Где у электролитического конденсатора плюс и минус: Определение полярности электролитического конденсатора по внешнему виду

Содержание

Определение полярности электролитического конденсатора по внешнему виду

Электрические конденсаторы – обычные составляющие любой импульсной, электрической или электронной схемы. Главная их задача – это накапливать заряд, поэтому они называются пассивными устройствами. Электрические конденсаторы состоят из двух металлических электродов в виде пластин (обкладок). Между ними размещается диэлектрик, толщина которого намного меньше самих размеров обкладок.

Внешний вид устройства

Общие сведения

При включении в электрическую цепь определение полярности для таких элементов не нужно. Но существуют электролитические конденсаторы, которые считаются необычными электронными компонентами, так как сочетают в себе функции не только накапливающего элемента, но и полупроводникового прибора. Они характеризуются большей емкостью, по сравнению с остальными, и малыми габаритными размерами. Сами выводы у конденсатора располагаются радиально (на разных сторонах прибора) или аксиально (на одной стороне).

Эти устройства широко используются во многих электро,- и радиотехнических приборах, в компьютерах, в измерительных приборах и т.д. Для них определение полярности и правильное подключение в сеть обязательны.

Обратите внимание! Они могут взорваться, если на них ошибочно подать напряжение, выше рассчитанного. Его значение в основном указывается производителем на корпусе изделия.

Полярность конденсатора отечественного производства

Символика обозначения полярности может быть разной, в зависимости от завода-изготовителя и времени выпуска радиодетали. Понятно, что со временем нормативные акты, определяющие систему стандартизации, меняются. Как узнать  полярность:

  1. В бывших странах СССР было принято обозначать только положительный вывод на таких устройствах. На корпусе необходимо найти знак «+», тот конец, к которому он ближе нанесен, является анодом. Соответственно, второй – это минус. Чешские конденсаторы старых выпусков имеют аналогичную маркировку;
  2. Дно электролитических конденсаторов типа К50-16 выполнено из пластмассы, где написана полярность. Встречаются случаи, когда знаки плюса и минуса размещены так, что выводы пересекают их центры;
  3. Существуют также устройства нестандартной конструкции, предусматривающей соединение с шасси. В основном они нашли себе применение в осветительных лампах, а именно в фильтрах анодного напряжения (всегда положительного). У таких конденсаторов обкладка – катод подключается отрицательно и выведена на корпус, а анод представляет собой вывод, выходящий из элемента;

Обратите внимание! Такой тип может иметь абсолютно противоположную полярность, поэтому обязательно изучайте маркировку на приборе.

  1. Часто уже не выпускающуюся серию конденсаторов ЭТО по внешнему виду путают с диодами. Они тоже маркируются, но, если обозначения стерлись, то конец, который выходит из утолщения корпуса, является анодом. Нельзя разбирать такие устройства, они содержат вредные вещества;
  2. Полярность нынешних электролитических конденсаторов различных конструкций легко определить по полосе возле вывода с «минусом». Обычно ее выполняют как прерывистую линию и наносят яркой краской.

По внешнему виду тоже можно сделать вывод о полярности: более длинная ножка (вывод) обозначает «плюс».

Определение полярности при стертой маркировке

В таком случае необходимо собрать несложную электрическую схему:

  1. Перед этим обязательно надо разрядить используемый конденсатор, к примеру, замкнуть его ножки накоротко с помощью отвертки;
  2. В определенной схеме последовательно соединяем источник постоянного тока (обычную батарейку), милливольтметр, резистор с сопротивлением 1 кОм, микроамперметр и разряженное наше устройство;
  3. Потом на данную схему подается напряжение, при этом электролитический конденсатор начнет накапливать заряд;
  4. После полной его зарядки необходимо зафиксировать показания прибора по измерению силы тока;
  5. Далее извлекаем и разряжаем накопитель. Это можно сделать, соединив два выхода устройства с лампой. Если она гаснет, значит, наш конденсатор разрядился;
  6. Повторно собираем схему и снова заряжаем полярный элемент;
  7. Снимаем новые показания силы тока и сравниваем с полученными данными в первый раз. Если «+» конденсатора был соединен с плюсом милливольтметра, то представленные измерительные данные будут отличаться незначительно. Противоположный результат будет означать, что полярность накопителя перепутана.

Важно! В случае сомнения всегда лучше проверить полярность с помощью приборов. Это также помогает диагностировать само изделие.

Проверка радиодетали

Если электролит заряжается быстро от источника 9-12 Вольт, то это сигнал того, что он подсыхает, т.е. теряет емкость. Такой элемент лучше не использовать в рабочих схемах, он быстро выйдет из строя и испортит всю работу прибора.

Видео

Оцените статью:

Электролитический конденсатор перепутать полярность

Всем кто занимается разработкой/ремонтом электроники известно, что существуют полярные конденсаторы, которые следует подключать строго определённым образом, если же такой конденсатор подключить неправильно(перепутать полярность) он взорвётся.

Обычно на этих конденсаторах нарисована полоска, но её назначение может быть разным в зависимости от типа конденсатора. У алюминиевых конденсаторов полоской помечается отрицательный электрод, а у танталовых — положительный. Эта путаница с маркировкой приводит к тому, что полярные конденсаторы в руках начинающего радиолюбителя часто превращаются в хлопушки.(то есть используются не по назначению)

Когда мне довелось перепутать полярность алюминиевого конденсатора, он взорвался, как я и ожидал. И до вчерашнего дня считал, что так же поведёт себя и танталовый конденсатор, но он повёл себя чуть иначе.

Дело было так, пришли мне с Китая новые платы и я с радостью принялся их распаивать. Распаял одну, проверил вход на наличие короткого замыкания, короткого нет. Подключил её к лабораторному блоку питания, смотрю, а потребление выше нормы, значит где-то косяк. Но где?
После длительных поисков, выяснил, что причина кроется в неправильно запаянных танталовых конденсаторах, которые стоят на выходе формирователя отрицательного напряжения max660. Такого развития событий я не ожидал.

В итоге у меня возникло два вопроса:

  • Почему неправильно запаянные конденсаторы не взорвались?
  • И почему выросло потребление тока?

Ответ на первый вопрос напрашивался сам собой, для взрыва надо было увеличить напряжение, а ответа на второй вопрос у меня не было.

Немного погуглив узнал, что неправильно подключённый танталовый конденсатор ведёт себя так же как диод

, то есть обладает сопротивлением, которое зависит от приложенного напряжения. На эту тему в англоязычном интернете есть несколько документов.

Ну и для того чтобы поставить окончательно поставить точку в этом вопросе, специально перепутал полярность и подавал напряжение на танталовый конденсатор. Меня интересовало как ток, протекающий через конденсатор, зависит от приложенного напряжения.

При напряжении 1V на обкладках конденсатора ток через него не течет.

В принципе мне все стало ясно, он действительно ведет себя как диод, но увеличивать напряжение не стал, а то вдруг ещё взорвётся))))

В первой части статьи мы рассмотрели, как устроен конденсатор.

Вы уже знаете, в каких единицах измеряется его ёмкость, как конденсаторы обозначаются в электрических схемах.

Вы уже знаете, где и как используются конденсаторы в компьютерной технике.

Конденсатор, как и любой компьютерный «кирпичик», обладает параметрами, которые характеризуют его работу.

Давайте углубим наши знания и посмотрим

Какими ещё параметрами характеризуются конденсаторы?

Номинальное рабочее напряжение. Конденсатор может использоваться в режимах, когда напряжение на нём не превышает рабочего.

Использовать, например, электролитический конденсатор с рабочим напряжением 10 В в цепях +5 В или +3 В можно.

Чем больше рабочее напряжение электролитического конденсатора при равной ёмкости, тем больше его габариты.

Рабочее напряжение на керамических и других конденсаторах может явно не указываться или не указываться вообще — особенно, если конденсатор имеет маленькие размеры.

Полная информация о всех параметрах конденсатора имеется в соответствующем даташите (справочных данных), который имеется на сайте фирмы — производителя.

ESR (Equivalent Series Resistance)эквивалентное последовательное сопротивление. Выводы конденсатора и их контакты с обкладками имеет не нулевое, хотя и очень небольшое сопротивление. Это сопротивление активное, поэтому, в соответствии с законами Ома и Джоуля-Ленца, при протекании тока на этом сопротивление будет рассеиваться тепло.

Это приведет к нагреву конденсатора.

Поэтому на электролитических конденсаторах обычно указывает максимальную рабочую температуру.

В компьютерных блоках питания и материнских платах используются специальные конденсаторы — с пониженным ESR.

Величина ESR может для таких конденсаторов быть в пределах от сотых до десятых долей Ома.

Что будет, если вместо конденсатора с пониженным ESR при ремонте блоков питания или материнских плат поставить обычный? Некоторое время он поработает. Но так как его ESR больше, то через цепь такого конденсатора будет протекать больший ток, который вызовет ускоренную деградацию конденсатора.

Поэтому он быстро выйдет из строя.

Величиной ESR можно узнать по специальной маркировке (чаще всего 2 латинских буквы) на корпусе конденсатора. Соответствие этих букв реальным значениям ESR указывается в даташите.

Параллельное соединение конденсаторов

Несколько конденсаторов могут включаться последовательно или параллельно. При параллельном соединении ёмкости всех конденсаторов суммируются. При последовательном соединении общая ёмкость батареи конденсаторов меньше самой маленькой, так как складываются величины, обратные емкости. Но зато напряжение, при котором можно работать такая батарея, будет больше рабочего напряжения одного конденсатора.

На материнских платах в цепи низковольтного источника напряжения, питающего ядро процессора, используется несколько однотипных конденсаторов, соединенных параллельно.

Интересный вопрос: почему бы не поставить один конденсатор емкостью, эквивалентной емкости батареи конденсаторов?

Дело в том, что у параллельно соединенных конденсаторов суммарное ESR будет гораздо меньше, чем ESR одного конденсатора. Потому что при параллельном соединении сопротивлений общее сопротивление уменьшается.

Что будет, если перепутать полярность конденсатора?

Если ошибиться с полярностью электролитического конденсатора – он обязательно выйдет из строя!

Сопротивление конденсатора при обратной полярности небольшое, поэтому через его цепь потечет значительный ток.

Это вызовет быстрый перегрев, закипание электролита, пары которого разорвут корпус.

Такой же эффект вызовет и увеличение рабочего напряжения выше указанного на корпусе.

Чтобы исключить нехорошие последствия, верхняя крышка корпуса делается профилированной, с канавками-углублениями на верхней крышке.

При повышенном давлении внутри крышка расходится по этим канавкам, выпуская пары наружу.

Следует отметить, что электролитические конденсаторы, использующиеся в компьютерных блоках питания и материнских платах, могут выйти из строя после нескольких лет эксплуатации в нормальном рабочем режиме.

Дело в том, что в конденсаторах из-за наличия электролита постоянно протекают электрохимические процессы, усугубляющиеся тяжелым режимом работы и повышенной температурой.

Как правильно заменить неисправные конденсаторы при ремонте материнской платы компьютера можно прочитать здесь.

Как измерить ёмкость и ESR конденсатора?

Ёмкость конденсатора можно измерить с помощью обычного цифрового мультиметра.

Большинство цифровых мультиметров могут измерять не только ток, напряжение или сопротивление, но и ёмкость.

При измерении емкости надо с помощью переключателя выбрать необходимый поддиапазон и использовать отдельные гнёзда с маркировкой «F».

Однако большинство мультиметров измеряет емкость не более 20 микрофарад. А если надо измерить ёмкость в несколько тысяч микрофарад?

В этом случае необходимо использовать комбинированные приборы — измерители ёмкости и ESR. Существует множество разновидностей таких приборов и приборчиков.

Автор использует в своей практике мультитестер с АлиЭкспресс.

Кроме измерения ESR и ёмкости, им можно проверять полупроводниковые приборы, сопротивления и индуктивности.

Удобная штука, доложу я вам!

Если проверять вздутые электролитические конденсаторы — выяснится, что у них повышенное ESR и сниженная емкость.

Иногда тестер вообще дают ошибку, не опознавая конденсатор как конденсатор. Может быть и так, что конденсатор по внешнему виду абсолютно нормальный, но имеет повышенное ESR (хотя и достаточную емкость).

Поэтому в блоке питания он нормально работать не будет!

Заканчивая, отметим, что конденсаторы небольшой ёмкости, использующиеся в «дежурке» компьютерного блока питания, имеют очень небольшие габариты. Электролита у них внутри немного, поэтому у них «не хватает силы» вздуться.

И только измеритель ESR позволит выявить их дефект.

Купить такой мультитестер можно здесь:

Питаться он может от батареи 6F22 («Крона»). Но можно использовать и адаптер AC/DC с выходным напряжением 9-12 В.

Статьи, Схемы, Справочники

Для электролитических конденсаторов имеет значение, куда подключать «плюс», а куда «минус». У них на корпусе есть обозначения рис. Если перепутать полярность, конденсатор сгорит, при этом он может даже взорваться! Старые конденсаторы взрывались так сильно, что даже калечили людей глаза , в современных конденсаторах на корпусе есть специальные «слабые места» в которых корпус сравнительно легко разрушается.

Но все равно это очень неприятно. То же самое может произойти, если превысить допустимое напряжение на конденсаторе.

Поиск данных по Вашему запросу:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.
Перейти к результатам поиска >>>

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Простой способ проверки полярности конденсатора электролита, как определить где минус, а где плюс

Как определить полярность конденсатора

Конденсаторы являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы. Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика.

Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин обкладок конденсатора, и тем больше, чем тоньше слой диэлектрика между ними. Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:.

Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ конденсатор переменной емкости. Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:. К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже.

Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода.

У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться.

У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:. Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х В. Неполярный конденсатор на схемах обозначается следующим образом:. Конденсаторы различают по виду диэлектрика.

Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:.

На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка , то это означает, что он имеет емкость пикофарад или 3. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:. Конденсаторы с номинальным значением до пикофорад маркируются буквой П или латинской P, например:.

Конденсаторы с номинальным значением от пикофарад до 0,1микроофарад маркируются в нанофарадах буквой Н или латинской n, например:. Если код трехзначный, то первые две цифры обозначают значение, третья — количество нулей, результат в пикофарадах. Если код четырехзначный, то первые три цифры обозначают значение, четвертая — количество нулей, результат тоже в пикофарадах.

Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы и Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:. Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:. Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора.

Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей. Фото переменный конденсатор На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам — максимум сотням пикофарад.

Так обозначается на схемах конденсатор переменной емкости:. На следующем рисунке показан подстроечный конденсатор.

Подстроечный конденсатор обозначается на схемах следующим образом:. Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры. Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады.

Перевести из микрофарад в пикофарады и обратно очень легко. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Берем мультик и ставим его крутилку на прозвонку или на измерение сопротивления и щупами дотрагиваемся до выводов кондера.

Так как у нас мультик на прозвонке и на измерении сопротивления вырабатывает постоянный ток, значит, в какой то момент времени ток будет течь, следовательно, в этот момент сопротивление кондера будет минимальным. Далее мы продолжаем держать щупы на выводах кондера и, сами того не понимая, заряжаем кондер. А пока мы его заряжаем, его сопротивление начинает также расти, пока не будет очень большое.

Давайте глянем на практике, как все это выглядит. Очень удобен в проверке кондеров аналоговый мультик, потому что можно без труда отслеживать плавное движение стрелки, чем мерцание цифр на цифровом мультик. Если же у нас при прикасании щупов к кондеру, мультик начинает пищать и показывать нулевое сопротивление, значит в кондере произошло короткое замыкание.

А если у нас сразу же показывается единичка на мультике, значит внутри кондера произошел обрыв. Кондеры с такими эффектами считаются нерабочими и их можно смело выбрасывать в мусорку.

Неполярные кондеры проверяются проще. Ставим предел измерения на мультике на мегаОмы и касаемся щупами выводов кондера. Если сопротивление меньше 2 МегаОм, то скорее всего кондер неисправен. Кондеры полярные и неполярные номиналом меньше чем, 0,25мкФ могут с помощью мультика проверяться только на КЗ.

Например мой мультиметр может без труда определить емкость кондера до микроФарад. Имейте ввиду, что внутри мультиметра есть плавкий предохранитель. Если он перегорает, то некоторые функции мультиметра теряются.

На моем мультике при перегорании внутреннего предохранителя у меня не работала функция измерения силы тока и измерение емкости кондеров. В заключении хотелось бы рассказать еще об одном способе проверки кондера, но он действует только на кондеры большой емкости.

Для этого способа используется замечательное свойство кондера – заряжаться и копить заряд. Заряжаем кондер, приличным напряжением, но не более чем написано на кондере, в течение пару секунд, и потом аккуратно замыкаем контакты кондера какой нибудь железкой.

Железка должна быть изолирована от рук, а то испытаете всю мощь разряда кондера на себе. Должна появиться искра. Запечатлеть искру у меня не получается на фото :- , так что уж извиняйте. Как же я всегда хотел разбираться в электронике, в армии попал в батальон связи и именно в ремонтный взвод, думал-«Ёпта, ну сча точно научат!

Но не тут то было. Но с конденсаторами я тогда познакомился по полной программе, брали пару кондеров размером с мобильный телефон летней давности, одного же мало , соединяли параллельно и заряжали их в розетке так как они были вольтовые , вуаля-электрошокер готов! Обычно зеленых новичков-практикантов, только пришедших в любую мастерскую, подъёбывают на потеху всем опытным коллегам. Просят, например, принести клиренс от танка, или компрессии полведра выписать со склада.

Ваня назовем этого неизвестного так был именно таким салагой, устроившимся работать «на подхвате» электриком. В первый же день самый «юморной» из всей бригады попросил его сгонять на склад, электричества принести. Парень пожал плечами и пошел. Вернулся через несколько минут, держа в руках завязанный мешочек, и отдал его «коллеге». Юморист с охуевшими глазами открыл мешочек и полез туда рукой, а через пару мгновений нащупал там заряженный конденсатор.

Крайние звенья берутся за выводы заряженного конденсатора, а противоположные звенья крепко берутся за руки друг-друга. В детстве узнал про кондеры, инета тогда еще не было и до физики было далеко. Решил себе сделать «электрошокер». Нашел самый большой кондер, который нашелся в квартире. Приделал к нему кабель с вилкой для розетки, ну и зарядил. Выходя на улицу, положил его во внутренний карман джинсовки, а провод с вилкой пустил через рукав так и заряжал, поэтому сразу и не понял.

Попробовал я этим делом воспользоваться и шуткануть над друзьями, но получилось не так как хотелось бы. Как проходит ток, я конечно же не знал, но почему-то думал, что меня не коснется. Вывод: «не удалась шутка,т. А сколько секунд заряжать-то в розетке?

Сломал осциллограф перепутал полярность конденсатора((

Обычные электрические конденсаторы — это простейшие пассивные устройства, которые предназначены для накопления заряда. Их конструкция — это две металлические пластины, между которыми установлен диэлектрик. В процессе установки нет никакой разницы, каким концом сам прибор будет подключаться к электрической цепи. Такие конденсаторы называются электролитическими. Поэтому тема этой статьи — как определить полярность конденсатора. Начнем с того, что конденсатор электролитического типа — это элемент, который вобрал в себя свойства двух видов данного прибора.

Полярность и рабочее напряжение конденсаторов

Перевод: zCarot Распространение информации возможно только с письменного разрешения администрации издания. Клуб экспертов THG. Компьютерное и серверное железо. У меня начались сбои и я нашел многовато вздувшихся конденсаторов решил заменить. Есть такие моменты с полярностью: на материнской плате в месте конденсатора круг разделен на заштрихованную часть и прозрачную. Где плюс, а где минус? В инете как то не понятно, все говорят по разному. И на конденсаторе если ножка длиннее другой то длинная это плюс так?

Как проверить конденсатор мультиметром

Большая индуктивность алюминиевых оксидных конденсаторов — это свойство, связанное исключительно с рулонной конструкцией конденсатора и ее очень легко снизить — достаточно подводить к полосам фольги не один токоввод, а много — по всей длине ленты, и соединить их параллельно и так делают в конденсаторах для фотовспышек. А вот со свойствами электролита, с низкой подвижностью ионов связан рост активного последовательного сопротивления с частотой. И тут можно бороться, подбирая составы электролитов с высокой подвижностью ионов, уменьшая толщину слоя электролита — но до конца этот недостаток не изживается. Еще бы: смесь химически весьма активного металла тантала и сильного окислителя двуокиси марганца. Фактически это термит.

Как определить полярность SMD конденсатора 0603

Конденсаторы являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы. Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока.

Конденсатор

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети В. Ёмкость конденсатора -характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой нано, микро и т. Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры. Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:.

Регистрация Вход. Ответы Mail. Вопросы – лидеры Не взлетает квадрокоптер 1 ставка. Перестал работать Mi band 4 1 ставка.

Регистрация Вход. Ответы Mail. Вопросы – лидеры Не взлетает квадрокоптер 1 ставка. Перестал работать Mi band 4 1 ставка. Роботы уничтожат ваши рабочие места? А разве понятие «эфир» можно всерьёз рассматривать в электронике?

Что нового? Если это ваш первый визит, рекомендуем почитать справку по сайту. Для того, чтобы начать писать сообщения, Вам необходимо зарегистрироваться. Для просмотра сообщений регистрация не требуется. Забыли пароль? Страница 1 из 2 1 2 К странице: Показано с 1 по 20 из Тема: Перепутал полярность электролита.

Тема в разделе » Измерительные приборы и способы измерения «, создана пользователем tarik , 9 ноя Войти или зарегистрироваться. Форум Форум Быстрые ссылки.

Плюсы и минусы конденсаторов. Как правильно определить полярность конденсатора — пошаговая инструкция. Как проверить неполярный конденсатор

В основном, по конструктивному исполнению конденсаторы делятся на два типа: полярные и неполярные.

К полярным конденсаторам относятся конденсаторы которые имеют полярность, грубо говоря, плюс и минус. К ним чаще всего относятся электролитические конденсаторы, но бывают также и электролитические неполярные конденсаторы. Полярные конденсаторы надо паять в схемы только определенным образом: плюсовый контакт конденсатора к плюсу схему, минусовый контакт – к минусу схемы.

Если полярность такого конденсатора нарушить, то он может серьезно пострадать и даже взорваться. Поверьте мне, взрыв конденсатора – это очень зрелищно, но электролит, который там находится, может серьезно повредить вас и ваше окружение. В основном, это только касается советских конденсаторов.

У импортных конденсаторов сверху имеется небольшое вдавление в виде крестика или какой-нибудь другой фигурки. Их толщина меньше, чем остальная толщина крышечки конденсатора. Как мы с вами знаем, где тонко, там и рвется. Это предусмотрено в целях безопасности. Поэтому, если все-таки импортный конденсатор желает взорваться, то его верхняя часть просто-напросто превратится в розочку.

На фото ниже вздутый конденсатор на материнской плате компьютера. Разрыв идет ровно по линии.


Для того, чтобы проверить конденсатор, надо вспомнить общее свойство всех конденсаторов: конденсатор пропускает только переменный ток, постоянный ток он пропускает только в самом начале на несколько долей секунд (это время зависит от его емкости), а потом – не пропускает. Более подробно про это свойство можно прочитать в этой статье. Для того, чтобы проверить конденсатор с помощью мультиметра, должно соблюдаться условие, что его емкость должна быть от 0,25 мкФ.

Как проверить полярный конденсатор

Ну что же, давайте проверим нашего подопечного. Вот собственно и он, самый настоящий импортный электролитический полярный конденсатор:


Для того, чтобы разобраться, где у него минус, а где плюс, производители нанесли маркировку. Минус конденсатора указывает галочка на самом корпусе. Видите эту черную галочку на золотой толстой линии конденсатора? Она указывает на минусовый вывод.

Давайте узнаем, жив или мертв наш пациент? Для начала его надо разрядить металлическим предметом. Я использовал пинцет.


Следующим шагом берем мультиметр и ставим его крутилку на прозвонку или на измерение сопротивления, и щупами дотрагиваемся до выводов конденсатора. Так как у нас мультиметр на прозвонке и на измерении сопротивления выдает постоянный ток, значит, в какой-то момент времени ток будет течь, следовательно, в этот момент сопротивление конденсатора будет минимальным. Далее мы продолжаем держать щупы на выводах конденсатора и, сами того не понимая, заряжаем его. А пока мы его заряжаем, его сопротивление начинает также расти, пока не будет очень большое. Давайте глянем на практике, как все это выглядит.

Вот в этом момент мы только-только коснулись щупами выводов конденсатора.


Держим и видим, что сопротивление у нас растет


и пока не станет очень большим


Очень удобен в проверке конденсаторов аналоговый мультиметр, потому что можно без труда отслеживать плавное движение стрелки, чем мерцание цифр на цифровом мультике.

Если же у нас при прикасании щупов к конденсатору мультиметр начинает пищать и показывать нулевое сопротивление, значит, в конденсаторе произошло короткое замыкание . А если сразу же показывается единичка на мультиметре, значит внутри конденсатора произошел обрыв. Конденсаторы с такими дефектами считаются нерабочими и их можно смело выбрасывать.

Как проверить неполярный конденсатор

Неполярные конденсаторы проверяются еще проще. Ставим предел измерения на мультиметре на Мегаомы и касаемся щупами выводов конденсатора. Если сопротивление меньше 2 Мегаом, то скорее всего конденсатор неисправен.

Конденсаторы полярные и неполярные номиналом меньше, чем 0,25мкФ могут с помощью мультиметра проверяться только на КЗ. Чтобы проверить все-таки их на работоспособность, нужен специальный прибор – LC – метр или универсальный R/L/C/Transistor-metr , но и некоторые мультиметры могут также измерять емкость конденсаторов, имея внутри себя такую функцию. Например, мой мультиметр может без труда определить емкость конденсатора до 200 мкФ. Имейте ввиду, что внутри мультиметра есть . Если он перегорает, то некоторые функции мультиметра теряются. На моем мультиметре при перегорании внутреннего предохранителя не работала функция измерения силы тока и измерение емкости конденсатора.

Являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

Неполярный конденсатор изображение на схеме

На фото ниже изображены пленочный и керамический конденсаторы:

Пленочный


Керамический

Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы


Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.

На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:

Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

На следующем рисунке изображено строение подстроечного конденсатора:

Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV .

Обсудить статью КОНДЕНСАТОР

В элементной базе компьютера (и не только) есть одно узкое место — электролитические конденсаторы. Они содержат электролит, электролит — это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке — дело регулярное.

Поэтому замена конденсаторов — это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата — это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали. Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить. А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить. А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие. В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже — насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть. Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов. Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) .

Симптомы при выходе из строя конденсаторов разнообразны. Это и зависания и синие экраны и просто нежелания компьютера включаться. Обычно к выводу о железной проблеме приходят после установки «чистой» системы и установки на нее «родных» драйверов. Если на голой системе и правильными драйверами наблюдаются зависания и BSOD’ы – проверяем железо.

Еще одной причиной зависаний является выход из строя элементов на материнской плате. Пожалуй, чаще всего из строя выходят конденсаторы.

Поломку легко определить по вздувшимся крышечкам конденсаторов. Верхние крышечки конденсаторов изготавливаются с крестообразным «надрезом» именно для того, чтобы было легко идентифицировать нерабочий конденсатор. Конденсаторы могут выходить из строя по нескольким причинам. Самая распространенная – некачественная партия. Попросту говоря – заводской брак. Отслужат такие конденсаторы примерно года два-три и «потекут». Вторая причина – время. От старости электролит в них высыхает, уменьшается емкость. Третья причина – перегрев. Если конденсатор находится вблизи горячего процессора – риск выхода его со строя возрастает.

С чего начнем.

Конечно – с выключения компьютера от сети. Помните – все манипуляции делаем только на выключенном оборудовании. При том желательно отключить от системного блока не только питающий провод, но и все остальные провода и кабели. Питание может идти от монитора по VGA кабелю, сетевая карта также может быть под напряжением от активного сетевого оборудования.

Снимаем крышку с системного блока (левую, если смотреть на блок спереди). Системную (материнскую) плату нужно отвинтить от корпуса. Снимаем все платы расширения, выкручиваем все крепежные винты, которыми прикручена материнка к стенке. Отключаем питающие кабеля от блока питания. Отключаем жгут проводов, идущий к передней панели корпуса. На всякий случай зарисуйте подключение всех проводков на плату. Процессор можно с платы не снимать.

Находим поврежденные конденсаторы. Внимательно смотрим маркировку. Нам нужно знать емкость и рабочее напряжение. Например, 1000mF, 6,3V. Бежим в ближайший магазин электроники и покупаем такие же по номиналам конденсаторы. Обратите внимание, что в компьютерные платы ставятся конденсаторы с максимальной рабочей температурой 105 градусов. Такие конденсаторы называются «низкоимпендансными» или можно в магазине просто сказать «мне компьютерные конденсаторы нужны». Продавцы в курсе. Итак, конденсаторы куплены. Кстати, возьмите штучку-две про запас. Если что-то пойдет не так – будет чем заменить. Или обнаружится еще один неисправный. Или останется на потом.

Выпаиваем старые конденсаторы

Пора включать паяльник. Учтите, что элементы на современных платах припаяны бессвинцовым припоем, который имеет температуру плавления выше, чем знакомый нам припой. Паяльник нужно будет разогреть до 300 градусов (примерно).

Берем плату в руки. Желательно заземлиться самому и иметь паяльник с заземленным жалом. Статика – вещь коварная.

Берем одной рукой конденсатор, паяльником с другой стороны прогреваем точку припоя одной ноги конденсатора на другой стороне платы. Конденсатор можно покачивать из стороны в сторону, чтобы расшевелить ногу. Выпаиваем одну ножку. Прогреваем вторую. Вытащили конденсатор. Повторяем процедуры для осталных поврежденных конденсаторов. Следите за тем, чтобы при нагреве ножек паяльник не соскользнул и не снес с материнки мелкие элементы. Не торопитесь.

Готовим места посадки

После того, как все больные конденсаторы выпаяны необходимо позаботиться о посадочных отверстиях для здоровых. Для таких целей обычно используют специальный отсос для припоя. Но скорее всего его у вас нет, так что берем иголку и аккуратно расширяем отверстия с двух сторон. Припой довольно мягкий и должен поддаваться. Не переусердствуйте, если взять шило – можно и плату поломать. Материнская плата многослойная и небольшая трещина может вывести ее из строя навсегда.

Ставим новые элементы

Вставляем все конденсаторы на свои места.

Соблюдайте полярность. На конденсаторах обычно маркируют минусовую ногу полоской на корпусе. Кроме того, минусовая нога короче, плюсовая – длиннее. На плате также есть обозначение полярности. Минусовая половина обозначена белым полукругом.

ВНИМАНИЕ! На некоторых платах (редко) полярность перепутана и полукруг обозначает «плюс». Перед выпайкой старых элементов посмотрите на полярность и маркировку.

Конденсаторы вставили, переворачиваем плату и разгибаем ножки конденсаторов, чтобы они не выпадали.

Пайка

Подошли к самому ответственному этапу – пайке. Не откусывая ножки ставим жало паяльника прямо к плате возле ножки. Подводим проволочку припоя к ножке конденсатора и чуть касаемся проволочкой паяльника. Припой тут же расплавляется и капелькой стекает по ножке на посадочное место. При должной сноровке получается красиво и быстро. Припаиваем все ножки.

Зачищаем

Берем кусачки и откусываем ножки конденсаторов. Не оставляйте длинные торчащие ноги. Они могут достать стенки корпуса и что-то обязательно сгорит. Берегите глаза! Ножки обычно от кусачек отлетают в произвольном направлении. Могут угодить в глаз. Лучше одной рукой работать кусачками, а другой рукой держать откусываемую ножку.

Сборка

Сборку, как говорится, производить в обратном порядке. Подключаем к материнской плате сначала все проводки от жгута передней панели корпуса. Затем проводи от блока питания, USB-хвосты, питание на корпусные вентиляторы. Прикручиваем плату к стенке. Вставляем платы расширения (видео, сетевые и т.д.). Подключаем питание – включаем.

Работает – закрываем крышку корпуса и наслаждаемся.

Многие виды электрических конденсаторов полярности не имеют и поэтому их включение в схему не представляет трудностей. Электролитические накопители заряда составляют особый класс, т.к. имеют положительные и отрицательные выводы, поэтому при их подключении часто возникает задача — как определить полярность конденсатора.

Как определить полярность электролитического конденсатора?

Существует ряд способов, как проверить расположение плюса и минуса на корпусе устройства. Полярность конденсатора определяется следующим образом:

  • по маркировке, т.е. по нанесенным на его корпус надписям и рисункам;
  • по внешнему виду;
  • с помощью универсального измерительного прибора — мультиметра.

Важно правильно определить положительные и отрицательные контакты, чтобы после монтажа при подаче напряжения схема не вышла из строя.

По маркировке

Маркировка накопителей заряда, в том числе электролитических, зависит от страны, компании-производителя и стандартов, которые со временем меняются. Поэтому вопрос о том, как определить полярность на конденсаторе, не всегда имеет простой ответ.

Обозначение плюса конденсатора

На отечественных советских изделиях обозначался только положительный контакт — знаком “+”. Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак “+” ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак “плюс” нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT — Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком “плюс”.

Обозначение минуса

Принцип маркировки полярности импортных изделий отличается от традиционных стандартов отечественной промышленности и состоит в алгоритме: “чтобы узнать, где плюс, сначала нужно найти, где минус”. Местоположение отрицательного контакта показывают как специальные знаки, так и цвет окраски корпуса.

Например, на черном цилиндрическом корпусе на стороне отрицательного вывода, иногда называемого катодом, нанесена светло-серая полоса по всей высоте цилиндра. На полосе напечатана прерывистая линия, или вытянутые эллипсы, или знак “минус”, а также 1 или 2 угловые скобки, острым углом направленные на катод. Модельный ряд с другими номиналами отличается синим корпусом и бледно-голубой полосой на стороне отрицательного контакта.

Применяют для маркировки и другие цвета, следуя общему принципу: темный корпус и светлая полоса. Такая маркировка никогда полностью не стирается и поэтому всегда можно уверенно определить полярность “электролита”, как для краткости на радиотехническом жаргоне называют электролитические конденсаторы.

Корпус емкостей SMD, изготовленных в виде металлического алюминиевого цилиндра, остается неокрашенным и имеет естественный серебристый цвет, а сегмент круглого верхнего торца закрашивается интенсивным черным, красным или синим цветом и соответствует позиции отрицательного вывода. После монтажа элемента на поверхность печатной платы частично закрашенный торец корпуса, указывающий полярность, хорошо просматривается на схеме, поскольку по сравнению с плоскими элементами имеет большую высоту.

На поверхность платы наносится соответствующее маркировке обозначение полярности цилиндрического SMD-прибора: это окружность с заштрихованным белыми линиями сегментом, где располагается отрицательный контакт. Однако следует учесть, что некоторые фирмы-производители предпочитают белым цветом отмечать положительный контакт прибора.

По внешнему виду

Если маркировка стерлась или неясна, то определение полярности конденсатора иногда возможно путем анализа внешнего вида корпуса. У многих емкостей с расположением выводов на одной стороне и не подвергавшихся монтажу плюсовая ножка длиннее, чем отрицательная. Изделия марки ЭТО, ныне устаревшие, имеют вид 2 цилиндров, поставленных друг на друга: большего диаметра и небольшой высоты, и меньшего диаметра, но существенно более высокий. Контакты расположены по центру торцов цилиндров. Положительный вывод смонтирован в торце цилиндра большего диаметра.

У некоторых мощных электролитов катод выведен на корпус, который соединен пайкой с шасси электрической схемы. Соответственно, положительный вывод изолирован от корпуса и расположен на его верхней части.

Полярность широкого класса зарубежных, а теперь и отечественных электролитических конденсаторов, определяется по светлой полосе, ассоциированной с отрицательным полюсом прибора. Если же ни по маркировке, ни по внешнему виду полярность электролита определить нельзя, то и тогда задача “как узнать полярность конденсатора” решается путем применения универсального тестера — мультиметра.

С помощью мультиметра

Перед проведением экспериментов важно собрать схему так, чтобы испытательное напряжение источника постоянного тока (ИП) не превышало 70-75% от номинала, указанного на корпусе накопителя или в справочнике. Например, если электролит рассчитан на 16 В, то ИП должен выдавать не более 12 В. Если номинал электролита неизвестен, начинать эксперимент следует с малых значений в диапазоне 5-6 В, и затем постепенно повышать напряжение на выходе ИП.

Конденсатор должен быть полностью разряжен — для этого нужно соединить его ножки или выводы накоротко на несколько секунд металлической отверткой или пинцетом. Можно подключить к ним лампу накаливания от карманного фонарика, пока она не потухнет или резистор. Затем следует внимательно осмотреть изделие — на нем не должно быть повреждений и вздутий корпуса, особенно защитного клапана.

Потребуются следующие устройства и компоненты:

  • ИП — батарея, аккумулятор, блок питания компьютера или специализированное устройство с регулируемым выходным напряжением;
  • мультиметр;
  • резистор;
  • монтажные принадлежности: паяльник с припоем и канифолью, бокорезы, пинцет, отвертка;
  • маркер для нанесения знаков полярности на корпус проверяемого электролита.

Затем следует собрать электрическую схему:

  • параллельно резистору с помощью “крокодилов” (т.е. щупов с зажимами) присоединить мультиметр, настроенный на измерение постоянного тока;
  • плюсовую клемму ИП соединить с выводом резистора;
  • другой вывод резистора соединить с контактом емкости, а ее 2 контакт присоединить к минусовой клемме ИП.

Если полярность подключения электролита правильная, мультиметр ток не зафиксирует. Т.о., контакт, соединенный с резистором, будет плюсовым. В противном случае мультиметр покажет наличие тока. В этом случае с минусовой клеммой ИП был соединен плюсовой контакт электролита.

Согласно 3 способу прибор, измеряющий постоянное напряжение, присоединяется параллельно не сопротивлению, а проверяемой емкости. При правильном подключении полюсов емкости напряжение на ней достигнет величины, выставленной на ИП. Если же минус ИП будет соединен с плюсом емкости, т.е. неправильно, напряжение на конденсаторе поднимется до значения, равного половине величины, выдаваемой ИП. Например, если на клеммах ИП 12 В, то на емкости будет 6 В.

После окончания проверок емкость следует разрядить так же, как и в начале эксперимента.

Как определить полярность электролитического конденсатора

Электролитический конденсатор является необычным электронным компонентом, сочетающим в себе свойства пассивного элемента и полупроводникового прибора. В отличие от обычного конденсатора, он является полярным элементом.

У электролитических конденсаторов отечественного производства, выводы которых расположены радиально или аксиально, для определения полярности найдите знак плюса, расположенный на корпусе. Тот из выводов, ближе к которому он расположен, является положительным. Аналогичным образом промаркированы и некоторые старые конденсаторы чешского производства.

Конденсаторы коаксиальной конструкции, у которых корпус рассчитан на соединение с шасси; обычно предназначены для использования в фильтрах анодного напряжения устройств, выполненных на лампах. Поскольку оно является положительным, минусовая обкладка у них в большинстве случаев выведена на корпус, а плюсовая — на центральный контакт. Но из этого правила могут быть и исключения, поэтому в случае любых сомнений поищите на корпусе прибора маркировку (обозначение плюса или минуса) либо, при отсутствии таковой, проверьте полярность способом, описанным ниже.

Особый случай возникает при проверке электролитических конденсаторов типа К50-16. Такой прибор имеет пластмассовое дно, а маркировка полярности размещена прямо на нем. Иногда знаки минуса и плюса расположены таким образом, что выводы проходят прямо через их центры.

Конденсатор устаревшего типа ЭТО непосвященный может принять за диод. Обычно полярность на его корпусе указана способом, описанным в шаге 1. При отсутствии маркировки знайте, что вывод, расположенный со стороны утолщения корпуса, подключен к положительной обкладке. Ни в коем случае не разбирайте такие конденсаторы — в них содержатся ядовитые вещества!

Полярность современных электролитических конденсаторов импортного производства, независимо от их конструкции, определяйте по полосе, расположенной рядом с минусовым выводом. Она нанесена цветом, контрастным к цвету корпуса, и является прерывистой, т.е. как бы состоит из минусов.

Для определения полярности конденсатора, не имеющего маркировки, соберите цепь, состоящую из источника постоянного напряжения в несколько вольт, резистора на один килоом и микроамперметра, соединенных последовательно. Полностью разрядите прибор, и лишь затем включите в эту цепь. После полной зарядки прочитайте показания прибора. Затем отключите конденсатор от цепи, снова полностью разрядите, включите в цепь, дождитесь полной зарядки и прочитайте новые показания. Сравните их с предыдущими. При подключении в правильной полярности утечка заметно меньше.

Электролиты. Часть 1 (принципы) — Мои статьи — Каталог статей


Приветствую всех неравнодушных к качественному звуку. Попробую вкратце осветить одну из проблем, часто мусолимую в инженерно — аудиофильских кругах, а именно: почему те или иные пассивные элементы ( в данном конкретном случае — электролитические конденсаторы) вносят существенную окраску в звучание аудиоустройства и какой из элементов предпочесть в каждом конкретном случае?

Итак, что у нас представляет собой конденсатор? Устройство для накопления электрического заряда! Формально, идеальный конденсатор представляет собой две идеально (!) проводящие пластины (т. н. «обкладки») с контактами, разделенные тончайшим слоем идеального (!) диэлектрика (т.е. вещества не являющегося проводником). Очевидно, что постоянный ток конденсатор не проводит, так как между обкладками нет контакта из-за наличия диэлектрика. Однако, при подаче электрического напряжения к клеммам (контактам пластин) из-за возникающего между пластин (в толще диэлектрика) электрического поля происходит, так называемый, «заряд» конденсатора, т.е кратковременное протекание тока и возникающее благодаря этому накопление на обкладках электрического заряда. При смене полярности подводимого напряжения конденсатор начинает менять полярность зарядов на обкладках, и опять у нас течет ток в цепи… Процесс зарядки-разрядки конденсатора происходит быстро, ( для буквоедов, график изменения тока описывается обратным экспоненциальным законом) и зависит от емкости конденсатора и сопротивления цепи. Таким образом, для конкретного конденсатора в конкретной цепи существует некоторая «постоянная времени» именуемая ТАУ и равная произведению емкости на сопротивление TAU~ R*C. Все здесь кажется ясным и понятным, и знакомым всем еще со школьного курса физики. Как может такой — вот радиоэлемент вносить существенную окраску в звучание аудиоустройства, в котором он использован? Что там «такого» может быть? Зарядился, накопил заряд – отдал его при потребности в нагрузку. Всего и делов — то! Думаете, все так просто? Проблема кроется в том, что то, что мы имеем в реальности в качестве конденсатора в наших аудио игрушках, очень сильно далеко от идеального элемента описанного выше. Для сохранения приемлемых размеров устройства (конденсатора) изобретатели постепенными итерациями пошли на целый воз уловок в надежде обмануть физику. Таким образом, устройство, именуемое нынче электролитическим конденсатором, представляет собой просто «клубок» кишащий пороками. Для сохранения габаритов в пределах разумного, обкладки конденсатора изготовили из полосок тончайшей фольги, разделенной тончайшим слоем сепаратора (слоя содержащего диэлектрический ЭЛЕКТРОЛИТ) свернутых затем в цилиндр.

1. В результате, полученная «спираль» из обкладок, очевидно, имеет определенную паразитную индуктивность, которая у нас оказывается включенной последовательно с емкостью самого конденсатора. Как мы знаем, индуктивность — суть реактивный элемент, так же как и конденсатор. При протекании переменного тока по данной индуктивности из-за возникающего вокруг проводника магнитного поля формирующего противо-ЭДС резко возрастает сопротивление цепи с ростом частоты тока. Сводя «тупо» на нет емкостные характеристики конденсатора на высоких рабочих частотах. Я уж просто не упоминаю о том, что цепь состоящая из емкости и индуктивности является резонансным контуром, очень сильно меняющим свои свойства вблизи определенных (резонансных) частот.

2. Тоненькие обкладочки изготовленные из фольги, вкупе с внешними выводами и неизбежными контактами между ними, обладают существенным омическим (активным) сопротивлением, которое оказывается, включено последовательно с нашим конденсатором и также влияет на его реальные характеристики.

3. Электролит, используемый в качестве наполнителя сепаратора, формирует нам слой «диэлектрика» в нашем реальном конденсаторе. Данная «субстанция» имеет высокие параметры диэлектрической проницаемости для того, чтобы конденсатор имел высокую емкость при как можно меньших габаритах. Однако, жидкий диэлектрик во-первых, не является полностью непроводящим материалом! Существует так называемый «ток утечки» оценивающий численно сопротивление данного «лже-диэлектрика». В результате конденсатор у нас оказывается шунтирован пусть и довольно большим, но все-же СОПРОТИВЛЕНИЕМ, которое также является паразитным, не свойственным природе собственно конденсатора и противоречащая нашим потребностям от данного устройства. (Что это за накопитель заряда, который склонен к саморазряду изначально?)

4. Мало у нас вышеизложенных проблем, так оказывается, электролит у нас еще и исключительно нелинейная среда! Для того, чтобы электролит эффективно работал, необходимо, чтобы к нему постоянно было приложено, так называемое, «напряжение поляризации» (постоянное напряжение определенной полярности, плюс на аноде, минус на катоде). Только в таком вот рабочем режиме электролит, находящийся внутри конденсатора, начинает работать так, как надо. И не дай бог полярность перепутать! Электролит не только не будет работать, но и из-за протекания внутри обратной химической реакции он может закипеть, разорвать корпус элемента и повредить многое, что находится рядом… Это условие вроде — бы выполняется, когда конденсатор стоит в качестве буфера-фильтра на выходе нашей системы питания. Однако представьте себе — в процессе работы в синхроне с нашим музыкальным, постоянно меняющимся сигналом конденсатор будет отдавать ток в усилитель, при этом напряжения на обкладках будут флуктуировать. Соответственно, напряжение поляризации, приложенное к электролиту, будет модулироваться нашим полезным сигналом. Т.е реактивные характеристики конденсатора будут постоянно менятся в зависимости от прослушиваемого нами музыкального сигнала! А только представьте, как будет работать полярный конденсатор, который сплошь и рядом ставят в качестве разделительного между цепями, фактически не имеющими разности потенциалов вообще! При «правильной» полярности приложенного звукового сигнала конденсатор будет конденсатором, хоть и меняющим свои параметры в зависимости от уровня приложенного сигнала. А вот при «обратной» полярности устройство будет уже вообще «неизвестно чем»! Если задуматься о том, что сигнал музыкальный у нас сугубо периодический, и его полярность меняется туда-сюда в диапазоне от единиц раз до десятков тысяч раз за секунду, то неудивительно, что результат, который у нас получится в результате такого элегантного «инженерного решения» не может радовать истинных фанатов качества звучания. Мутность, мыльность звучания подобных «аудиоподелок» де-факто стандарт для лоу- и мид-фай техники.

5. Структура электролитического конденсатора, описанная выше, очевидно, имеет потенциальную склонность к зависимости от «микрофонного эффекта». При механическом воздействии на конструкцию существует реальная предрасположенность к флуктуациям зазоров между обкладками, с флуктуацией фактической емкости в результате. Вам мало? Можно говорить далее о температурной нестабильности диэлектрических возможностей элекролита (ТКЕ). Процессах старения электролита (конденсаторы «усыхают» со временем, теряя свою емкость, растут токи утечки и тд и тп.) Зависимости возможностей по отдаче тока в нагрузку ( так называемый ripple current) от частоты. Величине «тангенса угла потерь», характеризующей «качество работы диэлектрика» и величину активных потерь при работе конденсатора и ее зависимости от напряжения поляризации… Так далее, так далее…

Вы все еще удивляетесь, что подобные «пассивные» элементы аудиотракта могут влиять на результирующее качество звука? И что все пафосные марки и модели конденсаторов являются таблетками плацебо для больных аудиофилов? Или Я вас убедил? Тогда дальше перейдем к моделям, самым интересным по звуку, и разберемся чем они хороши и почему.
сентябрь 2010
ЮА

Как проверить конденсатор мультиметром на работоспособность, измерение емкости

Конденсатор — электронный элемент, относящийся к категории пассивных. Его основная способность — медленно (с электротехнической точки зрения, в течение нескольких секунд) накапливать заряд, и при необходимости мгновенно отдавать. При отдаче происходит это разряд. В отличие от аккумулятора конденсатор отдает всю энергию импульсом, а не постепенно, после чего снова начинается цикл зарядки.

Основная характеристика этого элемента — ёмкость. Она измеряется в пФ и мкФ — пико- и микрофарадах. Кроме того, каждый конденсатор имеет определенные характеристики рабочего напряжения и напряжения пробоя, при котором он выходит из строя. Они либо указываются на корпусе числами, либо их приходится определять по каталогам, ориентируясь по типоразмеру и цветовой маркировке детали.

В силу своих конструктивных особенностей конденсаторы относятся к категории элементов, которые наиболее часто выходят из строя на электронной плате. Поэтому любой ремонт устройства, содержащего электронику (от микроволновки до системной платы ПК) начинается с проверки этих элементов на работоспособность — визуально, с помощью мультиметра или других приборов.

Самый простой способ

Самым простым и в то же время предварительным способом проверить этот элемент, не выпаивая его из схемы, является визуальный осмотр. Отломившаяся ножка автоматически превращает деталь в нерабочую и подлежащую замене.

При наличии на плате электролитических конденсаторов — они легко опознаются по цилиндрической форме с крестообразной риской на шляпке, а также фольгированному покрытию — в первую очередь надо проверить их.

Для данной группы элементов характерно «вздутие». Это микровзрыв находящегося внутри электролита, который может произойти, например, из-за скачка рабочего напряжения.

Если «цилиндрик» вздут, лопнул по риске на верхушке, на плате обнаруживаются потеки электролита, то его безоговорочно меняют. Зачастую после этого прибор начинает нормально работать.

Если этого не происходит — рекомендуется проверить остальные конденсаторы и другие детали.

В профессиональных ремонтных или наладочных организациях для этого используют профессиональные же приборы — LC-тестеры, или тестеры емкости. Они достаточно дороги, а потому в «хозяйстве» обычного электромонтера встречаются редко.

Но при ремонте большинства плат бытовых устройств в них и нет необходимости — провести проверку емкости конденсатора можно и обычным мультиметром.

Применение тестера для проверки

Настало время ответить на вопрос, как проверить конденсатор мультиметром. В первую очередь нужно оговорить сразу: мультиметром можно проверять только детали емкостью не менее 0,25 мкФ и не более 200 мкФ.

Эти ограничения базируются на принципах их работы, и вообще принципе самой проверки — для малоемкостных не хватит чувствительности прибора, а мощные, например, высоковольтный конденсатор, способны повредить как прибор, так и самого испытателя.

Дело в том, что любой конденсатор перед началом измерения емкости или проверки на короткое замыкание необходимо разрядить. Для этого оба его вывода замыкаются между собой любым проводником — куском провода, отверткой, пинцетом и так далее.

При этом в случае со слабым элементом происходит негромкий хлопок и вспышка. Но мощный, к примеру, пусковой конденсатор (особенно советского производства, для пуска люминесцентных ламп) даст вспышку, сравнимую по мощности со вспышкой электросварки. Металлический проводник даже может оказаться оплавлен.

Поэтому необходимо использовать либо отвертку или пассатижи с изолированной рукояткой, либо электротехнические резиновые перчатки. В противно случае можно получить электрический удар.

Присутствует разъем для измерения емкости

Дальнейшая методика проверки зависит от функциональности самого мультиметра: обладает ли он специальными разъемами и функцией измерения емкости (обозначается Cx) или нет. Если да, то все предельно просто:

  • выпаяйте деталь из платы;
  • зачистите ножки от окислов и остатков припоя;
  • установите на приборе режим измерения емкости с пределом измерения, близким или равным к номиналу конденсатора, который на нем указан;
  • установите элемент в специальное парное гнездо на мультиметре, либо коснитесь ножками металлических пластин, его заменяющих.

Чтобы проверить электролитический конденсатор, необходимо соблюдать полярность — плюс к плюсу, минус к минусу. Если на гнездах прибора обозначены плюс и минус, то устанавливать его нужно только так. Если не обозначены — не имеет значения.

Электролитический конденсатор — это мини-аккумулятор, в нем содержится электролит, и подключается он только с соблюдением полярности.

Плюс на нем не отмечается, но минус промаркирован галочкой на золотистом фоне, кроме того, «минусовая» ножка иногда бывает длиннее. Неправильное подключение полярного элемента приведет к однозначному выходу его из строя.

После установки детали в гнезда мультиметр начнет заряжать его постоянным током. На дисплее появится число, которое будет постепенно увеличиваться.

Когда показания перестанут меняться — элемент максимально заряжен. Если показатель заряда аналогичен или хотя бы близок номиналу — элемент работоспособен.

А как проверить керамический конденсатор? Точно так же. Керамические элементы этого вида всегда неполярны, поэтому можно не опасаться неправильного подключения.

Нет разъема для измерения емкости

Прозвонить полярный или неполярный конденсатор мультиметром, не имеющим специальной функции, можно в режиме максимального сопротивления, при котором происходит его зарядка постоянным током.

Этот способ проверки подходит даже для таких элементов, как smd конденсатор (для поверхностного монтажа) или пленочный конденсатор. Проверка полярного элемента отличается только необходимостью соблюдать полярность.

Алгоритм следующий:

  • разрядить элемент, закоротив его ножки;
  • выставить максимальный предел измерения сопротивления — вплоть до мегаом, если позволяет прибор;
  • подключить черный щуп мультиметра к гнезду COM — это ноль или, в нашем случае, минус, а красный щуп — в гнездо для измерения напряжения и сопротивления;
  • коснуться черным щупом минуса детали, а красным — плюса;
  • наблюдать за показаниями прибора.

Обратите внимание, что электролитический тип всегда полярен, все остальные — неполярные.

Что происходить в этом случае? Мультиметр начинает заряжать деталь постоянным током. Во время зарядки его сопротивление увеличивается.

Быстрый рост показаний сопротивления вплоть до значения «1» (бесконечно большое) означает, что конденсатор потенциально исправен, хотя таким способом и невозможно определить его фактическую емкость.

Возможная ошибка! Во время такой проверки нельзя касаться щупов или ножек элемента пальцами. Вы зашунтируете его сопротивлением собственного тела, и тестер покажет ваше собственное сопротивление. Рекомендуется применять щупы-крокодилы, если таковые есть.

Что означают результаты проверки

При проверке конденсатора мультиметром методом максимального сопротивления можно получить три варианта результатов.

Сопротивление росло быстро и достигло «1» — бесконечности. Означает, что элемент исправен.

Сопротивление очень мало либо вовсе отсутствует. Это означает пробой обкладок конденсатора между собой. Установка на плату приведет к короткому замыканию.

Сопротивление растет до значительного порога, но не до «1». Это означает наличие утечки по току. Конденсатор «условно работоспособен», его использование в приборе приведет к искажениям сигнала, помехам и другим негативным последствиям.

Кроме того, в последнем случае нет гарантии, что при включении «условно рабочего» элемента в схему не произойдет окончательного пробоя.

Проверка на вольтаж

Конденсатор должен выдавать определенное напряжение — оно указано на корпусе или в ТТХ по каталогу. Перед использованием в работе можно проверить его фактическую способность выдавать положенный разряд.

Для этого конденсатор заряжается напряжением ниже номинального в течение нескольких секунд. Для высоковольтного, на 600 В, подойдет напряжение в 400 В, для низковольтного на 25 В — 9 В, и тому подобное.

После этого мультиметр переводится на измерение постоянного (!) напряжения, и подключается к испытываемой детали. Начальное значение на экране и есть значение разряда.

Обратите внимание, что цифры на экране будут очень быстро уменьшаться — конденсатор разряжается.

Если начальное значение на дисплее мультиметра меньше номинала — элемент не держит заряда. Учтите, что в любом случае разряжается он быстро.

Устройство электролитического конденсатора

В каждом современном бытовом приборе, как правило, есть электролитические конденсаторы.
В отличие от других типов конденсаторов, электролитические конденсаторы являются обычно полярными, то есть включаются в цепь исключительно определенным образом, с соблюдением полярности. Основным же преимуществом электролитических конденсаторов является их компактность при довольно существенной емкости в отличие от иных типов конденсаторов. Размер тем больше, чем больше емкость и чем выше допустимое рабочее напряжение.

Электролитические конденсаторы выпускаются традиционно емкостью до 1 фарады и на допустимое рабочее напряжение до 400 вольт. Однако с развитием технологий эти значения все время увеличиваются.
В качестве диэлектрика в таких конденсаторах используется тонкий слой оксидной пленки, наносимый на протравленный алюминиевый положительный (анод) электрод методом анодного оксидирования. За счет весьма малой толщины оксидной пленки на аноде, (до 1 микрона) электроемкость такого конденсатора получается весьма значительной. Второй электрод (катод) также алюминиевый, он также подвергается травлению. Это делается для придания поверхности шероховатости для улучшения контакта. Электроды разделены обычно слоем пропитанной электролитом пористой бумаги, которая выступает в качестве вспомогательного электрода для катода, а также предотвращает контакт между анодной и катодной пластинами фольги. Пластины с выводами, вместе с пропитанной электролитом бумагой скручиваются в плотный цилиндр, который запечатывается в цилиндрический алюминиевый корпус.

Обычно электролитические конденсаторы рассчитаны на работу в диапазоне температур от минус 40 до плюс 150 градусов Цельсия, а в качестве вспомогательных мер для охлаждения, может быть предусмотрена возможность крепления корпуса на внешний радиатор.

Выводы электродов таких конденсаторов различаются в зависимости от типа корпуса и предполагаемого способа монтажа: под винт, проволочные, защелкиваемые и другие.

Лучшее сочетание вакуумных и          полупроводниковых характеристик — однотактный гибридный усилитель звука.

          Мы не создаём иллюзий,
          Мы делаем звук живым!

Как определить полярность электролитического конденсатора

Обновлено 8 сентября 2019 г.

Автор S. Hussain Ather

Конденсаторы имеют различные конструкции для использования в вычислительных приложениях и фильтрации электрического сигнала в цепях. Несмотря на различия в том, как они построены и для чего они используются, все они работают на одних и тех же электрохимических принципах.

При их создании инженеры принимают во внимание такие величины, как значение емкости, номинальное напряжение, обратное напряжение и ток утечки, чтобы убедиться, что они идеально подходят для своих целей.Если вы хотите сохранить большой заряд в электрической цепи, узнайте больше об электролитических конденсаторах.

Определение полярности конденсатора

Чтобы определить полярность конденсатора, полоса на электролитическом конденсаторе указывает отрицательный полюс. Для конденсаторов с осевыми выводами (в которых выводы выходят из противоположных концов конденсатора) может быть стрелка, указывающая на отрицательный конец, символизирующая поток заряда.

Убедитесь, что вы знаете полярность конденсатора, чтобы его можно было подключить к электрической цепи в нужном направлении.Установка в неправильном направлении может вызвать короткое замыкание или перегрев цепи.

В некоторых случаях положительный конец конденсатора может быть длиннее отрицательного, но вы должны быть осторожны с этим критерием, потому что многие конденсаторы имеют обрезанные выводы. Танталовый конденсатор иногда может иметь знак плюса (+), указывающий на положительный полюс.

Некоторые электролитические конденсаторы могут использоваться в биполярном режиме, что позволяет при необходимости менять полярность. Они делают это, переключаясь между потоками заряда через цепь переменного тока (AC).

Некоторые электролитические конденсаторы предназначены для биполярной работы неполяризованными методами. Эти конденсаторы состоят из двух анодных пластин, соединенных с обратной полярностью. В последовательных частях цикла переменного тока один оксид действует как блокирующий диэлектрик. Он предотвращает разрушение противоположного электролита обратным током.

Характеристики электролитического конденсатора

В электролитическом конденсаторе используется электролит для увеличения емкости или способности накапливать заряд, который он может получить.Они поляризованы, то есть их заряды выстраиваются в линию, позволяющую им сохранять заряд. Электролит в данном случае представляет собой жидкость или гель с большим количеством ионов, благодаря которым он легко заряжается.

Когда электролитические конденсаторы поляризованы, напряжение или потенциал на положительном выводе больше, чем на отрицательном, что позволяет заряду свободно проходить через конденсатор.

Когда конденсатор поляризован, он обычно обозначается минусом (-) или плюсом (+) для обозначения отрицательного и положительного полюсов.Обратите на это особое внимание, потому что, если вы неправильно подключите конденсатор в цепь, это может привести к короткому замыканию, как в случае, когда через конденсатор протекает настолько большой ток, что может его навсегда повредить.

Хотя большая емкость позволяет электролитическим конденсаторам накапливать большее количество заряда, они могут быть подвержены токам утечки и могут не соответствовать соответствующим допускам по величине, величина емкости может варьироваться для практических целей. Определенные конструктивные факторы могут также ограничивать срок службы электролитических конденсаторов, если конденсаторы склонны к быстрому износу после многократного использования.

Из-за такой полярности электролитического конденсатора они должны быть смещены в прямом направлении. Это означает, что положительный конец конденсатора должен иметь более высокое напряжение, чем отрицательный, чтобы заряд проходил через цепь от положительного конца к отрицательному.

Подключение конденсатора к цепи в неправильном направлении может привести к повреждению материала оксида алюминия, изолирующего конденсатор, или к короткому замыканию. Это также может вызвать перегрев, в результате которого электролит слишком сильно нагревается или протекает.

Меры предосторожности при измерении емкости

Перед измерением емкости вы должны знать о мерах безопасности при использовании конденсатора. Даже после того, как вы отключите питание от цепи, конденсатор, скорее всего, останется под напряжением. Прежде чем прикоснуться к нему, убедитесь, что все питание схемы отключено, используя мультиметр, чтобы убедиться, что питание отключено, и вы разрядили конденсатор, подключив резистор к его выводам.

Для безопасной разрядки конденсатора подключите 5-ваттный резистор к клеммам конденсатора на пять секунд.Используйте мультиметр, чтобы убедиться, что питание отключено. Постоянно проверяйте конденсатор на предмет утечек, трещин и других признаков износа.

Обозначение электролитического конденсатора

••• Syed Hussain Ather

Обозначение электролитического конденсатора является общим обозначением конденсатора. Электролитические конденсаторы изображены на принципиальных схемах, как показано на рисунке выше для европейского и американского стилей. Знаки плюс и минус указывают на положительную и отрицательную клеммы, анод и катод.

Расчет электрической емкости

Поскольку емкость является величиной, присущей электролитическому конденсатору, вы можете рассчитать ее в единицах фарад как C = ε r ε 0 A / d для области перекрытия две пластины A в м 2 , ε r как безразмерная диэлектрическая проницаемость материала, ε 0 как электрическая постоянная в фарадах / метр и d как расстояние между плитами в метрах.

Экспериментальное измерение емкости

Вы можете использовать мультиметр для измерения емкости. Мультиметр измеряет ток и напряжение и использует эти два значения для расчета емкости. Установите мультиметр в режим измерения емкости (обычно обозначается символом емкости).

После того, как конденсатор был подключен к цепи и получил достаточно времени для зарядки, отключите его от цепи, соблюдая только что описанные меры безопасности.

Подключите выводы конденсатора к клеммам мультиметра. Вы можете использовать относительный режим для измерения емкости измерительных проводов относительно друг друга. Это может быть удобно при низких значениях емкости, которые может быть труднее обнаружить.

Попробуйте использовать различные диапазоны емкости, пока не найдете показание, которое является точным в зависимости от конфигурации электрической цепи.

Приложения при измерении емкости

Инженеры часто используют мультиметры для измерения емкости однофазных двигателей, оборудования и машин небольшого размера для промышленного применения.Однофазные двигатели работают за счет создания переменного потока в обмотке статора двигателя. Это позволяет току менять направление при протекании через обмотку статора в соответствии с законами и принципами электромагнитной индукции.

Электролитические конденсаторы, в частности, лучше подходят для использования с высокой емкостью, например, для цепей питания и материнских плат для компьютеров.

Индуцированный ток в двигателе затем создает собственный магнитный поток, противоположный потоку обмотки статора.Поскольку однофазные двигатели могут быть подвержены перегреву и другим проблемам, необходимо проверить их емкость и работоспособность с помощью мультиметров для измерения емкости.

Неисправности конденсаторов могут ограничить их срок службы. Короткозамкнутые конденсаторы могут даже повредить его части и перестать работать.

Конструкция электролитического конденсатора

Инженеры создают алюминиевые электролитические конденсаторы , используя алюминиевую фольгу и бумажные прокладки, устройства, которые вызывают колебания напряжения для предотвращения разрушительных вибраций, которые пропитаны электролитической жидкостью.Обычно они покрывают одну из двух алюминиевых фольг оксидным слоем на аноде конденсатора.

Оксид в этой части конденсатора заставляет материал терять электроны в процессе зарядки и накопления заряда. На катоде материал приобретает электроны в процессе восстановления конструкции электролитического конденсатора.

Затем производители продолжают укладывать пропитанную электролитом бумагу с катодом, соединяя их друг с другом в электрическую цепь и скатывая их в цилиндрический корпус, который подключается к цепи.Инженеры обычно выбирают расположение бумаги либо в осевом, либо в радиальном направлении.

Осевые конденсаторы выполнены с одним штифтом на каждом конце цилиндра, а в радиальных конструкциях оба штифта используются на одной стороне цилиндрического корпуса.

Площадь пластины и электролитическая толщина определяют емкость и позволяют электролитическим конденсаторам быть идеальными кандидатами для таких приложений, как усилители звука. Алюминиевые электролитические конденсаторы используются в источниках питания, материнских платах компьютеров и бытовой технике.

Эти особенности позволяют электролитическим конденсаторам сохранять гораздо больший заряд, чем другие конденсаторы. Двухслойные конденсаторы или суперконденсаторы могут даже достигать емкости в тысячи фарад.

Алюминиевые электролитические конденсаторы

Алюминиевые электролитические конденсаторы используют твердый алюминиевый материал для создания «клапана», так что положительное напряжение в электролитической жидкости позволяет ему образовывать оксидный слой, который действует как диэлектрик, изолирующий материал, который может быть поляризован до не допускать протекания зарядов.Инженеры создают эти конденсаторы с алюминиевым анодом. Это используется для создания слоев конденсатора и идеально подходит для хранения заряда. Инженеры используют диоксид марганца для создания катода.

Эти типы электролитических конденсаторов могут быть далее разбиты на тонкую плоскую фольгу и протравленную фольгу типа . Типы простой фольги — это те, которые были только что описаны, в то время как в конденсаторах с протравленной фольгой используется оксид алюминия на аноде и катодной фольге, которые были протравлены для увеличения площади поверхности и диэлектрической проницаемости, что является мерой способности материала накапливать заряд.

Это увеличивает емкость, но также снижает способность материала выдерживать высокие постоянные токи (DC), тип тока, который проходит в одном направлении в цепи.

Электролиты в алюминиевых электролитических конденсаторах

Типы электролитов, используемых в алюминиевых конденсаторах, могут быть разными: нетвердый, твердый диоксид марганца и твердый полимер. Обычно используются нетвердые или жидкие электролиты, потому что они относительно дешевы и подходят для различных размеров, емкостей и значений напряжения.Однако при использовании в цепях они действительно теряют много энергии. Этиленгликоль и борная кислота составляют жидкие электролиты.

Другие растворители, такие как диметилформамид и диметилацетамид, также могут быть растворены в воде для использования. Эти типы конденсаторов также могут использовать твердые электролиты, такие как диоксид марганца или твердый полимерный электролит. Диоксид марганца также экономичен и надежен при более высоких значениях температуры и влажности. Они имеют меньший ток утечки постоянного тока и высокую электрическую проводимость.

Электролиты выбраны для решения проблем высоких коэффициентов рассеяния, а также общих потерь энергии электролитических конденсаторов.

Ниобиевые и танталовые конденсаторы

Танталовые конденсаторы в основном используются в устройствах поверхностного монтажа в вычислительных приложениях, а также в военном, медицинском и космическом оборудовании.

Танталовый материал анода позволяет им легко окисляться, как алюминиевый конденсатор, а также позволяет им использовать преимущества повышенной проводимости, когда танталовый порошок прижимается к проводящей проволоке.Затем оксид образуется на поверхности и внутри полостей в материале. Это создает большую площадь поверхности для повышенной способности хранить заряд с большей диэлектрической проницаемостью, чем у алюминия.

Конденсаторы на основе ниобия используют массу материала вокруг проводника, который использует окисление для создания диэлектрика. Эти диэлектрики имеют большую диэлектрическую проницаемость, чем танталовые конденсаторы, но для данного номинального напряжения используется большая толщина диэлектрика. Эти конденсаторы в последнее время используются чаще, потому что танталовые конденсаторы стали более дорогими.

Полярность конденсатора для различных типов в зависимости от его маркировки

Полярность конденсатора — важный момент, который следует учитывать при подключении. Существуют различные конденсаторы, некоторые из них «поляризованные», а некоторые относятся к категории «неполяризованных». Оба типа имеют «два терминала». Разница между этими двумя типами конденсаторов очень проста. Если рассматриваемые конденсаторы поляризованы, то клеммы, классифицируемые как «анод» и «катод».Они должны быть подключены с учетом полярности источника питания. Если рассматриваемые конденсаторы неполяризованные. Эти конденсаторы можно подключать без учета полярности.

Конденсаторы изначально классифицируются на основе значения емкости. Если емкость фиксированная, они классифицируются как «фиксированные конденсаторы». Если емкость переменная, то они классифицируются как «переменные конденсаторы». Эти фиксированные конденсаторы подразделяются на «поляризованные» и «неполяризованные».Каждый тип конденсатора выбирается исходя из требований к емкости.

Что такое полярность конденсатора?

Конденсатор, состоящий из клемм, имеющих определенные значения напряжения, которые могут быть положительными или отрицательными. Классификация клемм этого типа приводит к определению конденсатора с полярностью или без полярности.

Символ поляризованного конденсатора

Указанное выше символическое представление также известно как схема полярности конденсатора.

Как определяется полярность конденсатора?

Есть несколько способов определения полярности конденсаторов. Один из них — «Маркировка» конденсаторов.

  • У некоторых конденсаторов высота клемм может быть разной.
  • На неполяризованном изображении упоминается как «NP» и «BP».
  • Некоторые из них помечены знаком «Позитив». В некоторых случаях стрелки играют жизненно важную роль в определении полярности конденсаторов.

Выше приведены некоторые способы определения полярности конденсатора.Клемма с положительной полярностью известна как Анод , а другая клемма — Катод .

Керамический конденсатор

Это наиболее популярные конденсаторы из-за их «малых размеров». Кроме того, когда нам требуется конденсатор с большей емкостью для хранения зарядов, предпочтительнее именно керамические конденсаторы. Этот компонент разработан с использованием пары электродов для проводимости. Эта пара разделена средой из непроводящего керамического материала, называемого диэлектриком.Это набор конденсаторов, который относится к категории неполяризованных конденсаторов.

Керамический конденсатор

Следовательно, он не имеет полярности. Это обеспечивает гибкость подключения этого конденсатора в схему.

Пленочный конденсатор

Даже эти конденсаторы не имеют полярности. В зависимости от конструкции они делятся на различные типы. Эти типы также не обладают никакой полярностью.

Пленочный конденсатор

Электролитический конденсатор

Обсуждаемые выше конденсаторы считаются «конденсатором без полярности».Эти конденсаторы определяются по маркировке. Наличие полосы указывает на то, что конкретный терминал является отрицательным. В типе «Осевой» предусмотрена стрелка для определения наличия отрицательного вывода в конденсаторе. Это также указывает направление потока заряда в соответствующем конденсаторе.

Если вы могли наблюдать несколько конденсаторов, у некоторых конденсаторов положительный вывод длиннее, чем отрицательный. Танталовый конденсатор, который относится к категории электролитических конденсаторов, на его клеммах можно определить по присутствующему на нем значку плюса.

Неполяризованные конденсаторы можно подключать без каких-либо проблем с идентификацией клемм перед подключением. Но поляризованные должны быть связаны с вниманием, потому что это может привести к повреждению схемы. Даже это приводит к перегреву контура.

Маркировка полярности конденсаторов

Маркировка на конденсаторах помогает определить полярность.

  1. Полярность на большом конденсаторе.

Индикация полярности конденсатора

Индикация «плюс» рядом с выводом указывает, что соответствующий вывод является положительным.Итак, он считается анодом. Другой вывод следует рассматривать как катод.

  1. Полярность конденсатора можно определить по стрелке.

Полярность конденсатора по стрелке

Стрелка, указывающая на клемму, считается отрицательной.

Это процесс, описанный в «Идентификации полярности конденсатора», который может быть выполнен. Но для неполяризованных конденсаторов должна быть какая-то идентификация. В случае неполяризованных конденсаторов он обозначается как NP на конденсаторе, например NPA или NPR, где NP означает неполяризованный, A означает осевой, а R означает радиальный.

Следовательно, существуют различные способы определения полярности конденсатора. Во время изготовления на нем могут быть нанесены определенные указания. Некоторые конденсаторы даже отмечены полосой. Тем не менее, необходимо соблюдать осторожность при фиксации этого в схемах. Какие из перечисленных выше конденсаторов вы предпочитаете поляризованные или неполяризованные для высоковольтных устройств?

Электролитический конденсатор — обзор

Электролитический конденсатор

Электролитический конденсатор — это отдельная тема, и его нужно рассматривать отдельно от всех остальных конденсаторов.Принцип состоит в том, что некоторые металлы, в частности алюминий и тантал, могут иметь очень тонкие пленки соответствующих оксидов, образующихся на поверхности, когда напряжение прикладывается с правильной полярностью (положительный металл) между металлом и слабокислой жидкостью. Эти очень тонкие пленки затем изолируют металл от проводящей жидкости, электролита, образуя конденсатор; электролитический конденсатор. Название происходит от сходства с электролитической (металлической) ячейкой.

Тот же самый эффект вызывает проблему поляризации ccll, см. Главу 7.

В электролитических конденсаторах наиболее распространенного типа используется алюминиевая фольга, которая может быть протравлена, иметь ямочки или гофрирование для увеличения полезной площади, заключенная в алюминиевую банку, заполненную слабокислым раствором пербората аммония в форме желе. . Конденсатор формируется путем приложения к конденсатору медленно нарастающего напряжения с положительным полюсом фольги и отрицательным полюсом корпуса до тех пор, пока напряжение не достигнет своего номинального уровня, а постоянный ток не упадет до минимума, что указывает на то, что изоляция настолько хороша, насколько это возможно. быть.С этого момента, когда конденсатор используется, к нему должно подаваться постоянное (поляризующее) напряжение той же полярности, чтобы поддерживать изолирующую пленку. Если конденсатор используется с обратным напряжением, пленка растворяется, удаляя любую изоляцию и позволяя большим токам проходить через жидкость, которая испаряется, разрушая банку. Электролит обычно находится в желеобразной форме, но разрушение, которое может быть вызвано взрывом электролита (не говоря уже о шумах), гарантирует, что никто, кто достиг этого, не захочет повторить попытку.

Использование тантала в качестве металла электролита позволяет получить совершенно иную конструкцию, в которой оксидная пленка более устойчива и способна выдерживать перепады напряжения. Танталовые конденсаторы ( tantalytics ) могут использоваться без постоянного поляризующего напряжения, могут работать с практически сухим электролитом и в целом имеют лучшие характеристики, чем традиционный алюминиевый электролит. Опыт использования тантала привел к разработке «сухих» электролитов для алюминиевого типа электролитов.

Танталитические конденсаторы не следует использовать в приложениях звуковой связи, в которых напряжение смещения мало или отсутствует.

Из-за очень хрупкой природы изолирующей пленки, толщина которой может составлять всего несколько атомов, электролитические конденсаторы всегда склонны к большой утечке, поэтому указывается ток утечки при номинальном напряжении, а не коэффициент мощности. или коэффициенты рассеяния. Утечка часто связана со значением емкости и рабочим напряжением и формулой:

I утечка = 4 + (0.006 × C × V )

Часто используется

, с I в μα, C в F и V в вольтах. Например, использование этой формулы для конденсатора 200 мкФ при 12 В дает ток утечки 4 + (0,006 × 200 × 12) = 18,4 мкА. Некоторые производители будут использовать эту формулу для определения значений утечки. Ни один производитель не гарантирует электролит с низким значением утечки, но измеренные значения часто бывают удивительно хорошими, если электролит эксплуатируется в разумных условиях.Боб Пиз приводит примеры электролитов 500 мкФ с утечкой 2 нА при рабочем напряжении 10 В.

Рисунок 4.6. Типичные размеры электролитического алюминия (Фото: Nichicon Corp.).

Многие производители также указывают ожидаемый срок службы электролитиков более 100 000 часов при 40 ° C и номинальном напряжении, поскольку все еще существуют некоторые предубеждения против их использования для чего-либо, кроме бытовой электроники. Военные приложения обычно запрещают использование электролитов, но теперь они широко применяются в промышленном оборудовании.Часто указываются диапазоны температур от –40 ° C до + 85 ° C, но при более высоких температурах требуется значительное снижение номинальных характеристик, а при более низких температурах существует риск замерзания гелеобразного электролита. Это до некоторой степени уравновешивается увеличением потерь при замерзании электролита, что приводит к более сильному рассеиванию и последующему оттаиванию. Однако это не тот эффект, на который вам следует полагаться. Некоторые типы могут иметь вентиляционные отверстия для сброса давления газа внутри электролита.

Электролитики используются в основном в качестве резервуаров и сглаживающих конденсаторов для источников питания с частотой сети, поэтому их наиболее важные параметры, кроме емкости и номинального напряжения, относятся к величине пульсирующего тока, который они могут пропускать. Для каждого конденсатора производитель указывает максимальный пульсирующий ток (обычно при 100 или 120 Гц), а также два параметра, которые касаются способности конденсатора пропускать ток, ESR и импеданса. ESR — это эффективное последовательное сопротивление в миллиомах, обычно 50 мОм, для низкочастотных токов, и это значение может устанавливать ограничение на ток пульсаций, который может пройти; также к эффективности конденсатора для сглаживания.Другой параметр — это эффективный импеданс в мОм, измеренный при 10 кГц и 20 ° C, который используется для измерения того, насколько эффективно конденсатор будет пропускать токи на более высоких частотах. Если в цепи развязки используется электролитический конденсатор, который может работать с большим диапазоном частот, следует использовать другие типы конденсаторов для работы с частотами выше 10 кГц, например, конденсаторы из полиэфира для диапазона до 10 МГц и слюдяные или керамический для более высоких частот. Полезное практическое правило — иметь один электролит для пяти керамических или дисковых материалов.

В электролизерах общего назначения используется алюминий, часто с отдельным алюминиевым корпусом с номинальным значением изоляции 1000 В. Физическая форма представляет собой цилиндр с биркой, стержнем или винтовым соединением на одном конце. Диапазон емкости, как правило, очень велик для устройств с более низким напряжением, до 15 000 мкФ при работе 16 В, но при более высоких номинальных напряжениях 400 В значения от 1 мкФ до 220 мкФ более обычны. Многие конструкторы избегают использования электролита при рабочем напряжении более 350 В. Допуск значения большой (от -10% до + 50%), а допустимые токи пульсации колеблются от 1 А до 7 А в зависимости от размера конденсатора.

Исчерпывающий набор руководств по применению алюминиевых электролитов см. На веб-сайте:

http://www.nichicon-us.com/tech-info.html

Еще одно полезное правило Практический опыт заключается в том, что вам нужно 1000 мкФ сглаживания на каждый ампер выходного постоянного тока, но это не обязательно удовлетворительно. Предположим, например, что конденсатор емкостью 5000 мкФ используется с питанием 6 В при полном номинальном токе пульсаций 5 А и имеет ESR 50 мОм.Пилообразная пульсация составит 6 В от пика к пику, а еще 5 × 0,05 В = 0,25 В из-за ESR почти незначительна. Рассеивание в конденсаторе также будет слишком большим, и в такой схеме лучше использовать несколько конденсаторов параллельно.

Электролитические элементы меньшего размера предназначены для непосредственного монтажа на печатных платах для развязки или дополнительного сглаживания, они имеют цилиндрическую форму и имеют концевые заделки для проводов, осевые (провод на каждом конце) или радиальные (оба провода на одном конце).Диапазон напряжения может составлять от 10 В до 450 В, с диапазоном рабочих температур от –40 ° C до + 85 ° C (рекомендуется снижение номинальных значений при более высоких температурах) и с коэффициентом мощности, который может быть от 0,08 до самого высокого. как 0,2. Самый большой диапазон значений, обычно от 0,1 мкФ до 4700 мкФ, доступен для меньших рабочих напряжений. Субминиатюрные версии имеют рабочее напряжение от 6,3 В до 63 В и ток утечки не менее 3 мкА, а для более крупных емкостных устройств утечка рассчитывается по формуле: 0.01 C × V . Например, конденсатор 47 мкФ 40 В может иметь утечку: 0,01 × 47 × 40 = 18,8 мкА, но измеренные значения обычно намного меньше, всего 10 нА или даже меньше для современных конденсаторов.

Специализированный тип жидкого электролита предназначен для резервного копирования памяти в цифровых схемах. Микросхемы памяти CMOS могут сохранять данные, если на одном из выводов микросхемы поддерживается напряжение ниже нормального напряжения питания. Потребление тока на этом выводе очень низкое, и поэтому оно может обеспечиваться конденсатором в течение значительных периодов времени.Этот метод используется не для вычислителей, в которых используется батарея, а для таких устройств, как контроллеры центрального отопления, которые должны сохранять свои настройки, если электроснабжение отсутствует на сравнительно короткий период. Типичные значения для этих электролитов — 1F0 и 3F3. Время разряда составляет от 1 до 5 часов при 1 мА и от 300 до 500 часов при более типичном потребляемом токе 5 мкА, но следует учитывать высокий ток утечки.

Типы твердого электролита теперь доступны в алюминиевом диапазоне электролитов.В отличие от алюминиевых электролитов традиционного типа, они не требуют вентиляции и не подвержены испарению электролита. Кроме того, в отличие от традиционных электролитических, они могут работать в течение периодов без поляризующего напряжения и могут принимать обратное напряжение, хотя оно составляет всего около 30% от номинального прямого напряжения при 85 ° C, что значительно меньше при более высоких температурах. Типичные размеры от 2,2 мкФ до 100 мкФ с номинальным напряжением от 10 В до 35 В при 85 ° C. Диапазон температур составляет от –55 ° C до + 125 ° C, и даже при максимальной рабочей температуре 125 ° C ожидаемый срок службы превышает 20 000 часов.Токи утечки довольно высоки, в диапазоне от 9 мкА до 250 мкА, а номинальные значения тока пульсации находятся в диапазоне от 20 мА до 300 мА. Одна важная особенность заключается в том, что спецификации не накладывают ограничений на величину тока заряда или разряда, протекающего в цепи постоянного тока, при условии, что рабочее напряжение не превышается.

ТАНТАЛОВЫЕ ЭЛЕКТРОЛИТИКИ

Танталовые электролиты неизменно используют твердые электролиты наряду с металлическим танталом и имеют гораздо меньшую утечку, чем алюминиевые.Это делает их в высшей степени подходящими для таких целей, как связь сигналов, фильтры, схемы синхронизации и развязка. Обычные формы этих электролитов представляют собой миниатюрные шарики с эпоксидным покрытием или трубчатые осевые частицы. Диапазон напряжения составляет от 6,3 В до 35 В со значениями от 0,1 мкФ до 100 мкФ. Диапазон температур от –55 ° C до + 85 ° C. Танталовые электролиты могут использоваться без какого-либо смещения постоянного тока, а также могут принимать небольшое обратное напряжение, обычно менее 1,0 В. Ожидается минимальный ток утечки 1 мкА, а для более высоких значений емкости и рабочего напряжения ток утечки определяется из емкости, умноженной на коэффициент напряжения, при минимальном гарантированном значении 1 пА.Можно ожидать коэффициентов мощности в диапазоне от 0,02 до 0,2. Следует проявлять осторожность, чтобы не превышать номинальное импульсное напряжение, обычно в 1,3 раза больше номинального номинального напряжения постоянного тока.

поверхностный монтаж — полярность немаркированного электролитического конденсатора smt

Простой и эффективный метод определения полярности алюминиевого электролитического конденсатора.

Вот метод, который должен работать.
Я никогда раньше не видел, чтобы это описывалось, НО оно основано на очень хорошо зарекомендовавшей себя практике.

Общеизвестно, что эффективно неполяризованный конденсатор может быть сформирован путем последовательного размещения двух электролитических конденсаторов с противоположной полярностью.Когда подается постоянное напряжение или полупериод переменного напряжения, «правильно» поляризованный конденсатор приобретает заряд, в то время как обратнополяризованный конденсатор имеет только очень небольшое падение напряжения на нем. Этот метод достаточно хорошо известен, чтобы его упомянули некоторые производители конденсаторов в своих примечаниях по применению, и он используется во многих реальных конструкциях.

Даже Корнелл Дубилье говорят, что работает 🙂 . Говорят:

Если два алюминиевых электролитических конденсатора одинакового номинала соединены последовательно, спина к спине с положительным клеммы или подключенные отрицательные клеммы, в результате одиночный конденсатор представляет собой неполярный конденсатор с половина емкости.

Два конденсатора выпрямляют приложенного напряжения и действуют так, как если бы они были обойдены диодами. При подаче напряжения конденсатор правильной полярности получает полное напряжение. В неполярных алюминиевых электролитических конденсаторах и алюминиевых электролитических конденсаторах для запуска двигателя вторая анодная фольга заменяет катодную фольгу для достижения неполярной конденсатор в единственном корпусе.

Метод основан на справедливости предположения, что электролитический конденсатор с обратным смещением «безопасно» пропускает обратный ток без повреждений.Это предположение кажется доказанным для влажных алюминиевых конденсаторов, но может быть верным, а может и нет, например, для танталовых конденсаторов. Caveat Emptor 🙂 — хотя, в худшем случае, разрушение танталового конденсатора не должно иметь большого вреда (что в некоторых кругах может рассматриваться как чистая социальная выгода :-)).

Метод:

  • Убедитесь, что ориентацию конденсатора можно определить либо по маркировке, либо по другому внешнему виду, либо добавив метку, например маленькую точку с маркером.

  • Подключите два конденсатора последовательно с противоположной полярностью.

  • Подключите напряжение «несколько вольт» к напряжению, значительно меньшему номинального. Скажем, 5 В для конденсатора от 10 В до 563 В, но не критично.

  • Измерьте напряжение на каждом конденсаторе.

  • Конденсатор с наибольшим напряжением на нем (вероятно) правильно поляризован.

Только пример. Ваше напряжение будет меняться.

Если напряжение на каждом конденсаторе примерно одинаковое или в нем преобладает сопротивление измерителя, то, вероятно, конденсаторы не являются электролитическими.

В очень простом тесте этот метод оказался исключительно успешным.
Два конденсатора на 25 В, 100 мкФ были подключены последовательно с противоположной полярностью, и к паре было приложено около 6 В. Большая часть напряжения падает на правильно поляризованный конденсатор. Напряжение на конденсаторе с обратным смещением падает ниже 0,5 В. Изменение применяемой полярности привело к перестановке относительных напряжений (как и ожидалось), так что правильно смещенный конденсатор снова сбросил большую часть напряжения.

Испытание было повторено с последовательно включенными конденсаторами емкостью 1 мкФ и 100 мкФ с противоположными полярностями.Результаты были такими же, как и раньше, с конденсатором с прямым смещением, который очень легко идентифицировать.

Этот тест МОЖЕТ не пройти, если конденсаторы с очень низкой и очень высокой утечкой были протестированы вместе.


Тот же эффект можно использовать для определения правильной полярности с помощью тока утечки с обратным смещением. Приложение напряжения с каждой из двух полярностей должно привести к гораздо более высокому току утечки при обратной полярности.

Использование самого высокого диапазона сопротивления измерителя также может позволить измерить относительные токи утечки, но некоторые измерители могут не подавать достаточное напряжение для этого.(Я попробовал два дешевых измерителя с максимальным диапазоном 2 МОм — недостаточно высоким. Напряжение O / C измерителя составляло всего около 0,3 В в каждом случае.

Просто используя источник питания, одиночный конденсатор и последовательный резистор будут использовать тот же эффект. Используя, скажем, + 5 В и резистор 100 кОм, конденсатор будет иметь большее напряжение при правильном смещении, чем при обратном смещении. Однако использование двух номинально идентичных конденсаторов позволяет им «отсортировать» требуемое эффективное эквивалентное значение сопротивления.

Конструкция, символы, преимущества и использование

Электролитический конденсатор широко известен как поляризованный конденсатор, у которого на аноде больше положительного напряжения, чем на катоде. Они используются в приложениях фильтрации, фильтрах нижних частот, схемах аудиоусилителей и многих других. Металлы, такие как алюминий, тантал, ниобий, марганец и т. Д., Образуют оксидный слой в электрохимическом процессе, который блокирует электрический ток, текущий в одном направлении, но позволяет току течь в противоположном направлении.Это явление впервые наблюдал Иоганн Генрих Бафф (1805–1878), немецкий физик и химик в 1857 году. Французский исследователь и основатель Эжен Дюкрете в 1875 году был первым, кто реализовал эту идею и изобрел для них термин «вентильный металл». металлы. Фактическая разработка электролитических конденсаторов с намотанной фольгой разделена бумагой, начатой ​​А. Эккелем из Hydra-Werke (Германия) в 1927 году в сочетании с идеей Сэмюэля Рубена о многоярусной конструкции.

Что такое электролитический конденсатор?

Определение электролитического конденсатора — это поляризованный конденсатор, анод которого имеет более высокое или более положительное напряжение, чем катод.Как следует из названия, это поляризованный конденсатор, и функция электролитического конденсатора заключается в том, что он использует электролит для работы с более высоким или более положительным напряжением на аноде, чем на катоде. Поэтому анодный вывод обозначается положительным знаком, а катод — отрицательным. Применение напряжения обратной полярности от 1 до 1,5 В может привести к повреждению конденсатора и диэлектрика, что может привести к взрыву или возгоранию.

В электролитическом конденсаторе используется электролит в твердой, жидкой или гелевой форме — он служит катодом или отрицательной пластиной для достижения гораздо более высокой емкости на единицу объема.С другой стороны, положительная пластина или анод из металла действует как изолирующий оксидный слой, сформированный путем анодирования. Это позволяет оксидному слою работать как диэлектрик конденсатора.

Конструкция

Конструкция электролитического конденсатора состоит из двух тонких слоев алюминиевой фольги — простой фольги и протравленной фольги. Эти две фольги разделены электролитом. Чтобы установить полярность двух фольг, они анодируются путем химического выращивания тонкого слоя оксида алюминия, который формирует анод и отличается от катода.В процессе изготовления электролитического конденсатора образуются катод и анодированный анод, которые разделены электролитом (бумага, пропитанная электролитом).

Во время стандартной работы анод удерживается в положительном положении относительно катода, поэтому катод обозначен отрицательным знаком (-) на корпусе конденсатора. Поскольку алюминий является поляризованным устройством, приложение обратного напряжения к этим клеммам приведет к образованию изоляции в конденсаторе, что приведет к его повреждению.

Уникальное свойство алюминиевого конденсатора — процесс самовосстановления поврежденного конденсатора.Во время обратного напряжения оксидный слой удаляется с фольги, позволяя току проходить от одной фольги к другой.


Обозначение электролитического конденсатора

Обозначение электролитического конденсатора показано на рисунке ниже. Обозначения конденсаторов бывают двух типов. Второй символ (b) представляет поляризованный конденсатор, который может быть электролитическим или танталовым конденсатором. Изогнутая пластина на символе означает, что конденсатор поляризован и является катодом, который удерживается под более низким напряжением, чем анод.Первый символ (а) на рисунке ниже обозначает неполяризованный конденсатор.

Полярность

Знание полярности любого устройства важно для построения любых электронных схем. В противном случае подключение может повредить конденсатор. Хотя некоторые конденсаторы не поляризованы, например керамические конденсаторы (1 мкФ или меньше), их можно подключать любым способом.

керамический конденсатор

В некоторых случаях положительный провод конденсатора может быть длиннее отрицательного.Иногда выводы конденсатора обрезаются, при этом пользователь должен быть осторожен при подключении конденсатора.

Танталовые и алюминиевые конденсаторы имеют полярность, обозначенную знаком плюса (+), указывающую сторону анода.

Электролитический конденсатор с нетвердым электролитом имеет полярность, обозначенную знаком минус (-), указывающую сторону катода.

Нетвердые

Электролитические конденсаторы с твердым электролитом имеют полярность, отмеченную знаком плюс, указывающую на сторону анода, но отсутствуют для цилиндрических светодиодных и полимерных конденсаторов SMD.

Solid

Значения электролитического конденсатора

В зависимости от структуры анода и электролита, значения электролитической емкости имеют тенденцию меняться. Электролитические конденсаторы с нетвердым электролитом демонстрируют более широкое отклонение частот и температурных диапазонов, чем твердые электролиты.

Базовая единица электролитического конденсатора выражается в микрофарадах (мкФ). В таблицах данных, подготовленных производителями, значение емкости упоминается как номинальная емкость (CR) или номинальная емкость (CN).Это значения, для которых рассчитана емкость.

Электролитические конденсаторы представляют собой большую цилиндрическую конструкцию, которая поляризована и имеет более высокую емкость.

Электролитический конденсатор Значения и единицы измерения разборчиво напечатаны на корпусе конденсаторов. Начиная слева направо, 1 мкФ, 10 мкФ, 100 мкФ, 1000 мкФ.

Типы электролитических конденсаторов

В зависимости от типа материала и используемого электролита электролитические конденсаторы подразделяются на следующие типы.

Алюминиевый электролитический конденсатор

Алюминиевые электролитические конденсаторы — это поляризованные конденсаторы, в которых анодный (+) вывод сформирован из алюминиевой фольги с протравленной поверхностью. В процессе анодирования образуется тонкий изолирующий слой оксида, который действует как диэлектрик. Катод формируется через вторую алюминиевую фольгу, когда нетвердый электролит маскирует шероховатую поверхность оксидного слоя.

Неэлектролитический конденсатор

Неэлектролитические конденсаторы — это те конденсаторы, которые состоят из «изоляционного материала» в качестве диэлектрика в неэлектролитической форме.Конденсаторы такого типа неполяризованы и имеют множество применений.

Танталовый электролитический конденсатор

Танталовый электролитический конденсатор обеспечивает более низкий ток утечки и снижение ESR. В нем используется металлический тантал, который работает как анод, окруженный слоем оксида, который работает как диэлектрик, и дополнительно обернут проводящим катодом. Эти конденсаторы являются поляризованными по своей природе устройствами и очень стабильны. При правильном подключении он работает эффективно с исключительной частотой.

Электролитический конденсатор из оксида ниобия

Конструкция электролитических конденсаторов из оксида ниобия аналогична танталовым конденсаторам.В качестве анода использовался оксид ниобия вместо металлического тантала. Оксид ниобия доступен в изобилии и предлагает чрезвычайно стабильные характеристики, чем танталовый конденсатор.

Области применения / применения

Электролитический конденсатор . . Применения:

  • Используется в приложениях фильтрации для уменьшения пульсаций в источниках питания
  • Используется в качестве фильтра нижних частот для сглаживания входных и выходных сигналов
  • Используется в схемах усиления звука в качестве фильтров для уменьшения шума

Преимущества и недостатки

Преимущества электролитического конденсатора :

  • Используется для достижения высокого значения емкости
  • Используется в низкочастотных приложениях
  • Танталовые конденсаторы предпочтительнее по сравнению с другими типами из-за высокой стабильности электролитического конденсатора следующие недостатки:
  • Необходимо быть внимательным, чтобы убедиться, что конденсаторы исправлены с помощью правильных клемм
  • Обратное напряжение может повредить конденсатор
  • Легко поддается влиянию из-за изменения температуры
  • Конденсатор при нас ed с комбинацией неэлектролитов увеличивает емкость конденсатора

FAQ’s

1.Где используются электролитические конденсаторы?

Они используются в приложениях фильтрации, схемах усиления звука и в фильтрах нижних частот.

2. Как определить электролитический конденсатор?

Электролитические конденсаторы обычно маркируются полосой, указывающей на отрицательный вывод. Положительный провод обычно длиннее отрицательного.

3. В конденсаторах есть масло?

Да. Доступны маслонаполненные конденсаторы, обычно они имеют высокую мощность и высокое напряжение.

4. Электролитический конденсатор переменного или постоянного тока?

Электролитические конденсаторы обычно используются в цепях с источником постоянного тока. Напряжение переменного тока может повредить конденсатор.

5. Каков средний срок службы конденсатора?

Ожидается, что средний срок службы конденсатора составит 15 лет. Срок службы может быть уменьшен, если ток пульсаций слишком велик и нагревает конденсатор.

В этой статье читатель познакомится с особенностями электролитического конденсатора.Мы обсудили определение, конструкцию, полярность и маркировку, применение, а также преимущества и недостатки. Далее читатель может узнать типы электролитических конденсаторов.

Керамический конденсатор положительный и отрицательный?

Тип конденсатора другой, и его конструкция и принцип работы будут сильно отличаться. С макроэкономической точки зрения конденсаторы можно разделить на полярные и неполярные. Для полярных конденсаторов точность положительного и отрицательного электродов должна быть обеспечена во время установки.Ошибка подключения может привести к повреждению конденсатора или даже к взрыву. Для конденсаторов без полярности об этом беспокоиться не нужно. Итак, есть ли у керамического конденсатора положительный и отрицательный полюс? Как узнать, есть ли экстрим?

Это неполярный конденсатор, поэтому при установке этого конденсатора не нужно различать положительный и отрицательный. Для обычных электролитических конденсаторов обычного качества вы можете увидеть длину двух ножек, длина — +, короткая — -.Танталовый электролитический конденсатор чипового типа обычно можно судить по его внешнему виду, а одна сторона цветной ленты является положительным электродом. Другие неполярные электролитические конденсаторы, полиэфирные / танталовые конденсаторы, керамические конденсаторы, переменные и подстроечные конденсаторы не имеют положительных и отрицательных полюсов.

Разницу между положительным и отрицательным конденсаторами можно определить следующим образом. Если вы не знаете положительный и отрицательный полюсы конденсатора, вы можете использовать мультиметр для измерения.Среда между двумя полюсами конденсатора не является абсолютным изолятором, и его сопротивление не бесконечное, а конечное значение, обычно выше 1000 МОм. Сопротивление между двумя полюсами конденсатора называется сопротивлением изоляции или сопротивлением утечки. Только когда положительный электрод электролитического конденсатора подключен к источнику питания (черная тестовая ручка, когда питание заблокировано), а отрицательная клемма подключена к отрицательному источнику питания (красная тестовая ручка, когда питание заблокировано), ток утечки электролитического конденсатора небольшой (сопротивление утечки большое).Напротив, ток утечки электролитического конденсатора увеличивается (уменьшается сопротивление утечки).

Вы можете предположить, что полюс очень «+», мультиметр использует R * 100 или R * 1K, тогда гипотетический полюс «+» подключен к черному счетчику мультиметра, а другой электрод подключен к красному счетчику. мультиметра. Шкала упора иглы (стрелка имеет большое значение сопротивления слева), и показания могут быть непосредственно считаны цифровым мультиметром.Затем разрядите конденсатор (соприкасаются два провода), затем два измерительных провода меняют местами, и измерение повторяется. В двух измерениях последняя позиция руки оставлена ​​(или сопротивление велико), и черная ручка подключена к положительному электроду электролитического конденсатора.

Обычно керамический конденсатор не имеет положительных и отрицательных полюсов, а емкость обычно мала. Он часто используется для фильтрации источника сигнала, а полярность — это временное явление.Это своего рода неполярный электролитический конденсатор, поэтому он не является полярным. Таким образом, идентификация положительного и отрицательного полюсов не требуется в процессе установки и может быть установлена ​​по желанию.

Чего нельзя делать с крышками

Неправильное использование конденсаторов

Недавно мы опубликовали заметку о схеме конденсатора и, как всегда, получили много отличных отзывов от наших читателей. Чтобы ответить на ваши вопросы, мы попросили нашу службу технической поддержки рассказать нам о конденсаторах.Они поделились некоторыми ценными знаниями и рассказами из своего личного опыта. Тем временем наша команда по маркетингу продуктов решила, что показать вам, что именно происходит, когда вы меняете полярность конденсатора или подвергаете конденсатор воздействию перенапряжения, будет отличной возможностью для обучения.

Что такое конденсаторы и как они работают?

Конденсатор — это пассивный электрический компонент с двумя выводами. По сути, это два проводника, обычно с проводящими пластинами, разделенные изолятором, известным как диэлектрик.Он также имеет соединительные провода, которые подключаются к токопроводящим пластинам. Диэлектрик определяет тип конденсатора. Диэлектрический материал может быть разным, но он должен быть плохим проводником электричества.

Конденсатор предназначен для хранения энергии. Отрицательный вывод принимает электроны от источника питания, а положительный вывод теряет электроны. При необходимости конденсатор высвобождает накопленную энергию. Он работает аналогично аккумулятору, но может полностью разрядить его за доли секунды.

Обычными типами конденсаторов являются керамические конденсаторы, бумажные или пленочные конденсаторы и электролитические конденсаторы. Существует также семейство суперконденсаторов с высокой емкостью.

Применение конденсатора:

Конденсаторы имеют множество применений. Они играют решающую роль в цифровой электронике, поскольку защищают микрочипы от шума в сигнале питания за счет развязки. Поскольку они могут быстро сбросить весь свой заряд, они часто используются во вспышках и лазерах вместе с настраиваемыми схемными устройствами и емкостными датчиками.Цепи с конденсаторами демонстрируют частотно-зависимое поведение, поэтому их можно использовать со схемами, которые выборочно усиливают определенные частоты.

Выбор конденсатора:

Выбор конденсатора во многом зависит от электронного устройства, с которым вы работаете, и от того, какой ток используется (переменный, постоянный и т. Д.). Вы должны определить, нужен ли вам поляризованный или неполяризованный конденсатор. Для этого проверьте схему вашего проекта. Если конденсатор обозначен знаком плюс (+), то требуется поляризованный конденсатор.(-6), или одна миллионная фарада.

Напряжение конденсатора пропорционально заряду, накопленному в конденсаторе. Они способны блокировать сигналы постоянного тока при прохождении переменного тока. Конденсаторы также могут устранить рябь. Если линия, по которой проходит постоянное напряжение, имеет пульсации, конденсатор может выровнять напряжение, поглощая пики и заполняя впадины.

Напряжение на конденсаторе — это не номинал, а то, какое напряжение вы можете подвергнуть конденсатору. Например, если ваш источник напряжения составляет 9 вольт, вы должны выбрать конденсатор, который как минимум в два раза больше напряжения, 18 вольт или даже 27 вольт, чтобы быть в безопасности.

Электролитические конденсаторы переменного тока или биполярные конденсаторы имеют два анода, подключенных с обратной полярностью. Электролитические конденсаторы постоянного тока поляризованы в процессе производства и поэтому могут работать только с постоянным напряжением. Напряжение с обратной полярностью, напряжение или пульсирующий ток выше, чем указано, могут разрушить диэлектрик и конденсатор. Разрушение электролитических конденсаторов может иметь катастрофические последствия, такие как пожар или взрыв. Если поляризованный конденсатор установлен неправильно, конденсатор со свистом взрывается.С другой стороны, неполяризованные конденсаторы в основном используются для фильтрации гармонических шумов почти в каждой цепи, более удобны в обращении.

«Некоторые большие электролитические конденсаторы могут сохранять заряд в течение длительного времени. Некоторые могут даже до некоторой степени заряжаться самостоятельно», — пояснил инженер технической поддержки Jameco. «Инженер-электронщик, с которым я работал, создавал прототип источника питания, настраивал схему, тестировал детали и т. Д. По своей привычке он вынул заглушку из схемы, чтобы заменить ее, и, не задумываясь, воткнул один из выводов. его рот.Конденсатор более или менее мгновенно разрядил всю свою нагрузку и фактически заставил его упасть со стула. Он был в порядке, но это было страшно. Через несколько месяцев ему пришлось вырвать зуб прямо в том месте, где выпал колпачок. Он ударил этот зуб электрическим током ».

Не забывайте работать безопасно при обращении с конденсаторами и всегда следуйте спецификациям для вашего устройства или проекта. Конденсатор может быть важным компонентом, но он также может привести к разрушительным и опасным последствиям при неправильном использовании.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *