Фаза и ноль в электрике как определить. Как определить фазу и ноль в электрике: подробное руководство

Как отличить фазный провод от нулевого. Почему важно правильно определять фазу и ноль. Какие существуют способы проверки проводов. Что делать, если перепутаны фаза и ноль.

Содержание

Что такое фаза и ноль в электрике

В электротехнике фаза и ноль — это два основных проводника, по которым подается электричество к потребителям:

  • Фаза — провод, по которому электрический ток поступает к электроприборам. На нем всегда есть напряжение 220В относительно земли.
  • Ноль — обратный провод, по которому ток возвращается в электросеть. В нормальном состоянии на нем нет напряжения относительно земли.

Понимание различий между фазой и нулем критически важно для безопасного выполнения электромонтажных работ. Неправильное подключение может привести к поражению током или выходу из строя электрооборудования.

Почему важно правильно определять фазу и ноль

Корректное определение фазного и нулевого проводов имеет ключевое значение по нескольким причинам:

  1. Безопасность. Фазный провод всегда находится под напряжением и опасен при прикосновении. Ноль в нормальном состоянии безопасен.
  2. Работоспособность оборудования. Многие электроприборы рассчитаны на подключение фазы и нуля в определенном порядке.
  3. Правильная работа УЗО и дифавтоматов. Эти устройства защиты срабатывают только при верном подключении фазы и нуля.
  4. Соблюдение полярности. В некоторых устройствах, например, лампах, важно соблюдать полярность подключения.

Перепутанные местами фаза и ноль могут стать причиной короткого замыкания, пожара или поражения электрическим током. Поэтому крайне важно уметь их правильно определять.


Способы определения фазы и нуля

Существует несколько методов, позволяющих отличить фазный провод от нулевого:

1. С помощью индикаторной отвертки

Это самый простой и доступный способ:

  • Прикоснитесь жалом отвертки-индикатора поочередно к оголенным проводам.
  • На фазном проводе индикатор загорится.
  • На нулевом проводе индикатор останется выключенным.

Важно: индикаторная отвертка может дать ложное срабатывание из-за наведенного напряжения. Для надежной проверки используйте более точные приборы.

2. Мультиметром

Цифровой мультиметр позволяет точно измерить напряжение:

  1. Переключите мультиметр в режим измерения переменного напряжения (~V).
  2. Черный щуп подключите к заземлению (батарея, водопроводная труба).
  3. Красным щупом по очереди коснитесь проверяемых проводов.
  4. На фазном проводе прибор покажет 220В.
  5. На нулевом — близкое к 0В значение.

3. По цветовой маркировке

В современных электропроводках применяется стандартная цветовая маркировка проводов:

  • Фаза — коричневый, черный или серый
  • Ноль — синий
  • Заземление — желто-зеленый

Однако полностью полагаться на цвет нельзя — при монтаже могли быть допущены ошибки. Всегда проверяйте провода приборами.


Что делать, если перепутаны фаза и ноль

Если при проверке выяснилось, что фаза и ноль подключены неправильно, необходимо:

  1. Отключить электропитание на щитке.
  2. Поменять местами подключение фазного и нулевого проводов.
  3. Проверить правильность подключения с помощью мультиметра.
  4. Убедиться в работоспособности УЗО и автоматов защиты.
  5. Проверить работу всех электроприборов.

При отсутствии навыков работы с электропроводкой лучше обратиться к квалифицированному электрику. Неправильное подключение может быть очень опасно.

Меры безопасности при работе с проводкой

При проверке и подключении проводов необходимо соблюдать следующие правила безопасности:

  • Всегда отключайте напряжение перед началом работ.
  • Используйте инструменты с изолированными ручками.
  • Работайте в диэлектрических перчатках.
  • Не касайтесь оголенных проводов и металлических частей.
  • Проверяйте отсутствие напряжения перед касанием проводов.
  • При любых сомнениях обращайтесь к профессиональным электрикам.

Помните, что работа с электричеством требует знаний и опыта. Неправильные действия могут привести к трагическим последствиям. Безопасность должна быть на первом месте.


Особенности определения фазы и нуля в трехфазных сетях

В трехфазных электросетях, которые используются в многоквартирных домах и на предприятиях, ситуация несколько сложнее:

  • Присутствуют три фазных провода (L1, L2, L3)
  • Один нулевой провод (N)
  • Заземляющий провод (PE)

Для определения фаз в трехфазной сети используются специальные приборы — указатели чередования фаз. Они позволяют не только отличить фазы от нуля, но и определить порядок чередования фаз, что важно для правильной работы трехфазных электродвигателей.

В бытовых условиях обычно используется только одна фаза и ноль. Но важно помнить, что в распределительном щитке могут присутствовать все три фазы, находящиеся под напряжением 380В.

Заключение

Умение правильно определять фазу и ноль — важный навык для каждого, кто сталкивается с электромонтажными работами. Это основа безопасности и корректной работы электрооборудования. Ключевые моменты, которые нужно запомнить:

  • Фаза всегда под напряжением, ноль — нет
  • Используйте надежные способы проверки — индикатор и мультиметр
  • Не полагайтесь только на цвет проводов
  • При сомнениях обращайтесь к профессионалам
  • Безопасность — превыше всего при работе с электричеством

Соблюдение этих простых правил поможет избежать опасных ситуаций и обеспечит надежную работу вашей электропроводки.



Фаза и ноль в электрике: определения понятным, простым языком

Владельцы домов или квартир, так или иначе, столкнутся с моментами, когда перестает функционировать какой-либо прибор, электрическая розетка или гореть лампа в люстре. Звать на помощь в таких ситуациях электрика не особо хочется — имеется большое желание исправить неполадки самостоятельно. Или может быть, например, есть какие-то познания в электросистемах, а потому работа по прокладке новых кабелей не кажется чем-то немыслимым. Как бы то ни было, в любом случае, предварительно стоит все же ознакомиться с основами электрики, с видами проводников, выяснить, как все это взаимосвязано и работает. Ведь очень важно понять, где располагается тот или иной провод — от этого будет зависеть правильность соединений и безопасность людей.

Если есть какой-то опыт работы в данной сфере, вопрос не поставит в тупик, однако для новичка может стать большой проблемой. Ниже пойдет речь о таких проводниках любой электрической сети питания как: «заземление», «фаза», «нуль», а также о том, как верно найти и отличить данные виды кабелей.

Разбираемся в основных терминах

С такими терминами, как «фаза» и «ноль» каждый сталкивается в своей жизни ежедневно. Все они тесно связаны, ведь относятся к электричеству, а это то, без чего жизнь современного человека не мыслима. Чтобы понять их природу и более или менее научиться разбираться в электрике, следует уяснить для начала ряд фундаментальных понятий.

Начинаем с основ

Электрический заряд — характеристика, определяющая способность различных тел быть источником электромагнитного поля. Носителем подобных волн является электрон. Создав электромагнитное поле можно «заставить» электроны перемещаться. Так образуется ток.

Ток — это четко направленное движение электронов по металлическому проводнику под действием существующего поля.

Виды тока

Ток может быть постоянным и переменным. Ток, по величине не изменяющийся во временном промежутке — ток постоянного значения. Ток, величина которого, как и направление, меняется с течением времени, называется переменным.

Постоянный и переменный ток

Постоянные источники тока — аккумуляторы, батарейки и так далее. Переменный же ток «подходит» к бытовым и промышленным розеткам домов и предприятий. Основная причина этого кроется в том, что данный тип тока намного легче получать физически, преобразовывать в разные уровни напряжений, передавать по электропроводам на огромные расстояния без существенных потерь.

Основная характеристика переменного тока

Постоянный и переменный ток

Переменный ток – как правило это синусоида, или синусоидальный ток. Его можно охарактеризовать следующим образом: сначала он увеличивается в одном направлении, достигая максимального своего значения (амплитуды), затем начинается спад. В некоторый момент времени он становится равен «0» и потом вновь начинает нарастать, но уже в совершенно противоположном направлении.

«Фаза», «ноль» и «земля»

Самый простой случай электроцепи, по которой перемещается синусоидальный ток — однофазная цепь. Она состоит, как правило, из трех электрокабелей: по одному из них электричество подходит к приборам и элементам освещения, а по второму – оно «уходит» в противоположном направлении — от потребителя. Третьим проводником является «земля».

Провод, по которому электричество подходит к электропотребителям, называется фазой, а кабель, используемый для возвратного движения — нулем.

Самая эффективная сеть для передачи электротока — трехфазная система. Она включает в себя три фазовых кабеля и один обратный — ноль. Такой тип тока подходит ко всем жилым кварталам. Непосредственно перед попаданием в квартиры, электроток делится на фазы. Каждым фазам «присваивается» один ноль. Преимущества такой системы в том, что при сбалансированной нагрузке ток через ноль (а он в такой системе один — общий) равен нулю.

Постоянный и переменный ток

Чтобы не перепутать провода и не допустить короткого замыкания,  каждый провод окрашивают в разные цвета. Однако цвет провода не гарантирует его назначения!

«Земля» не несет никакой электрической нагрузки, а служит своего рода предохранительным элементом. В тот момент, когда что-либо в системе электропитания выходит из-под контроля, провод «земля» предотвратит поражение электротоком — по ней все избыточное напряжение будет «стекать», то есть, отводиться на землю.

Фаза и ноль: их значение в сети питания

Электроэнергия подается к потребительским розеткам от подстанций, которые уменьшают поступающее напряжение до 380 В. Вторичная обмотка такого трансформатора имеет соединение «звезда» — три его контакта связываются между собой в точке «0», остальные три вывода идут к клеммам «А»/«В»/«С».

Постоянный и переменный ток

Соединенные в точке «0» провода подсоединяются к «земле». В этой же точке происходит деление проводника на «ноль» (обозначен синим цветом) и защитный «РЕ»-кабель (желто-зеленая линия).

Данная модель прокладки проводов пользуются во всех возводимых ныне домах. Она называется — система «TN-S». Согласно этой схеме к распределительному оборудованию дома подходят три кабеля фазы и два указанных нуля.

В домах, на предприятиях и зданиях старой застройки зачастую нет «РЕ»-проводника и поэтому, схема получается не пятипроводной, а четырех (она обозначается как «TN-C»).

Все электропровода с подстанций подсоединяются к щитку, образуя систему из трех фаз. Далее уже происходит разделение по отдельным подъездам. В каждую из квартир подъезда подается напряжение лишь одной фазы — 220 В (провода «О»/«А») и защитный «РЕ»-кабель.

Вся возникающая нагрузка на систему электроснабжения при такой схеме распределяется в равномерном количестве, поскольку на каждом этаже дома выполняется разводка и подключение конкретных щитков к определенной электролинии напряжением в 220 В.

Схема подводимого напряжения представляет собой «звезду», которая в точности повторяет все векторные характеристики питающей подстанции. Когда в розетках нет никаких потребителей, то ток в данной цепи не протекает.

Данная схема соединения отработана годами. Она подтвердила свое право на использование тем, что признана оптимальной из всех существующих. Однако, в ней, как и в любом приборе, механизме или устройстве, периодически могут появляться всевозможные поломки и неисправности. Как правило, они бывают связаны с плохим качеством электросоединения или же полным обрывом кабелей в каких-либо местах схемы.

Случаи обрывов в токопроводящей цепи

Если внутри отдельно взятой квартиры произошел разрыв нуля/фазы, то подключаемый прибор, как следствие, функционировать не будет.

Постоянный и переменный ток

Аналогичная ситуация возникнет и при обрыве контактов проводов любой из фаз питающих подъездный щиток. При этом все квартиры, получающие питание от данной электролинии, не будут получать электричество. Вместе с тем, в двух оставшихся цепях приборы будут функционировать, как и прежде.

Постоянный и переменный ток

Из этих схем видно, что полное отключение питания в квартирах связано с обрывом одного их проводов. Это не приводят к повреждению и выходу из строя приборов.

Самой же серьезной ситуацией является обрыв между заземляющим контуром и центральной точкой подключения всех потребителей.

Постоянный и переменный ток

В данном случае весь электроток перестает течь по рабочему нулю к «земле» (АО, ВО, СО) и начинает двигаться по пути АВ/ВС/СА к которым подведено 380 В.

Возникает «перекос фаз». В фазах с большей нагрузкой напряжение будет меньше, а с меньшей нагрузкой — больше и может достигнуть значительных величин, близким к 380 В. Это вызовет повреждение изоляционных материалов, нагрев и выход из строя оборудования. Предотвратить подобные случаи и защитить дорогое оборудование позволяет система защиты от перегрузок и высоких напряжений, монтируемая в квартирных щитках.

Варианты определения проводников «фаза»/«ноль»

Постоянный и переменный ток

Итак, наступила, ситуация, когда необходимо, например, подключить новую розетку. Но совершенно не понятно, какой из проводов является фазным, а какой нулевым. Способов быстро решить проблему существует несколько — это можно сделать как с применением специальных приборов, так и без них.

Цветовая окраска проводов, как основной ориентир

Это самый легкий и быстрый способ. Для правильной классификации нуля и фазы следует знать, какой цвет провода к чему относится. Предварительно необходимо будет изучить информацию о том, где четко прописаны действующие стандарты для конкретной страны.

Данный метод весьма актуален в любых новостройках, поскольку сейчас вся электрическая проводка прокладывается специалистами, выполняющими свою работу согласно всем требованиям установленных стандартов. Так, например, в России еще в 2004 году был принят стандарт «IEC60446», в котором четко обозначена процедура разделения кабелей по цветам, а именно:

  • защитным нулем стал обозначаться провод желто-зеленого цвета;
  • рабочим нулем стали называть синий/сине-белый провод;
  • фазу — провода других цветов (например, черного, красного, коричневого и прочие).

Такое обозначение актуально в настоящее время.

Постоянный и переменный ток

Если проводка уже довольна старая или ее прокладкой занимались непрофессиональные специалисты, правильнее будет все же воспользоваться иными методами определения.

Отвертка-индикатор — незаменимое приспособление

Данный инструмент является неотъемлемым прибором в наборе домашнего электрика-умельца. Она применяется как при выполнении электромонтажных работ, так и при установке осветительных приборов в помещении или даже в процессе обыкновенной замены лампочек.

Постоянный и переменный ток

Постоянный и переменный ток

Принцип ее работы заключается в прохождении емкостного тока сквозь корпус отвертки через тело оператора.

Элементы отвертки:

  • корпус, выполненный из диэлектрического материала;
  • наконечник из металла в форме плоской отвертки, который прикладывают к проводам при проверке;
  • неоновый индикатор — лампочка, сигнализирующая о фазовом потенциале;
  • ограничитель тока — резистор, понижающий ток до минимального значения и выполняющий роль защитного механизма: защищает человека от поражения током, а само устройство от выхода из строя;
  • контактная металлическая площадка, создающая замкнутую цепь через человека на землю.

Постоянный и переменный ток

Методика работы настолько проста, что справиться с ней может любой человек, даже новичок. Работает индикаторная отвертка следующим образом. При прикосновении наконечником к фазному контакту (цветному проводу) происходит замыкание электрической цепи — неоновая лампа должна загореться. То есть, поступает «сообщение» о наличии сопротивления, следовательно, данный кабель является фазой. В то же время ни на заземлении, ни на нуле, она загораться не должна. Если это происходит, можно с уверенностью говорить о том, что в схеме подключения электропроводки есть ошибки.

Постоянный и переменный ток

Работа с отверткой-индикатором в светлое время суток потребует некоторой внимательности — днем свечение лампы плохо заметно, поэтому придется приглядываться.

При работе с подобными приспособлениями нужно быть крайне осторожным — нельзя дотрагиваться до оголенных участков проводников и выводов индикатора, находящихся под напряжением.

На заметку! Профессиональные электрики пользуются более дорогими многофункциональными индикаторами, свечением которых управляет схема на транзисторах, питающаяся от встроенных аккумуляторов напряжением в 3 В. Еще одним их характерным отличием от простых аналогов является отсутствие контактной площадки, к которой нужно прикасаться при выполнении замеров.

Постоянный и переменный ток

Устройства, помимо своего прямого назначения — проверки фазового провода — выполняют и ряд других вспомогательных задач: определение полярности источников постоянного напряжения, места обрыва электроцепи и так далее.

Мультиметр — надежный помощник

Постоянный и переменный ток

Чтобы вычислить фазу, используя тестер, его необходимо переключить в режим «вольтметр» и мерить напряжение между всеми парными выводами кабелей. Соединение щупов с защитным нулем и заземлением должно показывать отсутствие напряжения. Напряжение между фазой и любым другим проводов должно составлять 220 В.

Способы определения проводов:

Постоянный и переменный ток

Так, в первом случае вольтметр отклоняется от нулевой отметки в цепи «ноль/фаза». На другом рисунке он показывает отсутствие напряжения между нулем и землей. И на третьем, вольтметр между фазой и землей показывает «0 В» поскольку проводник еще не подсоединен к земле. Третий случай — это скорее исключение из правил. Такое возможно, например, в случаях, когда старые кабеля здания находится на этапе реконструкции. В нормальной работающей системе электропроводки вольтметр тоже должен показывать 220 В.

Использование лампы накаливания

Постоянный и переменный ток

Перед началом работы необходимо будет собрать приспособление для тестирования. Оно будет состоять из обыкновенной лампочки, патрона и проводов. Лампа вкручивается в патрон, а к клеммам патрона крепятся проводники. Один из проводов необходимо будет заземлить, например, подсоединить к батарее отопления.

Сущность метода заключается в поочередном прикладывании второго (свободного) проводника ко всем тестируемым жилам. Если лампочка вспыхнет — найден фазный провод.

Постоянный и переменный ток

Метод позволяет установить приблизительно наличие фазного кабеля среди остальных. Сигнал лампы точно сигнализирует о том, что среди этих проводников какой-то фазовый, а какой-то нулевой. Если же лампа не горит, значит среди кабелей нет фазного. Но может случиться, что нет как раз именно нулевого.

Поэтому в большей степени данный метод целесообразен для определения работоспособности электрической проводки и правильности монтажа.

Определение сопротивления петли «ноль/земля»

Замер величины сопротивления петли является залогом бесперебойной работы электрических приборов. Время от времени это следует проводить, поскольку основные причины поломки техники кроются в замыканиях и перегрузках электросетей. Замер сопротивления позволит исключить подобные неприятности.

Что представляет собой эта петля

Данная петля является контуром, возникающим в результате соединения «нуля» с заземленной нейтралью. Как раз именно замыкание этой цепи и будет образовывать данную петлю.

Главная задача по измерению сопротивления данной петли — надежная защита оборудования и кабелей от перегрузок во время эксплуатации. Высокое сопротивление станет причиной чрезмерного повышения температуры электролинии, и как следствие, возникновения пожара. Значительное влияние на качество электропроводки оказывает влажность воздуха, температура, время суток — все это сказывается на состоянии электросети.

В заключении

Данный материал позволяет понять, что вообще такое фаза и ноль, какова их роль в современной электрике, каким образом можно установить, где располагается в проводке фазная и нулевая жилы. Ведь вопрос определения нуля, фазы и заземления весьма важен. Подключение некоторых видов приборов по результатам неправильной проверки может повлечь за собой негативные последствия — сгорание электроприборов, или, что еще опаснее, поражение током.

Видео по теме

Хорошая реклама

 

Что такое фаза и ноль в электрике. Назначение фазы и нуля в электричестве

К такому явлению как электричество уже давно все привыкли. Многие термины мы употребляем в обиходе, обладая лишь поверхностным пониманием. Между тем, путь пройденный электричеством от электростанции до вашей розетки непрост.

Существует множество факторов, влияющих на бесперебойную подачу электроэнергии к конечному потребителю. Все нюансы рассматривать в данной статье не будем, ограничимся лишь такими терминами как “Фаза” и “Ноль”.

фаза и ноль в электрике_faza i nol v jelektrike

Итак, для чего нужны фаза и ноль в электрике, и что это вообще такое. Для более полного понимания вернемся опять к электростанции. Берем в качестве примера некую электростанцию, на которой происходит следующее:

  1. 1. Трехфазные генераторы переменного тока вырабатывают ток
  2. 2. По линиям электропередач ток поступает на трансформаторные подстанции
  3. 3. С трансформаторных подстанций ток поступает в дома и т.д.

Теперь немного подробнее. Сначала напрашивается вопрос: почему мы используем именно переменный ток? Все очень просто: переменный ток можно передавать на большие расстояния, а с постоянным это довольно проблематично. Вопрос второй: как так получается, что к трансформатору приходит три фазы, а в квартире получается однофазная сеть?

Дело в том, что на электрощиток многоквартирного дома приходит три фазы, ноль и заземление. Далее, вводно-распределительные устройства (ВРУ) разделяют все три фазы, при этом каждый фазный провод получает свое заземление и свой ноль.

Понятное дело, что без подготовки эту информацию не усвоить, поэтому ниже мы остановимся и расскажем об этом более подробно.

Что представляет собой фаза и ноль в трехфазной сети

Как мы знаем из школьного курса физики – электрический ток движется только в замкнутом контуре. То есть по одному проводу он должен прийти, а по другому уйти. Чтобы не морочить голову, сразу даем определение:

  • — Фаза – проводник, по которому к потребителю приходит ток;
  • — Ноль – проводник, по которому ток уходит от потребителя.

Для правильной работы электрическому току всегда необходим замкнутый контур. Ток течет в одном направлении. Фазный провод – провод, по которому ток приходит к любой нагрузке, будь-то электрочайник или холодильник, неважно. Ноль – провод, по которому ток возвращается.

Кроме этого нулевой провод выполняет еще одну полезную функцию – выравнивает фазное напряжение. Заземление – провод, на котором нет напряжения. Он служит резервным проводом для того, чтобы в случае утечки тока защитить человека от удара.

трехфазная система_trehfaznaja sistema

Теперь возьмем трансформатор, который питает дом. Трансформатор – устройство, повышающее, либо понижающее напряжение в сети. Чтобы конечный потребитель получил питание, к обмоткам низкого напряжения подключаются четыре провода. К выводам трансформаторной обмотки подключаются три провода (это и есть наши фазы), а ноль (еще называют “общий”) берется из точки соединения трансформаторных обмоток.

Теперь рассмотрим еще два термина и сразу дадим им определения:

  1. 1. Линейное напряжение – напряжение, возникающее между фазными проводами в трехфазной электросети. Номинальное значение линейного напряжения – 380 вольт.
  2. 2. Фазное напряжение – напряжение между одним фазным проводом и нулем. Номинальное значение такого напряжения – 220 вольт.

Существуют системы, в которых заземление присоединяют именно к нулевому проводу. Такая система носит название “глухозаземленная нейтраль”.

линейное напряжение 380 В_naprjazhenie mezhdu fazami

Делается это так: обмотки в трансформаторе соединяются по типу “звезда” (есть еще и соединение “треугольник”, а такде различные сочетания этих соединений, но об этом в другой раз). После этого нейтраль заземляют. Тогда наш ноль одновременно служит и заземлением (совмещенный нейтральный проводник, PEN).

Такой тип заземления практиковали в советское время при постройке жилых домов. Проще говоря, в таких домах электрощиток зануляют. Однако такой метод достаточно опасен, поскольку в некоторых случаях ток может пройти через ноль, возникнет отличный от нуля потенциал, результат варьируется от удара током до небольшого опасного фейерверка.

В наше время к жилым домам также подводят три фазы, но помимо трех фазных проводов, между трансформатором и домом также присутствуют отдельно нулевой провод отдельно провод заземления. На каждой подстанции имеется контур заземления: в случае утечки тока в электросистеме жилого дома — ток возвращается к заземлению на подстанции.

При монтаже такой сети необходимо учитывать, что в электрощите должны присутствовать отдельные шины для фаз, отдельная шина для нуля, отдельная шина для заземления. Внимание, при монтаже заземления не забудьте о том, что шина заземления должна быть соединена металлически с корпусом электрощитка.

На самом деле, аварийные ситуации, так или иначе связанные с отсутствием заземления или с совмещением нуля и заземления, в трехфазных сетях происходят периодически, поэтому заземление действительно необходимо. Немного отвлечемся и посмотрим, какие ситуации наиболее часто распространены.

Для правильной эксплуатации вся нагрузка должна быть равномерно распределена между фазами. Такое бывает редко, да и неизвестно, что именно будет подключать потребитель. Если возникает ситуация, при которой нагрузка на одну из фаз увеличивается, на другую – уменьшается, а к третьей – вообще непонятно что подключают, тогда происходит смещение нейтрали.

Из-за этого смещения между нулевым проводом и проводом заземления появляется разность потенциалов. Если же нулевой провод имеет сечение, которого недостаточно, то пресловутая разность потенциалов увеличивается.

А когда фазы теряют связь с нейтральным проводником, получаются две следующих ситуации:

  1. 1. Если фазы нагружены до предела, то напряжение падает до нуля;
  2. 2. Если фазы наоборот не нагружены, то напряжение растет до 380.

Как видите, такое напряжение явно уничтожит бытовую технику, рассчитанную на сети в 220 вольт. Помимо этого, в таких ситуациях металлические корпуса электрооборудования тоже будут под напряжением.

Отсюда следует, что использование раздельного варианта нуля и заземления более предпочтительно, так как позволяет обойтись без таких аварийных случаев.

Назначение фазы и нуля

Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.

Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.

Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.

Чтобы этого избежать, подводим к кастрюле третью трубу. Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.

как фаза и ноль приходят в дом_kak faza i nol prihodjat v dom

Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.

Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.

Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность. Тут хорошо работает правило: доверяй, но проверяй!

По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.

Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.

Способы определения фазы и нуля

Как вы уже поняли, фаза и ноль в электричестве отличаются с помощью цветовой маркировки, но этот способ может быть ошибочным из-за изначально неверного монтажа.

Для более точного определения фазного провода существует отвертка-индикатор. Просто прикоснитесь ею к проводам по очереди. На нулевой провод отвертка никак не отреагирует, но при прикосновении к фазному проводу индикатор загорится. Если же индикатор вообще не сработал, значит ваша электросеть вышла из строя, напряжение в сети отсутствует.

назначение фазы и нуля_naznachenie fazy i nulja

Если же индикатор отреагировал на оба провода, значит в нулевом проводе произошел обрыв.

«Фаза» в электрике обозначается латинской буквой «L» производная от «Line» (линия). Обычно это коричневый или белый провод. «Ноль» обозначается буквой «N» от английского — Neutral (нейтральный). Цвет нулевого провода, как правило, синий или белый но синими полосами по всей длине.

Заземляющий проводник в электрике маркируют как «PE» – Protective Earthing. Он имеет желто-зеленый цвет.

фаза и ноль в электропроводке_faza i nol v jelektroprovodke

Фаза и ноль в электропроводке

Выше мы уже объяснили, что такое фаза и ноль в электрике, а также принцип их работы. В электропроводке фаза и ноль работают точно также. По фазному проводу производится подача тока, по нулевому – ток возвращается обратно.

что значит фаза и ноль в электрике_chto znachit nol i faza v jelektrike

Поэтому достаточно один раз понять принцип работы фазы и нуля, и тогда вас не смутит никакая электропроводка, а также вы сможете правильно объяснить соседу, что такое фаза и ноль в электропроводке.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

Фаза и ноль в электрике

Фаза и ноль на общей схеме

Хозяин квартиры или частного дома, решивший проделать любую процедуру, связанную с электричеством, будь то установка розетки или выключателя, подвешивание люстры или настенного светильника, неизменно сталкивается с необходимостью определить, где в месте производства работ находятся фазный и нулевой провод, а также кабель заземления. Это нужно для того, чтобы правильно подсоединить монтируемый элемент, а также избежать случайного удара током. Если вы имеете определенный опыт работы с электричеством, то такой вопрос не поставит вас в тупик, но для новичка он может оказаться серьезной проблемой. В этой статье мы разберемся, что такое фаза и ноль в электрике, и расскажем, как найти эти кабели в цепи, отличив их друг от друга.

В чем отличие фазного проводника от нулевого?

Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих. Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.

Напряжение между нолем и фазами

Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.

Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.

Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.

В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.

В зависимости от назначения электропередающей линии она может иметь:

  • Глухозаземленный нейтральный кабель.
  • Изолированный нулевой провод.
  • Эффективно-заземленный ноль.

Первый тип линий все чаще используется при обустройстве современных жилых зданий.

Глухозаземленная нейтраль в КТП и многоквартирном доме

Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.

Наглядно про разницу между фазой и нолем на видео:

Для чего нужен заземляющий кабель?

Заземление предусмотрено во всех современных электрических бытовых устройствах. Оно помогает снизить величину тока до уровня, который безопасен для здоровья, перенаправляя большую часть потока электронов в землю и защищая человека, коснувшегося прибора, от электрического поражения. Также заземляющие устройства являются неотъемлемой частью громоотводов на зданиях – через них мощный электрический заряд из внешней среды уходит в землю, не причиняя вреда людям и животным, не становясь причиной пожара.

На вопрос – как определить провод заземления – можно было бы ответить: по желто-зеленой оболочке, но цветовая маркировка, к сожалению, довольно часто не соблюдается. Бывает и такое, что электромонтер, не обладающий достаточным опытом, путает фазный кабель с нулевым, а то и подключает сразу две фазы.

Правила маркировки проводов

Чтобы избежать подобных неприятностей, нужно уметь различать проводники не только по цвету оболочки, но и другими способами, гарантирующими правильный результат.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Лампа контролька электрика

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

Проверка фазы индикаторной отверткой

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Мультиметр показывает наличие напряжения

Заключение

В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.

Фаза и ноль — что такое, как определить фазу и ноль в электричестве

Далеко не всегда хочется вызывать специалистов при необходимости заменить люстру, повесить бра или дополнительный светильник. Но когда электромонтажными работами занимаешься впервые, так или иначе начинаешь задаваться вопросом, что представляют собой такие понятия как «ноль» и «фаза».

Разбираться в этих обозначениях необходимо хотя бы для того, чтобы правильно подключить провода. Желательно восполнить пробелы в знаниях об электричестве, при отсутствии опыта в данной сфере, перед началом работ.

Выделяют три обозначения проводов:

  • фаза
  • ноль
  • заземление

Определить, какой кабель в розетке или осветительном приборе к чему относится, можно подручными средствами или по цвету. Под понятием «ноль», как правило, подразумевают «рабочий ноль», «фаза» — «фазные провода», а под «заземлением» — «защитный ноль».

Профессиональные электрики могут различать кабели с первого взгляда. А вот для рядового человека различать данные обозначения немного сложно. Тем более что специальные инструменты, позволяющие определить, где фаза и ноль, имеются далеко не у всех.

В реальности способов распознания проводов не так уж и много. А безопасных – еще меньше. Поэтому чаще всего определяют кабели по цвету.

Маркировка кабелей по цвету

Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.

Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки.

Особенно актуален этот способ для новостроек. Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.

Стоит учесть, что:

  • если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это – рабочий ноль
  • защитный ноль представлен кабелями в желто-зеленой оболочке
  • другие цвета характерны для фазы. Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.

Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.

Самостоятельное определение фазы и ноля при помощи подручных средств

Специалисты рекомендуют для облегчения определения проводов начинать именно с распознавания фазы. Этот способ можно использовать совместно с предыдущим (по цвету).

Индикаторная отвертка непременно найдется в арсенале каждого домашнего мастера. Она необходима как для проведения комплекса работ по электромонтажу, так и при элементарной замене ламп либо установке осветительных приборов.

Метод до смешного прост. При касании жалом индикаторной отвертки провода определенного цвета, находящегося под напряжением, и одномоментного прикосновения контакта на инструменте, должен загореться индикатор. Он сигнализирует о наличии сопротивления. Значит, проверяемый провод является фазным.

Определение при помощи этого метода строится на том, что внутри инструмента располагается лампочка и резистор (сопротивление). Когда электрическая цепь замыкается, загорается сигнал. Именно наличие в индикаторной отвертке сопротивления и позволяет производить процедуру совершенно безопасно для человека, способствуя снижению тока до минимальных значений.

Метод определения фазы и ноля при помощи контрольной лампы

Этот способ подразумевает использование контрольной лампы для определения проводов определенного цвета в трехпроводной сети. Применять данный метод следует с особой осторожностью. 

Применение этого метода подразумевает создание контрольной лампы. Для этого в патрон вкручивается обычная лампочка. В клеммах патрона размещаются провода, на концах которых отсутствует изоляция. При отсутствии возможности создать такую конструкцию допустимо использовать традиционную настольную лампу, оснащенную электрической вилкой. Теперь для определения необходимо поочередно, по цветам присоединять провода.

Стоит отметить, что использование данного метода позволяет определить, присутствует ли среди пары проверяемых проводов фазный. А какой именно из этих двух – фаза, распознать будет непросто. Загорание контрольной лампы означает, что с высокой долей вероятности одни провод – фаза, а другой – ноль.

Отсутствие света говорит о том, что фазный провод среди проверяемых отсутствует. Хотя возможен вариант, что нет именно нуля. Поэтому применение этого метода целесообразно, скорее всего, для определения правильности монтажа и работоспособности проводки.

Определение сопротивления петли фаза-ноль

Для обеспечения нормального функционирования электрических приборов и проверки автоматов необходимо периодически проводить замеры сопротивления петли фаза-ноль. Потому как первоочередными причинами поломок осветительных приборов являются перегрузки сети и короткое замыкание. Измерение сопротивления позволяет в кратчайшие сроки выявить неисправность и предотвратить подобную ситуацию.

Далеко не все знают, что представляет собой понятие «петля фаза-ноль». Под этой фразой скрывается контур, образованный в результате соединения нулевого провода, находящегося в заземленной нейтрали. Замыкание этой электрической сети образует петлю фаза-ноль.

Измеряют сопротивление в этом контуре следующими методами:

  • падением уровня напряжения в отключенной цепи
  • падением уровня напряжения в результате сопротивления возрастающей нагрузки
  • использованием профессионального инструмента, интерпретирующего короткое замыкание в цепи

Второй способ используется чаще всего, так как отличается удобством, возможностью быстро измерить сопротивление, а также безопасностью.

Фаза и нуль в электрике: что значит

В каждом современном доме есть электричество, благодаря которому работают розетки, лампочки и многие другие виды электрооборудования. Включая свет в комнате, пылесос в розетку или заряжая смартфон, мало кто задумывается, как же этот свет и зарядка в гаджете появляются. Что становится причиной работы лампочки и гула пылесоса? Вопросов, если подумать, много, но ответ один — электроэнергия

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

Линия электропередач

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

КТП

Фаза и нуль: понятия и отличие

Существует такое понятие, как напряжение. Это слово означает степень напряженности электрического поля в данной точке или цепи. Иначе его называют потенциалом. Если очень простыми словами, то это некий поршень, что дает толчок для электронов, чтобы они прошли по проводам и зажгли лампочку в люстре.

В общей цепи (фаза ноль), той, что приходит на люстру или розетку, есть два провода. Один из них и есть фаза. Именно этот провод находится под напряжением. Фаза в электротехнике сравнима с плюсом в автомобиле — это основное питание для сети.

Фаза, ноль, земля в розетке

Нуль — это провод, который не находится под напряжением (это именно то, чем отличается ноль от фазы). Он не перегружен в процессе отбора мощности, но, тем не менее, по нему так же течет электрический ток, только в направлении, обратном фазному. В отсутствии напряжения он является безопасным в плане поражения человека электротоком.

Зачем нужен ноль в электричестве

Нуль замыкает электрическую цепь. Без этого провода в цепи не может быть электрического тока, который и дает мощность для питания бытовых приборов. По сути, нулевой провод — это земля.

Откуда берется ноль в электросети

Начало свое нуль берет от комплектной трансформаторной подстанции 6(10)/0,4 кВ, где трансформатор своей нулевой шиной соединен с контуром заземления. Изначально именно земля является проводником с нулевым потенциалом, и именно поэтому многие путают нуль с землей. ВЛ (воздушная линия электропередачи), выходя из КТП, имеет 4 провода — 3 фазы и нуль, который в начале линии соединен с нулем трансформатора. На протяжении воздушной линии через одну опору производится повторное заземление, которое дополнительно связывает нуль линии с землей, что дает более полноценную связь цепи «фаза — нуль» для того, чтобы у конечного потребителя в розетке было не менее 220В.

Фаза, ноль и земля в проводе

Зачем нужен нуль

Основное назначение нулевого провода — замыкание цепи для создания электрического тока для работы любого электроприбора. Ведь для того, чтобы ток появился, необходима разность потенциалов между двумя проводами. Нуль потому так и называется, что потенциал на нем равен нулю. Отсюда и уровень напряжения 220В — 230В.

Как найти нуль и фазу

В домашних условиях, даже не имея специальных приборов и приспособлений, возможно определить в обычной розетке, какой из двух проводов является фазой, а какой нулем. В этом случае используются электролампа или индикаторная отвертка.

Проверка с помощью электролампы

Для поиска нуля и фазы достаточно взять обыкновенный патрон с лампочкой и прикрутить два провода на его штатные места. Затем один из этих проводов подключить к заземляющим ножам в розетке, а второй — к любому из двух силовых разъемов.

Фазным будет являться тот разъем, при подключении к которому лампочка будет загораться. Это происходит потому, что по Правилам устройства электроустановок (ПУЭ), в вводном электрощите нулевые провода всех розеток должны быть соединены с земляными проводами этих же розеток. А отдельно земляная шина должна быть соединена с защитным контуром заземления. Именно это и обеспечивает наличие надежного нуля во всей цепи энергоснабжения дома.

Электролампа

Обратите внимание! Самостоятельно подобные процедуры допустимо делать только в том случае, когда квалифицированной помощи ждать неоткуда, а также в случае аварийной ситуации (пожар, короткое замыкание, попадание человека под напряжение). Не стоит забывать, что электрический ток очень опасен. Не стоит рисковать своим здоровьем и своей жизнью из-за лампочки!

Индикаторная отвертка

Для того, чтобы определить фазу в сети переменного тока напряжением 220В — 230В, можно использовать бытовой указатель напряжения — индикаторную отвертку. Продается он практически в любом хозяйственном магазине и стоит (в зависимости от конструкции) очень недорого.

Пример исправной индикаторной отвертки

Как правило, инструкции к применению у подобных инструментов нет, поэтому, чтобы не получить электротравму, следует помнить несколько простых правил, применимых к любому инструменту, соприкасающемуся с токоведущими частями:

  1. Использовать инструмент только по назначению (запрещается применять указатель напряжения — индикаторную отвертку — в качестве обыкновенной отвертки для закручивания/откручивания винтов, саморезов, шурупов и т.д.)
  2. Перед использованием инструмента следует внимательно рассмотреть состояние изоляции на рукояти и жале (применимо для любых отверток, в том числе для индикаторных). Ни в коем случае не использовать приспособление, если изоляционное покрытие имеет сколы или вообще отсутствует.
  3. Проверять работоспособность индикаторных устройств необходимо на электроустановках, заведомо находящихся под напряжением (например, в удлинителе, в который включен работающий электроприбор).
Отвертка с изолированным жалом

В случае сомнения в работоспособности индикатора следует считать его неисправным, а электроустановку действующей.

Так же существуют более точные и безопасные приборы для определения наличия напряжения в сети — это мультиметры, токоизмерительные клещи, вольтамперфазометры (ВАФ) и другие.

Мультиметр

В быту, как правило, используются простые мультиметры. Они способны показать наличие напряжения в сети и его значение. Намного безопаснее использовать для определения фазы именно эти приборы, так как их щупы имеют диэлектрическую рукоятку. Принцип определения такой же, как и в случае с патроном — достаточно один щуп приложить к земляному контакту розетки, а второй накладывать на один из двух контактов розетки.

Пример мультиметра

Важно! Как и правила дорожного движения, правила электробезопасности обязательно нужно соблюдать, ведь электрический ток невидим, неслышим и неосязаем, и именно этим он и опасен.

Электроэнергия (согласно второму закону Ньютона) не появляется из ниоткуда и не уходит в никуда. Она производится, транспортируется и потребляется на глазах. Нужно знать, откуда она берется, как к нам попадает и в каком виде. Каждый должен понимать, что в бытовом потреблении есть провода, которые могут нанести вред здоровью человека, а есть и такие, которые совершенно безвредны, поэтому необходимы небольшие знания и минимум приборов для определения и разграничения этих проводов. Но любые манипуляции с электричеством лучше доверять профессионалу — квалифицированному специалисту, чтобы избежать беды.

Разница фазы и ноля в электрических цепях: как определить фазу

При проведении электромонтажных работ дома или в квартире самостоятельно жильцы часто интересуются, что такое фаза, зачем она нужна, и какими способами можно ее обнаружить. Ниже рассмотрены понятия фаза и ноль в электрике.

Электрический щиток

Электрический щиток

Принцип работы сети переменного тока

Чтобы понять, что такое фаза в электричестве, нужно представлять особенности переменного тока. От постоянного он отличается периодическими изменениями, как по значению, так и по направлению. Его характеристики – напряжение в данный момент времени и частота (отношение числа циклов к единице времени). Переменный ток находится в розетках и прямых подключениях к электрическому щиту.

Однофазный ток

Он направляется от распределительного щитка по двум проводам (фазному и нулевому), между которыми находится 220-вольтное напряжение. В электричестве фаза – это провод, по которому электроток направляется к розетке или прибору. Что такое в электричестве ноль? Это, в свою очередь, кабель, идущий от розетки, по которому ток направляется обратно. Иногда вопросом, что такое ноль, интересуются в контексте заземления. Физически это разные провода, хотя их потенциалы совпадают. Однофазный ток можно подвести к потребителю как двумя проводами (без заземления), так и тремя (с ним). Заземление производится для отвода утечки, защиты жильцов от удара током и приборов – от перегрузок.

Двухфазный ток

Это сочетание двух однофазных, смещенных относительно друг друга на 90 °. Конструктивно это выглядит как сочетание двух проводов-фаз (с указанным сдвигом) и двух нулевых.

Трехфазный ток

Здесь конструкция состоит уже из трех фаз тока, каждая из последующих смещена относительно предыдущей на 120 °. По жилым домам такой ток распределяют четырьмя проводами (три фазы и ноль) либо пятью (указанные плюс заземление). После прохождения через распределительный щит розетки в квартире им питают через одну фазу и ноль.

Структура электросети, основные элементы

Электросеть является связующим звеном между генераторами и реципиентами электрической энергии. Источниками энергии во внутренних сетях производственных и жилых помещений являются ВРУ (вводно-распределительные устройства). К ним посредством коммутаторов и предохранителей подключаются кабели, осуществляющие запитку электрического оборудования либо группы приемников через шинопроводы и ящики коммутации.

Структура электросети многоквартирного дома

Структура электросети многоквартирного дома

Устройство бытовой электропроводки

Стандартная схема электрической проводки содержит следующие элементы:

  • многотарифный электросчетчик;
  • выключатель-автомат с номинальным значением тока 25 А;
  • механизм отключения, предохраняющий от короткого замыкания и перегрузок сети;
  • дифференциальный автоматический выключатель с порогом срабатывания 30 мА (ток утечки), он защищает розетки;
  • шкаф для монтажа с шинами (ноль и заземление) и дощечками для установки выключателей;
  • несколько автоматов для освещения с номинальным значением тока 10 А;
  • кабели с коробками распределения, направляющиеся к розеткам и приборам, освещающим помещения.

Часто владельцы квартир интересуются, фаза это плюс или минус, и в чем разница между нолем и землей. Поскольку электрическая фаза обладает переменным потенциалом, то показатель оного в проводе фазы становится то положительным, то отрицательным. Посему утверждать, что фаза это минус (либо плюс), будет некорректно – эти понятия лежат в разных плоскостях.

Теперь о том, чем нуль отличается от земли. Отличие в том, что через нулевой провод проходит ток и размыкается автоматами (к примеру, вводным). Для заземления в многоквартирном доме нужно подсоединиться к расположенной в стояке жиле, предназначенной специально для этого. Любое другое место, в том числе и щитковый корпус, применять для заземления строго запрещено – это грозит серьезными проблемами для здоровья жильцов.

Устройство бытовой электропроводки

Устройство бытовой электропроводки

Что происходит в нуле и фазе при обрыве провода

Если электропровод оборвался, соответствующая розетка или подсоединенный к ней прибор перестает функционировать. При этом не имеет значение, фазный или нулевой провод пострадал. Если разорвался кабель между щитами многоквартирного дома и одного из его подъездов, электричества лишатся все квартиры, подсоединенные к подъездному щиту. Если в трехфазном сочленении оборвался один из фазных проводов, ток,  который был в нем до этого, возникает в нулевом проводе, при этом в двух оставшихся фазах ничего не меняется.

Способ обнаружения отгорания нуля

Способ обнаружения отгорания нуля

Способы определения фазных и нулевых проводов

Зная, что в электротехнике фаза – это провод, по которому к прибору идет электричество, пользователь может заинтересоваться, можно ли найти фазу и нуль без использования приборов. Способ это сделать есть, хотя он не особенно надежен, так как не всегда прокладчики сетей соблюдают стандарты цветовой маркировки разных типов проводов. По стандартам, изоляция нулевого кабеля должна иметь голубой или синий цвет, заземления – быть окрашенной в желтую и зеленую полоску. Для фазного провода расцветка не регламентируется, она может быть разной, но только отличающейся от остальных кабелей.

Найти фазу можно по напряжению, которое измеряется мультиметром. В настройках указывают переменное напряжение более 220 В. Устанавливают контакт двух щупов с гнездами V и COM. Щупом, расположенным в V, касаются проводов – при прикосновении к нулю прибор ничего не покажет, а в фазе обнаружит напряжение в 7-15 В.

Также можно воспользоваться автоматом и индикаторной отверткой. С проводов счищают 1-2 см изоляции. Включают автомат и подносят отвертку рабочей стороной к проводу, держа при этом палец на металлическом отрезке рядом с рукоятью. При поднесении к фазе лампочка загорается.

Важно! При этом способе нельзя прикасаться пальцем к рабочей стороне отвертки. Провода перед процедурой надо развести подальше друг от друга, чтобы не случилось короткого замыкания.

Мультиметр позволяет провести детекцию фазного провода

Мультиметр позволяет провести детекцию фазного провода

Зануление в квартире

Это соединение зануляющего кабеля с нулевым проводником электросети и корпусом прибора. Предполагается, что процедура обеспечивает ускорение отключения устройства от сети при прикосновении к опасному месту, если напряжение выше некоторого порога. Но она сопряжена с дополнительной опасностью: при разрыве нуля все приборы, подключенные в этот момент к сети квартиры, будут на поверхности иметь фазу (а не ноль), что создает существенную угрозу для здоровья жильцов. Поэтому проведение таких монтажных работ жестко регламентируется.

Знать, что именно называется фазой в электросети, и как ее обнаружить, чрезвычайно важно при проведении электромонтажных работ. В противном случае высок риск нанести ущерб здоровью квартирантов или состоянию электроприборов.

Видео

Как найти фазу и ноль в розетке и проводах

проверка фазы в розеткеДля отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».индикаторные отвертки и контрольки

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • жалом отвертки прикасаетесь к контакту
  • нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевойопределение фазы в розетке индикаторной отверткой

Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • никогда не дотрагивайтесь до нижней части отвертки при замерахкуда не прикасаться при работе в пробником
  • отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.

Как определить фазу и ноль мультиметром или тестером

Здесь в первую очередь переключите тестер в режим измерения переменного напряжения. замер напряжения мультиметром dt830Далее замер можно сделать несколькими способами:

  • зажимаете один из щупов двумя пальцами. Второй щуп подводите к контакту в розетке или выключателе. Если показания на табло мультиметра будут незначительными (до 10 Вольт) — это говорит о том, что вы коснулись нулевого проводника. ноль в розетке замер мультиметромЕсли коснуться другого контакта — показания изменятся. В зависимости от качества вашего прибора, это может быть несколько десятков вольт, а также от 100В и выше. Делаем вывод, что в данном контакте фаза.фаза в розетке показания мультиметра
  • если вы боитесь в любом случае прикасаться руками к щупу, можно попробовать по другому. Один стержень вставляете в розетку, а другим просто дотрагиваетесь до стенки рядом с розеткой. Если у вас штукатурка, результат будет похожим с первым измерением.определение фазы и ноля в розетке
  • еще один способ — одним из щупов прикасаетесь к заведомо заземленной поверхности (корпус щита или оборудования), а вторым прикасаетесь к измеряемому проводу. Если он будет фазным, тестер покажет наличие напряжения 220В.замер фазного провода при помощи тестера

Меры безопасности при работе с мультиметром:

  • обязательно перед определением фазы по первому способу (когда зажимаете пальцами щуп) убедитесь, что мультиметр включен в положение «замер напряжения» — значок ~V или ACV. Иначе может ударить током.
  • некоторые «опытные » электрики для определения фазы, используют так называемую контрольную лампочку. Не рекомендую рядовым пользователям такой метод, тем более он запрещен правилами. Используйте только исправные и проверенные измерительные приборы.

В современных квартирах в розетки и распредкоробки заходят трехжильные провода. Фазный, рабочий нулевой и защитный. Как отличить их между собой можно узнать из статьи 4 способа отличить заземляющий проводник от нулевого.

Статьи по теме

Как определить ноль и фазу? Цвет провода

На самом деле существует не так много разных видов проводников и их соединений. В электроэнергетике различают питающий и защитный проводники. Некоторые люди слышали такие слова как «ноль» и «фаза» провода. Однако есть вопросы. Как определить ноль и фазу в реальной сети?

Какие проводники в розетке?

Можно понять вопрос «что такое фаза и ноль», не углубляясь в дебри прояснения структуры, преимуществ и отрицательных моментов в трехфазных или пятифазных цепях.Вы можете разобрать все на пальцах, открыв самую обычную домашнюю розетку, которая была заложена в квартире или частном доме лет десять-пятнадцать назад. Как видите, эта розетка подключена к двум проводам. Как определить ноль и фазу?

Как работают провода в розетке и зачем они нужны?

Как видно, между работниками и нулем есть определенные различия. Какое обозначение фазы и нуля? Голубоватый или синий цвет — это цвет фазы провода, ноль обозначается любыми другими цветами, кроме, конечно, синего цвета.Это может быть желтый, зеленый, черный и полосатый. На нулевой проводник ток не идет. Если вы берете его и не трогаете работника, ничего не произойдет — разности потенциалов нет (на самом деле сеть не идеальна, и небольшое напряжение все же может быть, но оно будет измеряться в лучшем случае в милливольтах). Но с фазным проводником это не будет работать. Прикосновение к нему может привести к поражению электрическим током, даже смертельному. Этот провод всегда находится под напряжением, он питается от генераторов и трансформаторов электрических подстанций и станций.Всегда следует помнить, что ни в коем случае нельзя касаться рабочей направляющей, поскольку напряжение даже в сотню вольт может быть смертельным. А в розетке фазовое напряжение составляет двести двадцать.

Чем Евросеть отличается от советской?

Как определить ноль и фазу в этом случае? В розетке, спроектированной в соответствии с европейскими стандартами, одновременно находятся три проводника. Первый — фазовый, который запитан и окрашен во множество цветов (за исключением синих оттенков).Второй — ноль, который абсолютно безопасен на ощупь и окрашен в синий цвет. Но третий провод называется нулевой защитой. Обычно окрашивается в желтый или зеленый цвет. Укореняется в розетках слева, в выключателях — снизу. Фазовый провод находится справа и сверху соответственно. Учитывая такие цвета и особенности, легко определить, где находится фаза, а где ноль, а где защитный нулевой провод. Но для чего это нужно?

Зачем мне нужен защитный проводник в евророзетках?

Если фаза предназначена для питания токового выхода, ноль — для вывода к источнику, почему европейские стандарты регулируют другой провод? Если подключенное оборудование работает нормально, а вся проводка в рабочем состоянии, защитный ноль не будет участвовать, он простаивает.Но если внезапно возникает короткое замыкание или перенапряжение или короткое замыкание в некоторых частях устройств, то ток попадает в места, которые обычно не подвержены его влиянию, то есть не связаны ни с фазой, ни с нулем. Человек может просто почувствовать себя электрическим током. В худшем случае вы можете даже умереть от этого, потому что сердечная мышца может остановиться. Именно здесь необходим защитный нейтральный провод. Он «берет» ток короткого замыкания и посылает его на землю или на источник.Такие тонкости зависят от конструкции электропроводки и характеристик помещения. Таким образом, вы можете смело прикасаться к оборудованию — поражения электрическим током не будет. Дело в том, что ток всегда течет по пути наименьшего сопротивления. У тела человека величина этого параметра составляет более одного килограмма. У защитного проводника сопротивление не превышает нескольких десятых долей Ом.

Определение назначения проводников

Как определить ноль и фазу? Кто-нибудь так или иначе сталкивался с этими понятиями.Особенно, когда необходимо отремонтировать розетку или установить электропроводку. Поэтому необходимо точно понимать, где находится проводник. Но как определить ноль и фазу? Следует помнить, что все подобные манипуляции с электричеством опасны. Поэтому в случае неуверенности в своих действиях лучше обратиться к специалисту. Если вы уже подходите к розетке и к ней подключены провода, вы должны сначала полностью отключить всю квартиру. Как минимум, это может сохранить здоровье и жизнь.Как упомянуто ранее, обычно обозначение фазы и нуля делается путем окрашивания. При правильной маркировке их будет не сложно отличить. Черный (или коричневый) — цвет проволочной фазы, ноль обычно имеет голубоватый или голубоватый оттенок. Если установлена ​​розетка европейского стандарта, третий (защитный ноль) выполнен зеленым или желтым. Что делать, если проводка однотонная? Как правило, в таком случае на концах проводов обычно имеются специальные изоляционные трубки, имеющие необходимую цветную маркировку.Они называются «кембрик».

Определение проводников с помощью специальной отвертки

Как определить ноль и фазу? Для этого удобнее всего купить специальную индикаторную отвертку. Ручка такого устройства выполнена из полупрозрачного или прозрачного пластика. Внутри встроенный диод — светящаяся лампочка. Верхняя часть этой отвертки металлическая. Как определить ноль и фазу этим методом?

Порядок работы при измерении с помощью индикаторной отвертки:

  • мы обесточиваем квартиру;
  • слегка очистить концы проводов;
  • мы разводим их в стороны, чтобы случайно не вызвать короткое замыкание при контакте фазы и нуля;
  • включите выключатель и подайте ток в квартиру;
  • Возьмем за ручку отвертку с диэлектрическим покрытием;
  • Надеваем палец (большой или указательный) на контакт, который находится на задней части гнезда;
  • коснуться рабочего конца индикатора к одному оголенному проводнику;
  • внимательно наблюдать за реакцией отвертки;
  • If th
.

Нулевая фаза отклика цифрового фильтра

Синтаксис

[Hr, w] = нулевая фаза (b, a)
[Hr, w] = нулевая фаза (sos)
[Hr, w] = нулевая фаза (d)
[ Hr, w] = нулевая фаза (..., nfft)
[Hr, w] = нулевая фаза (..., nfft, 'целом')
[Hr, w] = нулевая фаза (..., w)
[Hr , f] = нулевая фаза (..., f, fs)
[Hr, w, phi] = нулевая фаза (...)
нулевая фаза (...)

Описание

[Hr, w] = нульфаза (б, а) возвращает отклик нулевой фазы ч и вектор частоты Вт (в радиан / образец), при котором Hr вычисляется, учитывая фильтр, определенный числителем b и знаменателем a .Для FIR-фильтров, где a = 1 , вы можете опустить значение a из команда. Отклик нулевой фазы оценивается в 512 в равной степени разнесенные точки на верхней половине круга единицы.

Отклик нулевой фазы, H r ( ω ), относится к частотной характеристике H ( e ), по

, где φ ( ω ) непрерывная фаза.

Примечание

Отклик нулевой фазы всегда действителен, но не эквивалентен величины отклика.Первое может быть отрицательным, а второе не может быть отрицательным.

[Hr, w] = нулевая фаза (sos) возвращает нулевую фазу ответ на матрицу секций второго порядка, sos . Сос является K -by-6 матрица, где количество секций, К, , должно быть больше или равно 2. Если количество секций меньше чем 2, Zerophase считает входной числитель вектор, б . Каждый ряд Сос соответствует к коэффициентам фильтра второго порядка (биквад). и -й строка матрицы sos соответствует [bi (1) bi (2) bi (3) ai (1) ai (2) ai (3)] .

[Hr, w] = нулевая фаза (d) возвращает нулевую фазу ответ для цифрового фильтра, d . Используйте designfilt для генерации на основе d по частотным характеристикам.

[Hr, w] = нулевая фаза (..., nfft) возвратов отклик нулевой фазы час и вектор частоты Вт (радиан / выборка), используя nfft частотных точек на верхней половине единичный круг.Для достижения наилучших результатов установите nfft на значение больше, чем порядок фильтра.

[Hr, w] = нулевая фаза (..., nfft, 'whole') возвратов отклик нулевой фазы час и вектор частоты Вт (радиан / выборка), используя nfft частотных точек вокруг всего устройства круг.

[Hr, w] = нулевая фаза (..., w) возвратов отклик нулевой фазы час и вектор частоты Вт (радиан / выборка) на частотах в векторе Вт .Вектор ш должен иметь как минимум два элемента.

[Hr, f] = нулевая фаза (..., f, fs) возвратов отклик нулевой фазы ч и вектор частоты ч (Гц), используя частоту дискретизации фс (в Гц), чтобы определить вектор частоты f (в Гц), при котором Hr равен вычислен. Вектор f должен иметь как минимум два элемента.

[Hr, w, phi] = нулевая фаза (...) возвратов отклик нулевой фазы час , вектор частоты Вт (рад / образец), и компонент непрерывной фазы, фи .(Заметка что эта величина не эквивалентна фазовому отклику фильтр, если отклик нулевой фазы отрицателен.)

нулевой фазы (...) изображает зависимость отклика нулевой фазы от частота. Если вы введете коэффициенты фильтра или матрицу секций второго порядка, то текущее окно рисунка используется. Если вы введете digitalFilter , ответ шага отобразится в FVTool .

Примечание

Если ввод в нулевой фазы с одинарной точностью, отклик нулевой фазы рассчитывается с использованием арифметики одинарной точности.Выход Hr с одинарной точностью.

Что такое ток обратной последовательности и как он влияет на работу генератора

Воздействие несбалансированных токов…

Как вы знаете, генераторы и двигатели должны работать с сбалансированной трехфазной нагрузкой, но воздействие несбалансированных токов неизбежно. Дисбалансы могут возникать из-за множества различных источников, таких как несбалансированные нагрузки, нетранспонированные линии электропередачи, неисправности и обрыв фазы и т. Д.

What is negative sequence current and how does it affect generator work Что такое ток обратной последовательности и как он влияет на работу генератора

Эти дисбалансы появляются как ток обратной последовательности в выводах генератора.По определению, величины обратной последовательности имеют вращение, противоположное вращению энергосистемы. Этот обратный вращающийся ток статора вызывает двухчастотные токи в конструкциях ротора.

Обогрев в результате может очень быстро повредить ротор.

В течение десятилетий электромеханические реле максимальной токовой последовательности были предусмотрены в качестве стандартной защиты от несбалансированного тока для генераторов среднего и большого размера. Электромеханическая технология сильно ограничивает чувствительность этих реле.В результате они могли обеспечить только резервную защиту для неотключенных межфазных и замыканий на землю .

Потенциально повреждающие слаботочные условия, такие как разомкнутая фаза или ограниченная неисправность, не были обнаружены.

С появлением полупроводниковой и микропроцессорной технологии теперь доступна ретрансляция для обеспечения защиты генератора в широком диапазоне условий дисбаланса.


Так что же такое ток обратной последовательности?

Концепция тока обратной последовательности основана на методологии симметричного компонента.Основная теория симметричных компонентов заключается в том, что фазные токи и напряжения в трехфазной системе питания могут быть представлены тремя однофазными компонентами.

Это компоненты положительной, отрицательной и нулевой последовательности. Компонента прямой последовательности тока или напряжения имеет такое же вращение, что и система питания. Этот компонент представляет собой сбалансированную нагрузку.

Если фазные токи генератора равны и смещены точно на 120 °, будет существовать только ток прямой последовательности .Дисбаланс тока или напряжения между фазами по амплитуде или фазовому углу приводит к появлению компонентов отрицательной и нулевой последовательности.

Symmetrical components Symmetrical components Рисунок 1 — Симметричные компоненты: положительная, отрицательная и нулевая последовательность

Компонент обратной последовательности имеет вращение, противоположное вращению энергосистемы. Компонент нулевой последовательности представляет собой дисбаланс, который вызывает ток в нейтрали.

Компонент обратной последовательности аналогичен системе прямой последовательности, за исключением того, что результирующее поле реакции вращается в направлении, противоположном d.с. полевая система. Следовательно, создается поток, который разрезает ротор с удвоенной скоростью вращения, тем самым вызывая двухчастотные токи в полевой системе и в корпусе ротора.

Результирующие вихревые токи очень велики и вызывают сильный нагрев ротора.

Этот эффект настолько серьезен, что однофазная нагрузка, равная нормальному трехфазному номинальному току, может быстро нагреть клинья паза ротора до точки размягчения .

Затем они могут выдавливаться под действием центробежной силы до тех пор, пока они не окажутся над поверхностью ротора, когда возможно, что они могут ударить сердечник статора.

Генератору присвоен непрерывный рейтинг обратной последовательности .

Для турбогенераторов этот рейтинг низкий — приняты стандартные значения 10% и 15% от непрерывного рейтинга генератора. Более низкий рейтинг применяется, когда применяются более интенсивные методы охлаждения, например, водородное охлаждение с помощью газовых каналов в роторе, чтобы облегчить прямое охлаждение обмотки.

Кратковременный нагрев представляет интерес в условиях неисправности системы, и обычно при определении способности выдерживать обратную последовательность генератора можно предположить, что тепловыделение в такие периоды незначительно.

Используя это приближение, можно выразить отопление по закону:

I 2 2 t = K

где:

  • I 2 = компонент обратной последовательности (на единицу максимального непрерывного рейтинга)
  • т = время (секунды)
  • K = постоянная, пропорциональная теплоемкости ротора генератора

Для нагрева в течение периода, превышающего несколько секунд, необходимо учитывать рассеиваемое тепло.Из комбинации номиналов непрерывного и короткого времени общая характеристика нагрева может быть получена:

Overall heating characteristic of a generator Overall heating characteristic of a generator

, где I 2R — непрерывный рейтинг отрицательной последовательности фаз на единицу максимального непрерывного рейтинга (MCR)

Чтобы проиллюстрировать происхождение этих компонентов, обратитесь к загрузке в образце системы генератора, показанной на рисунке 2.

Generator unbalanced currents Generator unbalanced currents Рисунок 2 — Генератор несбалансированных токов

Нагрузка генератора не сбалансирована, и, следовательно, тока отрицательной и / или нулевой последовательности присутствует в дополнение к току положительной последовательности.Последовательные токи могут быть определены из фазных токов, когда известны величина и фазовый угол.

Математически, токи положительной (I 1 ), отрицательной (I 2 ) и нулевой (I 0 ) последовательностей в системе с вращением ABC определяются как (Уравнение 1):

Positive (I<sub>1</sub>), negative (I<sub>2</sub>) and zero (I<sub>0</sub>) sequence currents Positive (I<sub>1</sub>), negative (I<sub>2</sub>) and zero (I<sub>0</sub>) sequence currents

Подставляя фазовые токи и углы из рисунка 1 в уравнение (1), найдены последовательные токи:

Substituting phase currents and angles Substituting phase currents and angles

Номинальный ток для измерительной системы составляет 4370 А .Тогда ток прямой последовательности составляет 4108 A / 4370 A = 0,94 pu , а ток обратной последовательности составляет 175 A / 4370 A = 0,04 Pu .

Ток нулевой последовательности является векторной суммой фазных токов и должен протекать в нейтрали или заземлении .

Генератор системы отбора проб подключен к дельта-обмотке трансформатора повышающего генератора (GSU). Без нейтрального обратного пути ток нулевой последовательности не может существовать. Расчетный ток нулевой последовательности является результатом ошибок измерения и должен рассматриваться как нулевой.


Влияние тока обратной последовательности

Роторное отопление

Магнитное поле в воздушном зазоре, которое вращается с синхронной (роторной) скоростью в том же направлении, что и ротор. Поскольку магнитное поле, индуцированное ротором и обратной последовательностью, движется с одинаковой скоростью и направлением, поле сохраняет фиксированное положение относительно ротора, и ток не индуцируется в ротор.

Несбалансированный ток создает ток обратной последовательности, который, в свою очередь, создает обратное вращающееся поле в воздушном зазоре.Это магнитное поле вращается с синхронной скоростью, но в обратном направлении к ротору.

С точки зрения точки на поверхности ротора это поле вращается с двойной синхронной скоростью. По мере того как это поле пронизывает ротор , оно индуцирует токи двойной частоты в корпус ротора цилиндрической роторной машины и в поверхность полюса выдающейся полюсной машины.

Части полученного пути индуцированного тока имеют высокое электрическое сопротивление индуцированному току. Результат — быстрый нагрев.

Повреждение из-за потери механической целостности или повреждения изоляции может произойти в считанные секунды.


Цилиндрические роторные генераторы

Цилиндрический ротор изготовлен из ковки из цельной стали с прорезями по всей длине. Каждая полевая катушка требует двух пазов, по одному на каждую сторону обмотки катушки. Паз может содержать одну или несколько обмоток катушки.

Гребни между пазами называются зубцами .Рисунок 3 иллюстрирует конфигурацию ротора.

Salient-pole rotor Salient-pole rotor Рисунок 3 — Ротор с выступающими полюсами

Канавки обрабатываются по бокам каждого зуба, чтобы можно было вдавливать клинья по всей длине паза. Клинья удерживают обмотки поля в пазах. В некоторых машинах в щелях между клином и полевой катушкой установлены токопроводящие полосы.

Эти полосы соединены на стопорных кольцах , чтобы обеспечить путь с низким сопротивлением для индуцированных токов .Петли, образованные этими полосами, известны как обмотки амортизатора.

Конфигурации пазов клина, полевой катушки и дополнительной обмотки амортиссера показаны на рисунке 4.

Slots and wedges Slots and wedges Рисунок 4 — Слоты и клинья

На концах корпуса ротора стопорные кольца удерживают концы обмоток возбуждения на месте против центробежной силы. Стопорные кольца обычно имеют усадочную посадку на корпусе ротора, но в старых машинах они могут свободно плавать при случайном контакте с корпусом ротора.

Кольца и клинья рассчитаны на механическую прочность , потому что они должны ограничивать большие обмотки возбуждения при частоте вращения генератора . Стопорные кольца являются компонентом наибольшего напряжения ротора.

Индуцированные токи 120 Гц протекают в виде петель вдоль корпуса цилиндрического ротора, как показано на рисунке 5. В роторе столько же петель тока, сколько полюсов статора.

Когда переменный ток проходит через проводник, в этом случае корпус ротора, плотности тока неодинаковы.

Rotor currents Rotor currents Рисунок 5 — Токи ротора

«Эффект скин-эффекта» заставляет переменный ток мигрировать к внешней поверхности проводника. Эта тенденция увеличивается с частотой.

В цилиндрическом роторе индуцированный ток 120 Гц занимает поперечное сечение, простирающееся от поверхности до глубины , не превышающей 0,1-0,4 дюйма . Это заставляет индуцированный ток в зубья и клинья на поверхности ротора. В результате высокая плотность тока значительно увеличивает сопротивление ротора для тока 120 Гц по сравнению с постоянным током или током 60 Гц.

Чем выше сопротивление, тем выше потери и больше тепла на усилитель для тока 120 Гц, чем для тока низкой частоты.

Индуцированные токи производят максимальный нагрев на концах корпуса ротора . Значительное тепло генерируется контактным сопротивлением, как передать токи от клиньев к зубам, чтобы войти в стопорное кольцо и от кольца до зубов затем клиньев на обратном цикле. Повышенный нагрев также вызван высокой плотностью тока в этих местах, так как ток собирается в зубьях для входа и выхода стопорных колец на конце ротора.

Допуск обратной последовательности генератора зависит от поддержания хорошего электрического контакта между конструкциями ротора. Низкое сопротивление минимизирует нагрев и предотвращает искрение в точках контакта . Дизайнеры включают в себя множество функций для улучшения проводимости.

К ним относится добавление обмоток амортизатора в пазы ротора для формирования дорожек с низким сопротивлением по всей поверхности ротора. Концы обмоток амортизатора соединены со стопорными кольцами для обеспечения моста с низким сопротивлением от прорези к кольцу.

Алюминиевые щелевые клинья также могут быть использованы для уменьшения сопротивления на этом пути тока.

Посеребренные алюминиевые пальцы могут обеспечить токопровод низкого сопротивления от клиньев до стопорных колец. Поверхность ротора в месте прессовой посадки стопорного кольца является часто покрытым серебром, чтобы минимизировать сопротивление и нагрев в месте соединения.

Два типа отказов ротора связаны с несбалансированным током.

Перегрев клиньев паза вызовет отжиг и разрушение при сдвиге от силы материала в пазах.Вторая неудача будет вполне стопорное кольцо. Чрезмерное нагревание может привести к термозажима стопорное кольцо, чтобы поднять свободный от тела ротора. Это создаст две проблемы.

стопорное кольцо не может перестроить после того, как он остынет, переустановка во взведенном положении на корпусе ротора. В результате получится Вибрация.

Кроме того, потеря хорошего электрического контакта во время плавания может привести к точечной коррозии и ожогам в местах прерывистого или плохого контакта. Стопорные кольца, предназначенные для плавания, также будут испытывать повреждение дуги в точках прерывистого контакта или плохой проводимости.

Результирующие локализованные высокие температуры могут охрупчивать участки кольца, а может привести к растрескиванию под воздействием различных нагрузок при повторном запуске и останове устройства

Характеристики нагрева различных конструкций генератора показаны на рисунке 6 ниже.

Typical negative phase sequence current withstand of cylindrical rotor generators Typical negative phase sequence current withstand of cylindrical rotor generators Рисунок 6 — Типичная выдерживаемая по току последовательность с обратной последовательностью фаз цилиндрических роторных генераторов
Генераторы выдающихся полюсов

Генераторы выдающихся полюсов обычно имеют обмотку амортизатора в форме проводящих стержней, расположенных на лицевой стороне каждого полюса ротора.Концы спаяны, чтобы сформировать путь низкого сопротивления на поверхности полюса.

Существует два основных типа амортизаторов: Несвязанные обмотки амортизатора изолированы на каждой поверхности полюса. Подключенные амортизаторы имеют токопроводящие перемычки, которые соединяют полюса для соединения концов всех групп амортиссеров на каждом полюсе.

Большая часть тока, индуцируемого в роторе машины с выдающимися полюсами, течет в амортизаторах с полюсной поверхностью. Поскольку соединения паяны, этот путь не имеет горячих точек контактного сопротивления, присущих машине с цилиндрическим ротором.

Тем не менее, ток амортизаторов имеет тенденцию течь во внешних стержнях, и индуцированный ток может вызвать повреждение напряжения из-за неравномерного расширения стержней.

Amortisseurs windings Amortisseurs windings Рисунок 7 — Обмотки амортиссеров

Если амортизаторы не подключены между полюсами — Большая часть тока, наведенного в этих обмотках, протекает по корпусу полюса в ласточкин хвост, который удерживает полюс на роторе, а затем обратно на соседний полюс. Соединение у ласточкиного хвоста создаст сопротивление, создавая тепло, которое может повредить изоляцию и конструкцию ротора.

Если амортиссеры подключены между полюсами — Ток ласточкиного хвоста резко уменьшается, но в соединении между полюсами будет течь большой ток.

Подключение амортизаторов также оказывает текущий балансировочный эффект на стержнях полюсов.

Машины с выдающимися полюсами и подключенными амортизаторами будут иметь более высокую способность по току обратной последовательности, чем машины без них. Ограничивающими компонентами на подключенных машинах часто являются стержни, которые соединяют полюса.

Большой индуцированный ток, протекающий в этих стержнях, может вызвать достаточный нагрев для отжига стержня , что приведет к механическому повреждению под действием центробежной силы .

Difference in salient pole rotor and round or cylindrical rotor Difference in salient pole rotor and round or cylindrical rotor Рис. 8 — Различие в роторе с выступающими полюсами и роторе с круглой или цилиндрической поверхностью

Пульсирующий крутящий момент

Ток обратной последовательности создает обратное вращающееся магнитное поле в воздушном зазоре. Это поле вызывает пульсацию крутящего момента вала с удвоенной частотой линии. Величина крутящего момента пропорциональна на единицу тока обратной последовательности в статоре.Пульсации передаются на статор.

Если статор установлен на пружине, пульсация будет поглощена. Без пружинных креплений пульсация будет передаваться на фундамент статора, где они могут быть конструктивным фактором.

В общем, проблемы, связанные с пульсацией крутящего момента, являются вторичными по отношению к нагреву ротора.

Источники:

  1. Защитная ретрансляция для систем производства электроэнергии от Дональда Реймерта
  2. Руководство по защите и автоматизации сети от Alstom
,
Измерение положительной, отрицательной и нулевой последовательностей трехфазных компонентов сигнал

Примечание

Раздел «Измерения» библиотеки «Управление и измерения» содержит Блок анализатора последовательности. Это улучшенная версия трехфазного Блок анализатора последовательности. Новый блок имеет механизм, который устраняет дубликаты непрерывные и дискретные версии одного и того же блока, основывая конфигурацию блока на режим симуляции. Если ваши старые модели содержат трехфазный анализатор последовательности блок, они продолжают работать.Однако для лучшей производительности используйте последовательность Блок анализатора в ваших новых моделях.

Описание

Блок анализатора трехфазной последовательности выводит величину и фазу положительной (обозначается индексом 1), отрицательной (индекс 2) и нулевой последовательностью (индекс 0) компонентов набора из трех сбалансированных или несбалансированных сигналов. Сигналы могут содержать гармоники или нет. Три составляющие последовательности трехфазного сигнала (напряжения V1, V2, V0 или токи I1, I2, I0) рассчитывается следующим образом:

V 1 = ( V a + aV b + a 2 V c ) / 3 V 2 = ( V a + a 2 V b + a V c ) / 3 V 0 = ( В а + В б + V c ) / 3

, где

V a , В b , В c = три вектора напряжения на указанной частоте
a = e j 2 /3 = Комплексный оператор 1–120 °.

Фурье-анализ по скользящему окну одного цикла указанной частоты является первым применяется к трем входным сигналам. Он оценивает значения вектора V a , V b , и В с на указанной основной или гармонической частота. Затем применяется преобразование для получения положительной последовательности, отрицательной последовательность и нулевая последовательность.

Блок анализатора трехфазной последовательности не чувствителен к гармоникам или дисбалансам.Однако, поскольку этот блок использует окно скользящего среднего для выполнения анализа Фурье, один цикл Симуляция должна быть завершена до того, как выходные данные дадут правильную величину и угол. Для Например, его ответ на изменение шага В 1 представляет собой рампа с одним циклом.

Дискретная версия этого блока позволяет указать начальную величину и фазу выходной сигнал. Для первого цикла моделирования выходные данные удерживаются до значений определяется начальным входным параметром.

Вы можете изменить любой параметр во время моделирования, чтобы получить различные последовательность и гармонические составляющие входных сигналов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *