Функции транзистора: что делает, где применяется, режимы работы биополярного транзистора

Содержание

Что такое транзистор — простым языком

Транзистор – это электронный компонент, который управляет высоким током с помощью низкого. Транзистор еще можно назвать полупроводниковым триодом. Это второе название пришло к нему от его «родителя» – электровакуумного триода, одной из разновидностей так называемых «ламп».

Из чего состоит транзистор?

Видимая часть транзистора состоит из корпуса и трех «ножек»-выводов (однако существуют и разновидности транзисторов, у которых количество выводов больше трех). Корпус транзистора изготовляют из керамики, металлических сплавов или пластмассы. Заглядывая наперед, отметим, что существует два вида транзисторов – биполярный и полевой.

Внутри корпуса биполярного транзистора размещается три слоя полупроводника, два из которых расположены по краям и имеют одинаковый тип проводимости (p либо n), это – коллектор и эмиттер. Третий слой расположен между первыми двумя и отличается типом проводимости от своих соседей.

Это – база.

Расположение полупроводников определяет тип транзистора: p-n-p либо n-p-n. На каждый из полупроводников нанесен металлический слой. С помощью этого слоя и проволочных связей полупроводники соединены с выводами транзистора. Однако не стоит забывать, что расположение выводов транзистора может меняться, в зависимости от модели транзистора.

На изображении – биполярный транзистор n-p-n типа.

Полевой транзистор также имеет в своем арсенале полупроводники, но их расположение, количество и принцип работы отличается от биполярных транзисторов и зависит от вида полевого транзистора.

Где используются транзисторы?

Транзисторы используются в большинстве электронных схем. Это может быть как простой генератор частоты, так и материнская плата компьютера.

Заглянем под крышку усилителя – и тут транзисторы. Они аккуратно разместились на схеме радиоприемника, чтобы преобразовать радиосигнал в аналоговый. Если нужно собрать электронный стабилизатор или ключ – не обойдетесь без транзисторов.

Существует ряд сверхмощных транзисторов. Они могут работать с нагрузкой до 1.5 кВт и применяют их в промышленной сфере. Рабочая температура таких транзисторов может достигать 200-300 градусов Цельсия. Для их охлаждения используют радиаторы теплоотвода.

Группа транзисторов, в совокупности с дополнительными элементами, может совершать ряд логических операций и представляет собой своего рода процессор. Собственно, процессор на основе полупроводника и является группой транзисторов. Они заключены в общий корпус и связаны там между собой таким образом, как если бы располагались на монтажной плате. В мощных процессорах, благодаря миниатюрности кристаллов полупроводника, может быть заключено до нескольких десятков миллионов транзисторов.

Принцип работы транзистора

В биполярных транзисторах управление током коллектора происходит путем изменения управляющего тока базы. Ток, которым нужно управлять, направлен по цепи – «эмиттер-коллектор». Однако, в состоянии покоя транзистора этот ток не может проходить между ними.

Это вызвано сопротивлением эмиттерного перехода, которое возникает в результате взаимодействия слоёв полупроводника. Но стоит подать на базу транзистора незначительный ток, и сопротивление между эмиттером и коллектором упадет, тем самым даст возможность проходить току через эмиттер и коллектор, усиливая выходной сигнал. Изменяя ток базы, можно изменять ток на выходе транзистора.

В полевых транзисторах такое управление осуществляется благодаря созданию поперечного электрического поля, которое создается напряжением, приложенным к затвору относительно истока. Это значительно уменьшает энергопотребление транзистора, так как сопротивление затвора велико, и для создания поля не нужно постоянно поддерживать управляющий ток. Если бы не полевой транзистор, мы меняли бы батарейки в пульте от телевизора в разы чаще, чем обычно.

Таким образом, транзисторы можно сравнить с водопроводным краном, где подача и слив воды – это эмиттер\исток и коллектор\сток транзистора, а рукоять вентиля – это его база\затвор.

Разновидности, обозначение транзисторов

На большинстве схем транзисторы могут обозначаться буквами «VT», «Q», «T», «ПТ», «ПП». К буквам может применяться приписка в виде цифры, например «VT 4», которая указывает номер детали на схеме. Или модель транзистора целиком, например «T KT-315Б».
Транзисторы делятся на два вида: биполярный и полевой.

Схематическое обозначение биполярного транзистора:

Как видно на рисунке, обозначение транзисторов разных типов отличается направлением стрелки эмиттера. Транзисторы n-p-n типа обозначаются со стрелкой эмиттера, направленной от базы. В случае p-n-p типа, стрелка будет направлена в сторону базы транзистора. На многих схемах эмиттер, коллектор и база отмечены буквами латинского языка: эмиттер – «E», база – «B» коллектор – «C».

Типовая схема подключения биполярных транзисторов:

Рекомендовано практически во всех схемах с биполярным транзистором давать дополнительное сопротивление ко входам коллектора и базы. Это продлит срок службы транзистора и стабилизирует его работу.

Обозначений полевых транзисторов есть больше, чем биполярных. Основные представлены на изображениях ниже.

Как вы видите, выводы транзистора обозначены буквами «З»-затвор, «С»-сток, «И»-исток. Функцию базы выполняет затвор, а коллектор и эмиттер, это – сток и исток, соответственно. Как биполярные транзисторы делятся на n-p-n и p-n-p, так полевые делятся на:

  • с управляющим p-n переходом с каналом n-типа;
  • с изолированным затвором с индуцированным каналом n-типа;
  • с изолированным затвором со встроенным каналом n-типа;
  • с управляющим p-n переходом с каналом p-типа;
  • с изолированным затвором с индуцированным каналом p-типа;
  • с изолированным затвором со встроенным каналом p-типа.

Некоторые транзисторы с управляющим p-n-переходом предоставляют доступ к каналу с помощью четвертой «ножки»-вывода либо используется сам корпус транзистора.

На изображениях ниже – схемы включения полевых транзисторов:

С управляющим p-n-переходом с общим истоком

С управляющим p-n-переходом с общим стоком

С управляющим p-n-переходом с общим затвором

Маркировка транзисторов

Маркировка транзистора наносится на корпус, иногда нужно также обращать внимание на длину выводов.

Современная маркировка транзисторов зависит от производителя. По причине этого, рекомендовано изучать спецификации от производителей, чтобы корректно читать маркировку.

Маркировка бывает цветовая, кодовая и смешанная. Есть случаи нестандартной маркировки, где могут использоваться различного рода символы.

Вольт амперная характеристика

На двух графиках представлены вольт амперные характеристики отдельно для биполярных и полевых транзисторов.

Биполярные транзисторы:

Полевые транзисторы:

Что означает слово транзистор? Назначение и устройство.

Транзистор не сразу получил такое привычное название. Первоначально, по аналогии с ламповой техникой его называли полупроводниковым триодом. Современное название состоит из двух слов: transfer и resistor. Первое слово – «трансфер», (тут сразу вспоминается «трансформатор») означает передатчик, преобразователь, переносчик. А вторая половина слова напоминает слово «резистор», — деталь электрических схем, основное свойство которой электрическое сопротивление.

Именно это сопротивление встречается в законе Ома и многих других формулах электротехники. Поэтому слово «транзистор» можно растолковать, как преобразователь сопротивления. Примерно так же, как в гидравлике изменение потока жидкости регулируется задвижкой. У транзистора такая «задвижка» изменяет количество электрических зарядов, создающих электрический ток. Это изменение есть не что иное, как изменение внутреннего сопротивления полупроводникового прибора.

Усиление электрических сигналов

Наиболее распространенной операцией, которую выполняют транзисторы, является усиление электрических сигналов. Но это не совсем верное выражение, ведь слабый сигнал с микрофона таковым и остается.

Усиление также требуется в радиоприеме и телевидении: слабый сигнал с антенны мощностью в миллиардные доли ватта необходимо усилить до такой степени, чтобы получить звук или изображение на экране. А это уже мощности в несколько десятков, а в некоторых случаях и сотен ватт. Поэтому процесс усиления сводится к тому, чтобы с помощью дополнительных источников энергии, полученной от блока питания, получить мощную копию слабого входного сигнала. Другими словами маломощное входное воздействие управляет мощными потоками энергии.

Усиление в других областях техники и природе

Такие примеры можно найти не только в электрических схемах. Например, при нажатии педали газа увеличивается скорость автомобиля. При этом на педаль газа нажимать приходится не очень сильно – по сравнению с мощностью двигателя мощность нажатия на педаль ничтожна. Для уменьшения скорости педаль придется несколько отпустить, ослабить входное воздействие. В этой ситуации мощным источником энергии является бензин.

Такое же воздействие можно наблюдать и в гидравлике: на открытие электромагнитного клапана, например в станке, энергии, идет совсем немного. А давление масла на поршень механизма способно создать усилие в несколько тонн. Это усилие можно регулировать, чуть прикрыл — давление упало, усилие снизилось. Если открыл побольше, то и нажим усилился.

На поворот задвижки тоже не требуется прилагать особых усилий. В данном случае внешним источником энергии является насосная станция станка. И подобных воздействий в природе и технике можно заметить великое множество. Но все-таки нас больше интересует транзистор, поэтому далее придется рассмотреть.

Усилители электрических сигналов

В большинстве усилительных схем транзисторы или электронные лампы используются как переменный резистор, сопротивление которого изменяется под действием слабого входного сигнала. Этот «переменный резистор» является составной частью электрической цепи постоянного тока, которая получает питание, например, от гальванических элементов или аккумуляторов, поэтому в цепи начинает протекать постоянный ток. Начальное значение этого тока (входного сигнала еще нет) устанавливается при настройке схемы.

Под действием входного сигнала внутреннее сопротивление активного элемента (транзистора или лампы) изменяется в такт входному сигналу. Поэтому постоянный ток превращается в переменный, создавая на нагрузке мощную копию входного сигнала. Насколько точной будет эта копия, зависит от многих условий, но об этом разговор будет позже.

Действие входного сигнала очень напоминает упомянутые выше педаль газа или задвижку в гидросистеме. Чтобы разобраться в том, что же является такой задвижкой в транзисторе, придется рассказать, хотя бы очень упрощенно, но верно и понятно о некоторых процессах в полупроводниках.

Электропроводность и строение атома

Электрический ток создается за счет движения электронов в проводнике. Для того, чтобы разобраться, как это происходит, придется рассмотреть строение атома. Рассмотрение, конечно, будет максимально упрощенное, даже примитивное, но позволяющее вникнуть в суть процесса, не более, чем нужно для описания работы полупроводников.

   Планетарная модель атома

В 1913 году датский физик Нильс Бор предложил планетарную модель атома, смотрите рисунок выше. Согласно его теории атом состоит из ядра, которое, в свою очередь, состоит из протонов и нейтронов. Протоны являются носителями положительного электрического заряда, а нейтроны электрически нейтральны. Вокруг ядра по орбитам вращаются электроны, электрический заряд которых отрицательный. Количество протонов и электронов в атоме одинаково, и электрический заряд ядра уравновешивается общим зарядом электронов. В таком случае говорят, что атом находится в состоянии равновесия или электрически нейтрален, то есть не несет положительного или отрицательного заряда.

 

Если атом потеряет электрон, то его электрический заряд становится положительным, а сам атом в этом случае становится положительным ионом. Если атом присоединяет к себе чужой электрон, то его называют отрицательным ионом.

На рисунке ниже показан фрагмент периодической таблицы Менделеева. Обратим внимание на прямоугольник, в котором находится кремний (Si).

 
   Фрагмент периодической таблицы Менделеева

В правом нижнем углу находится столбик цифр. Они показывают, как распределены электроны по орбитам атома, — нижняя цифра самая ближняя к ядру орбита. Если внимательно приглядеться к рисунку планетарной модели атома, то с уверенностью можно сказать, что перед нами атом кремния с распределением электронов 2, 8, 4. Этот рисунок объемный, на нем почти видно, что орбиты электронов сферические, но для дальнейших рассуждений давайте считать, что они находятся в одной плоскости, и все электроны бегают по одной дорожке, как показано на рисунке ниже.

Латинскими буквами на рисунке отмечены оболочки. В зависимости от количества электронов в атоме их количество может быть разным, но не более семи: K = 2, L = 8, M = 18, N = 32, O = 50, P = 72, Q = 98. На каждой орбите может находиться определенное количество электронов. Например, на последней Q целых 98, меньше можно, больше нельзя. Собственно на это распределение в плане нашего рассказа можно внимания не обращать: нас интересуют только электроны, расположенные на внешней орбите.

Конечно, на самом деле все электроны вращаются вовсе не в одной плоскости: даже 2 электрона, которые находятся на орбите с именем K, вращаются по сферическим орбитам, расположенным очень близко. А что уж говорить об орбитах с более высокими уровнями! Но для простоты рассуждений будем считать, что все происходит в одной плоскости.

   Кристаллическая решётка

В этом случае даже кристаллическую решетку можно представить в плоском виде, что облегчит понимание материала, хотя на самом деле все намного сложней. 

Электроны внешнего слоя называют валентными. Именно они и показаны на рисунке (остальные электроны для нашего рассказа значения не имеют). Именно они участвуют в соединении атомов в молекулы, и при создании разных веществ определяют их свойства.

Именно они могут отрываться от атома и свободно блуждать, а при наличии некоторых условий создавать электрический ток. Кроме того, именно во внешних оболочках происходят те процессы, в результате которых получился транзистор – полупроводниковый усилительный прибор.

Видео, что такое транзистор

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Изобретение транзистора. Как был изобретен транзистор

Одним из значительных изобретений XX века по праву считается изобретение транзистора, пришедшего на замену электронным лампам.

Долгое время лампы были единственным активным компонентом всех радиоэлектронных устройств, хотя и имели множество недостатков. Прежде всего, это большая потребляемая мощность, большие габариты, малый срок службы и малая механическая прочность. Эти недостатки все острее ощущались по мере усовершенствования и усложнения электронной аппаратуры.

   Электронные лампы

Революционный переворот в радиотехнике произошел, когда на смену устаревшим лампам пришли полупроводниковые усилительные приборы – транзисторы, лишенные всех упомянутых недостатков.

Первый работоспособный транзистор появился на свет в 1947 году, благодаря стараниям сотрудников американской фирмы Bell Telephone Laboratories. Их имена теперь известны всему миру. Это ученые – физики У. Шокли, Д. Бардин и У. Брайтен. Уже в 1956 году за это изобретение все трое были удостоены нобелевской премии по физике.

Но, как и многие великие изобретения, транзистор был замечен не сразу. Лишь в одной из американских газет было упомянуто, что фирма Bell Telephone Laboratories продемонстрировала созданный ею прибор под названием транзистор. Там же было сказано, что его можно использовать в некоторых областях электротехники вместо электронных ламп.

   Первый транзистор

Показанный транзистор имел форму маленького металлического цилиндрика длиной 13 мм и демонстрировался в приемнике, не имевшем электронных ламп. Ко всему прочему, фирма уверяла, что прибор может использоваться не только для усиления, но и для генерации или преобразования электрического сигнала.

   Изобретение транзистора, Джон Бардин, Уильям Шокли и Уолтер Браттейн

За сотрудничество в разработке первого в мире действующего транзистора в 1948 году они разделили Нобелевскую премию 1956 года.

Но возможности транзистора, как, впрочем, и многих других великих открытий, были поняты и оценены не сразу. Чтобы вызвать интерес к новому прибору, фирма Bell усиленно рекламировала его на семинарах и в статьях, и предоставляла всем желающим лицензии на его производство.

Производители электронных ламп не видели в транзисторе серьезного конкурента, ведь нельзя было так сразу, одним махом, сбросить со счетов тридцатилетнюю историю производства ламп нескольких сотен конструкций, и многомиллионные денежные вложения в их развитие и производство. Поэтому транзистор вошел в электронику не так быстро, поскольку эпоха электронных ламп еще продолжалась.

Как это было, первые шаги к полупроводникам

С давних времен в электротехнике использовались в основном два вида материалов – проводники и диэлектрики (изоляторы). Способностью проводить ток обладают металлы, растворы солей, некоторые газы. Эта способность обусловлена наличием в проводниках свободных носителей заряда – электронов. В проводниках электроны достаточно легко отрываются от атома, но для передачи электрической энергии наиболее пригодны те металлы, которые обладают низким сопротивлением (медь, алюминий, серебро, золото).

К изоляторам относятся вещества с высоким сопротивлением, у них электроны очень крепко связаны с атомом. Это фарфор, стекло, резина, керамика, пластик. Поэтому свободных зарядов в этих веществах нет, а значит нет и электрического тока.

Здесь уместно вспомнить формулировку из учебников физики, что электрический ток это есть направленное движение электрически заряженных частиц под действием электрического поля.

В изоляторах двигаться под действием электрического поля просто нечему.

Однако, в процессе исследования электрических явлений в различных материалах некоторым исследователям удавалось «нащупать» полупроводниковые эффекты. Например, первый кристаллический детектор (диод) создал в 1874 году немецкий физик Карл Фердинанд Браун на основе контакта свинца и пирита. (Пирит – железный колчедан, при ударе о кресало высекается искра, отчего и получил название от греческого «пир» — огонь). Позднее этот детектор с успехом заменил когерер в первых приемниках, что значительно повысило их чувствительность.

В 1907 году Беддекер, исследуя проводимость йодистой меди обнаружил, что ее проводимость возрастает в 24 раза при наличии примеси йода, хотя сам йод проводником не является. Но все это были случайные открытия, которым не могли дать научного обоснования. Систематическое изучение полупроводников началось лишь в 1920 — 1930 годы.

Большой вклад в изучение полупроводников внес советский ученый сотрудник знаменитой Нижегородской радио-лаборатории О.В. Лосев. Он вошел в историю в первую очередь как изобретатель кристадина (генератор колебаний и усилитель на основе диода) и светодиода. 

На заре производства транзисторов основным полупроводником являлся германий (Ge). В плане энергозатрат он весьма экономичен, напряжение отпирания его pn – перехода составляет всего 0,1…0,3В, но вот многие параметры нестабильны, поэтому на замену ему пришел кремний (Si).

   Изобретение транзистора

Температура, при которой работоспособны германиевые транзисторы не более 60 градусов, в то время, как кремниевые транзисторы могут продолжать работать при 150. Кремний, как полупроводник, превосходит германий и по другим свойствам, прежде всего по частотным.

Кроме того, запасы кремния (обычный песок на пляже) в природе безграничны, а технология его очистки и обработки проще и дешевле, нежели редкого в природе элемента германия. Первый кремниевый транзистор появился вскоре после первого германиевого — в 1954 году. Это событие даже повлекло за собой новое название «кремниевый век».

Микропроцессоры и полупроводники. Закат «кремниевого века»

Вы никогда не задумывались над тем, почему в последнее время практически все компьютеры стали многоядерными? Термины двухъядерный или четырехъядерный у всех на слуху. Дело в том, что увеличение производительности микропроцессоров методом повышения тактовой частоты, и увеличения количества транзисторов в одном корпусе, для кремниевых структур практически приблизилось к пределу.

Увеличение количества полупроводников в одном корпусе достигается за счет уменьшения их физических размеров. В 2011 году фирма INTEL уже разработала 32 нм техпроцесс, при котором длина канала транзистора всего 20 нм. Однако, такое уменьшение не приносит ощутимого прироста тактовой частоты, как это было вплоть до 90 нм технологий. Совершенно очевидно, что пора переходить на что-то принципиально новое.

Графен – полупроводник будущего

В 2004 году учеными–физиками был открыт новый полупроводниковый материал графен. Этот основной претендент на замену кремнию также является материалом углеродной группы. На его основе создается транзистор, работающий в трех разных режимах.

   Изобретение транзистора на основе графена

По сравнению с существующими технологиями это позволит ровно в три раза сократить количество транзисторов в одном корпусе. Кроме того, по мнению ученых рабочие частоты нового полупроводникового материала могут достигать до 1000 ГГц. Параметры, конечно, очень заманчивые, но пока новый полупроводник находится на стадии разработки и изучения, а кремний до сих пор остается рабочей лошадкой. Его век еще не закончился.

Видео

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Принцип действия транзистора, внутреннее устройство и основные характеристики транзисторов

Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Так что же такое транзистор? — Он представляет собой кристалл, помещенный в корпус, снабженный выводами. Кристалл изготовляют из полупроводникового материала. По своим электрическим свойствам полупроводники занимают некоторое промежуточное положение между проводниками и непроводниками тока (изоляторами).

Небольшой кристалл полупроводникового материала (полупроводника) после соответствующей технологической обработки становится способным менять свою электропроводность в очень широких пределах при подведении к нему слабых электрических колебаний и постоянного напряжения смещения.

Кристалл помещают в металлический или пластмассовый корпус и снабжают тремя выводами, жесткими или мягкими, присоединенными к соответствующим зонам кристалла. Металлический корпус иногда имеет собственный вывод, но чаща с корпусом соединяют один из трех электродов транзистора.

В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.

Быполярные транзисторы

Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами. В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов.

Поэтому и транзисторы называют одни кремниевыми, другие — германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.

Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость). Таким образом формируют один из электродов транзистора, называемый базой.

Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменя

Смещение транзистора-подробные схемы функции.

Транзисторы являются широко используемыми полупроводниковыми устройствами. Они используется во множестве разных случаев, включая усиление и коммутацию. Для того чтобы выполнить подобные функции удовлетворительно, транзистор должен быть снабжён определенным электрическим током и/или напряжением.

Процесс обеспечения данных условий для транзистора называется “Смещение транзистора”. Эта цель может быть достигнута множеством методик, которые дают множество различных схем смещения.

Как бы там ни было, все эти схемы базируются на принципе обеспечения точно высчитанного тока, IB, и тока на коллекторе, Ic от подаваемого напряжения, напряжении постоянного тока, когда сигнал на входе отсутствует.

Более того, резистор коллектора Rc должен быть выбран так, чтобы напряжение коллектора и эмиттера, VCE, оставалось больше 0,5 вольт для транзисторов, сделанных из германия, и более 1 вольта для кремниевых транзисторов. Ниже объяснены несколько вполне удовлетворительных схем смещения.

Смещение с постоянной базой и смещение с постоянным сопротивлением

Схема имеет базовый резистор RB, который соединяет базу и напряжение постоянного тока. Тут соединение базы-эмиттера у транзистора, который смещён за счёт снижения напряжения через RB, что является результатом течения IB через него.

Здесь величины напряжения постоянного тока и VBE постоянны, в то время как величина RB постоянна с момента создания схемы. Это приводит к постоянной величине для IB за счёт постоянного операционного усилителя. Благодаря последнему данная схема называется смещением с постоянной базой. Этот вид смещения – результат стабилизирующего фактора (ß + 1), который приводит к очень низкой термической стабильности.

Причина этого кроется в том, что ß – параметр транзистора непредсказуем, и сильно изменяется, даже если транзисторы одного типа и модели. Это изменение в ß выражается в больших изменениях в Ic, которые не могут быть компенсированы никакими средствами при проектировании. Отсюда можно сделать вывод, что этот вид смещения, зависящего от ß, подвержен изменениям в операционном усилителе, возникающим из за изменений в характеристиках транзистора и температуры.

Как бы там ни было, стоит отметить, что смещение с постоянной базой наиболее простое и использует меньше деталей. Более того, оно даёт пользователю возможность менять операционный усилитель где угодно в активной зоне просто за счёт смены значения RB в проектировании. Также оно предлагает не загружать источник как соединение базы-эмиттера без резистора. Благодаря этим факторам, этот тип смещения используется при коммутации и для достижения автоматического контроля за коэффициентом усиления в транзисторах.

Смещение при обратной связи с коллектором

На данной схеме базовый резистор RB подсоединён через коллектор и базовые выводы транзистора. Это означает, что базовое напряжение, VB, и напряжение коллектора, Vс, взаимосвязаны.

Увеличение в Ic уменьшает Vс, из-за уменьшившегося IB. Автоматически уменьшается Ic. Это показывает, что для такого типа смещения, операционный усилитель остается постоянным безотносительно к изменениям в поступающем токе, являющимся причиной того, что транзистор постоянно находится в своей активной зоне вне зависимости от величины ß.

Эта схема также называется схемой само-смещения с отрицательной обратной связью, ведь обратная связь тут от выхода к входу через RB. Этот довольно простой вид смещения имеет стабилизирующий фактор меньше (ß + 1). Это обеспечивает большую стабильность по сравнению с постоянным смещением. Как бы там ни было, уменьшение тока коллектора за счёт базового электрического тока приводит к уменьшению коэффициента усиления на усилителе.

Смещение с двойной связью

Схема смещения с двойной связью в данном случае является импровизацией, основанной на смещении обратной связи с коллектором. Тут имеется дополнительный резистор R1. Это объясняется усилением тока, текущего через базовые резисторы. Схема устойчива к изменениям значений ß.

Постоянное смещение с резистором эмиттера

Это смещение не что иное, как постоянное смещение с дополнительным резистором эмиттера, RE. Если Ic возрастёт из-за увеличения температуры, то IE тоже возрастёт, что в дальнейшем приведет к увеличению уменьшения напряжения через RE. Уменьшение в Vc станет причиной уменьшения в IB, которое вернёт Ic к его нормальному значению. Таким образом, этот вид смещения обеспечивает лучшую стабильность, чем смещение с постоянной базой. Наличие RE уменьшает напряжение от усилителя, а также результаты его нежелательной AC обратной связи.

Смещение эмиттера

Это смещение использует два напряжения, напряжение постоянного тока (Vcc) и VEE, которые равны, но противоположны по заряду. Тут смещения VEE, соединение через базу-эмиттер через RE за счёт Vcc обратных смещений, соединение коллектор-база. В этом случае смещения, Ic может быть сделано независимой и от ß, и от VBE за счёт выбора RE > > RB и VEE > > VBE, соответственно. В итоге получается стабильный операционный усилитель.

Смещение эмиттера с обратной связью

Это само-смещение эмиттера использует и обратную связь коллектора-базы, и обратную связь эмиттера. В итоге – более высокая стабильность. Соединение эмиттер-база смещается из-за уменьшения напряжения через резистор эмиттера, RE. Это происходит из-за течения тока через эмиттер, IE. Это также приводит к более интенсивному понижению напряжения через RE, что, в свою очередь, уменьшает напряжение на коллекторе, Vc и IB, тем самым возвращая Ic прежнее значение.

Как бы там ни было, это является следствием уменьшения коэффициента усиления на выходе из-за наличия дегенеративной обратной связи, которая является нежелательной AC обратной связью. В такой связи количество тока, проходящего через резистор обратной связи, определяется за счёт значения напряжения коллектора, Vc. Этот эффект может быть компенсирован использованием большого обходного конденсатора через резистор эмиттера, RE.

Смещение с делителем напряжения

Этот вид смещения использует делитель напряжения, который сформирован за счёт резисторов R1 и R2 для смещения транзистора. Это означает, что напряжение, проходящее через R2, будет напряжением на базе транзистора, который смещает своё соединение базы-эмиттера. В общем, ток через R2 будет постоянным и будет являться током на базе, используемым 10 раз, IB (i.e. I2 = 10IB). Это сделано, чтобы обойти его воздействие на ток делителя напряжения или на изменения в ß.

В этом типе смещения, Ic устойчив к изменениям и в ß, и в VBE, что ведёт к стабилизирующему фактору со значением 1 (теоретически) и максимально возможной термической стабильности. Это объясняется тем, что подобно тому как Ic увеличивается из-за роста температуры, IE также увеличивается из-за возрастания напряжения на эмиттере, VE, которое, напротив, уменьшает напряжение базы-эмиттера, VBE. Это приводит к уменьшению тока на базе, IB, что возвращает Ic к исходному значению.

Очень высокая стабильность, которую обеспечивает данное смещение, сделало его наиболее широко используем, несмотря на обеспечение уменьшенного коэффициента усиления у усилителя в силу наличия RE. Отдельно от проанализированных основных типов схем смещения, транзисторы с биполярным соединением могут также быть смещены при использовании активных схем или за счёт применения кремниевых или стабилизирующих диодов. Стоит также отметить, что несмотря на то, что схемы смещения объяснены для транзисторов с биполярным соединением, похожие схемы смещения существуют и для транзисторов с эффектом поля.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Похожее

Что такое транзистор: его виды, назначение и принципы работы

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы  и вообще с чем его едят, то берем  стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание,  будет удобнее ориентироваться в статье ????

[contents]

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы.  Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу  у вас в голове.

Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу  а уделим внимание каждому, индивидуально.

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут  так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие,  выглядит как-то так.

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой.

Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой.    В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения.

Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто  прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа,  при прозвонке  создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора  n-p-n типа  диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

 Принцип работы биполярного транзистора

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

  • Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.
  • -коэффициент усиления по току.
  • Его также обозначают как 
  • Исходы из выше сказанного транзистор может работать в четырех режимах:
  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто.

К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может.

Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

  1. В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.
  2. Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).
  3. Чтож, теперь давайте попробуем рассчитать значение базового резистора.
  4. На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе  может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти ????

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор  Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае  мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством.  Схема включения транзистора с общим коллектором усиливает сигнал по мощности.

Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора.

Получается ток нагрузки равен току коллектора.  И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть  схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в  любом ближайшем  магазине радиодеталей.

Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине.

Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в х, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

  • Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.
  • Желаю вам удачи, успехов  и солнечного настроения!
  • С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Источник: http://popayaem.ru/bipolyarnyj-tranzistor-princip-raboty-dlya-chajnikov.html

Транзистор. Как работает ? транзистор и для чего он нужен? Виды транзисторов и принцип работы для чайников

В свое время за открытие транзистора его создатели удостоились Нобелевской премии. Этот маленький прибор изменил человечество навсегда: начиная с простых радиоприемников и заканчивая процессорами, в которых их число достигает нескольких миллиардов. Между тем, чтобы узнать, как он работает, не нужно быть золотым медалистом или лауреатом «нобелевки».

Что такое транзистор

Транзистор – это прибор, изготовленный из полупроводниковых материалов. Выглядит как маленькая металлическая пластинка с тремя контактами. Назначений у него два: усиливать поступающий сигнал и участвовать в управлении компонентами электроприборов.

Принцип действия

Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.

В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон.

Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный).

В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.

Однако с помощью специальных веществ можно нарушить это равновесие, добавив «лишние» электроны (вещества – доноры) или «лишние» «дырки» (вещества акцепторы). Таким образом можно получить кристалл полупроводника с преобладающей n-проводимостью, либо p-проводимостью.

Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.

В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.

Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.

Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.

Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.

Биполярный транзистор

Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.

Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.

В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.

Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.

Полевой транзистор

Если в биполярном транзисторе управление происходило с помощью тока, то в полевом – с помощью напряжения. Состоит он из пластинки полупроводника, которую называют каналом. С одной стороны к ней подключен исток – через него в канал входят носители электрического тока, а с другой сток – через него они покидают канал.

Сам канал как бы «зажат» между затвором, который обладает обратной проводимостью, то есть если канал имеет n-проводимость, то затвор – p-проводимость. Затвор электрически отделен от канала.

Изменяя напряжение на затворе, можно регулировать зону p-n перехода. Чем она больше, тем меньше электрической энергии проходит через канал.

Существует значение напряжения, при котором затвор полностью перекроет канал и ток между истоком и стоком прекратится.

Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса.

В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).

Описанный выше тип полупроводникового прибора является классическим и называется транзистором с управляющим p-n переходом. Часто можно встретить аббревиатуру JFET – Junction FET, что просто перевод русского названия на английский.

Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.

Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.

Существует два вида МДП-затвора:

  1. МДП-затвор с индуцированным (или инверсным) каналом в обычном состоянии закрыт, то есть при отсутствии напряжения на затворе электроток через канал не проходит. Для того, чтобы открыть его, к затвору необходимо приложить напряжение.
  2. МДП-затвор со встроенным (или собственным) каналом в обычном состоянии открыт, то есть при отсутствии напряжения на затворе электроток через канал проходит. Для того, чтобы закрыть его, к затвору необходимо приложить напряжение.

Основные характеристики

Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.

В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.

Хотя на первый взгляд кажется, что здесь важен принцип «чем больше, тем лучше», но в действительности это не так. Скорее, тут применимо изречение «лучше меньше, да лучше». В среднем биполярные транзисторы имеют коэффициент передачи тока базы в пределах 10 – 50.

Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.

Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.

Поэтому оптимальным считается максимальная рабочая частота сигнала, в 10-20 раз ниже предельного усиления частоты транзистора.

Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.

Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.

Типы подключений

Основная задача транзистора – усиливать поступающий сигнал. Проблема в том, что у любого триода имеются только три контакта, в то время как сам усилитель имеет четыре полюса – два для входящего сигнала и два для выходящего, то есть усиленного. Выход из положения – использовать один из контактов транзистора дважды: и как вход, и как выход.

По этому принципу различают три вида подключения. Стоит отметить, что не имеет принципиальной разницы, какой тип прибора используется – полевой или биполярный.

  1. Подключение с общим эмиттером (ОЭ) или общим истоком (ОИ). Эта схема подключения имеет наибольшие значения усиления мощности по току и напряжению. Однако из-за эффекта Миллера его частотные характеристики значительно хуже. Борются с этим негативным явлением несколькими способами: используют подключение с общей базой, применяют каскодное подключение двух транзисторов (подключённому по общему эмиттеру добавляется второй, подключенный по общей базе).
  2. Подключение с общей базой (ОБ) или общим затвором (ОЗ). Здесь полностью исключено влияние эффекта Миллера. Однако за это приходиться платить: в этой схеме усиления тока практически не происходит, зато имеется широкий диапазон для изменения частоты сигнала.
  3. Подключение с общим коллектором (ОК) или общим стоком (ОС). Такой тип подключения часто называют эмиттерным или истоковым повторителем. Это «золотая середина» между двумя предыдущими видами схем: частотные характеристики и мощность усиления по току и напряжению находятся где-то посередине между двумя первыми.

Все три описанных выше типа подключения применяются в зависимости от того, какие цели преследуют конструкторы.

Виды транзисторов

В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.

В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.

Другие классификации транзисторов:

  1. По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
  2. Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
  3. Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
  4. К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
  5. В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.

Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.

Источник: https://remont220.ru/osnovy-elektrotehniki/1098-tranzistor/

Виды транзисторов и область их применения. Общие сведения

Здравствуйте, дорогие читатели. В данной статье рассмотрим виды транзисторов и область их применения. И так…

Транзистор, это радиоэлектронный компонент из полупроводникового  материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи.

Это позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов.

В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

   Виды транзисторов

О том что такое транзистор, читайте в статье «Что означает слово транзистор? Назначение и устройство.

» Здесь лишь отметим, в большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем.

Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.

Устройство и принцип действия полевых и биполярных транзисторов — это так же темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто практической точки зрения на конкретных примерах.

Полевые и биполярные транзисторы

По технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости.

Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода.

IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.

   Виды транзисторов, p–n–p и n–p–n проводимость

Области применения транзисторов определяются их характеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном.

В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления.

А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.

2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3

Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трансформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.

Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости.

Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер.

Данный транзистор может работать на частотах до 3 МГц.

КТ315 — легенда среди отечественных биполярных транзисторов малой мощности

Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.

При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограничен 50 мА.

Изначально транзистор выпускался только в пластмассовом корпусе KT-13, 7 мм в ширину и 6 мм высотой, но в последнее время можно его встретить и в корпусе ТО-92.

КП501 — полевой n-канальный транзистор малой мощности с изолированным затвором

Имеет обогащенный n-канал, сопротивление которого составляет от 10 до 15 Ом, в зависимости от модификации (А,Б,В). Предназначен данный транзистор, как его позиционирует производитель, для использования в аппаратуре связи, в телефонных аппаратах и другой радиоэлектронной аппаратуре.

Этот транзистор можно назвать сигнальным. Небольшой корпус ТО-92, максимальное напряжение сток-исток — до 240 вольт, максимальный ток стока — до 180 мА. Емкость затвора менее 100 пф. Особенно примечательно то, что пороговое напряжение затвора составляет от 1 до 3 вольт, что позволяет реализовать управление с очень-очень малыми затратами. Идеален в качестве преобразователя уровней сигналов.

irf3205 – n-канальный полевой транзистор, изготовленный по технологии HEXFET

Популярен в качестве силового ключа для повышающих высокочастотных инверторов, например автомобильных. Посредством параллельного включения нескольких корпусов представляется возможность построения преобразователей, рассчитанных на значительные токи.

Максимальный ток для одного такого транзистора достигает 75А (ограничение вносит конструкция корпуса ТО-220), а максимальное напряжение сток-исток составляет 55 вольт. Сопротивление канала при этом всего 8 мОм. Емкость затвора в 3250 пф требует применения мощного драйвера для управления на высоких частотах, но сегодня это не является проблемой.

FGA25N120ANTD мощный биполярный транзистор с изолированным затвором (IGBT-транзистор)

Способен выдержать напряжение сток-исток 1200 вольт, максимальный ток стока составляет 50 ампер. Особенность изготовления современных IGBT-транзисторов такого уровня позволяет отнести их к классу высоковольтных.

Область применения — силовые преобразователи инверторного типа, такие как индукционные нагреватели, сварочные аппараты и другие высокочастотные преобразователи, рассчитанные на питание высоким напряжением. Идеален для мощных мостовых и полумостовых резонансных преобразователей, а также для работы в условиях жесткого переключения, имеется встроенный высокоскоростной диод.

Рекомендации по эксплуатации транзисторов

Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.

Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым. Например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора.

В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой.

Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды.

Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации.

 Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки.

При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.

Мы рассмотрели здесь только несколько видов транзисторов, и это лишь мизерная часть из обилия моделей электронных компонентов, представленных на рынке сегодня.

Так или иначе, вы с легкостью сможете подобрать подходящий транзистор для своих целей. Документация на них доступна сегодня в сети в виде даташитов, в которых исчерпывающе представлены все характеристики. Типы корпусов современных транзисторов различны, и для одной и той же модели зачастую доступны как SMD исполнение, так и выводное.

Видео, виды транзисторов

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Источник: https://powercoup.by/radioelektronika/vidy-tranzistorov

Основы электроники для чайников: что такое транзистор и как он работает

Электроника окружает нас всюду. Но практически никто не задумывается о том, как вся эта штука работает. На самом деле все довольно просто. Именно это мы и постараемся сегодня показать. А начнем с такого важного элемента, как транзистор. Расскажем, что это такое, что делает, и как работает транзистор.

Что такое транзистор?

Транзистор – полупроводниковый прибор, предназначенный для управления электрическим током.

Где применяются транзисторы? Да везде! Без транзисторов не обходится практически ни одна современная электрическая схема. Они повсеместно используются при производстве вычислительной техники, аудио- и видео-аппаратуры.

Времена, когда советские микросхемы были самыми большими в мире, прошли, и размер современных транзисторов очень мал. Так, самые маленькие из устройств имеют размер порядка нанометра!

  • Приставка нано- обозначает величину порядка десять в минус девятой степени.
  • Однако существуют и гигантские экземпляры, использующиеся преимущественно в областях энергетики и промышленности.

Транзисторы

Существуют разные типы транзисторов: биполярные и полярные, прямой и обратной проводимости. Тем не менее, в основе работы этих приборов лежит один и тот же принцип. Транзистор — прибор полупроводниковый. Как известно, в полупроводнике носителями заряда являются электроны или дырки.

Область с избытком электронов обозначается буквой n (negative), а область с дырочной проводимостью  – p (positive).

Как работает транзистор?

Чтобы все было предельно ясно, рассмотрим работу биполярного транзистора (самый популярный вид).

Биполярный транзистор (далее – просто транзистор) представляет собой кристалл полупроводника (чаще всего используется кремний или германий), разделенный на три зоны с разной электропроводностью. Зоны называются соответственно коллектором, базой и эмиттером. Устройство транзистора и его схематическое изображение показаны на рисунке ни же

Биполярный транзистор

Разделяют транзисторы прямой и обратной проводимости.  Транзисторы p-n-p называются транзисторами с прямой проводимостью, а транзисторы n-p-n – с обратной.

Транзисторы

Теперь о том, какие есть два режима работы транзисторов. Сама работа транзистора похожа на работу водопроводного крана или вентиля. Только вместо воды – электрический ток. Возможны два состояния транзистора – рабочее (транзистор открыт) и состояние покоя (транзистор закрыт).

Что это значит? Когда транзистор закрыт, через него не течет ток. В открытом состоянии, когда на базу подается малый управляющий ток, транзистор открывается, и большой ток начинает течь через эмиттер-коллектор.

Физические процессы в транзисторе

А теперь подробнее о том, почему все происходит именно так, то есть почему транзистор открывается и закрывается. Возьмем биполярный транзистор. Пусть это будет n-p-n транзистор.

Если подключить источник питания между коллектором и эмиттером, электроны коллектора начнут притягиваться к плюсу, однако тока между коллектором и эмиттером не будет. Этому мешает прослойка базы и сам слой эмиттера.

Транзистор закрыт

Если же подключить дополнительный источник между базой и эмиттером, электроны из n области эмиттера начнут проникать в область баз. В результате область базы обогатиться свободными электронами, часть из которых рекомбинирует с дырками, часть потечет к плюсу базы, а часть (большая часть) направится к коллектору.

Таким образом, транзистор получается открыт, и в нем течет ток эмиттер коллектор. Если напряжение на базе увеличить, увеличится и ток коллектор эмиттер. Причем, при малом изменении управляющего напряжения наблюдается значительный рост тока через коллектор-эмиттер. Именно на этом эффекте и основана работа транзисторов в усилителях.

Транзистор открыт

Вот вкратце и вся суть работы транзисторов. Нужно рассчитать усилитель мощности на биполярных транзисторах за одну ночь, или выполнить лабораторную работу по исследованию работы транзистора? Это не проблема даже для новичка, если воспользоваться помощью специалистов нашего студенческого сервиса.

Не стесняйтесь обращаться за профессиональной помощью в таких важных вопросах, как учеба! А теперь, когда у вас уже есть представление о транзисторах, предлагаем расслабиться и посмотреть клип группы Korn “Twisted transistor”! Например, вы решили купить отчет по практике, обращайтесь в Заочник.

Источник: https://Zaochnik-com.ru/blog/osnovy-elektroniki-dlya-chajnikov-chto-takoe-tranzistor-i-kak-on-rabotaet/

Как работает транзистор и где используется?

Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор – это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.

Виды транзисторов

Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.

Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда , что ускоряет работу.

Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:

  • мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
  • отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
  • переноса подвижных частиц;
  • стабильности при отклонениях температуры;
  • небольших шумов из-за отсутствия инжекции;
  • потребления малой мощности при работе.

Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру.

У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу.

Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.

Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.

Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов.

Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.

Биполярные транзисторы

Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью.

Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.

  Какие основные виды аккумуляторных батареек существуют?

Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.

Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.

Полевые транзисторы

Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:

  • с управляющим p-n-переходом;
  • транзисторы МДП с изолированным затвором.

Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.

Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе.

Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой.

Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.

Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком.

На них установлены проводники – сток и исток, между которыми на расстоянии меньше микрона расположен диэлект

транзисторов — learn.sparkfun.com

Добавлено в избранное Любимый 74

Приложения I: Коммутаторы

Одно из самых фундаментальных применений транзистора — использовать его для управления потоком энергии к другой части схемы — используя его в качестве электрического переключателя. Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.

Транзисторные переключатели являются важными блоками для построения схем; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем.Ниже приведены несколько примеров схем.

Транзисторный переключатель

Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:

Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.

В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом выводе. Вывод микроконтроллера ввода / вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.

Когда напряжение на базе превышает 0,6 В (или какое бы там значение у вашего транзистора V th ), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0,6 В, транзистор находится в режиме отсечки — ток не течет, потому что это выглядит как разрыв цепи между C и E.

Схема выше называется переключателем нижнего уровня , потому что переключатель — наш транзистор — находится на стороне низкого (заземления) цепи.В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:

Как и в схеме NPN, база — это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер имеет высокий уровень, а нагрузка подключена к транзистору со стороны земли.

Эта схема работает так же хорошо, как и переключатель на основе NPN, но есть одно огромное различие: чтобы включить нагрузку, база должна быть низкой. Это может вызвать проблемы, особенно если высокое напряжение нагрузки (V CC — 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа.Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить переключатель , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .

Базовые резисторы!

Вы заметите, что каждая из этих схем использует последовательный резистор между входом управления и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.

Напомним, что в некотором смысле транзистор — это просто пара соединенных между собой диодов. Мы смещаем в прямом направлении диод база-эмиттер, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток. Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.

Последовательный резистор между нашим источником управления и базой ограничивает ток в базе .Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.

Резистор должен быть достаточно большим, чтобы эффективно ограничить ток, но достаточно маленьким, чтобы питать базу достаточным током . Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.

Цифровая логика

Транзисторы

можно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.

(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)

Инвертор

Вот схема транзистора, которая реализует инвертор , или НЕ затвор:

Инвертор на транзисторах.

Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером.Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтянут до VCC

.

(На самом деле это фундаментальная конфигурация транзистора, называемая общим эмиттером . Подробнее об этом позже.)

И Ворота

Вот пара транзисторов, используемых для создания логического элемента И с двумя входами :

2-входной логический элемент И на транзисторах.

Если какой-либо транзистор выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то выходной сигнал схемы также высокий.

OR Выход

И, наконец, логический элемент ИЛИ с двумя входами :

Затвор ИЛИ с 2 входами, построенный на транзисторах.

В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню.Если оба транзистора выключены, то через резистор выводится низкий уровень.

Н-образный мост

H-мост — это транзисторная схема, способная приводить в движение двигатели как по часовой, так и против часовой стрелки . Это невероятно популярная трасса — движущая сила бесчисленных роботов, которые должны уметь двигаться как вперед на , так и на назад.

По сути, H-мост представляет собой комбинацию четырех транзисторов с двумя входными линиями и двумя выходами:

Вы можете догадаться, почему это называется H-мостом?

(Примечание: обычно в хорошо спроектированном H-мосте есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)

Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.

H-мост имеет таблицу истинности, которая выглядит примерно так:

Вход A Вход B Выход A Выход B Направление двигателя
0 0 1 1 Остановлено (торможение) 1 0 По часовой стрелке
1 0 0 1 Против часовой стрелки
1 1 0 (торможение)

Осцилляторы

Генератор — это схема, которая генерирует периодический сигнал, который колеблется между высоким и низким напряжением.Генераторы используются во всевозможных схемах: от простого мигания светодиода до генерации тактового сигнала для управления микроконтроллером. Есть много способов создать схему генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы.

Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух дополняющих осциллирующих сигналов.

Помимо двух транзисторов, конденсаторы являются настоящим ключом к этой схеме.Колпачки поочередно заряжаются и разряжаются, в результате чего два транзистора попеременно включаются и выключаются.

Анализ работы этой схемы — отличное исследование работы конденсаторов и транзисторов. Для начала предположим, что C1 полностью заряжен (хранится напряжение около V CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:

  • Если Q1 включен, то левая пластина C1 (на схеме) подключена примерно к 0 В. Это позволит C1 разряжаться через коллектор Q1.
  • Пока C1 разряжается, C2 быстро заряжается через резистор меньшего номинала — R4.
  • Как только C1 полностью разрядится, его правая пластина будет подтянута примерно до 0,6 В, что включит Q2.
  • На этом этапе мы поменяли местами состояния: C1 разряжен, C2 заряжен, Q1 выключен, а Q2 включен. Теперь танцуем в другую сторону.
  • Q2 включен, позволяет C2 разряжаться через коллектор Q2.
  • Когда Q1 выключен, C1 может относительно быстро заряжаться через R1.
  • Как только C2 полностью разрядится, Q1 снова включится, и мы вернемся в состояние, с которого начали.

Иногда бывает трудно осознать. Вы можете найти еще одну отличную демонстрацию этой схемы здесь.

Выбирая определенные значения для C1, C2, R2 и R3 (и сохраняя R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора:

Итак, при значениях для конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора будет около 1.5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду.


Как вы, наверное, уже заметили, существует тонн схем, в которых используются транзисторы. Но мы почти не коснулись поверхности. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Пришло время увидеть больше примеров!


Транзистор — Википедия

Dieser Artikel beschreibt das elektronische Bauelement Transistor .Zum gleichnamigen Computerspiel siehe Transistor (Computerspiel). Auswahl an diskreten Transistoren in verschiedenen THT-Gehäuseformen

Ein Transistor ist ein elektronisches Halbleiter-Bauelement zum Steuern meistens niedriger elektrischer Spannungen und Ströme. Er ist der weitaus wichtigste «aktive» Bestandteil elektronischer Schaltungen, der beispielsweise in der Nachrichtentechnik, der Leistungselektronik и в Computersystemen eingesetzt wird. Besondere Bedeutung haben Transistoren — zumeist als Ein / Aus-Schalter — в interierten Schaltkreisen был die weit verbreitete Mikroelektronik ermöglicht.

Die Bezeichnung «Transistor» ist ein Kofferwort des englischen trans fer res istor , [1] [2] was in der Funktion einem durch eine angelegense elektris eelectris eelectris entspricht. Die Wirkungsweise ähnelt der einer entsprechenden Elektronenröhre, nämlich der Triode.

Nachbau des ersten Transistors von Shockley, Bardeen und Brattain von 1947/48 im Nixdorf-Museum Джон Бардин, Уильям Шокли и Уолтер Браттейн, 1948 год. Nahaufnahme eines Germaniumtransistors aus den 1960er Jahren mit zentraler Germaniumscheibe und in der Mitte die «Indiumpille» als Kontakt

Die ersten Patente auf das Prinzip des Transistors meldete Julius Edgar Lilienfeld im Jahr 1925 an. [3] Lilienfeld beschreibt in seiner Arbeit ein elektronisches Bauelement, das Eigenschaften einer Elektronenröhre aufweist und im weitesten Sinne mit dem heute als Feldeffekttransistor (FET) bezement vergleichneten Bauebar. Zu dieser Zeit war es technisch noch nicht möglich, Feldeffekttransistoren praktisch zu realisieren. [4]

Im Jahr 1934 Лицо физика Оскара Хайль ден Aufbau Eines Feldeffekttransistor патентный, который является демис sich um einen Halbleiter-FET с изолированной рукояткой ворот. [5] Die ersten praktisch realisierten Sperrschicht-Feldeffekttransistoren JFETs mit einem pn-Übergang (positiv-negativ) и einem Gate als Steuerelektrode gehen auf Herbert F. Mataré, Heinrich dazuder W. 1945 zurück. [6] Der Feldeffekttransistor wurde somit Historisch vor dem Bipolartransistor realisiert, konnte sich damals aber noch nicht praktisch durchsetzen. Damals wurden diese Bauelemente noch nicht als Transistor bezeichnet; den Begriff «Transistor» любит Джона Р.Pierce im Jahr 1948. [2]

Ab 1942 Experimentierte Herbert Mataré bei Telefunken mit dem von ihm als Duodiode (Doppelspitzendiode) bezeichneten Bauelement im Rahmen der Entwicklung eme Detektor-Funkter. Die von Mataré dazu aufgebauten Duodioden waren Punktkontakt-Dioden auf Halbleiterbasis mit zwei sehr nahe beieinander stehenden Metallkontakten auf dem Halbleitersubstrat. Mataré Experimentierte dabei mit polykristallinem Silizium (kurz: Polysilizium), das er von Karl Seiler aus dem Telefunken-Labor в Breslau bezog, und mit Germanium, das er von einem Forschungsteam der Luftwaffe bei au Münhielkteam (in Demand Hei).Bei den Experimenten mit Germanium entdeckte er Effekte, die sich nicht als zwei unabhängig arbeitende Dioden erklären ließen: Die Spannung an der einen Diode konnte den Strom durch die andere Diode beeinflussen. Diese Beobachtung bildete die Grundidee für die späteren Spitzentran

Транзистор: наши любимые функции | Shacknews

Комбинированная система функций транзистора

ошеломляюще гибкая, поэтому мы собрали четыре из наших любимых комбинаций способностей, чтобы нанести ущерб процессу.

Transistor — еще один выдающийся опыт от Supergiant Games благодаря увлекательному сюжету и творческой обстановке. Тем не менее, сам игровой процесс шокирующе глубок и основан на богатой и гибкой системе функций, которая может использоваться для самых разных атак и эффектов. Комбинации ошеломляюще обширны, поэтому мы собрали несколько наших любимых способов уничтожить Процесс.

The Power Strike

  • Cull (Mask + Void)
  • Get (Spark + Crash)
  • Jaunt
  • Passive: Breach + Ping

Эта сборка посвящена настройке ваших врагов на несколько очень болезненных ударов. .Cull, улучшенный с помощью Mask и Void, дает мощный удар в спину. Получите апгрейд с помощью Spark, и Crash притягивает врагов к вам и делает их более уязвимыми для предстоящего нападения, а Jaunt — это универсальная способность, которая позволяет вам броситься за ними или быстро убежать, если ваш удар не прикончит их.

Наконец, установка Breach на пассивный слот дает вам больше времени на планирование нескольких ударов Cull, что должно означать, что вы можете нанести достаточно ударов, чтобы убить большинство боссов за один ход.Ping удобен для больших групп, давая вам дополнительное движение, чтобы приблизиться к цели или сбежать в безопасное место.

Bombs Away

  • Crash (Purge)
  • Load (Bounce + Spark)
  • Ping
  • Passive: Void + Breach

Если вы хотите устроить убийственное световое шоу, не смотрите дальше. Способность Load с Bounce и Spark создаст несколько бомб меньшего размера, которые сами взорвутся и отрикошетят, нанося урон по большой площади. Пинг — это недорогой способ взорвать бомбы, но вам нужно поразить только один кластер, поскольку эффект рикошета активирует остальные.Crash, усиленный Purge, сделает их более уязвимыми и замедлит врагов, чтобы они не могли избежать надвигающегося шквала взрывной силы.

Void и Breach — хорошие помощники практически для любого комбо, но особенно в этом случае. Это увеличит ваш базовый урон и даст вам больше времени на планирование действий, чтобы установить несколько бомб.

Release the Hounds

  • Help (Spark + Void)
  • Jaunt (Get + Tap)
  • Passive: Breach + Switch

Это комбо идеально подходит для тех, кто предпочел бы позволить своим миньонам сражаться за них.Помощь обычно позволяет вызвать дружелюбного пса, но Искра дает вам вдвое больше собак, а Войд позволяет им обоим наносить дополнительный урон. Поскольку эта установка позволяет другим вступить в бой за вас, Jaunt позволяет вам быстро уйти от действия, в то время как Tap добавляет исцеляющую способность, а Get создает гравитационный колодец, чтобы привлечь к нему врагов вместо вас.

Наличие пассивных умений — это просто вишенка на торте. Breach дает им больше времени для планирования, а Switch создаст еще больше отвлекающих факторов для ваших врагов, создав дружественную BadCell для каждой полученной вами ячейки.

Теперь ты работаешь на меня

Эта комбинация может показаться упрощенной с использованием только одной способности, но это идеальное завершение арсенала, которому нужно заполнить еще один слот. С этим снаряжением каждая битва должна начинаться с поиска самого большого и плохого врага на карте и использования Switch, чтобы заставить его делать вашу грязную работу. Добавление Void делает его еще более ушибленным, а Cull продлит эффект вдвое дольше.

Вы можете использовать любой метод, который вам нравится, чтобы прикончить своего миньона с промытыми мозгами после того, как эффект исчезнет, ​​но это тот случай, когда режим рекурсии пригодится.В этом режиме вы получаете повторяющиеся функции и можете размещать одну и ту же функцию в нескольких местах, если вы используете их в разных типах размещения. Если у вас есть два экземпляра Cull, вы можете в основном повторить настройку Power Strike, описанную выше. Соедините свой Cull со способностью Mask, чтобы легко нанести удар в спину своему переключенному врагу, когда он побьет всех остальных за вас.

У вас есть свои любимые комбинации функций? Не могли бы вы поменять местами некоторые способности или добавить дополнительные функции, чтобы наши предложения были еще лучше? Дайте нам знать в Chatty! И пока вы там, похлопайте по спине Nerdsbeware от Chatty за то, что он вдохновил вас на создание этого произведения.

Transistoren — Grundwissen Elektronik

Transistoren sind Halbleiter-Bauteile, die als Schalter, Regler und Verstärker vielerlei Anwendung finden.

Ein Transistor (Kurzwort für «передаточный резистор») kann, je nach Schaltungsart, tatsächlich wie ein elektrisch regelbarer Widerstand eingesetzt werden. Grundsätzlich ähnelt ein Транзисторные аллергии vielmehr einer Röhrentriode, weshalb er auch als «Halbleiter-Triode» bezeichnet wird. Transistoren werden insbesondere verwendet, um Ströme zu schalten, zu verstärken oder zu Steuern.

Im Elektronik-Selbstbau werden häufig so genannte «bipolare» Transistoren eingesetzt. Diese bestehen aus drei Halbleiterschichten, wobei je nach Reihenfolge der Dotierungen zwischen — und -Transistoren unterschieden wird. Die drei an den Halbleiterschichten angebrachten Anschlüsse eines bipolaren Transistors werden Kollektor, Basis und Emitter genannt.

Neben den bipolaren Transistoren gibt es auch «unipolare» Feldeffekttransistoren (FETs), die im Hobby-Bereich meist zum Steuern größerer Stromstärken genutzt Верден.In großen Stückzahlen bilden sie darüber hinaus die wichtigsten Bestandteile von integrierten Schaltkreisen, beispielsweise Operationsverstärkern oder Mikroprozessoren.

пнп-Transistoren

Ein -Transistor besteht ebenfalls aus drei aufeinander folgenden Halbleiter-Schichten, wobei die beiden äußeren eine positive und die mittlere Schicht eine negative Dotierung aufweisen.

Schaltzeichen eines -Транзисторы.

Da die Schichten eines -Transistors im Vergleich zu einem -Transistor eine genau umgekehrte Dotierung aufweisen, müssen auch die Ströme in die entgegengesetzte Richtung fließen.Im Schaltzeichen ist умирает dadurch gekennzeichnet, dass der Pfeil nicht von der Basis weg, sondern zur Basis hin zeigt.

Hierzu gibt es folgende Merksprüche:

  • -Транзистор:

    «NPN означает« Не указывает в N »», или

    «Naus, Pfeil‚ Naus! »

  • -Транзистор:

    „PNP heißt‚ Pfeil Nach Platte ‘“, или

    «Tut der Pfeil der Basis weh, handelt sich’s um PNP»

Entsprechend sind auch der Kollektor- und der Emitter-Anschluss eines -Transistors im Vergleich zu einem -Transistor vertauscht.Die Besonderheit von -Transistoren gegenüber -Transistoren Лигт Дарин, dass man zum Freischalten der Kollektor-Emitter-Strecke keinen Stromfluss in die Basis hinein (und aus dem Emitter hinaus) verursachen muss, sondern vielmehr einen Stromfluss (vom Emitter kommend) aus der Basis heraus zulassen muss.

Ströme und Spannungen bei bipolaren Transistoren

In der folgenden Abbildung sind die für einen Transistor related Ströme und Spannungen Expizit für die üblichere Transistor-Variante, nämlich einen -Транзистор eingezeichnet:

Ströme und Spannungen bei einem -Transistor

Für die Spannung zwischen Basis und Kollektor und der Basis-Stromstärke gilt im Wesentlichen die gleiche Beziehung wie zwischen zwischen Spannung und Strom an einer Diode.Ab einem bestimmten Grenzwert (bei normalen Transistoren rund ) steigt die Basis-Stromstärke mit einer zunehmenden Spannung sehr schnell an. Ум Эйнен Транзистор steuern zu können, muss also die Basis-Stromstärke gezielt Begrenzt Верден.

Stromstärken bei einem -Transistor

Für den Zusammenhang zwischen den Stromstärken und ist es für viele Anwendungen ausreichend, einen konstanten Verstärkungsfaktor anzunehmen; Дизер Верт Канн üblicherweise dem Datenblatt des Transistors entnommen werden.Эйн Verstärkungsfaktor von bedeutet beispielsweise, dass ein Basis-Strom von mit einer Stärke von einen Kollektor-Emitter-Strom zur Folge шапка. Was passiert nun Allerdings, wenn bei einer ansonsten unveränderten Schaltung plötzlich der Anschluss des Kollektors gekappt wird? Es können dann nicht mehr in den Kollektor hinein fließen.

Man kann feststellen, dass sich in diesem Fall auch die Stromstärke durch die Basis verändert: Die Basis-Emitter-Strecke und die Kollektor-Emitter-Strecke bilden gewissermaßen eine gemeinsame Diode, Allerdings mit einem festem Стромтейлер.Wird die eine Seite des Stromteilers nicht mit Strom versorgt, поэтому muss der gesamte Strom durch die andere Seite fließen. Bei Einer Ansonsten unveränderten Schaltung fließen somit nicht mehr durch die Basis, sondern plötzlich. Der Verstärkungsfaktor beschreibt somit vielmehr den auftretenden Emitterstrom, der sich gewöhnlich so aufteilt, dass nur von der Basis bezogen wird, und der restliche Strom vom Kollektor kommt (solange dort Strom zur Verfügung steht).

Spannungen bei einem -Transistor

Der Wert der Spannung entlang der Kollektor-Emitter-Strecke hängt von der Verwendungsweise des Transistors ab.

Ein bipolarer Transistor sollte also, wie das obige Beispiel zeigt, weniger als ein variabler Widerstand als vielmehr als eine regelbare Stromquelle aufgefasst werden: Während bei einem Potentiometer der Widerstand (также das Verhältnis aus der anliegenden Spannung und der Resultierenden Stromstärke) Regiert Werden Kann, Kann Bei Einem Bipolaren Transistor ausschließlich die Stromstärke aktiv geregelt werden; die entsprechende Spannung entlang der -Strecke stellt der Transistor automatisch ein.

Bauteil-Schwankungen

Bei einem bipolaren Transistor wird, wie im letzten Abschnitt beschrieben, ein Рукавицы Last-Strom eines Steuer-Stroms gesteuert. Der Verstärkungsfaktor, der das Verhältnis dieser beiden Ströme angibt, weist Allerdings auch bei gleichen Transistor-Typen von Bauteil zu Bauteil teilweise erhebliche Unterschiede auf.

Mittels (meist billigeren) Multimetern lässt sich der Verstärkungsfaktor eines Transistors einfach bestimmen, da diese über eine entsprechende eingebaute Funktion verfügen.In der Praxis wird diese Funktion nämlich nicht oft verwendet, beispielsweise weil der Verstärkungsfaktor stark frequencyzabhängig ist (Transistoren verstärken bei niedrigen Frequenzen meist bessr als bei höheren). Um einen Transistor zu charakterisieren, genügt daher ein einzelner Zahlenwert nicht. Da eine derartige Mess-Schaltung aber recht simpel ist, lässt sich eine Verstärkungs-Mess-Funktion (часто auch als h _ {\ mathrm {FE}} bezeichnet) gut als Zusatz-Feature vermarkten.

Den в Европе häufig als Standard verwendeten BC547-Transistor gibt beispielsweise in drei Verstärker-Klassen:, унд.Aus einem Datenblatt kann man für den BC547-Transistor damit folgende Werte-Bereiche für den Verstärkungsfaktor entnehmen:

Da der konkrete Wert des Stromverstärkungsfaktors varieren kann, Sollten Transistor-Schaltungen möglichst so konzipiert sein, dass sie bezüglich Abweichungen dieses Параметры undefindlich sind.

Kennlinien-Felder von Transistoren

Um das Verhalten eines Transistors in einer Schaltung planen zu können, sollte человек Эйнен Гробен Wert für den Stromverstärkungsfaktor, den maximal erlaubten Kollektorstrom, die maximale Kollektor-Emitterspannung sowie die maximale Verlustleistung kennen.

Möchte man einen Transistor Allerdings nicht als Schalter, sondern als Verstärker betreiben, so genügen einzelne Werte oft nicht zur Charakterisierung Eines Transistors. Weitaus nützlicher sind sogenannte «Kennlinienfelder», в denen der Kollektor-Strom als Funktion der Kollektor-Spannung angegeben wird. Дизер Цусамменханг ist abhängig von der Stromstärke durch die Basis des Транзисторы, так что dass es in einem Kennlinienfeld nicht nur eine, sondern mehrere Kennlinien gibt.

Kennlinienfeld eines BC547 -Транзисторы (Quelle: Datasheetcatalog): Kollektor-Emitter-Strom als Funktion von .

Alle Kennlinien haben (unabhängig vom Basis-Strom) gemeinsam, dass der Strom gleich Null ist, wenn keine Spannung zwischen dem Kollektor und dem Emitter anliegt. Je größer die Spannung wird, desto größer wird auch der Strom durch den Transistor. Der Wert von IST Allerdings Nach Oben Hin Begrenzt, Da Schließlich eine Sättigung eintritt — dies ist gleichbedeutend damit, dass der Transistor voll durchschaltet.

Eine zweite wichtige Kennlinie gibt den Kollektor-Emitter-Strom в Abhängigkeit von der Basis-Emitter-Spannung ан.Hierfür wird für meist eine logarithmische Skalierung gewählt. Die Gerade, die sich in einem solchen Diagramm ergibt, entspricht einer (logarithmisch skalierten) Dioden-Kennlinie.

Kollektor-Emitter-Strom als Funktion der Basis-Spannung bei einem BC547 -Транзистор (Quelle: каталог данных)

Mittels einer solchen Kennlinie kann abgeschätzt werden, Welcher -Strom bei einer bestimmten an der Basis anliegenden Spannung Auftritt. Ebenso kann man mit Hilfe dieses Diagramms ungefähr abschätzen, wie Groß der Basis-Strom bei einer bestimmten Basis-Spannung ist, indem man den Kollektor-Strom durch den (ebenfalls geschätzten) Stromverstärkungsfaktor des Transistors dividiert.

Wirklich exakte Werte darf man nicht erwarten, wenn man sich an den Kennlinien eines Transistors orientiert; dies wäre auch kaum sinnvoll, da die einzelnen Exemplare eines Transistor-Typs, wie im letzten Abschnitt beschrieben, erhebliche Schwankungen aufweisen können.


Anmerkungen:

Биполярный транзистор (NPN PNP Aufbau Funktionsweise)


Ein Transistor ist ein Halbleiterbauelement, bei dem man üblicherweise den bipolaren Transistor meint.Es gibt auch unipolare Transistoren, die auch als Feldeffekttransistoren bezeichnet werden.
Bipolare Transistoren bestehen typischerweise aus Silizium. Oder aus Germanium или Mischkristallen, die aber nicht sehr häufig verbreitet sind.
Die Bezeichnung Transistor ist aus seiner Funktion abgeleitet. Bei einer Widerstandsänderung in einer Halbleiterschicht wird auch der Widerstand in der anderen Schicht beeinflusst. Aus «передаточный резистор» представляет собой транзистор Bezeichnung.
Transistoren werden überwiegend als Schalter oder Verstärker eingesetzt.

Дополнительные биполярные транзисторы

Jeder bipolare Transistor besteht aus drei dünnen Halbleiterschichten, die übereinander gelegt sind. Man unterscheidet zwischen einer npnoder pnp-Schichtenfolge. Die mittlere Schicht ist im Vergleich zu den beiden anderen Schichten sehr dünn. Die Schichten sind mit Metallischen Anschlüssen versehen, die aus dem Gehäuse herausführen. Die Außenschichten des bipolaren Transistors werden Kollektor (C) and Emitter (E) genannt. Die mittlere Schicht hat die Bezeichnung Basis (B) und ist die Steuerelektrode oder auch der Steuereingang des Transistors.

NPN-транзистор PNP-транзистор
Der NPN-Transistor лучший из лучших Schichten. Dazwischen liegt eine dünne p-leitende Schicht. Der PNP-Transistor лучший из всех компонентов Schichten. Dazwischen liegt eine dünne n-leitende Schicht.

Hinweis: Das Schaltzeichen mit den beiden gegeneinander geschalteten Dioden wird gerne verwendet um den Prinzipaufbau des Transistors darzustellen.Die Funktionsweise eines Transistors kann so in der Realität aber nicht nachgestellt werden. Der Grund liegt in dem veränderten Verhalten aufgrund der sehr dünnen mittleren Schicht des Transistors.

Schaltzeichen

NPN-транзистор

PNP-транзистор

Spannungs- und Stromverteilung

Strom und Spannung am NPN-Transistor Strom und Spannung am PNP-Transistor

Diese Schaltung soll nur die Strom- und Spannungsverläufe und ihre Beziehung zueinander darstellen.Grundsätzlich sollte im I B — und im I C -Stromkreis ein strombegrenzender Widerstand eingesetzt sein.
Bitte beachten: Hier gilt die technische Stromrichtung von Plus nach Minus.
Beim PNP-Transistor ist die Polarität der Spannungs- und Stromverteilung genau anders herum. In der Praxis ist lediglich auf die Polarität der Betriebsspannung zu achten. NPN-Transistoren werden für positive Spannungen verwendet. PNP-Transistoren werden für negative Spannungen verwendet.

U CE = Коллектор-излучатель-диапазон
U BE = Базис-излучатель-диапазон (Schwellwert)
I C = Kollektorstrom
I B = Basisstrom

Функциональные транзисторы (NPN)


Bei der Funktionsweise des Transistors muss man die Stromrichtung beachten. Will man das Physikalische Prinzip erklären, dann spricht man vom Elektronenstrom oder der Physikalischen Stromrichtung (von Minus nach Plus). Sie wird in der folgenden Ausführung verwendet.В Schaltungen und Mathematischen Berechnungen wird die technische Stromrichtung (von Plus nach Minus) verwendet.
Durch das Anlegen einer Spannung U BE von etwa 0,7 V, ist die untere Diode (Prinzip) in Durchlassrichtung geschaltet. Die Elektronen gelangen in die p-Schicht und werden von dem Plus-Pol der Spannung U BE angezogen.
Da die p-Schicht sehr klein ist, wird nur ein geringer Teil der Elektronen angezogen.
Der größte Teil der Elektronen bewegt sich weiter in die obere Grenzschicht.Dadurch wird diese leitend und der Plus-Pol der Spannung U CE zieht die Elektronen an. Es fließt ein Kollektorstrom I C .
Bei üblichen Transistoren rutschen etwa 99% der Elektronen von Emitter zum Kollektor durch. In der Basisschicht bleiben etwa 1% der Elektronen hängen und fließen dort ab.

Eigenschaften des bipolaren NPN-Transistors

  1. Der Kollektorstrom I C fließt nur, wenn auch ein Basisstrom I B fließt.Wird der Basisstrom I B verändert, dann verändert sich auch der Kollektorstrom I C . Внутренние транзисторы работают с Basisstromänderung wie eine Widerstandsänderung. Der Transistor wirkt bei einer Basisstromänderung wie ein elektrisch gesteuerter Widerstand.
  2. Der Kollektorstrom I C ist um ein vielfaches von 20 bis 10000 mal größer als der Basisstrom I B . Dieser Größenunterschied kommt von der Aufteilung des Elektronenflusses von Kollektor (C) und Basis (B).Diesen Größenunterschied nennt man Stromverstärkung B. Er lässt sich aus dem Verhältnis I C zu I B berechnen.
  3. Der Basisstrom I B fließt erst dann, wenn die Schwellspannung U BE an der Basis-Emitter-Strecke erreicht ist. Der Schwellwert ist abhängig vom Halbleitermaterial. Üblicherweise nimmt man Silizium-Transistoren, mit einem Schwellwert von 0,6 до 0,7 V. Es gibt auch Germanium-Transistoren mit einem Schwellwert von 0,3 V.
    Mittels einer Hilfsspannung U BE kann der Schwellwert vorabden.Dieses Vorgehen wird как Arbeitspunkteinstellung bezeichnet. Um diese eingestellte Spannung kann nun der Basisstrom den Kollektorstrom steuern.
  4. Wenn kein Basisstrom I B fließt, dann sperrt der Transistor. Sein Widerstand in der Kollektor-Emitter-Strecke ist unendlich groß. Die Spannung am Kollektor-Emitter ist sehr groß. Fließt ein Basisstrom, dann wird der Transistor leitend. Sein Widerstand ist kleiner geworden. Damit ist auch die Spannung am Kollektor-Emitter kleiner.Genauer betrachtet führt eine Zunahme am Eingang (Basis) zu einer Abnahme am Ausgang (Kollektor-Emitter). Man nennt das auch reversetierendes Verhalten. Diese Eigenschaft ist das Schaltverhalten des bipolaren Transistors und wird in der Elektronik sehr häufig angewendet (Transistor as Schalter).
  5. Wenn die Spannung U CE kleiner ist, as die Spannung U BE , dann befindet sich der bipolare Transistor in der Sättigung oder im Sättigungsbetrieb. Das passiert dann, wenn der Transistor durch den Basisstrom überflutet wird.Der Basisstrom ist dann so groß, dass die maximale Stromverstärkung schon längst erreicht ist und der Kollektorstrom nicht mehr weiter steigt.
    Generell hat das keine negativen Auswirkungen, solange der maximale Basisstrom nicht überschritten wird. Венн Дох, Данн Вирд дер Транзистор zerstört.
    Allerdings hat der Sättigungsbetrieb negative Auswirkungen auf das Schaltverhalten eines Transistors. Bei einem schnellen Schaltvorgang, wenn die Kollektor-Emitter-Spannung U CE schnell wechseln muss.Dann muss der Transistor erst von der Ladungsträgerüberflutung freigeräumt werden. Das dauert länger, als wenn nur wenige Ladungsträger über die Basis abfließen. Diese Verzögerung macht sich bei hohen Schaltfrequenzen negativ bemerkbar. Dann sollte der Sättigungsbetrieb vermieden werden.
  6. Der bipolare Transistor vereint zwei Stromkreise in sich. Der Stromkreis mit der Spannung U BE wird als Steuerstromkreis bezeichnet. Der Stromkreis mit der Spannung U CE wird als Arbeits- oder Laststromkreis bezeichnet.

Bipolare Transistoren / Standard-Typen

Тип NPN / PNP Gehäuse P до / W U CE / V I C / A B (ß) f G / МГц
BC 107 B НПН К-18 0,3 45 0,1 200-450 300
BC 140-6 НПН К-39 3,7 40 1 40-100 50
BC 140-10 НПН К-39 3,7 40 1 63-160 50
BC 140-16 НПН К-39 3,7 40 1 100–250 50
BC 547 A НПН СОТ-54 0,5 45 0,1 110-220 300
BC 547 B НПН СОТ-54 0,5 45 0,1 200-450 300
BC 547 C НПН СОТ-54 0,5 45 0,1 420-800 300
BC 557 A PNP СОТ-54 0,5 45 0,1 125–250 150
2 н. 3055 НПН К-3 115 60 15 20-70 0,8

Grundschaltungen des Transistors

Übersicht: Транзистор

Weitere verwandte Themen:

Produktempfehlungen

Elektronik einfache und leicht verständlich
Электроник-Фибел

Die Elektronik-Fibel ist ein Buch über die Grundlagen der Elektronik, Bauelemente, Schaltungstechnik und Digitaltechnik.

Das will ich haben!

Elektronik einfache und leicht verständlich
Электроник-Фибел

Die Elektronik-Fibel ist ein Buch über die Grundlagen der Elektronik, Bauelemente, Schaltungstechnik und Digitaltechnik.

Das will ich haben!

Транзистор

— Aufbau und Funktion — Erklärung & Übungen

Привет. В этом видео вы найдете его в каталоге Aufbau и выполните функцию биполярных транзисторов .Transistoren kannst du zum Beispiel im Verstärker einer Musikanlage finden. Oder im Sensor eines Rauchoder Bewegungsmelders. Auch в jedem PC или Tablet. Eigentlich in so ziemlich jedem modernen elektronischen Gerät findet man Transistoren.

Sie gehören zu den vielseitigsten und wichtigsten Bauteilen der Elektronik. Ohne Transistoren gäbe es keine Смартфоны или современные Компьютеры . Der Aufbau eines Transistors leitet sich stark von dem einer Halbleiterdiode ab.Deswegen wäre es gut, wenn du Halbleiterdioden und das Dotieren von Halbleitern schon kennst.

Schalter und Verstärker

Die Funktionsweise der Diode hilft uns dann, die Funktion des Transistors zu verstehen. Dabei lernst du die zwei Hauptfunktionen , die des Schalters und die des Verstärkers, kennen. Anhand dieser Funktionen wird die vielfältige Anwendung deutlich. Steigen wir также mit dem Aufbau der Halbleiterdiode ein.

Aufbau der Halbleiterdiode

Eine Halbleiterdiode besteht aus zwei dotierten Halbleiterschichten .Die n-Schicht ist negativ und die p-Schicht positiv dotiert. Beim Schaltsymbol wie auch auf den Bauteilen selbst markiert ein Strich immer die negativ dotierte Schicht, die auch als Kathode bezeichnet wird.

Die Aufgabe der Diode

Das ist wichtig, denn die Hauptaufgabe der Diode besteht darin, den Ladungsträgerfluss nur in einer Richtung zuzulassen. Diese nennt man die Durchlassrichtung . In umgekehrter Richtung, der Sperrrichtung, ist die Stromstärke nahezu Null und die Lampe leuchtet nicht.Auf diesem Bild siehst du nun einige Transistoren .

Ihre Größe variiert stark je nach Einsatzort . Diese hier sind einige Zentimeter bis wenige Millimeter groß. Als Teil eines Mikroprozessors können sie jedoch auch nur wenige Nanometer, d.h. 10 hoch minus neun Meter, klein sein. Der auffälligste Unterschied zur Diode ist der, dass ein Transistor drei Anschlüsse hat.

Биполярный транзистор

Dieser besteht nämlich aus drei dotierten Halbleiterschichten in der Anordnung npn oder pnp.Daher auch die Bezeichnung bipolarer Transistor. Es gibt nämlich auch andere Bauvarianten. Die dünne Mittelschicht wird hier immer Basis genannt, die äußeren Schichten heißen Kollektor и Emitter .

Das Schaltsymbol des Transistor sieht so aus. Dabei unterscheidet man zwischen npn- und pnp-Transistor indem man den kleinen Pfeil am Emitter entweder von der Basis weg oder zur Basis hin zeichnet. Хорошо. Soweit ist das alles klar. Aber wie funktioniert dieses Bauteil nun? Dazu schauen wir uns den npn-Transistor an zwei Beispielen an.

Der Transistor im Bewegungsmelder

Zuerst am Bewegungsmelder . Ein Bewegungsmelder ist dazu da, dass das Licht vor der Haustür oder im Flur angeht, sobald sich etwas bewegt. Quasi wie ein Lichtschalter . Wenn wir uns das in einem Schaltplan anschauen, würde das in etwa so aussehen. Den Bewegungsmelder stelle ich hier als Blackbox dar, da wir nicht genau wissen, wie der aufgebaut ist. Das Prinzip aber lautet: Wenn vom Bewegungsmelder ein Signal kommt , dann soll die Lampe leuchten.

Und hier kommt unser npn-Transistor ins Spiel. Basis und Emitter werden an den Stromkreis zum Bewegungsmelder angeschlossen. Kollektor und Emitter an den Stromkreis der Lampe . Im Ausgangszustand leuchtet die Lampe noch nicht. Das liegt daran, dass die Kollektor-Emitter-Strecke noch nicht leitend ist. Wie eine Diode in Sperrrichtung lässt sie keinen elektrischen Strom durch.

Doch nun kommt ein Signal vom Bewegungsmelder. Das bedeutet, dass sich jetzt ein kleiner Strom über Basis und Emitter einstellt, der sogenannte Basisstrom I_B.Und dieser Basisstrom bewirkt, dass die Kollektor-Emitter-Strecke leitend wird. Das ermöglicht einen Kollektorstrom I_C und die Lampe leuchtet.

Der Kollektorstrom

Wir den elektrischen Stromkreislauf mit einem Wasserkreislaufmodell darstellen wollen, können wir uns den Transistor wie eine Schleuse vorstellen. Am Anfang ist die Kollektor-Emitter-Strecke gesperrt. Doch der Basisstrom öffnet quasi die Klappe am Kollektor bzw.das Schleusentor, und ermöglicht einen großen Kollektorstrom.

Genau wie ein Mechanischer Schalter kann ein Transistor также известен как Schalter zum Ansteuern eines Stromkreises dienen. Diesen Effekt nennt man den Transistoreffekt . Ein kleiner Basisstrom steuert einen großen Kollektorstrom.

Dass der Basisstrom klein und der Kollektorstrom groß ist, liegt an der Bauweise des Transistors. Die Basisschicht ist immer sehr viel dünner, als die beiden anderen Schichten.Und dieses ungleiche Verhältnis macht man sich ebenfalls zu Nutze. Zum Beispiel bei der Musikanlage .

Transistoren в Musikanalagen

Wir tauschen in unserer Schaltung den Bewegungsmelder gegen ein Mikrophon und die Lampe gegen einen großen Lautsprecher . Das Eingangssignal, dass vom Mikrophon kommt ist verhältnismäßig schwach. Der Lautsprecher hingegen braucht eine große Stromstärke, um eine ordentliche Lautstärke aufzubringen.Und genau hierbei hilft wieder der Transistor. Ein kleiner Basisstrom auf der Seite des Mikrophons ermöglicht einen großen Kollektorstrom für den Lautsprecher.

Ein Transistor kann somit auch als Verstärker dienen. Oftmals werden sogar gleich mehrere Transistoren hintereinander geschaltet, um eine noch größere Verstärkung zu erreichen. Der Transistoreffekt macht das Bauteil zu einem wichtigen Grundbestandteil fast jeder modernen Elektronik.

Транзистор в микропроцессоре

In der Digitaltechnik kommt er jedoch selten allein, sondern meist in integrierten Schaltungen zum Einsatz.So zum Beispiel bei einem Mikroprozessor , einem RAM- или einem Flash-Speicher. In der Analogtechnik können Transistoren sowohl als Vorverstärker zur Rauschminderung, in der Audiotechnik или Leistungsverstärker eingesetzt werden.

Zusammenfassung

Fassen wir zusammen, was du in diesem Video gelernt hast: Ein Transistor besteht aus drei dotierten Halbleiterschichten in der Anordnung npn oder pnp.Die drei Anschlüsse heißen * Basis, Kollektor und Emitter. Mit Hilfe des Schleusenmodells können wir uns vorstellen, das ein kleiner Basisstrom einen großen Kollektorstrom ermöglicht und steuert. Und dieser Effekt wird Transistoreffekt genannt.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *