Где применяются трансформаторы – Назначение и области применения трансформаторов

Содержание

Назначение и области применения трансформаторов

Трансформатором называют
статическое электромагнитное устройство,
имеющее две или большее число индуктивно
связанных обмоток и предназначенное
для преобразования посредством
электромагнитной индукции одной или
нескольких систем переменного тока в
одну или несколько других систем
переменного тока.

С
помощью трансформаторов повышается
или понижается напряжение, изменяется
число фаз, а в некоторых случаях
преобразуется частота переменного
тока. Возможность передачи электрических
сигналов от одной обмотки к другой
посредством взаимоиндукции была
открытаМ.
Фарадеем
 в
1831 г.; при изменении тока в одной из
обмоток, намотанной на стальной
магнитопровод, в другой обмотке
индуцировалась ЭДС Однако первый
практически работающий трансформатор
создал известный изобретатель П.
Н. Яблочков
 в
содружестве с И.
Ф. Усагиным
 в
1876 г. Это был двухобмоточный трансформатор
с разомкнутым магнитопроводом.

В
дальнейшем несколько конструкций
однофазных трансформаторов с замкнутым
магнитопроводом были созданы венгерскими
электротехниками О.
Блати, М. Дери
 и К.
Циперноеским.
 Для
развития трансформаторостроения и
вообще электромашиностроения большое
значение имели работы проф. А.
Г. Столетова
 по
исследованию магнитных свойств стали
и расчету магнитных цепей.

Важная
роль в развитии электротехники
принадлежит М.
О. Доливо-Добровольскому.
 Он
разработал основы теории многофазных
и, в частности, трехфазных переменных
токов и создал первые трехфазные
электрические машины и трансформаторы.
Трехфазный трансформатор современной
формы с параллельными стержнями,
расположенными в одной плоскости, был
изобретен им в 1891 г. С тех пор происходило
дальнейшее конструктивное усовершенствование
трансформаторов, уменьшалась их масса
и габариты, повышалась экономичность.
Основные положения теории трансформаторов
были разработаны в трудах Е.
Арнольда
 и М.
Видмара.

В
развитии теории трансформаторов и
совершенствовании их конструкции
большое значение имели работы советских
ученых В.
В. Корицкого, Л. М. Пиотровского, Г. Н.
Петрова, А. В. Сапожникова, А. В. Трамбицкого
 и
др.

Трансформаторы
широко используют для следующих целей.

  1. Для
    передачи и распределения электрической
    энергии. Обычно на электростанциях
    генераторы переменного тока вырабатывают
    электрическую энергию при напряжении
    6—24 кВ. Передавать же электроэнергию
    на дальние расстояния выгодно при
    больших напряжениях, поэтому на каждой
    электростанции устанавливают
    трансформаторы, повышающие напряжение.

В
настоящее время для высоковольтных
линий электропередачи в СССР применяют
силовые трансформаторы с масляным
охлаждением напряжением 330, 500 и 750 кВ,
мощностью до 1200—1600 MB-А. В связи со
строительством дальних линий
электропередачи Экибастуз — Центр,
Экибастуз — Урал и других напряжением
1150 кВ переменного тока наша
электро­промышленность создала
трансформаторные группы, состоящие из
трех однофазных трансформаторов
мощностью 667 MB-А, а для линий 1500 В
постоянного тока — двенадцатифазные
преобразовательные блоки с четырехобмоточными
трансформаторами общей мощностью 1500
MB-А. КПД таких трансформаторов составляет
98 — 99% и выше.

Для
перспективных линий электропередачи
переменного тока напряжением 1800—2000 кВ
и постоянного тока напряжением 3000 кВ
разрабатывают трансформаторы мощностью
1320 MB-А на одну фазу.

Электрическая
энергия распределяется между промышленными
предприятиями и населенными пунктами,
в городах и сельских местностях, а также
внутри промышленных предприятий по
воздушным и кабельным линиям при
напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно,
во всех узлах распределительных сетей
должны быть установлены трансформаторы,
понижающие напряжение. Кроме того,
понижающие трансформаторы следует
устанавливать в пунктах потребления
электроэнергии, так как большинство
электрических потребителей переменного
тока работает при напряжениях 220, 380 и
660 В. Таким образом, электрическая энергия
при передаче от электрических станций
к потребителям подвергается в
трансформаторах многократному
преобразованию (3 — 5 раз). При­меняемые
для этих целей трансформаторы могут
быть одно-и трехфазными, двух- и
трехобмоточными.

  1. Для
    обеспечения нужной схемы включения
    вентилей в преобразовательных устройствах
    и согласования напряжений на входе и
    выходе преобразователя. В вентильных
    преобра зователях, выпрямляющих
    переменный ток или преобразующих его
    из постоянного в переменный (инверторы),
    отношение напряжений на входе и выходе
    зависит от схемы включения вентилей. 
    Поэтому  если на вход преобразователя
    подается стандартное напряжение, то
    на выходе получается нестандартное.
    Для устранения этого недостатка
    вентильные преобразователи, как правило,
    снабжают трансформаторами, обеспечивающими
    стандартное выходное напряжение при
    принятой схеме включения вентилей.
    Кроме того, ряд схем включения вентилей
    требует обязательного применения
    трансформатора. Трансформаторы,
    применяемые для этой цели,
    называют преобразовательными. Их
    мощность достигает тысяч киловольт-ампер,
    напряжение 110 кВ; они работают при
    частоте 50 Гц и более. Рассматриваемые
    трансформаторы выполняют одно-, трех-
    и многофазными с регулированием
    выходного напряжения в широких пределах
    и без регулирования.

В
последнее время для возбуждения мощных
турбо-и гидрогенераторов, электропривода
и других целей все шире начинают применять
трансформаторы с естественным воздушным
охлаждением напряжением 3 — 24 кВ и
мощностью 133-6300 кВ-А. Благодаря использованию
в этих трансформаторах новой теплостойкой
изоляции удается повысить их нагрузочную
способность и в 1,3 — 1,5 разасократить,
массогабаритные показатели по сравнению
с применявшимися ранее трансформаторами
с масляным охлаждением.

  1. Для
    различных технологических целей: сварки
    (сварочные трансформаторы), питания
    электротермических установок
    (электропечные трансформаторы) и др.
    Мощность их достигает десятков тысяч
    киловольт-ампер при напряжении до 10
    кВ; они работают обычно при частоте 50
    Гц.

  2. Для
    питания различных цепей радио- и
    телевизионной аппаратуры; устройств
    связи, автоматики в телемеханики,
    электробытовых приборов; для разделения
    электрических цепей различных элементов
    этих устройств; для согласования
    напряжений и т. п. Трансформаторы,
    используемые в этих устройствах, обычно
    имеют малую мощность (от нескольких
    вольт-ампер до нескольких киловольтампер),
    невысокое напряжение, работают при
    частоте 50 Гц и более. Их выполняют двух-,
    трех- и многообмоточными; условия
    работы, предъявляемые к ним требования
    и принципы проектирования весьма
    специфичны.

  3. Для
    включения электроизмерительных приборов
    и некоторых аппаратов, например реле,
    в электрические цепи высокого напряжения
    или в цепи, по которым проходят большие
    токи, с целью расширения пределов
    измерения и обеспечения электробезопасности.
    Трансформаторы, применяемые для этой
    цели, называют измерительными. Они
    имеют сравнительно небольшую мощность,
    определяемую мощностью, потребляемой
    электроизмерительными приборами, реле
    и др.

Трансформаторы,
перечисленные в п. 1, 2, 3 и частично в п.
4, предназначенные для преобразования
электрической энергии в сетях энергосистем
и потребителей электрической энергии,
называют силовыми. Для
режима их работы характерны неизменная
частота переменного тока и очень малые
отклонения первичного и вторичного
напряжений от номинальных значений.

Силовые
трансформаторы, выпускаемые отечественными
заводами, разделены на несколько групп
(габаритов) от I до VIII. Например,
трансформаторы мощностью до 100 кВ•А
включительно относят к габариту I, от
160 до 630 кВ • А — к габариту II, от 1000 до
6300 кВ • А — к габариту III и т. п.

В
данной главе в основном рассматривается
теория силовых трансформаторов; другие
же виды трансформаторов рассмотрены
кратко на основе общей теории.

ПРИНЦИП
ДЕЙСТВИЯ ТРАНСФОРМАТОРА

Электромагнитная
схема однофазного двухобмоточного
трансформатора состоит из двух обмоток
(рис. 2.1), разме­щенных на замкнутом
магнитопроводе, который выполнен из
ферромагнитного материала. Применение
ферромагнитного магнитопровода позволяет
усилить электромагнитную связь между
обмотками, т. е. уменьшить магнитное
сопротивление контура, по которому
проходит магнитный поток машины.
Первичную обмотку 1 подключают к источнику
переменного тока — электрической сети
с напряжением u1Ко
вторичной обмотке 2 присоединяют
сопротивление нагрузки ZH.

Обмотку
более высокого напряжения называют обмоткой
высшего напряжения 
(ВН),
а низкого напряжения — обмоткой
низшего напряжения 
(НН).
Начала и концы обмотки ВН обозначают
буквами А и X; обмотки
НН — буквами а и х.

При
подключении к сети в первичной обмотке
возникает переменный ток i1 , который
создает переменный магнитный поток Ф,
замыкающийся по магнитопроводу. Поток
Ф индуцирует в обеих обмотках переменные
ЭДС — е1 и е2пропорциональные,
согласно закону Максвелла, числам витков
w1 и w2 соответствующей
обмотки и скорости изменения потока dФ/dt.

Рис.
2.1. Электромагнитная система  
однофазного   трансфор­матора
1,2
— 
первичная
и вторичная обмот­ки; 3
— 
магнитопровод

Таким
образом, мгновенные значения ЭДС,
индуцированные в каждой обмотке,

е1 =
— w1 dФ/dt;     
е2= -w
2dФ/dt.

Следовательно,
отношение мгновенных и действующих ЭДС
в обмотках определяется выражением

E1/E2e1/e2w1/w2.

                                            
(2.1)

Если
пренебречь падениями напряжения в
обмотках тран­сформатора, которые
обычно не превышают 3 — 5% от номи­нальных
значений напряжений U1 и U2и
считать E1≈U l и Е2U2,
то получим

U1/U2w1/w2.

                                            
(2.2)

Следовательно,
подбирая соответствующим образом числа
витков обмоток, при заданном напряжении
U
1 можно
получить желаемое напряжение U
2Если
необходимо повысить вторичное напряжение,
то число витков w2 берут
больше числа w1;
такой трансформатор называют повышающим. Если
требуется уменьшить напряжение U2то
число витков w2 берут
мень­шим w1;
такой трансформатор называют понижающим,

Отношение
ЭДС ЕВН обмотки
высшего напряжения к ЭДС ЕНН обмотки
низшего напряжения (или отношение их
чисел витков) называют коэффициентом
трансформации

kЕВН/ЕНН = wВН/wНН

                                            
(2.3)

Коэффициент всегда
больше единицы.

В
системах передачи и распределения
энергии в ряде слу­чаев применяют
трехобмоточные трансформаторы, а в
устрой­ствах радиоэлектроники и
автоматики — многообмоточные
трансформаторы. В таких трансформаторах
на магнитопроводе размещают три или
большее число изолированных друг от
друга обмоток, что дает возможность при
питании одной из обмоток получать два
или большее число различных напряжений (U2,
U
3,
U
4 и
т.д.) для электроснабжения двух или
большего числа групп потребителей. В
трехобмоточных силовых трансформаторах
различают обмотки высшего, низшего и
среднего (СН) напряжений.

В
трансформаторе преобразуются только
напряжения и токи. Мощность же остается
приблизительно постоянной (она несколько
уменьшается из-за внутренних потерь
энергии в трансформаторе). Следовательно,

I1/I2≈ U2/U1≈ w2/w1.

                                            
(2.4)

При
увеличении вторичного напряжения
трансформатора в раз
по сравнению с первичным, ток i2 во
вторичной обмотке соответственно
уменьшается в раз.

Трансформатор
может работать только в цепях переменного
тока. 
Если
первичную обмотку трансформатора
под­ключить к источнику постоянного
тока, то в его магнито-проводе образуется
магнитный поток, постоянный во времени
по величине и направлению. Поэтому в
первичной и вторичной обмотках в
установившемся режиме не индуцируются
ЭДС, а следовательно, не передается
электрическая энергия из первичной
цепи во вторичную. Такой режим опасен
для трансформатора, так как из-за
отсутствия ЭДС E1 первич­ной
обмотке ток I1 =U1R1 весьма
большой.

Важным
свойством трансформатора, используемым
в устройствах автоматики и радиоэлектроники,
является способность его преобразовывать
нагрузочное сопротивление. Если к
источнику переменного тока подключить
сопротивление R через
трансформатор с коэффициентом
трансформации к, то
для цепи источника

R’ P1/I12≈ P2/I12
I
22R/I12≈ k2R

                                       
(2.5)

где Р1
мощность, потребляемая трансформатором
от источ­ника переменного тока,
Вт;
Р2 =
I22R≈ P1 —
мощность, по­требляемая сопротивлением R от
трансформатора.

Таким
образом, трансформатор
изменяет значение сопро­тивления R в
k
2 раз. Это
свойство широко используют при разработке
различных электрических схем для
согласования сопротивлений нагрузки
с внутренним сопротивлением источ­ников
электрической энергии.

42.
Идеальный и реальный трансформаторы.
Векторная диаграмма и схемы замещения.

studfiles.net

Применение трансформаторов — Трансформаторы





Повседневно трансформаторы применяются в электросетях и в источниках питания различных приборов.

Применение в электросетях

Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод,
при передаче электроэнергии на большое расстояние выгодно использовать
очень большие напряжения и небольшие токи. Из соображений безопасности и
для уменьшения массы изоляции в быту желательно использовать не столь
большие напряжения. Поэтому для наиболее выгодной транспортировки
электроэнергии в электросети многократно применяют трансформаторы:
сначала для повышения напряжения генераторов на электростанциях перед транспортировкой электроэнергии, а затем для понижения напряжения линии электропередач до приемлемого для потребителей уровня.

Поскольку в электрической сети три фазы, для преобразования напряжения применяют трёхфазные трансформаторы,
или группу из трёх однофазных трансформаторов, соединённых в схему
звезды или треугольника. У трёхфазного трансформатора сердечник для всех
трёх фаз общий.

Несмотря на высокий КПД
трансформатора (для трансформаторов большой мощности — свыше 99 %), в
очень мощных трансформаторах электросетей выделяется большая мощность в
виде тепла (например, для типичной мощности блока электростанции 1 ГВт
на трансформаторе может выделяться мощность до нескольких мегаватт).
Поэтому трансформаторы электросетей используют специальную систему
охлаждения: трансформатор помещается в баке, заполненном
трансформаторным маслом или специальной негорючей жидкостью. Масло
циркулирует под действием конвекции или принудительно между баком и мощным радиатором. Иногда масло охлаждают водой. «Сухие» трансформаторы используют при относительно малой мощности (до 16000 кВт).

Применение в источниках электропитания

Для питания различных  электроприборов требуются самые
разнообразные напряжения. Блоки электропитания в устройствах, которым
необходимо несколько напряжений различной величины содержат
трансформаторы с несколькими вторичными обмотками или содержат в схеме
дополнительные трансформаторы. Например, в телевизоре
с помощью трансформаторов получают напряжения от 5 вольт (для питания
микросхем и транзисторов) до 30 киловольт (для питания анода кинескопа).

В прошлом в основном применялись трансформаторы, работающие с частотой электросети, то есть 50-60 Гц.

В схемах питания современных радиотехнических и электронных устройств (например в блоках питания персональных компьютеров) широко применяются высокочастотные импульсные трансформаторы. В импульсных блоках питания переменное напряжение сети сперва выпрямляют, а затем преобразуют при помощи инвертора в высокочастотные импульсы. Система управления с помощью широтно-импульсной модуляции (ШИМ)
позволяет стабилизировать напряжение. После чего импульсы высокой
частоты подаются на импульсный трансформатор, на выходе с которого,
после выпрямления и фильтрации получают стабильное постоянное
напряжение.

В прошлом сетевой трансформатор (на 50-60 Гц) был одной из самых
тяжёлых деталей многих приборов. Дело в том, что линейные размеры
трансформатора определяются передаваемой им мощностью, причём
оказывается, что линейный размер сетевого трансформатора примерно
пропорционален мощности в степени 1/4. Размер трансформатора можно
уменьшить, если увеличить частоту переменного тока. Поэтому современные
импульсные блоки питания при одинаковой мощности значительно легче.

Трансформаторы 50-60 Гц, несмотря на их недостатки, продолжают
использовать в схемах питания, в случая, когда надо обеспечить
минимальный уровень высокочастотных помех, например в высококачественном
звуковоспроизведении.

Другие применения трансформатора

Разделительные трансформаторы (трансформаторная гальваническая развязка). Нейтральный провод
электросети может иметь контакт с «землёй», поэтому при одновременном
касании человеком фазового провода (а также корпуса прибора с плохой
изоляцией) и заземлённого предмета тело человека замыкает электрическую
цепь, что создаёт угрозу поражения электрическим током. Если же прибор
включён в сеть через трансформатор, касание прибора одной рукой вполне
безопасно, поскольку вторичная цепь трансформатора никакого контакта с
землёй не имеет.
Импульсные трансформаторы (ИТ). Основное применение заключается в
передаче прямоугольного электрического импульса (максимально крутой
фронт и срез, относительно постоянная амплитуда).
Он служит для трансформации кратковременных видеоимпульсов напряжения,
обычно периодически повторяющихся с высокой скважностью. В большинстве
случаев основное требование, предъявляемое к ИТ, заключается в
неискажённой передаче формы трансформируемых импульсов напряжения; при
воздействии на вход ИТ напряжения той или иной формы на выходе
желательно получить импульс напряжения той же самой формы, но, быть
может, иной амплитуды или другой полярности.
Измерительные трансформаторы. Применяют для измерения очень больших или очень маленьких переменных напряжений и токов в цепях РЗиА.
Измерительный трансформатор постоянного тока. На самом деле представляет собой магнитный усилитель,
при помощи постоянного тока малой мощности управляющий мощным
переменным током. При использовании выпрямителя ток выхода будет
постоянным и зависеть от величины входного сигнала.
Измерительно-силовые трансформаторы. Имеют широкое применение в
схемах генераторов переменного тока малой и средней мощности (до
мегаватта), например, в дизель-генераторах.
Такой трансформатор представляет собой измерительный трансформатор тока
с первичной обмоткой, включённой последовательно с нагрузкой
генератора. Со вторичной обмотки снимается переменное напряжение,
которое после выпрямителя подаётся на обмотку подмагничивания ротора.
(Если генератор — трёхфазный, обязательно применяется и трёхфазный
трансформатор). Таким образом, достигается стабилизация выходного
напряжения генератора — чем больше нагрузка, тем сильнее ток
подмагничивания, и наоборот.
Согласующие трансформаторы. Из законов преобразования напряжения и тока для первичной и вторичной обмотки (I1=I2w2/w1,U1=U2w1/w2) видно, что со стороны цепи первичной обмотки всякое сопротивление во вторичной обмотке выглядит в (w1/w2 раз больше. Поэтому согласующие трансформаторы применяются для подключения низкоомной нагрузки к каскадам электронных устройств, имеющим высокое входное или выходное сопротивление. Например, высоким выходным сопротивлением может обладать выходной каскад усилителя звуковой частоты, особенно, если он собран на лампах, в то время как динамики имеют очень низкое сопротивление. Согласующие трансформаторы также исключительно полезны в высокочастотных линиях,
где различие сопротивления линии и нагрузки привело бы к отражению
сигнала от концов линии, и, следовательно, к большим потерям.
Фазоинвертирующие трансформаторы. Трансформатор передаёт только
переменную компоненту сигнала, поэтому даже если все постоянные
напряжения в цепи имеют один знак относительно общего провода, сигнал на
выходе вторичной обмотки трансформатора будет содержать как
положительную, так и отрицательную полуволны, причём, если центр
вторичной обмотки трансформатора подключить к общему проводу, то
напряжение на двух крайних выводах этой обмотки будет иметь
противоположную фазу. До появления широко доступных транзисторов с npn типом проводимости фазоинвертирующие трансформаторы применялись в двухтактных выходных каскадах усилителей,
для подачи противоположных по полярности сигналов на базы двух
транзисторов каскада. К тому же, из-за отсутствия «ламп с
противоположным зарядом электрона», фазоинвертирующий трансформатор
необходим в ламповых усилителях с двухтактным выходным каскадом.

Потери в трансформаторах

Степень потерь (и снижения КПД) в трансформаторе зависит, главным образом, от качества, конструкции и материала «трансформаторного железа» (электротехническая сталь). Потери в стали состоят в основном из потерь на нагрев сердечника, на гистерезис и вихревые токи.
Потери в трансформаторе, где «железо» монолитное, значительно больше,
чем в трансформаторе, где оно составлено из многих секций (так как в
этом случае уменьшается количество вихревых токов). На практике
монолитные сердечники не применяются. Для снижения потерь в
магнитопроводе трансформатора магнитопровод может изготавливаться из
специальных сортов трансформаторной стали с добавлением кремния, который
повышает удельное сопротивление железа электрическому току, а сами
пластины лакируются для изоляции друг от друга.

Режим работы трансформаторов

1. Режим холостого хода.
Данный режим характеризуется разомкнутой вторичной цепью
трансформатора, вследствие чего ток в ней не течёт. С помощью опыта
холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в стали.

2. Нагрузочный режим. Этот режим характеризуется замкнутой на
нагрузке вторичной цепи трансформатора. Данный режим является основным
рабочим для трансформатора.

3. Режим короткого замыкания.
Этот режим получается в результате замыкания вторичной цепи накоротко. С
его помощью можно определить потери полезной мощности на нагрев
проводов в цепи трансформатора. Это учитывается в схеме замещения
реального трансформатора при помощи активного сопротивления.

Габаритная мощность

Габаритная мощность трансформатора описывается следующей формулой:

Pгаб=(P1 + P2)/2=(U1I1 + U2I2)/2

  • 1 — первичной обмотки
  • 2 — вторичной обмотки

Однако, это конечный результат. Или академическое определение.
Изначально габаритная мощность, как следует из названия, определяется
габаритами сердечника и материалом, его магнитными и частотными
свойствами.

КПД трансформатора
КПД трансформатора находится по следующей формуле:

где

P0 — потери холостого хода (кВт) при номинальном напряжении
PL — нагрузочные потери (кВт) при номинальном токе
P2 — активная мощность (кВт), подаваемая на нагрузку
n — относительная степень нагружения (при номинальном токе n=1).

кпд, холостой ход, трансформатор, обмотки

Всего комментариев: 0


ukrelektrik.com

Трансформаторы — устройство, принцип работы и область применения, основные типы и характеристики

ВИДЫ И ТИПЫ
— ХАРАКТЕРИСТИКИ
— ПРИМЕНЕНИЕ

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения. Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток.

Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1,U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Автотрансформаторы.

Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
Импульсные трансформаторы.

Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
Разделительный трансформатор.

Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
Пик—трансформатор.

Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.

Стоит выделить способ классификации трансформаторов по способу их охлаждения.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

В начало

ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

В начало

ОБЛАСТЬ ПРИМЕНЕНИЯ

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.

В зависимости от назначения трансформаторы делят на:

Силовые.

Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.

Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.

Тока.

Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Напряжения.

Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.

В начало

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

eltechbook.ru

Виды трансформаторов и их применение

Содержание:
  1. Общее устройство и принцип работы
  2. Основные типы трансформаторов
  3. Условные обозначения трансформаторов
  4. Масляные трансформаторы
  5. Устройства с негорючим диэлектриком
  6. Сухие трансформаторы

В электротехнике постоянно требуется преобразование тока из одного состояния в другое. В этих процессах активно участвуют различные виды трансформаторов, представляющие собой электромагнитные статические устройства, без каких-либо подвижных частей. В основе их действия лежит электромагнитная индукция, посредством которой переменный ток одного напряжения преобразуется в переменный ток другого напряжения. При этом частота остается неизменной, а потери мощности совсем незначительные.


Общее устройство и принцип работы

Каждый трансформатор оборудуется двумя или более обмотками, индуктивно связанными между собой. Они могут быть проволочными или ленточными, покрытыми изоляционным слоем. Обмотки наматываются на сердечник, он же магнитопровод, выполненный из мягких ферромагнитных материалов. При наличии одной обмотки, такое устройство называется автотрансформатором.

Принцип действия трансформатора довольно простой и понятный. На первичную обмотку устройства подается переменное напряжение, что приводит к течению в ней переменного тока. Этот переменный ток, в свою очередь, вызывает создание в магнитопроводе переменного магнитного потока. Под его воздействием в первичной и вторичной обмотках происходит наведение переменной электродвижущей силы (ЭДС). Когда вторичная обмотка замыкается на нагрузку, по ней также начинает течь переменный ток. Этот ток во вторичной системе отличается собственными параметрами. У него индивидуальные показатели тока и напряжения, количество фаз, частота и форма кривой напряжения.

Энергетические системы, осуществляющие передачу и распределение электроэнергии, пользуются силовыми трансформаторами. С помощью этих устройств изменяются величины переменного тока и напряжения. Однако частота, количество фаз, кривая тока или напряжения, остаются в неизменном виде.

В конструкцию простейшего силового трансформатора входит магнитопровод, изготавливаемый из ферромагнитных материалов, преимущественно из листовой электротехнической стали. На стержнях магнитопровода – сердечника располагаются первичная и вторичная обмотки. Первичная обмотка соединяется с источником переменного тока, а вторичная подключается к потребителю.

В силовых трансформаторах при протекании через витки обмотки также создается переменный магнитный поток, возникающий в магнитопроводе. Под его влиянием в обеих обмотках индуктируется ЭДС. Выходное напряжение может быть выше или ниже первоначального, в зависимости от того, какой тип трансформатора используется – повышающий или понижающий. Значение ЭДС в каждой обмотке различается в соответствии с количеством витков. Таким образом, если создать определенное соотношение витков в обмотках, можно создать трансформатор с требуемым отношением входного и выходного напряжений.


Типы трансформаторов

В соответствии со своими параметрами и характеристиками, все трансформаторы разделяются на следующие виды:

  • По количеству фаз могут быть одно- или трехфазными.
  • В соответствии с числом обмоток, трансформаторы бывают двух- или трехобмоточными, а также двух- или трехобмоточными с расщепленной обмоткой.
  • По типу изоляции – сухие (С) и масляные (М) или с негорючим заполнением (Н).
  • По видам охлаждения – с естественным масляным охлаждением (М), с масляным охлаждением и воздушным дутьем (Д), принудительная циркуляция масляного охлаждения (Ц), сухие трансформаторы с воздушным охлаждением (С). Кроме того, существуют устройства без расширителей, для защиты которых используется азотная подушка.

Условные обозначения трансформаторов

Каждый трансформатор имеет собственные условные обозначения, расшифровывающие основные технические характеристики и параметры устройства.

Буквенные символы обозначают следующее:

  • А – конструкция автотрансформатора.
  • О – однофазная модификация.
  • Т – трехфазное устройство, с наличием или отсутствием расщепления обмоток.

В соответствии с системой охлаждения, трансформаторы маркируются следующим образом:

  • Сухого типа: «С» — с естественным воздушным охлаждением, открытого исполнения; «СЗ» — то же самое, защищенного исполнения; «СГ» — то же самое, герметичного исполнения; «СД» — воздушное охлаждение с дутьем.
  • Масляное охлаждение: «М» — естественное; «МЗ» — естественное, с защитной азотной подушкой без расширителя; «Д» — дутье и естественная циркуляция масла; «ДЦ» — дутье и принудительная циркуляция масла; «Ц» — масляно-водяное охлаждение и принудительная циркуляция масла.
  • С использованием негорючего жидкого диэлектрика: «Н» и «НД» — естественное охлаждение и с применением дутья.

Существует множество других буквенных и цифровых обозначений. Правильно расшифровать их помогут специальные справочники и таблицы.


Масляные трансформаторы

Данный тип трансформаторов считается наиболее экономичным. Они лучше всего подходят для наружной установки. Внутри помещений они могут устанавливаться на уровне первого этажа, в специальных камерах с двумя наружными дверьми.

Эксплуатация масляных трансформаторов отличается специфическими особенностями. Они должны обязательно оборудоваться маслоприемными устройствами в виде ям или приямков, способных к сбору примерно 20-30% общего количества масла, залитого в трансформатор. Глубина таких ям должна быть не менее 1 м. Следует помнить, что масляные установки запрещается размещать в подвалах и на вторых этажах зданий.


Устройства с негорючим диэлектриком

Мощность таких установок составляет до 2500 кВА. Трансформаторы этого типа применяются в тех случаях, когда технические условия не допускают использования других устройств. Чаще всего это связано с условиями окружающей среды и недопустимостью открытой установки масляных трансформаторов.

Применение устройств с негорючим диэлектриком имеет серьезные ограничения в связи с высокой токсичностью совтола, используемого для охлаждения. Данная жидкость, обладая противопожарными и взрывобезопасными свойствами, может нанести серьезный вред человеческому организму, привести к раздражению носовых и глазных слизистых оболочек.

Основное преимущество этих устройств заключается в возможности их ввода в эксплуатацию без проведения предварительной ревизии. В процессе дальнейшей работы они не требуют обслуживания и ремонта.


Сухие трансформаторы

Максимальная мощность этих устройств также находится в пределах 2500 кВА. Они применяются в тех местах, где условия среды делают масляные трансформаторы пожароопасными, а трансформаторы с негорючей жидкостью – токсичными. Установка сухих трансформаторов производится в административные, общественные и другие здания, где возможно значительное скопление людей.

Рассматривая основные виды трансформаторов, следует отметить, что устройства сухого типа с небольшой мощностью могут размещаться внутри помещений и других закрытых местах. Это связано с тем, что им не требуются маслосборники и охлаждающая жидкость. Серьезным недостатком сухих трансформаторов считается наличие повышенного шума во время работы. Этот фактор нужно обязательно принимать во внимание при выборе места установки данных устройств.

electric-220.ru

Где и для чего применяется трансформатор напряжения, разбираем подробно

Электричество, впервые этот термин ввел Уильям Гилберт. В одном из своих трудов он описал опыты с наэлектризованным телом. С тех пор прошло много лет, в течении которых не прекращались исследования в этой отрасли. В них принимали участие лучшие ученые умы различных эпох. В итоге появились электрические станции, все населенные пункты опутывает сеть линий электропередач. И сложно представить себе, что еще относительно недавно человек обходился без электроэнергии.

Ведь сегодня она является необходимым условием для жизни и деятельности людей. Но чтобы все современное оборудование обеспечить электроэнергией необходимо осуществлять ее передачу на дальние расстояния. Сделать это можно, используя трансформатор напряжения. Этот прибор позволил уменьшить потери в проводах, а также адаптировать параметры сети под конкретного потребителя. Чтобы понять, как небольшое устройство сумело справиться со столь сложными задачами, рассмотрим его конструктивные особенности.

Назначение и сфера применения трансформаторов

Функция электрических сетей заключается как в выработке энергии, так и ее передаче на большие расстояния, а затем и распределении между потребителями. Вот для чего нужен специальный электромагнитный аппарат или трансформатор напряжения. Такие приборы находят широкое применение на электрических станциях. Они способны повышать или понижать напряжение.

Смотрим видео, немного о трансформаторах и их действии:

Применяется такое оборудование как в закрытых помещениях, так и уличных условиях. Благодаря использованию повышающих трансформаторов на таких объектах стало возможным передавать энергию на дальние расстояния с минимальными потерями в проводах. Это обеспечивается за счет уменьшения пощади сечения кабелей линий электропередачи.

Но так как поступающее со станции высокое напряжение не может использоваться потребителями, то на входе обычно устанавливаются понижающие трансформаторы. Они позволяют получить сравнительно небольшие значения, при которых возможна работа оборудования и бытовой техники.

Устройство прибора

Простейший из таких приборов состоит из двух основных частей:

  • Магнитопровода, выполненного из стали;
  • Двух обмоток из проводов с изоляцией.

Одна из них называется первичной, так как на нее подается ток. Обмотка, к которой подключаются потребители называется вторичной.

Принцип работы трансформатора напряжения заключается в следующем. Подключение его к сети приводит к поступлению тока на первичную обмотку. Переменный поток, образованный им, проходит по магнитопроводу. При этом в витках обмоток индуцируются переменные ЭДС. Величина этой силы зависит от скорости изменения магнитного потока и того, как быстро он изменяется. А так как эти параметры являются постоянными для каждого прибора, то можно сделать вывод, что одинаковыми будут и индуцируемые в каждой обмотке ЭДС.

Виды и их особенности

Различные виды трансформаторов

Кроме рассмотренных выше понижающих и повышавших приборов выпускаются и другие модели:

  • Тяговые;
  • Лабораторные, в которых возможно регулировать напряжение;
  • Для выпрямительных установок;
  • Источники питания для радиоаппаратуры.

Все они относятся к одной большой группе трансформаторов – силовым. Есть еще одна разновидность такого оборудования. Это устройства, используемые для подключения к цепям высокого напряжения различных электроизмерительных приборов. Они получили название измерительных трансформаторов напряжения. Также эти приборы находят широкое применение при электросварке.

Имеют отличия и в конструктивном исполнении. В зависимости от этого различают двух и многообмоточные измерительные трансформаторы тока и напряжения. Такие приборы используются для проведения измерений и питания цепей автоматики, релейной защиты. Они могут быть одно- или трехфазные с масляным или воздушным охлаждением.

Смотрим видео классификация трансформаторов:

Влияет на классификацию и форма магнитопровода. Он может быть:

  1. Стержневой;
  2. Броневой;
  3. Тороидальный.

При этом различают два вида конструкции обмоток:

  • Концентрический;
  • Дисковый.

По классу точности устройства подразделяются на 4 категории:

Еще одним параметром, влияющим на специфику применения измерительных трансформаторов тока и напряжения, является способ установки. В зависимости от него изделия бывают следующих типов:

  • Внутренние;
  • Наружные;
  • Для КРУ.

Критерии выбора оборудования

Классификация приборов напряжения

Обычно приобретая оборудование ориентируются не его основные параметры. Для трансформатора таковыми являются:

  • Напряжения обмоток, которые указываются на щитке;
  • Коэффициент трансформации;
  • Угловой погрешности.

Необходимо также ориентироваться на условия эксплуатации. Поэтому самыми важными параметрами при выборе оказываются нагрузка, сфера применения и напряжение короткого замыкания трансформатора. На первом этапе необходимо убедиться в том, что мощности модели будет достаточно для того чтобы справиться не только с поставленной задачей, но и возможными перегрузками. Неплохо иметь прибор, параметры которого могут быть изменены в процессе эксплуатации.

Но ориентироваться только на эти характеристики недопустимо. Так как для эффективной работы трансформатора напряжения 110 кВ важны и его технические характеристики:

  1. Частота тока;
  2. Фазность;
  3. Способ установки;
  4. Место расположения;
  5. Нагрузка.

Кроме этого нужно определить подходит ли вам цена устройства, а также стоимость его дальнейшего обслуживания. Соответствуют ли они ожидаемым цифрам?

Но даже выбрав модель в соответствии со всеми перечисленными требованиями стоит учитывать возможность ее подключения к цепи измерительных приборов для трансформаторов соответствующего типа.

Если предполагается использовать устройство в качестве защитного, то можно ограничиться изделием со средними показателями точности. В случае проведения измерений с минимальными погрешностями выбирают лабораторные трансформаторы напряжения 10 кВ.

Обслуживание и эксплуатация

Приобретая приборы для бытового обслуживания стоит воспользоваться услугами профессиональных консультантов. Они, имея необходимые знания и опыт помогут выбрать оптимальную модель.

Смотрим видео, диагностика и обслуживание:

Но чтобы оборудование работало эффективно необходимо еще и правильно его эксплуатировать. Установка и использование трансформаторов выполняются в соответствии с нормативными документами. В них же оговаривается и порядок обслуживания приборов. Согласно этим документам после монтажа устройства необходимо проверить схемы включения и все элементы во вторичных цепях. Исходя из полученных результатов оценивают возможность включения трансформатора в работу.

Чтобы убедиться в исправности прибора следует измерить;

  • Сопротивление на обмотках;
  • Ток.

Уровень масла в трансформаторах должен поддерживаться в пределах шкалы в зависимости от температуры окружающей среды. Также периодически устройство проверяют на предмет отсутствия протекания масла и чистоту изоляции. Для этого используют специальный индикатор – силикагель. При насыщении влагой он приобретает розовый окрас, в то время как в нормальном состоянии он голубого цвета.

В процессе обслуживания прибора необходимо соблюдать меры безопасности. Они регламентируются нормативными документами. Осмотр трансформатора под напряжением допускается выполнять, находясь на безопасном расстоянии от токоведущих частей.

Что касается ремонтных работ, то для их проведения прибор должен быть отключен от сети. Запрещено эксплуатировать трансформатор с незаземленным цоколем, а все неисправности должны устраняться специалистами. Исправное оборудование в процессе работы издает равномерный звук без треска и резких шумов.

Кроме того, в сетях до 10 кВ случаются резонансные повышения напряжения. Причиной их появления считается многократные разряды емкости, получающиеся в результате дугового замыкания. Это в свою очередь приводит к образованию феррорезонанса в трансформаторе напряжения и выходу его из строя. Избежать этого можно при заземлении нейтрали через резистор.

generatorvolt.ru

Силовые трансформаторы. Виды и устройство. Работа и применение

Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.

Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.

Устройство трансформатора

Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.

1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода

Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.

Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.

Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.

Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.

Конструкция силового трансформатора подобна обычному бытовому трансформатору.

Виды

Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.

В зависимости от различных факторов силовые трансформаторы делятся на виды:
  • По выполняемой задаче. Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
  • По числу фаз. Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
  • По количеству обмоток. Двухобмоточные и трехобмоточные.
  • По месту монтажа. Наружные и внутренние.

Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.

Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.

Принцип действия

Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.

С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.

Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.

В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.

Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.

Сфера использования

Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились силовые трансформаторы, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.

Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии.

Вот некоторые области применения силовых трансформаторов:
  • В сварочном оборудовании.
  • Для электротермических устройств.
  • В схемах электроизмерительных устройств и приборов.
Свойства и расчет трансформатора
Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:
  • Номинальное значение напряжения и мощности.
  • Наибольший ток обмоток.
  • Габаритные размеры.
  • Вес устройства.

Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.

Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:

I = S х √3U, где S и U – это мощность по номиналу, и напряжение.

Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.

Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.

Установка и эксплуатация

Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.

Силовые трансформаторы устанавливаются на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.

Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.

Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.

После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.

Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.

Похожие темы:

electrosam.ru

Назначение и области применения трансформаторов. Где широко применяются трансформаторы

Применение трансформаторов — Трансформаторы

Повседневно трансформаторы применяются в электросетях и в источниках питания различных приборов.

Применение в электросетях

Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи. Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения. Поэтому для наиболее выгодной транспортировки электроэнергии в электросети многократно применяют трансформаторы: сначала для повышения напряжения генераторов на электростанциях перед транспортировкой электроэнергии, а затем для понижения напряжения линии электропередач до приемлемого для потребителей уровня.

Поскольку в электрической сети три фазы, для преобразования напряжения применяют трёхфазные трансформаторы, или группу из трёх однофазных трансформаторов, соединённых в схему звезды или треугольника. У трёхфазного трансформатора сердечник для всех трёх фаз общий.

Несмотря на высокий КПД трансформатора (для трансформаторов большой мощности — свыше 99 %), в очень мощных трансформаторах электросетей выделяется большая мощность в виде тепла (например, для типичной мощности блока электростанции 1 ГВт на трансформаторе может выделяться мощность до нескольких мегаватт). Поэтому трансформаторы электросетей используют специальную систему охлаждения: трансформатор помещается в баке, заполненном трансформаторным маслом или специальной негорючей жидкостью. Масло циркулирует под действием конвекции или принудительно между баком и мощным радиатором. Иногда масло охлаждают водой. «Сухие» трансформаторы используют при относительно малой мощности (до 16000 кВт).

Применение в источниках электропитания

Для питания различных  электроприборов требуются самые разнообразные напряжения. Блоки электропитания в устройствах, которым необходимо несколько напряжений различной величины содержат трансформаторы с несколькими вторичными обмотками или содержат в схеме дополнительные трансформаторы. Например, в телевизоре с помощью трансформаторов получают напряжения от 5 вольт (для питания микросхем и транзисторов) до 30 киловольт (для питания анода кинескопа).

В прошлом в основном применялись трансформаторы, работающие с частотой электросети, то есть 50-60 Гц.

В схемах питания современных радиотехнических и электронных устройств (например в блоках питания персональных компьютеров) широко применяются высокочастотные импульсные трансформаторы. В импульсных блоках питания переменное напряжение сети сперва выпрямляют, а затем преобразуют при помощи инвертора в высокочастотные импульсы. Система управления с помощью широтно-импульсной модуляции (ШИМ) позволяет стабилизировать напряжение. После чего импульсы высокой частоты подаются на импульсный трансформатор, на выходе с которого, после выпрямления и фильтрации получают стабильное постоянное напряжение.

В прошлом сетевой трансформатор (на 50-60 Гц) был одной из самых тяжёлых деталей многих приборов. Дело в том, что линейные размеры трансформатора определяются передаваемой им мощностью, причём оказывается, что линейный размер сетевого трансформатора примерно пропорционален мощности в степени 1/4. Размер трансформатора можно уменьшить, если увеличить частоту переменного тока. Поэтому современные импульсные блоки питания при одинаковой мощности значительно легче.

Трансформаторы 50-60 Гц, несмотря на их недостатки, продолжают использовать в схемах питания, в случая, когда надо обеспечить минимальный уровень высокочастотных помех, например в высококачественном звуковоспроизведении.

Другие применения трансформатораРазделительные трансформаторы (трансформаторная гальваническая развязка). Нейтральный провод электросети может иметь контакт с «землёй», поэтому при одновременном касании человеком фазового провода (а также корпуса прибора с плохой изоляцией) и заземлённого предмета тело человека замыкает электрическую цепь, что создаёт угрозу поражения электрическим током. Если же прибор включён в сеть через трансформатор, касание прибора одной рукой вполне безопасно, поскольку вторичная цепь трансформатора никакого контакта с землёй не имеет.Импульсные трансформаторы (ИТ). Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ, заключается в неискажённ

10i5.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о