A,B
120.0--1N6026,A-----
130.0--1N988B 1N3047,A,B1N3816,A,B 1N5381,A,B1N3009,A,B 1N2842,A,B
130.0--1N5274,A1M130ZS10 1N5952-- 1N3344,A,B
130.0--1N6027,A-----
140.0--1N5275,A-- 1N5382,A,B1N3010,A,B 1N3345,A,B
150.0--1N989B 1N3048,A,B1N3817,A,B 1N5383,A,B1N3011,A,B 1N2843,A,B
150.0--1N5276,A1M150ZS10 1N5953-- 1N3346,A,B
150.0--1N6028,A-----
160.0--1N990B 1N3049,A,B1N3818,A,B 1N5384,A,B1N3012,A,B 1N2844,A,B
160.0--1N5277,A1M160ZS10 1N5954-- 1N3347,A,B
160.0--1N6029,A-----
170.0--1N5278,A1M170ZS10- 1N5385,A,B--
175.0------1N3013,A,B 1N3348,A,B
180.0--1N991B 1N3050,A,B1N3819,A,B 1N5386,A,B1N3014,A,B 1N2845,A,B
180.0--1N5279,A1M180ZS10 1N5955-- 1N3349,A,B
180.0--1N6030,A-----
190.0--1N5280,A-- 1N5387,A,B--
200.0--1N992B 1N3051,A,B1N3820,A,B 1N5388,A,B1N3015,A,B 1N2840,A,B
200.0--1N5281,A1M200ZS10 1N5956-- 1N3350,A,B
200.0--1N6031,A-----

Побликации основаны на данных из открытых источников.

Стабилитрон

Основные операции и применение

16.12.2015 | Автор: Цзя (Рабийя Хан)

Стабилитрон - это кремниевый полупроводниковый прибор, который позволяет току течь в прямом или обратном направлении. Диод состоит из специального сильно легированного p-n перехода, предназначенного для проведения в обратном направлении при достижении определенного заданного напряжения.

Стабилитрон имеет четко определенное напряжение обратного пробоя, при котором он начинает проводить ток и продолжает непрерывно работать в режиме обратного смещения без повреждения.Кроме того, падение напряжения на диоде остается постоянным в широком диапазоне напряжений, что делает стабилитроны пригодными для использования при регулировании напряжения.

Стабилитрон срабатывания

Стабилитрон работает так же, как обычный диод в режиме прямого смещения, и имеет напряжение включения от 0,3 до 0,7 В. Однако при подключении в обратном режиме, что является обычным для большинства его приложений, может протекать небольшой ток утечки. Когда обратное напряжение увеличивается до заданного напряжения пробоя (Vz), через диод начинает течь ток.Ток увеличивается до максимума, который определяется последовательным резистором, после чего он стабилизируется и остается постоянным в широком диапазоне приложенного напряжения.

Рисунок 1: ВАХ стабилитрона

Стабилитрон

Пробой вызван либо эффектом пробоя стабилитрона, который возникает ниже 5,5 В, либо ударной ионизацией, которая возникает выше 5,5 В. Оба механизма приводят к одинаковому поведению и не требуют разной схемы; однако у каждого механизма свой температурный коэффициент.

Эффект Зенера имеет отрицательный температурный коэффициент, тогда как ударный эффект имеет положительный коэффициент. Два температурных эффекта почти равны при 5,5 В и компенсируют друг друга, что делает стабилитроны с номинальным напряжением около 5,5 В наиболее стабильными в широком диапазоне температурных условий.

Технические характеристики стабилитрона

Стабилитроны

различаются по характеристикам, таким как номинальное рабочее напряжение, рассеиваемая мощность, максимальный обратный ток и упаковка.Некоторые часто используемые спецификации включают:

  • Напряжение Vz: Напряжение стабилитрона относится к напряжению обратного пробоя - от 2,4 В до примерно 200 В; может достигать 1 кВ, в то время как максимальное значение для устройства поверхностного монтажа (SMD) составляет около 47 В).
  • Ток Iz (макс.): Максимальный ток при номинальном напряжении стабилитрона Vz - от 200 мкА до 200 А).
  • Ток Iz (мин.): Минимальный ток, необходимый для выхода диода из строя - 5 мА и 10 мА.
  • Номинальная мощность: максимальная мощность, которую может рассеять стабилитрон; дается произведением напряжения на диоде и протекающего через него тока.Типичные значения: 400 мВт, 500 мВт, 1 Вт и 5 Вт; для поверхностного монтажа типичны 200 мВт, 350 мВт, 500 мВт и 1 Вт.
  • Допустимое отклонение напряжения: обычно ± 5%.
  • Температурная стабильность: Наилучшей стабильностью обладают диоды с напряжением около 5 В.
  • Корпус: Устройства с выводами и поверхностный монтаж либо в виде дискретных устройств, либо в составе интегральных схем.
  • Сопротивление стабилитрона (Rz): Диод показывает некоторое сопротивление, о чем свидетельствуют ВАХ.

Рисунок 2: Сопротивление стабилитрона

Применение стабилитрона

Стабилитроны

используются для регулирования напряжения, в качестве опорных элементов, ограничителей перенапряжения, а также в коммутационных устройствах и схемах ограничителей.

Регулятор напряжения

Напряжение нагрузки равно напряжению пробоя VZ диода. Последовательный резистор ограничивает ток через диод и снижает избыточное напряжение, когда диод проводит.

Рисунок 3: Шунтирующий стабилизатор на стабилитроне

Стабилитрон в защите от перенапряжения

Если входное напряжение увеличивается до значения, превышающего напряжение пробоя стабилитрона, ток течет через диод и вызывает падение напряжения на резисторе; это запускает SCR и создает короткое замыкание на землю.Короткое замыкание размыкает предохранитель и отключает нагрузку от источника питания.

Рисунок 4: Цепь лома защиты от перенапряжения SCR

Цепи ограничения стабилитрона

Стабилитроны

используются для модификации или формирования схем ограничения формы сигнала переменного тока. Схема ограничения ограничивает или отсекает части одного или обоих полупериодов сигнала переменного тока для формирования формы сигнала или обеспечения защиты.

Рисунок 5: Цепи ограничения стабилитрона

Номинальные значения стабилитронов

- напряжение и сопротивление стабилитрона, номинальная мощность

Слово Рейтинги означает, что различная информация об этом конкретном устройстве приведена на паспортной табличке устройства или в техпаспорте, предоставленном производителем.В этом техническом описании показаны номиналы различных диодов, включая стабилитрон , диапазон допуска стабилитрона, ограничения тока стабилитрона , максимальное рассеивание мощности , максимальную рабочую температуру , максимальное сопротивление стабилитрона или Импеданс и т. Д.

Некоторые важные характеристики стабилитрона подробно обсуждаются ниже.

Напряжение стабилитрона (Vz)

Напряжение, при котором диод Зенера отключается в состоянии обратного смещения, известное как Напряжение Зенера .Фактически, это напряжение, при котором должен работать стабилитрон. Имеющиеся в продаже стабилитроны имеют номинальное напряжение стабилитрона от 3 до 200 вольт. Величина пробоя или напряжение стабилитрона зависит от легирования. Чем больше легирование, тем меньше напряжение пробоя.

Допуск стабилитрона

Диапазон значений напряжения пробоя, в котором стабилитрон проводит в обратном направлении, называется допуском .

На самом деле, во время производства очень сложно получить точное легирование для всех стабилитронов одного и того же типа.Поэтому и напряжения пробоя стабилитронов одного номера также различаются незначительно. Этот диапазон пробивных напряжений для стабилитрона того же типа описывается как допуск.

Например - рассмотрим конкретный тип стабилитронов с маркировкой 9 В, допуск 10%. Эти стабилитроны могут иметь напряжение пробоя от 8,1 В (9 - 0,9) до 9,9 В (9 + 0,9) вместо ровно 9 В.

Влияние температуры на стабилитрон


Напряжение пробоя стабилитрона зависит от рабочей температуры.Он уменьшается с увеличением температуры перехода. Это происходит из-за повышенного обратного тока (т. Е. Увеличения неосновных носителей заряда), который течет с повышением температуры. Снижение температуры составляет примерно 2Mv / ⁰C.

Номинальная мощность (P

ZM ) стабилитрона

Максимальная мощность, которую стабилитрон может рассеять без каких-либо повреждений, называется его номинальной мощностью. Имеющиеся в продаже стабилитроны имеют номинальную мощность от Вт до более 50 Вт. Номинальная мощность является произведением максимального тока I ZM , с которым может работать стабилитрон, и номинального или рабочего напряжения стабилитрона (V Z ). ).

Следовательно,

Максимальный номинальный ток (I

ZM )

Максимальное значение тока, которое стабилитрон может выдерживать при номинальном напряжении без повреждений, известно как его максимальный номинальный ток .

Стабилитрон (R

ZT )

Противодействие току, протекающему через стабилитрон в рабочей области, известно как сопротивление стабилитрона (R Z ) или импеданс стабилитрона (Z Z ).

Когда стабилитрон работает в области пробоя, увеличение тока вызывает небольшое увеличение напряжения. Это показывает, что стабилитрон имеет небольшое сопротивление переменному току, называемое сопротивлением стабилитрона.

Что такое стабилитроны? | Диоды и выпрямители

Что такое стабилитрон?

Стабилитрон - это особый тип выпрямительного диода, который может выдерживать пробой из-за обратного напряжения пробоя без полного отказа. Здесь мы обсудим концепцию использования диодов для регулирования падения напряжения и то, как стабилитрон работает в режиме обратного смещения для регулирования напряжения в цепи.

Как диоды регулируют падение напряжения

Если мы подключим диод и резистор последовательно к источнику постоянного напряжения так, чтобы диод был смещен в прямом направлении, падение напряжения на диоде останется довольно постоянным в широком диапазоне напряжений источника питания, как показано на рисунке (a) ниже.

Ток через смещенный в прямом направлении PN-переход пропорционален величине e , возведенной в степень прямого падения напряжения. Поскольку это экспоненциальная функция, ток растет довольно быстро при небольшом увеличении падения напряжения.

Другой способ рассмотреть это - сказать, что падение напряжения на диоде с прямым смещением мало изменяется при больших изменениях тока диода. В схеме, показанной на рисунке (а) ниже, ток диода ограничен напряжением источника питания, последовательным резистором и падением напряжения на диоде, которое, как мы знаем, не сильно отличается от 0,7 вольт.

Прямо смещенный кремниевый эталон: (а) одиночный диод, 0,7 В, (б) 10 последовательно соединенных диодов, 7,0 В.

Если бы напряжение источника питания было увеличено, падение напряжения резистора увеличилось бы почти на такую ​​же величину, а напряжение диода упало бы совсем немного.И наоборот, уменьшение напряжения источника питания привело бы к почти одинаковому уменьшению падения напряжения на резисторе с небольшим уменьшением падения напряжения на диодах.

Вкратце, мы могли бы резюмировать это поведение, сказав, что диод регулирует падение напряжения примерно на 0,7 вольт.

Использование регулирования напряжения

Регулировка напряжения - это полезное свойство диода. Предположим, мы строим какую-то схему, которая не может выдерживать колебаний напряжения источника питания, но должна питаться от химической батареи, напряжение которой изменяется в течение срока ее службы.Мы могли бы сформировать схему, как показано выше, и подключить схему, требующую постоянного напряжения на диоде, где он будет получать неизменное 0,7 вольт.

Это, безусловно, сработает, но для правильной работы большинства практичных схем любого типа требуется напряжение источника питания выше 0,7 В. Один из способов увеличить нашу точку стабилизации напряжения - это соединить несколько диодов последовательно, чтобы их индивидуальные прямые падения напряжения по 0,7 вольта добавлялись к каждому, создавая большую сумму.

Например, в нашем примере выше [рисунок (b)], если бы у нас было десять последовательно соединенных диодов, регулируемое напряжение было бы в десять раз 0,7 или 7 вольт.

До тех пор, пока напряжение батареи не опускается ниже 7 вольт, на десятидиодной «стопке» всегда будет падать около 7 вольт.

Как стабилитроны регулируют напряжение

Если требуются более высокие регулируемые напряжения, мы могли бы либо использовать больше диодов последовательно (на мой взгляд, это неэлегантный вариант), либо попробовать принципиально другой подход.

Мы знаем, что прямое напряжение на диоде является довольно постоянной величиной в широком диапазоне условий, как и напряжение обратного пробоя . Напряжение пробоя обычно намного больше прямого напряжения.

Если мы поменяем полярность диода в нашей схеме однодидного стабилизатора и увеличим напряжение источника питания до точки, где диод «сломается» (то есть он больше не сможет выдерживать напряжение обратного смещения, подаваемое на него) диод аналогичным образом регулирует напряжение в этой точке пробоя, не позволяя ему расти дальше.Это показано на рисунке (а) ниже.

(a) Кремниевый малосигнальный диод с обратным смещением выходит из строя при напряжении около 100 В. (b) Символ стабилитрона.

К сожалению, когда обычные выпрямительные диоды «выходят из строя», они обычно разрушаются. Однако можно создать диод особого типа, который выдержит пробой без полного выхода из строя. Этот тип диода называется стабилитроном , и его символ показан на рисунке (b) выше.

При прямом смещении стабилитроны ведут себя так же, как стандартные выпрямительные диоды: у них прямое падение напряжения, которое соответствует «уравнению диода» и составляет около 0.7 вольт. В режиме обратного смещения они не проводят до тех пор, пока приложенное напряжение не достигнет или не превысит так называемое напряжение Зенера , в этот момент диод может проводить значительный ток, и при этом будет пытаться ограничить падение напряжения на это к той точке напряжения Зенера.

Пока мощность, рассеиваемая этим обратным током, не превышает тепловые пределы диода, диод не будет поврежден. По этой причине стабилитроны иногда называют «диодами пробоя».”

Схема стабилитрона

Стабилитроны

производятся с напряжением стабилитрона от нескольких вольт до сотен вольт. Это напряжение стабилитрона незначительно изменяется с температурой, и, как и обычные значения резисторов из углеродного состава, может иметь погрешность от 5 до 10 процентов по сравнению со спецификациями производителя. Однако эта стабильность и точность обычно достаточно хороши для использования стабилитрона в качестве устройства регулятора напряжения в общей цепи питания, показанной на рисунке ниже.

Схема стабилитрона, напряжение стабилитрона = 12,6 В).

Работа диода Зенера Обратите внимание на ориентацию стабилитрона в приведенной выше схеме: диод смещен в обратном направлении, , и это сделано намеренно. Если бы мы сориентировали диод «нормальным» образом, чтобы он был смещен в прямом направлении, он бы упал всего на 0,7 В, как и обычный выпрямительный диод. Если мы хотим использовать свойства обратного пробоя этого диода, мы должны использовать его в режиме обратного смещения.Пока напряжение источника питания остается выше напряжения стабилитрона (в данном примере 12,6 вольт), падение напряжения на стабилитроне будет оставаться на уровне примерно 12,6 вольт.

Как и любой полупроводниковый прибор, стабилитрон чувствителен к температуре. Чрезмерная температура разрушит стабилитрон, и, поскольку он снижает напряжение и проводит ток, он производит собственное тепло в соответствии с законом Джоуля (P = IE). Следовательно, нужно быть осторожным при проектировании схемы регулятора таким образом, чтобы не превышалась допустимая мощность рассеиваемой мощности диода.Достаточно интересно, что когда стабилитроны выходят из строя из-за чрезмерного рассеивания мощности, они обычно выходят из строя , закорачивая , а не открываясь. Диод, вышедший из строя таким образом, легко обнаруживается: он падает почти до нуля при смещении в любую сторону, как кусок проволоки.

Математический анализ схемы регулирования стабилитрона

Давайте рассмотрим схему стабилизации стабилитрона математически, определив все напряжения, токи и рассеиваемую мощность. Взяв ту же форму схемы, показанную ранее, мы выполним вычисления, предполагая, что напряжение Зенера равно 12.6 вольт, напряжение источника питания 45 вольт и номинальное сопротивление последовательного резистора 1000 Ом (мы будем считать, что напряжение стабилитрона равно , точно 12,6 вольт, чтобы не квалифицировать все цифры как «приблизительные» на рисунке ( а) ниже

Если напряжение стабилитрона составляет 12,6 вольт, а напряжение источника питания составляет 45 вольт, на резисторе будет падать 32,4 вольт (45 - 12,6 вольт = 32,4 вольт). Падение 32,4 В на 1000 Ом дает 32,4 мА тока в цепи. (Рисунок ниже (b))

(a) Зенеровский стабилизатор напряжения с резистором 1000 Ом.(б) Расчет падений напряжения и тока.

Мощность рассчитывается путем умножения тока на напряжение (P = IE), поэтому мы можем довольно легко рассчитать рассеиваемую мощность как для резистора, так и для стабилитрона:

Подойдет стабилитрон с номинальной мощностью 0,5 Вт, а также резистор с мощностью рассеяния 1,5 или 2 Вт.

Схема стабилитрона с более высоким сопротивлением

Если чрезмерное рассеяние мощности вредно, то почему бы не спроектировать схему с минимальным возможным рассеянием? Почему бы просто не рассчитать резистор на очень высокое значение сопротивления, тем самым резко ограничив ток и сохранив показатели рассеиваемой мощности на очень низком уровне? Возьмем, например, эту схему с резистором 100 кОм вместо резистора 1 кОм.Обратите внимание, что как напряжение источника питания, так и напряжение стабилитрона диода на рисунке ниже идентичны последнему примеру:

Стабилизатор стабилитрона с резистором 100 кОм.

При токе только 1/100 от того, что было раньше (324 мкА вместо 32,4 мА), оба значения рассеиваемой мощности должны быть в 100 раз меньше:

Рекомендации по сопротивлению нагрузки

Кажется идеальным, не правда ли? Меньшая рассеиваемая мощность означает более низкие рабочие температуры как диода, так и резистора, а также меньшие потери энергии в системе, верно? Более высокое значение сопротивления действительно снижает уровень рассеиваемой мощности в цепи, но, к сожалению, создает другую проблему.Помните, что цель схемы регулятора - обеспечить стабильное напряжение для другой схемы . Другими словами, мы в конечном итоге собираемся запитать что-то с напряжением 12,6 вольт, и это что-то будет иметь собственное потребление тока.

Меньшее значение сопротивления падающему резистору

Рассмотрим нашу первую схему стабилизатора, на этот раз с нагрузкой 500 Ом, подключенной параллельно стабилитрону на рисунке ниже.

Стабилизатор стабилитрона с последовательным резистором 1000 Ом и нагрузкой 500 Ом.

Если на нагрузке 500 Ом поддерживается 12,6 В, нагрузка потребляет ток 25,2 мА. Чтобы «падающий» резистор 1 кОм упал на 32,4 В (уменьшив напряжение источника питания с 45 В до 12,6 на стабилитроне), он все равно должен проводить ток 32,4 мА. Это оставляет 7,2 мА тока через стабилитрон.

Рассмотрение резистора с пониженным сопротивлением повышенного значения

Теперь рассмотрим нашу схему «энергосберегающего» регулятора с понижающим резистором 100 кОм, обеспечивающую питание той же нагрузки 500 Ом.Что он должен делать, так это поддерживать 12,6 вольт на нагрузке, как и в последней цепи. Однако, как мы увидим, не может выполнить эту задачу. (Рисунок ниже)

Нерегуляторный стабилитрон с последовательным резистором 100 кОм и нагрузкой 500 Ом.>

При большем значении понижающего резистора на месте будет только около 224 мВ напряжения на нагрузке 500 Ом, что намного меньше ожидаемого значения 12,6 вольт! Почему это? Если бы у нас действительно было 12,6 вольт на нагрузке, она бы потребляла 25.2 мА тока, как и раньше. Этот ток нагрузки должен был пройти через последовательный понижающий резистор, как это было раньше, но с новым (гораздо большим!) Понижающим резистором на месте падение напряжения на этом резисторе при токе 25,2 мА, проходящем через него, составит 2520 вольт! Поскольку очевидно, что у нас не так много напряжения, обеспечиваемого батареей, этого не может произойти.

Анализ более высокого сопротивления падению без стабилитрона

Ситуацию легче понять, если мы временно удалим стабилитрон из схемы и проанализируем поведение только двух резисторов на рисунке ниже.

Нерегулятор со снятым стабилитроном.

И понижающий резистор 100 кОм, и сопротивление нагрузки 500 Ом включены последовательно друг с другом, что дает общее сопротивление цепи 100,5 кОм. При общем напряжении 45 В и общем сопротивлении 100,5 кОм закон Ома (I = E / R) говорит нам, что ток будет 447,76 мкА. Рассчитав падение напряжения на обоих резисторах (E = IR), мы получаем 44,776 В и 224 мВ соответственно.

Если бы мы переустановили стабилитрон в этот момент, он также «увидел бы» 224 мВ, параллельно сопротивлению нагрузки.Это намного ниже напряжения пробоя стабилитрона диода, поэтому он не «пробивается» и не проводит ток. Если уж на то пошло, при таком низком напряжении диод не будет проводить, даже если он будет смещен в прямом направлении! Таким образом, диод перестает регулировать напряжение. Чтобы «активировать» его, необходимо упасть минимум 12,6 вольт.

Аналитическая методика удаления стабилитрона из схемы и проверки наличия достаточного напряжения, чтобы заставить его проводить, является правильной. Тот факт, что стабилитрон включен в цепь, не гарантирует, что на нем всегда будет падать полное напряжение стабилитрона! Помните, что стабилитроны работают за счет ограничения напряжения до некоторого максимального уровня; они не могут заменить из-за отсутствия напряжения.

Правило в работе стабилитрона

Таким образом, любая схема стабилизации на стабилитронах будет работать до тех пор, пока сопротивление нагрузки равно некоторому минимальному значению или превышает его. Если сопротивление нагрузки слишком низкое, он будет потреблять слишком большой ток, слишком большое падение напряжения на последовательном понижающем резисторе, оставляя недостаточное напряжение на стабилитроне, чтобы заставить его проводить. Когда стабилитрон перестает проводить ток, он больше не может регулировать напряжение, и напряжение нагрузки упадет ниже точки регулирования.

Расчет сопротивления нагрузки для некоторых резисторов падения

Однако наша схема регулятора с понижающим резистором 100 кОм должна быть подходящей для некоторого значения сопротивления нагрузки. Чтобы найти это приемлемое значение сопротивления нагрузки, мы можем использовать таблицу для расчета сопротивления в последовательной цепи с двумя резисторами (без диода), вставив известные значения общего напряжения и сопротивления падающего резистора и рассчитав ожидаемое напряжение нагрузки 12,6 В. :

С общим напряжением 45 В и 12.6 вольт на нагрузке, у нас должно быть 32,4 вольт на R , понижая :

При 32,4 В на падающем резисторе и сопротивлении 100 кОм ток через него будет 324 мкА:

Поскольку цепь является последовательной, ток во всех компонентах в любой момент времени одинаков:

Расчет сопротивления нагрузки теперь является простым делом закона Ома (R = E / I), что дает нам 38,889 кОм:

Таким образом, если сопротивление нагрузки равно 38.889 кОм, на нем будет 12,6 вольт, диод или без диода. Любое сопротивление нагрузки менее 38,889 кОм приведет к напряжению нагрузки менее 12,6 В, диод или отсутствие диода. При установленном диоде напряжение нагрузки будет регулироваться максимум до 12,6 В для любого сопротивления нагрузки больше , чем 38,889 кОм.

При исходном значении падающего резистора 1 кОм наша схема регулятора смогла адекватно регулировать напряжение даже при сопротивлении нагрузки всего 500 Ом.Мы видим компромисс между рассеиваемой мощностью и допустимым сопротивлением нагрузки. Понижающий резистор большего номинала дал нам меньше рассеиваемой мощности за счет повышения допустимого минимального значения сопротивления нагрузки. Если мы хотим регулировать напряжение для низких сопротивлений нагрузки, схема должна быть подготовлена ​​к более высокому рассеиванию мощности.

Как стабилитрон регулирует напряжение

Стабилитроны

регулируют напряжение, выступая в качестве дополнительных нагрузок, потребляя больше или меньше тока, если это необходимо для обеспечения постоянного падения напряжения на нагрузке.Это аналогично регулированию скорости автомобиля путем торможения, а не путем изменения положения дроссельной заслонки: это не только расточительно, но и тормоза должны быть сконструированы так, чтобы справляться со всей мощностью двигателя, когда условия движения этого не требуют.

Несмотря на эту фундаментальную неэффективность конструкции, схемы стабилизаторов на стабилитронах получили широкое распространение благодаря своей простоте. В приложениях с большой мощностью, где неэффективность недопустима, применяются другие методы регулирования напряжения.Но даже в этом случае небольшие схемы на основе стабилитронов часто используются для обеспечения «эталонного» напряжения для управления более эффективной схемой усилителя, управляющей основной мощностью.

Напряжение общего стабилитрона

Стабилитроны

производятся со стандартными номинальными напряжениями, указанными в таблице ниже. В таблице «Общие напряжения стабилитронов» указаны стандартные напряжения для компонентов мощностью 0,3 Вт и 1,3 Вт. Мощность соответствует размеру кристалла и корпуса и представляет собой мощность, которую диод может рассеять без повреждений.

Напряжение на обычных стабилитронах

0.5Вт
2,7 В 3,0 В 3,3 В 3,6 В 3,9 В 4,3 В 4,7 В
5,1 В 5,6 В 6,2 В 6,8 В 7,5 В 8,2 В 9,1 В
10 В 11 В 12 В 13 В 15 В 16 В 18 В
20 В 24 В 27V 30 В
1.3W
4,7 В 5,1 В 5,6 В 6,2 В 6,8 В 7,5 В 8,2 В
9,1 В 10 В 11 В 12 В 13 В 15 В 16 В
18V 20 В 22V 24 В 27V 30 В 33В
36V 39V 43V 47V 51V 56V 62V
68V 75 В 100 В 200 В

Ограничитель стабилитрона: Схема ограничения, которая ограничивает пики формы волны приблизительно при напряжении стабилитрона диодов.В схеме на рисунке ниже два стабилитрона соединены последовательно друг с другом, чтобы симметрично ограничить форму волны почти при напряжении стабилитрона. Резистор ограничивает ток, потребляемый стабилитронами, до безопасного значения.

* SPICE 03445.eps D1 4 0 диод D2 4 2 диода R1 2 1 1.0k V1 1 0 SIN (0 20 1k). Модель диода d bv = 10 .tran 0,001 м 2 м. Конец 

Ограничитель стабилитрона:

Напряжение пробоя стабилитрона для диодов устанавливается равным 10 В параметром модели диода «bv = 10» в списке цепей spice на рисунке выше.Это приводит к срезанию стабилитронов при напряжении около 10 В. Подключенные друг к другу диоды срезают оба пика. Для положительного полупериода верхний стабилитрон смещен в обратном направлении, выходя из строя при напряжении стабилитрона 10 В. Нижний стабилитрон падает примерно на 0,7 В, поскольку он смещен в прямом направлении. Таким образом, более точный уровень отсечения составляет 10 + 0,7 = 10,7 В. Аналогичное отрицательное ограничение полупериода происходит при -10,7 В. (Рисунок ниже) показывает уровень ограничения при немного более ± 10 В.

Ограничитель стабилитрона: вход v (1) ограничивается формой волны v (2).

ОБЗОР:

Стабилитроны
  • предназначены для работы в режиме обратного смещения, обеспечивая относительно низкий стабильный пробой, или напряжение Зенера, , при котором они начинают проводить значительный обратный ток.
  • Стабилитрон может работать как регулятор напряжения, действуя как дополнительная нагрузка, потребляя больше тока от источника, если напряжение слишком высокое, и меньше, если оно слишком низкое.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

стабилитрон | Викитроника | Fandom

Эти диоды изготовлены из сильно легированных полупроводников типа N и P, количество легирования полупроводников остается различным, так что их напряжения пробоя различны.Таким образом, стабилитроны разных уровней напряжения имеют разную емкость напряжения.

Рабочие []

Стабилитрон

работает в режиме обратного смещения, а в режиме прямого смещения он работает как диод с PN переходом. Стабилитрон при прямом смещении ведет себя как обычный диод. При обратном смещении через него протекает ток утечки. Этот ток утечки увеличивается с увеличением обратного напряжения. Этот ток утечки внезапно возрастет после определенного обратного напряжения. Это напряжение известно как напряжение пробоя стабилитрона или напряжение стабилитрона, а это внезапное увеличение тока известно как ток стабилитрона.Например, если стабилитрон на 6 Вольт последовательно соединен с батареей на 6 В, то эффект прямого и обратного смещения будет следующим: В стабилитроне в положении, показанном на рис., Будет протекать ток, но не будет протекания тока в стабилитроне в положении, показанном на рис. тогда в стабилитроне вначале будет ток утечки. Если обратное напряжение повышается ступенчато, то при определенном обратном напряжении произойдет резкое повышение тока через стабилитрон.На рис. В верхнем положении графика показаны изменения прямого тока при прямом напряжении.

использует

Стабилитрон

, из-за пробоя 555555 при обратном смещении, используется при стабилизации напряжения. Для этого стабилитрон подключен параллельно источнику питания. Он состоит из транзистора n p n на задней стороне выпрямителя.

Графический символ []

Графический символ этих типов диодов напоминает обычный диод, за исключением того, что катод имеет Z-образную форму, а не прямую линию.

Строительство []

Диод, полученный путем подключения очень тонкого провода (его конец очень острый) к полупроводниковому материалу, известен как диод с точечным контактом. Провод зачищается механически или электрически. Площадь точечного диода очень мала.

Работа стабилитрона зависит от сильного легирования его p-n перехода. Область обеднения, сформированная в диоде, очень тонкая (<0,000001 м), и, следовательно, электрическое поле очень велико (около 500000 В / м) даже при небольшом обратном напряжении смещения около 5 В, что позволяет электронам туннелировать из валентной зоны. материала p-типа в зону проводимости материала n-типа.

В атомном масштабе это туннелирование соответствует переносу электронов валентной зоны в состояния пустой зоны проводимости; в результате уменьшенного барьера между этими зонами и высоких электрических полей, которые индуцируются из-за относительно высокого уровня легирования с обеих сторон. [2] Напряжение пробоя можно довольно точно контролировать в процессе легирования. В то время как допуски в пределах 0,05% доступны, наиболее широко используемые допуски составляют 5% и 10%. Напряжение пробоя для широко доступных стабилитронов может варьироваться от 1 до 1.От 2 до 200 вольт. 117.203.88.183 18:00, 15 декабря 2012 г. (UTC) S.Pramodh

Особенности диода []

Это зависит от факторов, * от площади стыка участка проводом, вставленного в него, * от давления, прилагаемого для соединения провода, * от конструкции полупроводникового кристалла. Но чаще всего в этих типах диодов наблюдается больший ток утечки, большее сопротивление перехода и слабый обратный пробой.

Практически точечный, контактный диод выполнен удерживанием 0.Провод шириной 005 дюймов на слое германия N-типа, и через него на мгновение пропускается большой ток. В результате возникает высокая температура. Из-за температуры часть электронов попадает в германий N-типа из нитевидной проволоки, и соответствующая область превращается в дырки. Таким образом, там, где проволока кошачьих усов контактирует с германием N-типа, эта область становится германием P-типа, эта область германия p-типа очень мала, из-за чего в таких диодах очень малая емкость. Это причина, по которой используются эти типы диодов, - это микроволновое поле для обнаружения сигнала,

  • Эти диоды выполнены из стекла, а на их катодах нанесено красное кольцо.

OA70, OA79, OA85, IN34, IN4148 и т. Д. Являются такими диодами.

Использование системы цветовой кодировки для малосигнальных диодов: []

На некоторых малосигнальных диодах значение не записано. Для отображения их значения используется система цветового кода. Эта система цветового кода бывает двух типов.

  1. Система JEDEC:

Для определения значения малосигнальных диодов типа IN:

  • В этой системе четыре цифры представлены четырьмя цветами вместе с кодом IN.
  • Цветовые коды отсчитываются со стороны катода.
  • В системе цветовой кодировки числа, представленные цветами, имеют следующий вид:
  1. Система проэлектронов:

В этой системе есть две широкие полоски на катодной стороне. Первая и вторая широкие полосы показывают код диодов, третья и четвертая цветные полосы показывают номер диода.

Диод, сохраняющий свойства отрицательного сопротивления и используемый для переключения на уровне СВЧ-частоты, известен как туннельный диод.)

Что такое туннелирование? []

Ответ: В любом полупроводниковом материале, когда из него проходит какая-либо частица, энергия которой недостаточна для пересечения сопротивления перехода полупроводникового материала, этот процесс известен как туннелирование. Означает, что если волны, создаваемые этими частицами, подаются на входе, то его максимальная часть будет заблокирована сопротивлением перехода, но часть его достигнет на выходе. Этот процесс известен как процесс туннелирования, Использование свойства отрицательного сопротивления полупроводникового оборудования для переключения на уровне очень высокой частоты (IGHZ TO 10 GHZ) известно как туннелирование.

Что такое свойство отрицательного сопротивления? []

Когда полупроводниковое оборудование с особой структурой смещено в прямом направлении, то вначале ток на выходе увеличивается с увеличением напряжения. Но после определенной самой низкой точки выходной ток уменьшается при увеличении прямого напряжения. Если прямое напряжение непрерывно увеличивается с этой точки, то ток будет уменьшаться до определенного значения, а затем он снова начнет увеличиваться. Таким образом, состояние, при котором выходной ток уменьшается с увеличением напряжения прямого смещения, известно как свойство отрицательного сопротивления.Это свойство полупроводникового оборудования известно как эффект отрицательного сопротивления.

Структура []

Диод, изготовленный из точечного полупроводникового материала P и N, в котором легирование лагера типа P и N в 1001) раз больше, чем при обычном легировании, в результате этого сильного легирования ширина перехода уменьшается (около 6,01 мкм) и поэтому некоторые частицы, которые не обладают достаточной энергией, чтобы пересечь сопротивление перехода, также проходят через этот тонкий переход.

Рабочие []

Когда обычный диод смещен в прямом направлении, он дает ток на выходе при определенном фиксированном напряжении и туннельном диоде. проводит сильно при напряжении ниже этого напряжения.Например, простой диод не проводит до 8 () МВ, тогда как туннельный диод имеет ток около 15 мА при этом напряжении. В случае обратного смещения ток через обычный диод не протекает, а через туннельный диод.

Использует []

Благодаря своей способности к высокому переключению и свойству отрицательного сопротивления туннельный диод используется в различных вычислительных процессах в усилителях, генераторах или компьютерах. 5. Диод с горячей несущей или диод Шоттки:

  • конструкция: Как и другие диоды, диоды Шоттки также имеют два слоя, но материалы, используемые в этих слоях, немного отличаются.Эти диоды имеют один слой из полупроводникового материала N-типа, а другой - из хорошего проводящего материала (золото, серебро, платина).

Так как здесь используется хороший проводник вместе с полупроводником N-типа, то здесь носителями тока будут только электроны.

  • Работа: Когда диод с барьером Шоттки смещен в прямом направлении, отрицательная клемма батареи подключается к полупроводниковому концу диода N-типа, а положительная клемма батареи подключается к проводному концу диода.Из-за отталкивания отрицательной клеммой АКБ. Электроны N-типа быстро пересекают переход и попадают на электронную орбиту ближайшего атома проводника. В то же время положительный полюс батареи притягивает электроны, исходящие от полупроводника N-типа. Таким образом, ток протекает через диод Шоттки диода с горячей несущей, но как только прямое смещение прекращается, ток на выходе также прекращается. Причина в том, что в таких диодах нет неосновных носителей, поэтому не остается шансов на ток утечки.

Использует []

Особенностью этих диодов является выход при прямом смещении. Благодаря этому свойству эти диоды используются для модуляции и обнаружения V.H.F., U.H.F. и микроволновый уровень. Переключение высокого уровня также осуществляется с помощью этих диодов. Пример: IN5825 - это диод с горячей несущей (диод Шоттки), который дает на выходе ток 5 А при прямом смещении всего 0,38 В. Но как только это прямое смещение снимается, ток также перестает протекать через него.

  • ОБЗОР:
  • Стабилитроны
  • предназначены для работы в режиме обратного смещения, обеспечивая относительно низкий, стабильный пробой, или стабилитрон , при котором они начинают проводить значительный обратный ток.
  • Стабилитрон может работать как регулятор напряжения, действуя как дополнительная нагрузка, потребляя больше тока от источника, если напряжение слишком высокое, и меньше, если оно слишком низкое.

Расчет номинальной мощности стабилитрона - Apogeeweb

Введение

Максимальная мощность, которую стабилитрон может рассеять без каких-либо повреждений, известна как его номинальная мощность, которая определяется как произведение напряжения на диоде и протекающего через него тока.Мощность = напряжение x ток. Если стабилитрон имеет напряжение стабилитрона VZ, равное 5,1 Вт, вы можете использовать номинальную мощность, чтобы узнать, сколько тока может протекать через диод, по формуле IZM = PZM / VZ (PZM - максимальная рассеиваемая мощность диода, и VZ - напряжение стабилитрона.).

Анализ расчета номинальной мощности

Стабилитроны

могут проводить обратное смещение в области пробоя без повреждения. Стабилитроны имеют фиксированное напряжение, выше которого они начинают проводить обратное смещение, называемое напряжением Зенера.Напряжение стабилитрона фиксировано для одного диода, различается для разных стабилитронов и зависит от концентрации легирования и т. Д. (См. Технические данные, чтобы узнать напряжение стабилитрона). Стабилитроны имеют стабилитроны от 2,4 В до 200 В

Итак, теперь переменным параметром является текущий (в обратном направлении). Через диод должен протекать минимальный ток, чтобы установилось напряжение стабилитрона и диод начал проводить.

Где

Минимальная номинальная мощность = минимальный ток стабилитрона x напряжение пробоя стабилитрона

Минимальная номинальная мощность стабилитрона - это минимальная мощность, необходимая устройству для проведения.

и

Максимальная номинальная мощность = (максимальный ток нагрузки + минимальный ток стабилитрона) x напряжение пробоя стабилитрона

Максимальная номинальная мощность - это максимальная мощность, с которой диод может работать без повреждения перехода.

Кроме того, стабилитроны обычно доступны в диапазонах мощности 250 мВт, 300 мВт, 500 мВт, 1 Вт, 3 Вт, 5 Вт.

Разъяснение видео

Как увеличить номинальную мощность стабилитрона

Люди тоже спрашивают (Q&A)

1.Что такое номинальная мощность стабилитрона?
Номинальная мощность: максимальная мощность, которую может рассеять стабилитрон; дается произведением напряжения на диоде и протекающего через него тока. Типичные значения: 400 мВт, 500 мВт, 1 Вт и 5 Вт; для поверхностного монтажа типичны 200 мВт, 350 мВт, 500 мВт и 1 Вт. Допуск по напряжению: обычно ± 5%.

2. Как рассчитывается номинальная мощность стабилитрона?
Номинальная мощность стабилитрона - это величина напряжения и тока, с которыми диод может справиться.Мощность = напряжение x ток. Если стабилитрон имеет напряжение стабилитрона VZ, равное 5,1 Вт, вы можете использовать номинальную мощность, чтобы узнать, сколько тока может протекать через диод, по формуле IZM = PZM / VZ.

3. Что особенного в стабилитроне?
Стабилитрон - это кремниевый полупроводниковый прибор, который позволяет току течь в прямом или обратном направлении. Диод состоит из специального сильно легированного p-n перехода, предназначенного для проведения в обратном направлении при достижении определенного заданного напряжения.

4. Что произойдет, если стабилитрон смещен в прямом направлении?
Стабилитрон похож на сигнальный диод общего назначения. При смещении в прямом направлении он ведет себя так же, как обычный сигнальный диод, но когда на него подается обратное напряжение, напряжение остается постоянным для широкого диапазона токов. ... Обратное напряжение может увеличиваться до тех пор, пока не достигнет напряжения пробоя диода.

5. Как рассчитывается рассеиваемая мощность стабилитрона?
Мощность рассчитывается путем умножения тока на напряжение (P = IE), поэтому мы можем довольно легко рассчитать рассеиваемую мощность как для резистора, так и для стабилитрона: стабилитрон с номинальной мощностью 0.Достаточно 5 Вт, равно как и резистора с мощностью рассеяния 1,5 или 2 Вт.

6. Какой ток выдерживает стабилитрон?
Ток: ток IZM стабилитрона - это максимальный ток, который может протекать через стабилитрон при его номинальном напряжении VZ. Обычно для работы диода также требуется минимальный ток. Как правило, это может составлять от 5 до 10 мА для типичного устройства с выводами на 400 мВт.

7. Как рассчитать номинальную мощность диода?
Номинальная мощность стабилитрона указывает максимальную мощность, которую диод может безопасно рассеивать.В приведенной ниже формуле мощность равна напряжению, умноженному на ток. IZM - это максимальный ток, который может протекать через диод, PZM - максимальная рассеиваемая мощность диода, а VZ - напряжение стабилитрона.

8. Что такое эффект Зенера и эффект лавины?
Эффект Зенера отличается от лавинного пробоя. Лавинный пробой происходит в слаболегированных переходах, которые создают более широкую обедненную область. Повышение температуры в переходе увеличивает вклад эффекта Зинера в пробой и уменьшает вклад лавинного эффекта.

9. Для чего нужен стабилитрон? Стабилитроны
используются для регулирования напряжения, в качестве опорных элементов, ограничителей перенапряжения, а также в коммутационных устройствах и схемах ограничителей. Напряжение нагрузки равно напряжению пробоя VZ диода. Последовательный резистор ограничивает ток через диод и снижает избыточное напряжение, когда диод проводит.

10. Как стабилитрон работает как регулятор напряжения? Стабилитроны
можно использовать для получения стабилизированного выходного напряжения с низким уровнем пульсаций в условиях переменного тока нагрузки.Пропуская небольшой ток через диод от источника напряжения через подходящий токоограничивающий резистор (RS), стабилитрон будет проводить ток, достаточный для поддержания падения напряжения на уровне Vout.

Стабилитрон

- определение, VI характеристики и пробой стабилитрона

А нормальный п-п переходной диод пропускает электрический ток только в прямом направлении. предвзятое состояние.Когда прямое смещение приложено к диод p-n перехода, он позволяет большое количество электрического ток и блокирует только небольшое количество электрического тока. Следовательно, нападающий смещенный диод на p-n переходе предлагает лишь небольшой сопротивление электрическому току.

Когда обратное смещенное напряжение подается на диод p-n перехода, он блокирует большое количество электрического тока и позволяет только небольшое количество электрического тока.Следовательно, обратное смещенный диод на p-n переходе обеспечивает большое сопротивление электрический ток.

Если Напряжение обратного смещения, приложенное к диоду с p-n переходом, равно сильно увеличивается, происходит внезапное повышение тока. На это точка, небольшое повышение напряжения быстро увеличивает электрический ток. Этот внезапное повышение электрического тока вызывает пробой перехода называется стабилитрон или лавинный пробой.Напряжение, при котором Пробой стабилитрона называется напряжением стабилитрона, и внезапное увеличение тока называется током стабилитрона.

А нормальный диод p-n перехода не работает при пробое области, потому что избыточный ток необратимо повреждает диод. Обычные диоды с p-n переходом не предназначены для работают в области обратного пробоя.Следовательно, нормальный p-n переходной диод не работает в области обратного пробоя.

Что такое стабилитрон?

А стабилитрон - это особый тип устройства, предназначенный для работы в области пробоя стабилитрона. Стабилитроны работают как обычно Диоды с p-n переходом в прямом смещении. Когда на стабилитрон подается напряжение прямого смещения. допускает большое количество электрического тока и блоков только небольшое количество электрического тока.

Стабилитрон

сильно нагружен. легированный, чем обычный диод с p-n переходом. Следовательно, у него очень тонкое истощение область. Следовательно, стабилитроны позволяют увеличить электрическую мощность. ток, чем нормальные диоды с p-n переходом.

Стабилитрон

позволяет электрический ток в прямом направлении, как обычный диод но также пропускает электрический ток в обратном направлении, если приложенное обратное напряжение больше стабилитрона Напряжение.Стабилитрон всегда подключен в обратном направлении направление, потому что он специально разработан для работы в обратное направление.

стабилитрон определение

А Стабилитрон - это полупроводниковый прибор с p-n переходом, разработанный работать в области обратного пробоя. Поломка напряжение стабилитрона тщательно настраивается путем управления уровень легирования при производстве.

название стабилитрон был назван в честь американского физика Кларенс Мелвин Зенер, открывший эффект Зенера. Зинер диоды являются основными строительными блоками электронных схем. Они широко используются во всех видах электронного оборудования. Стабилитроны в основном используются для защиты электронных схем. от перенапряжения.

Обрыв в стабилитрон

Там Есть два типа областей обратного пробоя в стабилитроне: лавинный пробой и пробой стабилитрона.

Лавина поломка

лавина пробой происходит как в нормальных диодах, так и в стабилитронах при высокое обратное напряжение. Когда приложено высокое обратное напряжение к диоду p-n перехода, свободный электроны (неосновные носители) получают большое количество энергии и разогнался до больших скоростей.

свободные электроны, движущиеся с высокой скоростью, будут сталкиваться с атомами и выбить больше электронов.Эти электроны снова ускоряется и сталкивается с другими атомами. Из-за этого непрерывное столкновение с атомами, большое количество свободных электроны генерируются. В результате электрический ток в диод быстро увеличивается. Это внезапное увеличение электрический ток может навсегда разрушить нормальный диод. Однако лавинные диоды нельзя разрушить, потому что они тщательно спроектированы для работы в лавинных условиях область.Лавинный пробой происходит в стабилитронах с напряжение стабилитрона (В z ) более 6 В.

Зенера поломка

Пробой стабилитрона происходит в сильно легированных диодах с p-n переходом из-за их узкой области истощения. При обратном смещенное напряжение, приложенное к диоду, увеличивается, узкая область истощения генерирует сильное электрическое поле.

Когда обратное смещенное напряжение, приложенное к диоду, достигает близкое к напряжению стабилитрона электрическое поле в область обеднения достаточно сильна, чтобы вытягивать электроны из их валентная группа. Валентные электроны, которые получают достаточная энергия от сильного электрического поля область истощения нарушит связь с родительским атомом.Балдахин электроны, которые разрывают связь с родительским атомом, будут становятся свободными электронами. Эти свободные электроны несут электрический ток. ток из одного места в другое. При пробое стабилитрона области, небольшое увеличение напряжения будет быстро увеличиваться электрический ток.

  • Зенер пробой происходит при низком обратном напряжении, а лавинный пробой происходит при высоком обратном напряжении.
  • Зенера в стабилитронах происходит пробой, потому что у них очень тонкая область истощения.
  • Разбивка Область является нормальной рабочей областью стабилитрона.
  • Зенера Пробой происходит в стабилитронах при напряжении стабилитрона (В z ) менее 6В.

Символ стабилитрон

Символ стабилитрона показан на рисунке ниже.Стабилитрон состоит из двух выводов: катода и анода.

В стабилитрон, электрический ток течет от обоих анодов к катод и катод к аноду.

символ стабилитрона аналогичен нормальному p-n переходу диодный, но с загнутыми краями на вертикальной полосе.

VI характеристики стабилитрона

VI характеристики стабилитрона показаны ниже. фигура.При подаче напряжения прямого смещения на стабилитрон диод, работает как обычный диод. Однако при обратном на стабилитрон подается смещенное напряжение, он работает в по-разному.

Когда Обратно смещенное напряжение подается на стабилитрон, он допускает только небольшое количество тока утечки до тех пор, пока напряжение меньше напряжения стабилитрона.При обратном смещении напряжение, приложенное к стабилитрону, достигает напряжения стабилитрона, он начинает пропускать большое количество электрического тока. На это точка, небольшое увеличение обратного напряжения быстро увеличивает электрический ток. Из-за этого внезапного подъема в электрическом токе происходит пробой, называемый стабилитроном авария. Однако стабилитрон демонстрирует управляемый поломка, приводящая к повреждению устройства.

Напряжение пробоя стабилитрона зависит от количество примененного допинга. Если диод сильно легирован, Пробой стабилитрона происходит при малых обратных напряжениях. С другой стороны, если диод слабо легирован, пробой стабилитрона возникает при высоких обратных напряжениях. Доступны стабилитроны с напряжениями стабилитрона в диапазоне 1.От 8 В до 400 В.

Преимущества стабилитрона

  • Мощность рассеивающая способность очень высокая
  • Высокая точность
  • Малый размер
  • Низкая стоимость

Приложения стабилитрона

  • Обычно используется как источник опорного напряжения
  • Стабилитроны
  • используются в стабилизаторах напряжения или шунтах. регуляторы.
  • Стабилитроны используются в коммутационных операциях
  • Стабилитроны
  • используются в схемах отсечки и зажима.
  • Стабилитроны используются в различных схемах защиты

Типы диодов

различные типы диодов следующие:

  1. Зенера диод
  2. Лавинный диод
  3. Фотодиод
  4. Свет Излучающий диод
  5. Лазер диод
  6. Туннель диод
  7. Шоттки диод
  8. Варактор диод
  9. П-Н переходной диод

Что такое стабилитрон и как он работает? - Учебники

Вы когда-нибудь задумывались, почему мы используем стабилитрон с обратным смещением, в отличие от обычных диодов, которые работают с прямым смещением? Это потому, что стабилитроны предназначены для «выхода из строя».Большинство из нас знакомы с диодами общего назначения и выпрямительными диодами. Однако существует несколько других типов диодов, предназначенных для специальных целей. Один из них - стабилитрон. Итак, что такое стабилитрон и чем он отличается от обычного диода?

Что такое стабилитрон?

Стабилитрон - это кремниевый pn переходное устройство, которое позволяет току течь не только в прямом направлении, как в типичных кремниевых или германиевых диодах, но также и в обратном направлении, если напряжение больше, чем напряжение пробоя, известное как Напряжение перегиба стабилитрона или просто Напряжение стабилитрона , названное в честь Кларенса Мелвина Зенера, открывшего это электрическое свойство.

На схематическом изображении обычного диода есть прямая линия, представляющая катод, а у стабилитрона - изогнутая линия, напоминающая букву Z (для стабилитрона). В этом есть смысл, правда?

Как работает стабилитрон?

Стабилитроны действуют как обычные диоды при прямом смещении. Тем не менее, они разработаны, чтобы позволить току течь в обратном направлении, когда обратное напряжение становится равным его номинальному напряжению стабилитрона. В отличие от обычных выпрямительных диодов, которые никогда не предназначены для работы при пробое или близком к нему, стабилитрон предназначен для работы в области пробоя.Пробой диода происходит, когда на диод подается обратное напряжение смещения.

Стабилитрон, работающий при пробое, действует как регулятор напряжения, поскольку он поддерживает почти постоянное напряжение, равное напряжению стабилитрона, на своих выводах в заданном диапазоне значений обратного тока. Это постоянное падение напряжения на стабилитроне, вызванное обратным пробоем, представлено символом постоянного напряжения.

Лавина и пробой стабилитрона

Чтобы лучше понять, как работают стабилитроны, давайте рассмотрим два типа обратного пробоя в стабилитроне: лавинный пробой и пробой стабилитрона .Лавинный эффект возникает как в выпрямителе, так и в стабилитронах при достаточно высоком обратном напряжении. С другой стороны, пробой стабилитрона происходит в стабилитроне при малых обратных напряжениях. Стабилитрон сильно легирован для уменьшения напряжения пробоя. Это вызывает очень тонкую область истощения. В результате внутри обедненной области существует сильное электрическое поле. Вблизи напряжения пробоя стабилитрона поле в достаточной степени способно вытаскивать электроны из их валентных групп и создавать ток.

Стабилитроны с напряжением пробоя менее 5 В обычно работают при пробое стабилитрона. Устройства с пробивным напряжением выше примерно 5 В обычно работают при лавинном пробое. Однако оба типа называются стабилитронами. Стабилитроны коммерчески доступны с напряжениями пробоя от менее 1 В до более 250 В с указанными допусками от 1% до 20%.

Характеристики пробоя

По мере увеличения обратного напряжения (V R ) обратный ток (I R ) также увеличивается, пока не достигнет тока перегиба стабилитрона (I ZK ).На этот раз начинается эффект пробоя. Импеданс стабилитрона (Z Z ), который представляет собой внутреннее сопротивление стабилитрона, начинает уменьшаться по мере быстрого увеличения обратного тока.

От нижней части изгиба напряжение пробоя стабилитрона (V Z ) остается относительно постоянным, хотя оно немного увеличивается по мере увеличения тока стабилитрона (I Z ). V Z обычно указывается при значении тока Зенера, известном как испытательный ток.

Технические характеристики стабилитрона

Чтобы гарантировать правильную работу стабилитрона в цепи, мы должны учитывать эти важные характеристики.

1. Напряжение стабилитрона (В Z )
Напряжение пробоя, обычно называемое напряжением стабилитрона, представляет собой напряжение с обратным смещением, которое заставляет диод проводить ток. Напряжения пробоя обычно составляют от 2,4 В до сотен вольт.

2. Испытательный ток (I Z )
Для каждого стабилитрона напряжение стабилитрона (V Z ) измеряется при заданном испытательном токе стабилитрона (I Z ). Например, напряжение стабилитрона для 1N4732A находится в диапазоне от 4,465 до 4,935 В с типичным значением 4,7 В при испытательном токе 53 мА.

3. Ток колена (I ZK )
Для поддержания диода в пробое для регулирования напряжения требуется минимальный ток. Типичные значения составляют от 0,25 до 1 мА для стабилитрона мощностью 1 Вт. Если этот ток не достигается, диод не выйдет из строя в достаточной степени для поддержания номинального напряжения.

4. Максимальный ток (I ZM )
Стабилитрон поддерживает почти постоянное напряжение на своих выводах для значений обратного тока в диапазоне от I ZK до I ZM . Если значение I ZM превышено, стабилитрон может быть поврежден из-за чрезмерного рассеивания мощности.

5. Ток утечки
Обратный ток утечки указан для обратного напряжения, которое меньше напряжения колена.Это означает, что для этих измерений стабилитрон не работает в обратном режиме. Например, для обратного напряжения 1 В в 1N4728A.

6. Номинальная мощность (P Z )
Номинальная мощность показывает максимальную мощность (напряжение x ток), с которой может справиться стабилитрон. (Даже диоды, предназначенные для выхода из строя, могут действительно выйти из строя, если вы превысите их номинальную мощность. Так что будьте осторожны!)

7. Сопротивление стабилитрона (Z Z )
Z Z - максимальное сопротивление стабилитрона при указанном испытательном токе, I Z . Например, для 1N4728A Z Z составляет 10 Ом при 76 мА. В изгибе характеристической кривой максимальный импеданс стабилитрона Z ZK задан как I ZK , который является током в изгибе кривой. Например, Z ZK составляет 400 Ом при 1 мА для 1N4728A.

8. Температурный коэффициент (TC)
Стабилитроны подвержены влиянию температурных изменений, связанных с их температурным коэффициентом напряжения.Температурный коэффициент определяет процентное изменение напряжения стабилитрона для каждого изменения температуры. Формула для расчета изменения напряжения стабилитрона при заданном изменении температуры перехода (% / ℃) для заданного температурного коэффициента:

Vz - номинальное напряжение стабилитрона
TC - температурный коэффициент
ΔT - изменение температуры

Если температурный коэффициент выражается в мВ / ℃, ΔVz задается как:

Положительный температурный коэффициент означает, что изменение напряжения стабилитрона прямо пропорционально изменению температуры.Следовательно, отрицательный TC означает, что напряжение стабилитрона обратно пропорционально изменению температуры.

9. Спецификация температуры перехода
Для обеспечения надежности диода температура диодного перехода является ключевой. Несмотря на то, что корпус может быть достаточно холодным, активная область может быть намного горячее. В результате некоторые производители указывают рабочий диапазон для самого разветвления. Для нормальной конструкции обычно сохраняется приемлемый запас между максимальной ожидаемой температурой внутри оборудования и места соединения.Внутренняя температура оборудования снова будет выше, чем температура снаружи оборудования. Необходимо следить за тем, чтобы отдельные предметы не становились слишком горячими, несмотря на приемлемую температуру окружающей среды за пределами оборудования.

10. Упаковка
Стабилитроны поставляются в различных упаковках. Главный выбор - между поверхностным монтажом и традиционными сквозными устройствами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *