Импульсный блок питания на одном транзисторе: импульсный блок питания мощностью 20 ватт на одном транзисторе —

Russian HamRadio — Импульсные блоки питания бытовых радиоустройств.

Казалось бы, что еще надо? Проще не придумаешь! Трансформатор, мостовой выпрямитель и фильтр — все просто и понятно. Так нет, придумали всякие импульсные блоки питания (ИПБ), ломай себе голову! Каждая уважающая себя фирма выпускает свои блоки по своим схемам, а когда сломаются, думай, т. к. самому ремонтировать — сложно и непонятно, а в мастерской — дорого! Так вот, ничего особенно сложного в импульсных блоках питания нет. Да, ИБП сложнее, чем обычные блоки питания. Но это потому, что к функциям ИБП относится не только получение питающих напряжений, но и их стабилизация, а также защита самого ИБП и каскадов, которые от него питаются, от различных неприятностей.

Принципы работы импульсного обратноходового блока питания

Первоначальное распространение ИБП получили преимущественно в телевизионных приемниках (ТВ), в дальнейшем — в видеомагнитофонах (ВМ) и другой видеоаппаратуре, что объясняется, в основном, двумя причинами.

Во-первых, чувствительность ТВ и ВМ к создаваемым импульсным БП помехам значительно ниже, чем, например, аппаратуры звуковоспроизведения, особенно высококачественного. Во-вторых, ТВ и ВМ отличаются относительным постоянством и сравнительно небольшой величиной (10…80 Вт) потребляемой мощности. Колебания этой мощности в ТВ обусловлены изменениями яркости экрана при смене сюжетов и составляет не более 20 Вт (приблизительно 30

% максимальной потребляемой мощности). Для ВМ колебания мощности, потребляемой в нагрузке, возникают, в основном, только при переключении режимов работы ЛПМ и составляют несколько ватт. Для примера, в стереофоническом усилителе с выходной мощностью 2×20 Вт колебания мощности достигают 70…80 Вт (приблизительно 70…80 % максимальной потребляемой мощности). Поэтому для этого класса радиоаппаратуры ИБП получаются более дорогостоящими из-за необходимости использования мощных двухтактных схем преобразователей (конверторов), более сложных стабилизаторов, фильтров и т.
д.

В связи с этим конструкторы как более ранних, так и современных моделей ТВ и ВМ, как правило, придерживаются хорошо зарекомендовавших себя с точки зрения надежности, экономичности и простоты принципов построения импульсных блоков питания. Основные усилия направляются, в первую очередь, на совершенствование и миниатюризацию элементной базы; повышение надежности ИБП (в том числе путем введения различных защит) и расширение рабочего диапазона питающего их напряжения сети.

Несмотря на большое разнообразие схем ИБП принцип работы большинства их одинаков. Выпрямленное напряжение сети питает однотактный генератор, нагрузкой которого является импульсный трансформатор с вторичными выпрямителями, от которых питаются все потребители. Генератор может быть выполнен как с самовозбуждением, так и с внешним запуском. Транзистор генератора работает в ключевом режиме. Когда транзистор открыт, происходит накопление энергии в импульсном трансформаторе, когда закрыт

— энергия, отдается в нагрузку. На рис. 1 показана схема простейшего автогенератора.

Рис.1.

Работает он так. В начальный момент транзистор (ключ) VT1 закрыт. При подаче питания через R1 начинает течь небольшой ток, создающий напряжение смещения на базе ключа Uбэ, достаточное для того, чтобы вызвать небольшой ток коллектора ключа IK и, соответственно, через коллекторную обмотку трансформатора

Iтр (см. рис. 2, а, б].

По законам физики изменение тока в обмотке I вызовет появление ЭДС индукции, которая препятствует изменению тока в обмотке и вызывает напряжения взаимоиндукции в обмотках обратной связи II и в выходной обмотке III. Обмотки включены таким образом, что на верхнем выводе обмотки III будет

“минус”, а на верхнем выводе обмотки II — “плюс”.

Диод VD1 будет закрыт, а с обмотки II “плюс” окажется

, приложен к базе VT1 и вызовет появление дополнительного тока базы, что, в свою очередь, вызовет насыщение транзистора. Поскольку к обмотке I трансформатора приложено полное постоянное напряжение источника питания, ток через нее линейно нарастает, пока сердечник трансформатора Т1 не войдет в насыщение. В этот момент ток коллектора VT1 резко возрастает, а напряжение на обмотках II и III падает. Транзистор выходит из насыщения, происходит лавинообразный процесс его закрывания.

Рис.2.

В сердечнике трансформатора накопилась энергия и при закрывании транзистора VT1 произойдет изменение полярности ЭДС индукции, которая теперь будет направлена противоположно ЭДС при нарастании тока обмотки. При этом на обмотке I возникнет импульс напряжения, который приложен плюсом к коллектору транзистора, а минусом — к плюсу источника питания. В результате между коллектором и эмиттером ключа возникнет выброс напряжения 500…600 В. При этом отрицательное напряжение с обмотки обратной связи II надежно закроет ключ, а положительное напряжение с обмотки III откроет диод VD1 и конденсатор С2 начнет заряжаться (см. рис. 2, в). Чем больше ток заряда, т. е. чем быстрее израсходуется энергия трансформатора, тем быстрее процесс повторится.

Итак, сердцем импульсного блока питания является генератор. Обязательными элементами его являются импульсный трансформатор и транзистор -ключ. Вторичных обмоток у трансформатора может быть несколько.

Импульсные источники питания на небольшую мощность (< 30…50 Вт) обычно выполняются по схеме, где функции генерации, управления и стабилизации вторичных напряжений совмещены. Объединение несколько функций в одном устройстве упрощает схему устройства, уменьшает потери, облегчает режим работы выходного транзистора, уменьшает габариты. Кроме того, все эти функции взаимосвязаны, поэтому их реализация труда не представляет.

У таких ИБП система стабилизации обычно перенесена из вторичных цепей в первичную, где значения токов уменьшены на коэффициент, равный коэффициенту трансформации. Сравнивая ИПБ с традиционным блоком питания с низкочастотным трансформатором, видим, что выпрямительные диоды сетевого напряжения также перенесены в сторону первичной цепи, вследствие чего

через диоды будут протекать токи, тоже уменьшенные в коэффициент трансформации раз.

При этом силовой трансформатор, работающий на частоте 50 Гц, исключается, а вместо него вводится импульсный трансформатор, работающий на частоте до 100 кГц с ферритовым магнитопроводом и имеющий в несколько раз меньшие габаритные размеры и массу. Кроме того, уменьшаются габариты фильтров вторичных выпрямителей, так как при частоте 30… 100 кГц для получения хорошей фильтрации нужны существенно меньшие емкости, и можно обойтись без дросселей.

Поэтому при тех же параметрах блока питания габариты ИБП в десятки раз меньше габаритов обычного блока питания, работающего на частоте 50 Гц. Источники на большую мощность, как правило, выполняют с внешним возбуждением, для чего разработано множество специализированных микросхем. Разбирая функциональную схему более сложного ИБП, представленную на рис. 3, кое в чем повторюсь.

Основными функциональными узлами этого устройства являются:

  • сетевой выпрямитель со сглаживающим емкостным фильтром С1;
  • ключ VT1;
  • импульсный трансформатор Т1;
  • устройство запуска;
  • устройство управления;
  • цепь обратной связи;
  • вторичный выпрямитель импульсных напряжений VD1C2.

Напряжение сети 220В поступает на выпрямитель, после чего сглаживается емкостным фильтром С1. С конденсатора фильтра выпрямленное напряжение через обмотку I трансформатора Т1 поступает на коллектор транзистора VT1, выполняющего функцию ключа. Устройство управления обеспечивает периодическое включение и выключение транзистора VT1. В стационарном режиме напряжение на выходегде n = N1/N3 — коэффициент трансформации, Т — период импульсов, AT -длительность включенного состояния транзистора VT1 (рис. 2).

Изменяя AT можно регулировать выходное напряжение. Амплитуда импульсов тока через транзистор и диод зависит от индуктивности первичной обмотки трансформатора. При оптимальном ее значении максимальный ток через первичную обмотку вдвое превышает средний ток через нее. При этом ток через диод прекращается в момент открывания транзистора.

Изменять соотношение между Т и AT можно разными способами. Наиболее подходящий способ регулирования величины выходного напряжения — широтно-импульсная модуляция (ШИМ). Основные достоинства ШИМ — постоянство периода повторения Т и простота реализации, Поэтому ШИМ применяют практически во всех конструкциях ИБП.

Устройство управления ключевым транзистором называется контроллером, в данном случае — ШИМ-контроллером. Вообще, под ШИМ-контроллером подразумевают все устройство управления, включая элементы запуска и защиты, так как они являются неотъемлемой частью ИБП и часто используют одни и те же элементы.

Разберем по порядку свойства каждого узла импульсного блока питания.

Узел запуска. Необходимость наличия узла запуска вызвана тем, что при включении ИБП возможны большие перегрузки его элементов, поскольку разряженные конденсаторы фильтров импульсных выпрямителей представляют собой очень малое сопротивление для импульсов, снимаемых с вторичных

обмоток трансформатора. Пусковые токи могут достигать 50… 100А, что создает аварийный режим работы.

Рис.3.

Устройство запуска обеспечивает принудительную коммутацию транзистора ключа со значительно меньшей длительностью включенного состояния в течение нескольких циклов, за время которых происходит заряд конденсаторов фильтров импульсных выпрямителей.

Одновременно это исключает возможность возникновения аварийной ситуации, так как длительность импульсов плавно возрастает, постепенно выводя ИБП на номинальный режим. В импортных ИБП наибольшее распространение получила подача на ключ начального открывающего смещения.

В момент подачи питания через резисторы от плюса сетевого выпрямителя на базу ключа подается смещение, достаточное для создания начального тока через ключ и плавного запуска. После нескольких циклов ИБП переходит в нормальный режим и больше цепь запуска не используется. Во многих импортных ИБП цепь запуска не отключается, что иногда приводит к выходу из строя ключа при неисправности одного из вторичных

выпрямителей, если не применяется схема защиты от короткого замыкания. В отечественных телевизорах применяются несколько вариантов запуска ИБП. Одна из них — генератор, собранный на однопереходном транзисторе серии КТ117.

В течение некоторого времени, достаточного для надежного запуска ИБП, генератор на КТ117 генерирует импульсы, которые подаются на базу ключевого транзистора и вызывают запуск цикла работы автогенератора. Если неисправность отсутствует, то конденсаторы фильтров заряжаются и автогенератор входит в нормальный режим. Иначе схема запуска отключится и ИБП не запустится.

Устройство управления. На него возлагается функция отслеживания уровня выходного напряжения, выработка сигнала ошибки и, часто, непосредственного управления ключом.

Рис.4.

Обычно устройство управления представляет собой цепь сравнения реального выходного напряжения и образцового, выработанный сигнал ошибки подается на исполнительный узел, управляющий непосредственно ключевым транзистором (рис. 4).

Несмотря на кажущуюся сложность функциональной схемы устройства управления, принципиальная схема такого узла, получившего распространение в ИБП на транзисторах, несложна (рис. 5). Устройство управления питается от обмотки II трансформатора Т1 (рис. 3), поэтому напряжение на нем пропорционально напряжению на вторичных обмотках, т. е. с хорошей степенью приближения соответствует выходному.

Рис. 5.

В момент включения напряжение на конденсаторе С1 равно нулю и транзистор VT1 закрыт. После начала работы преобразователя и, пока он не вошел в нормальный режим, транзистор VT1 находится в открытом состоянии и позволяет работать генератору, выходное напряжение и напряжение на С1 увеличиваются.

При достижении этими напряжениями номинальных значений открывается стабилитрон VD1 и дальнейшее увеличение напряжений приводит к постепенному закрыванию транзистора VT1. В рабочем режиме на выходе присутствует положительное напряжение, которое подается на исполнительное устройство.

При увеличении выходного напряжения напряжение, подаваемое на исполнительное устройство, будет уменьшаться, изменяя условия его работы и вызывая уменьшение выходного и, как следствие, его стабилизацию. Исполнительное устройство представляет собой ключ, срабатывающий при достижении током коллектора силового ключа определенной величины, или цепь, шунтирующую переход база-эмиттер того же силового ключа при достижении определенного уровня напряжения.

Цепи защиты. Сложность того или иного ИБП во многом зависит от сложности примененных цепей защиты. В дешевых моделях ИБП используются простейшие варианты. Вообще защитные устройства можно разделить по функциям на следующие: защитные устройства всего ИБП, сетевого выпрямителя, от перенапряжения сети, от слишком малого напряжения сети, от перегрузки (короткого замыкания), от холостого хода и так далее. По сложности исполнения их можно разделить на простые (предохранители, защитные резисторы), среднего уровня сложности и большой сложности. В ИБП может быть применено сразу несколько типов защит различной степени сложности. Однако, несмотря на то, что встраивание сложных защит мотивируется благими целями, увеличение сложности устройств в результате нередко оборачивается уменьшением их надежности за счет увеличения числа элементов, ухудшением ремонтопригодности и, соответственно, увеличением стоимости ремонта. А так как цепи защиты встраиваются непосредственно в ИБП, то их выход из строя также приводит к выходу из строя и элементов самого ИБП.

Простейшим защитным элементом является предохранитель. В любом устройстве он устанавливается на входе ИБП. Предохранитель является инерционным прибором, поэтому он не защищает ни ключевой транзистор, ни многие другие элементы блока питания. Назначение предохранителя — защита устройства от возгорания при пробое ключа или конденсатора сетевого фильтра, обычно он в таких случаях спасает трансформатор и диоды выпрямителя.

Следующий защитный элемент

, включенный последовательно с выпрямительным мостом резистор, который выполняет две функции. Первая ограничивает мгновенный ток через мост в момент включения ИБП. Вторая выполняет функции предохранителя. Как и предохранитель, защитный резистор является инерционным элементом. Он перегорает при превышении среднего тока через него.

Часто во вторичных выпрямителях применяют защитные диоды, включенные параллельно нагрузке. На схемах они обозначаются как стабилитроны, но это не совсем так. Когда на защитном диоде напряжение меньше порога срабатывания, он не потребляет тока и не влияет на работу ИБП. При появлении на таком диоде напряжения, на которое он рассчитан, он пробивается и ограничивает напряжение на нагрузке. Если ИБП при этом не выключается, то диод от перегрева сплавляется и вызывает короткое замыкание для ИБП, который выключается. ИБП, в котором применяются такие “стабилитроны”, должен иметь защиту от перегрузок. Напряжение на защитном диоде может повыситься из-за резких скачков сетевого напряжения, мощной импульсной помехи в

сети, неисправности самого ИБП. Таким образом, защитный диод предохраняет устройства, стоящие в данной цепи. Защитный диод не восстанавливается и после срабатывания подлежит замене, но ни в коем случае не на обычный стабилитрон!

Остальные устройства защиты представляют собой узлы, состоящие из нескольких элементов, и интегрированы со схемой ИБП. Такие устройства могут быть с внутренним управлением, отслеживающие состояние ИБП и управляющие им, и с внешним управлением, следящие за состоянием цепей вторичных источников питания и даже исправностью всего устройства в целом, например, телевизора. Чем больше применено таких защитных устройств, тем сложнее ремонт. Иногда приходится изобретать способы запуска ИБП, выключенного каким-либо защитным устройством, отключать защиту, прибегать к различным уловкам, чтобы найти неисправность.

Разбор схем блоков питания на транзисторах начнем с самых простых: ИБП телевизора Sanyo CKM 3022-00 и видеоплеера Funai VIP-5000LR. Вариант управления ключом, примененный в этих устройствах, встречается довольно часто и даже в микросхемном исполнении. Некоторые непринципиальные элементы, такие как выпрямители сетевого напряжения и вторичные выпрямители, не показаны.

Источник питания телевизора Sanyo CKM 3022-00

Схема этого источника приведена на рис. 6. Напряжение +290В с сетевого выпрямителя подается через обмотку 3-7 на коллектор ключевого транзистора Q513. Его база через резисторы R520, R521, R522, R524 подключена к источнику питания +290В — цепь начального смещения ключа. К цепи базы ключа непосредственно подключен транзистор Q512, он управляет напряжением на базе ключа.

Рис.6.

Режим работы транзистора Q512 определяет транзистор Q511, ток базы которого, в свою очередь, определяется оптопарой D515. Светодиод оптопары включается транзистором

Q553.

Конденсатор С507 сглаживает пульсации, приходящие с сетевого выпрямителя. Причем чем больше емкость конденсатора, тем меньше амплитуда пульсаций и чем меньше ток, потребляемый ИБП, тем меньше пульсации.

Емкость этого конденсатора разработчики выбирают, исходя из уровня допустимых пульсаций, и при ремонте желательно ставить конденсатор с не меньшей емкостью. И конечно, рабочее напряжение конденсатора должно быть не менее 350…400 В.

Напряжение начального смещения поступает на базу Q513 через резисторы R520, R521, R522, R524. В первый момент никаких других сигналов на базу не подается, транзистор Q512 закрыт. Появляется небольшой ток коллектора ключа, и на выводе 1 обмотки обратной связи возникает небольшое напряжение положительной полярности, которое через диод D517 и резистор R524 поступает на базу Q513, вызывая увеличение тока его коллектора. Этот процесс продолжается до тех пор, пока Q513 не войдет в режим насыщения, при этом Q512 закрыт и влияния на работу ключа не оказывает, т. к. сопротивление фототранзистора оптопары велико и транзистор Q511 закрыт.

Далее происходят процессы, описанные в первой части статьи. При запирании транзистора Q513 вся энергия, накопленная трансформатором, пойдет на зарядку конденсаторов фильтров вторичных выпрямителей, причем одного цикла заряда будет недостаточно. Поэтому пауза между импульсами будет минимальна, а время открытого состояния ключа, во время которого энергия накапливается в трансформаторе, — максимально. Момент включения ИБП — самый тяжелый для ключевого транзистора, поэтому почти все неисправности возникают именно в этот момент.

После нескольких циклов зарядки конденсаторов вторичных выпрямителей напряжение на их выходах станет близким к номинальному. Начнет работать устройство сравнения на Q553. Эмиттер 0553 подключен к источнику образцового напряжения на стабилитроне D561. Напряжение на стабилитрон подается с выхода +130В через резистор R554 и растет с увеличением напряжения на этом выходе.

Когда напряжение на выходе выпрямителя станет больше напряжения стабилизации стабилитрона, напряжение на нем изменяться перестанет, т. е. напряжение на эмиттере Q553 зафиксируется. База Q553 подключена к регулируемому делителю таким образом, что когда напряжение выпрямителя станет близким к +130В, напряжение на базе станет больше, чем напряжение на эмиттере, и транзистор начнет открываться. Так как нагрузкой коллекторной цепи является светодиод оптопары, то через светодиод потечет ток, он начнет излучать световой поток на фототранзистор, сопротивление которого начнет уменьшаться. Причем чем сильнее открыт Q553, тем больше световой поток и тем меньше сопротивление фототранзистора.

Фототранзистор подключен к цепи базы Q511, и уменьшение сопротивления фототранзистора вызывает открывание 0511, который в свою очередь влияет на работу Q512. Режим работы Q512 меняется. Теперь, когда положительный импульс обратной связи приходит на базу ключа, часть его напряжения, поступающего через резистор R526, складывается с напряжением, приходящим с 0511, и транзистор Q512 начинает ограничивать амплитуду импульса обратной связи. Чем сильнее открыт Q553 (а также Q511), тем меньше амплитуда импульсов обратной связи, тем раньше выключится ключ и тем меньше энергии накопится в трансформаторе, что вызовет прекращение роста напряжения на выходах вторичных выпрямителей.

Теперь наступает рабочий режим ИБП, во время которого происходит слежение за выходным напряжением. При увеличении напряжения на выходе выпрямителя до +130В транзистор Q553 открывается сильнее, световой поток светодиода оптопары увеличивается, сопротивление фототранзистора уменьшается, Q511 открывается больше, смещение на базе Q512 увеличивается, и он сильнее шунтирует цепь базы ключа Q513. Ключ начинает закрываться раньше, и напряжение на выходах вторичных выпрямителей уменьшается. Обратный процесс происходит при уменьшении выходного напряжения +130 В.

Что произойдет, если выйдут из строя элементы устройства сравнения, оптопара или другие элементы? Пробой Q553 вызовет резкое уменьшение выходного напряжения или даже срыв генерации, т. к. в этом случае (а также при обрыве R551, R553, R556, пробое D561) светодиод оптопары станет излучать максимальный световой поток, фототранзистор и Q511 максимально откроются, смещение на базе Q512 станет максимальным и он максимально ограничит напряжение обратной связи на базе ключа вплоть до срыва колебаний. К отсутствию запуска приведет обрыв резисторов R520—R521, R524, пробой Q512. В случае, когда оборвутся R552, R555, Q553, светодиод или фототранзистор оптопары, Q511, Q512, R526, преобразователь будет работать в режиме генерации максимальной мощности и быстро выйдет из строя.

Остальные элементы устройства, такие как С514, R519, R525, С516, С517, D514, D516 и R517, улучшают условия возбуждения, препятствуют появлению выбросов на коллекторе 0513 и т. д. Защита в этом ИБП минимальна — на входе сетевого питания стоит предохранитель и между сетевым выпрямителем и конденсатором фильтра установлен защитный резистор R502 на 3,9 Ом. Так что защиты практически никакой, резистор сгорит только после того, как пробьется ключ.

Импульсный блок питания видеоплеера Funai VIP-500QLR

В приведенной на рис. 7 схеме не показано устройство сравнения, т. к. его работа аналогична работе этого узла в телевизоре Sanyo. И вообще, вся схема во многом повторяет рассмотренную выше.

Рис.7.

Резисторы R4 и R7 — цепь начального смещения ключа Q2. Цепь обратной связи — выводы 4-3 обмотки обратной связи, диод D3, резистор R7. Управляет работой ключа транзистор Q1, на который приходит сигнал рассогласования с оптопары. При изменении сопротивления фототранзистора изменится ток в цепи: плюс питания, R1, фототранзистор оптопары, D1, переход база-эмиттер Q1, минус питания.

Резисторы R12 и R13 являются датчиками тока ключа. При прохождении тока коллектора на них появляются импульсы напряжения, которые через диод D2 поступают на базу Q1. Сигнал рассогласования — это медленно изменяющееся напряжение, а импульсы датчика тока — импульсы напряжения, повторяющие форму тока ключа. Эти импульсы складываются с напряжением ошибки и управляют транзистором Q1, который, открываясь при достижении суммарным напряжением определенного порога, ограничивает амплитуду импульсов тока ключа. Таким образом, от напряжения смещения на базе Q1, приходящего с оптрона, зависит время открытого состояния ключа, т. е. напряжение на выходах вторичных выпрямителей.

Рис.8.

Далее рассмотрим цепь управления ключом, выполненную по другому принципу. Данная цепь с незначительными изменениями применена во многих телевизорах, таких как Akai CT-1405E, Elekta CTR-2066DS и других (рис. 8).

На транзисторе Q1 собрано устройство сравнения, его схема практически не отличается от других, рассмотренных раньше. Питается устройство сравнения от отдельной обмотки и выпрямителя D5 с фильтром С2. Начальное смещение на ключ Q4 подается через резистор R7, обычно представляющий собой несколько последовательно включенных резисторов, что объясняется более низкой ценой двух маломощных резисторов по сравнению с одним мощным, рассчитанным на напряжение более 300 В.

Цепь обратной связи здесь подключена не так, как мы разбирали раньше. Один вывод обмотки обратной связи подключается как обычно к базе ключа, а другой — на диодный распределитель D3, D4. Что получается в результате? Транзисторы Q2 и Q3, представляющие собой составной

транзистор, являются регулируемым сопротивлением. Это сопротивление (между плюсом конденсатора СЗ и эмиттером Q3) зависит от приходящего с Q1 сигнала рассогласования. Так как транзистор Q2 имеет структуру p-n-р, то с увеличением приходящего на базу напряжения его ток коллектора уменьшается, сопротивление составного транзистора увеличивается. Это свойство здесь и используется.

Рассмотрим момент запуска. Конденсатор СЗ разряжен. Цепь обратной связи подключена плюсом к базе, минусом через D4 и R9 к общему проводу. Происходит линейное нарастание тока коллектора, которое заканчивается закрыванием транзистора. При этом полярность напряжения на обмотке обратной связи меняется на обратную и этим напряжением через диод D3 заряжается конденсатор СЗ. Конденсатор СЗ окажется подключенным к переходу база-эмиттер ключа через сопротивление составного транзистора минусом на базу и закроет ключ.

Время разряда СЗ и закрывающее напряжение зависят от сопротивления составного транзистора. В момент запуска блока питания это сопротивление велико и разрядка конденсатора СЗ не задерживает очередной цикл, однако в установившемся режиме задержка очередного цикла получается достаточной для регулировки средней мощности, отдаваемой в нагрузку. Таким образом, мы видим, что рассматриваемый вариант не является ШИМ. Если в предыдущих устройствах регулированию подвергалось время открытого состояния ключа, то в этом регулируется время закрытого состояния.

Владимир Носов

Литература:

1. О. В. Колесниченко, И. В. Шишигин, В. А. Обрученков. Интегральные микросхемы зарубежной бытовой видеоаппаратуры. — С.-Пб: Лань, 1996.

2. С. А. Ельяшкевич. Цветные стационарные телевизоры и их ремонт: Справочник. 3-е изд., стереотипное. — М.: КУбК-а, 1996.

3. В. С. Соколов, Ю. И. Пичугин. Ремонт цветных стационарных телевизоров 4УСЦТ. Справочное пособие. — М.: Радио и связь, 1994.

4. С. А. Ельяшкевич, А. Е. Пескин. Телевизоры пятого поколения “Рубин”, “Горизонт”, “Электрон”. Устройство, регулировка, ремонт. — М.: Символ-Р, 1994.

 

Материал подготовил Ю. Замятин (UA9XPJ).

Copyright © Russian HamRadio

Сайт Кравченко К.В.

Импульсные источники питания.

<<< Назад   Титульный   Глава 2 >>>

Сайт Кравченко К. В.: www.kkbweb.narod.ru

E-mail: [email protected]

 

Казалось бы, что еще надо? Проще не придумаешь! Трансформатор, мостовой выпрямитель и фильтр – все просто и понятно. Так нет, напридумывали всяких импульсных блоков питания, ломай себе голову! Каждая уважающая себя фирма лепит свои блоки, по своим схемам, а бедный владелец думай как хочешь – самому ремонтировать сильно сложно и непонятно, а в мастерской сдерут три шкуры!

 

Так вот, я хочу сказать, что ничего особо сложного в импульсных блоках питания нет. Да, ИБП сложнее, чем обычные блоки питания. Но это потому, что к функциям ИБП относятся не только получение питающих напряжений, но и стабилизация их величин, а также защита самого ИБП и каскадов, которые от него питаются, от различных неприятностей.

Если вы немного знаете радиотехнику, знаете, как работает обычный блок питания, то эта статья для вас. Ну, начнем!

Первоначальное распространение ИБП получили преимущественно в телевизионных приемниках, в дальнейшем — в видеомагнитофонах и другой видеоаппаратуре, что объясняется в основном двумя причинами. Во-первых, чувствительность ТВ и ВМ к создаваемым импульсным БП помехам значительно ниже, чем, например, аппаратуры звуковоспроизведения, особенно высококачественного. Во-вторых, ТВ и ВМ  отличаются относительным постоянством и сравнительно небольшой величиной (10…80 Вт) мощности, потребляемой в нагрузке. Колебания этой мощности в ТВ обусловлены изменениями яркости экрана при смене сюжетов и составляет не более 20 Вт (приблизительно 30 % максимальной потребляемой мощности). Для ВМ колебания мощности, потребляемой в нагрузке возникают, в основном, только при переключении режимов работы ЛПМ и составляют не более нескольких единиц Ватт. Для примера, в стереофоническом усилителе с выходной мощностью 2 х 20 Вт колебания мощности достигают 70-80 Вт (приблизительно 70-80 % максимальной потребляемой мощности). Поэтому для этого класса радиоаппаратуры ИБП получаются более дорогостоящими из-за необходимости использования мощных двухтактных схем преобразователей (конверторов), более сложных стабилизаторов, фильтров и т. д.

В связи с этим, конструкторы как более ранних, так и современных моделей ТВ и ВМ. как правило, придерживаются хорошо зарекомендовавших себя с точки зрения надежности, экономичности и простоты принципов построения импульсных блоков питания. Основные усилия направляются, в первую очередь, на совершенствование и микроминиатюризацию элементной базы; повышение надежности ИБП (в том числе путем введения различных защит) и расширение рабочего диапазона питающего их напряжения сети.

Сердце импульсных источников питания — автогенератор

Несмотря на большое разнообразие схем ИБП принцип работы большинства их одинаков. Выпрямленное напряжение сети питает однотактный автогенератор, нагрузкой которого является импульсный трансформатор со вторичными выпрямителями, от которых питаются все потребители. Автогенератор выполнен по схеме с глубокой индуктивной положительной обратной связью. Транзистор автогенератора работает в ключевом режиме. Когда транзистор открыт, происходит накопление энергии в импульсном трансформаторе, когда закрыт – энергия отдается в нагрузку.

На рис. 1 показана схема собственно автогенератора. Работает он так:

в начальный момент транзистор (ключ) VT1 закрыт. При подаче питания через R1 начинает течь небольшой ток, создающий напряжение смещения на базе ключа Uбэ, достаточное для того, чтобы вызвать небольшой ток коллектора ключа Iк, и, соответственно, через коллекторную обмотку трансформатора Iтр (см. рис.1а,б,в). По законам физики, изменение тока в обмотке I вызовет появление ЭДС индукции, которая препятствует изменению тока в обмотке и вызывает напряжения взаимоиндукции в обмотках обратной связи II и в выходной обмотке III. Обмотки включены таким образом, что на верхнем выводе обмотки III будет «минус», а на верхнем выводе обмотки II «плюс». Диод D1 будет заперт и не будет мешать, а с обмотки II «плюс» окажется приложен к базе ключа и вызовет появление дополнительного напряжения, что в свою очередь вызовет увеличение тока коллектора ключа. А увеличение тока коллектора и обмотки I вызовет увеличение напряжения на базе и так далее, то есть, произойдет лавинообразное нарастание тока коллектора. Это нарастание будет происходить, пока транзистор не войдет в режим насыщения. Это такой режим, когда транзистор физически не может пропустить больший ток. Нарастание тока прекращается. Напряжение взаимоиндукции становится равным нулю так как изменения тока через обмотку I больше не происходит, то есть на обмотках II и III напряжение исчезает. Вызвавшее такой ток коллектора напряжение на базе резко уменьшается. И ток коллектора становится небольшим. Но ток в обмотке I из-за инерционности индуктивности обмотки мгновенно уменьшиться не может. В обмотке накопилась энергия и, чтобы ток стал равным нулю, нужно эту энергию израсходовать. Ток обмотки начинает плавно уменьшаться. Так как нарастание тока и его убывание процессы противоположные, то произойдет переполюсовка ЭДС индукции, которая теперь будет направлена противоположно ЭДС при нарастании тока обмотки. При этом на обмотке возникнет импульс напряжения, который приложен «плюсом» к коллектору транзистора, а «минусом» — к «плюсу» источника питания. В результате между коллектором и эмиттером ключа возникнет импульс напряжения 500-600 В. Появление ЭДС индукции вызовет появление напряжений взаимоиндукции в обмотках II и III также другой полярности. При этом напряжение «минус» с обмотки обратной связи II надежно закроет ключ, а напряжение «плюс» с обмотки III откроет диод D1 и начнет заряжаться конденсатор C2 (см. рис.1г). Чем больше ток заряда, то есть чем быстрее израсходуется энергия трансформатора, тем быстрее процесс повторится.

Сложно? Сначала, может быть, да. Вникните, почитайте школьный учебник про свойства индуктивности. Разберитесь. Остальное будет проще!

Продолжим. Итак, сердцем импульсного блока питания является автогенератор. Причем, любого. Обязательными элементами его являются импульсный трансформатор и транзистор – ключ. Вторичных обмоток у трансформатора может быть несколько – это не имеет значения. Обязательной является обмотка обратной связи.

Подавляющее большинство ИБП выполняется по схеме, где функции генерации, управления и стабилизации напряжений вторичных источников питания совмещены. Объединение несколько функций в одном устройстве упрощает схему устройства, уменьшает потери, облегчает режим работы выходного транзистора, уменьшает габариты. Кроме того, все эти функции взаимосвязаны, поэтому их реализация труда не представляет. У таких ИБП система стабилизации перенесена из вторичных обмоток трансформатора в первичную обмотку, где значения токов уменьшены на коэффициент, равный коэффициенту трансформации. Выпрямительные диоды сетевого напряжения также перенесены в сторону первичной цепи, вследствие чего через диоды будут протекать токи, тоже уменьшенные в коэффициент трансформации раз. При этом силовой трансформатор, работающий на частоте 50 Гц, исключается, а вместо него вводится импульсный трансформатор, работающий на частоте до 100 кГц с ферритовым магнитопроводом и имеющий в несколько раз меньшие габаритные размеры и массу. Кроме того, уменьшаются габариты фильтров вторичных выпрямителей, так как при частоте 30-100 кГц для получения хорошей фильтрации нужны существенно меньшие емкости фильтров и можно обойтись без дросселей. Поэтому при тех же параметрах блока питания габариты ИБП в десятки раз меньше габаритов обычного 50 – герцового блока питания.

Функциональная схема ИБП

Разбирая упрощенную функциональную схему ИБП, представленную на рис.2, кое в чем повторюсь

. Ее основными функциональными узлами являются сетевой выпрямитель Р со сглаживающим емкостным фильтром Сф, ключевой преобразователь напряжения (автогенератор) с импульсным трансформатором, устройство управления (контроллер) с цепью обратной связи и вторичный выпрямитель импульсных напряжений VD1, С1.

 Рис 2

Напряжение сети 220 В поступает на выпрямитель Р со сглаживающим емкостным фильтром Сф. С конденсатора фильтра Сф выпрямленное напряжение через обмотку W1 трансформатора Т поступает на коллектор транзистора VT, выполняющего функций ключевого преобразователя постоянного напряжения в импульсное с частотой повторения 15-100 кГц. Ключевой преобразователь представляет собой импульсный генератор, работающий в режиме самовозбуждения. На рис. 3 приведены временные диаграммы преобразователя. В течение времени ∆Т, когда транзистор открыт, через первичную обмотку W1 трансформатора протекает линейно нарастающий ток Iк. В сердечнике трансформатора запасается энергия магнитного поля.

 Когда транзистор закрывается, на верхнем по схеме выводе вторичной обмотки трансформатора W2 появляется положительный потенциал и накопленная энергия передается в нагрузку через диод VD1. В стационарном режиме напряжение на выходе

 где n == W1/W2 — коэффициент трансформации.

Изменяя ∆Т, т. е. время, в течение которого открыт транзистор преобразователя, можно регулировать выходное напряжение. Размахи импульсов тока через транзистор и диод зависят от индуктивности первичной обмотки трансформатора. При оптимальном ее значении максимальный ток через первичную обмотку вдвое превышает средний ток через нее. При этом ток через диод прекращается в момент открывания транзистора.

 Рис. 3

Изменять ∆Т можно разными способами. Наиболее подходящий способ регулирования величины выходного напряжения – широтно-импульсная модуляция. Принцип ШИМ заключается в регулировании времени, в течение которого ключевой транзистор открыт, при этом происходит регулировка количества накопленной трансформатором энергии. Основные достоинства ШИМ – постоянство периода повторений Т и простота реализации. Поэтому ШИМ применяют практически во всех конструкциях ИБП. По этой причине другие способы регулировки мы рассматривать не будем.

Более подробная функциональная схема приведена на рис. 4.

 Рис 4

Рассмотрим случай, когда в установившемся режиме ток нагрузки увеличился. Это означает, что энергия, запасенная трансформатором будет расходоваться быстрее, чем обычно, т.е. время закрытого состояния ключа уменьшится. А для увеличения накопленной энергии нужно увеличить время открытого состояния ключа, чтобы в трансформаторе накопилось больше энергии. В результате общее время Т = const. Аналогично при уменьшении тока нагрузки.

Устройство управления  ключевым транзистором называется контроллером (ударение на второе «о»), в данном случае – ШИМ-контроллером. Вообще под ШИМ-контроллером подразумевают все устройство управления, включая элементы запуска и защиты, так как они являются неотъемлемой частью схемы ИБП и используют часто одни и те же элементы схемы.

Схема любого импульсного блока питания состоит из следующих узлов: схемы запуска, схемы управления, схемы управления ключевым транзистором (исполнительное устройство) и схем защиты, которых в устройстве может быть несколько. Разберем по порядку свойства каждого узла.

 

Схемы запуска.

Необходимость схемы запуска вызвана тем, что при включении ИБП самовозбуждение автогенератора невозможно, так как разряженные конденсаторы фильтров импульсных выпрямителей представляют собой короткое замыкание для импульсов, снимаемых с вторичных обмоток трансформатора. Пусковые токи могут достигать 50… 100 А, что создает аварийный режим работы для автогенератора.

Устройство запуска обеспечивает принудительное включение и выключение автогенератора в течение нескольких циклов, за время действия которых происходит заряд конденсаторов фильтров импульсных выпрямителей. Одновременно это исключает возможность возникновения аварийной ситуации, так как автогенератор плавно, постепенно выходит на номинальный режим.

В импортных схемах наибольшее распространение нашли схемы подачи начального открывающего смещения на ключ. В момент подачи питания через резисторы Rсм от «+» сетевого выпрямителя на базу ключа подается начальное смещение, достаточное для создания начального тока через ключ. За счет обмотки обратной связи происходит нарастание тока через ключ до насыщения, при этом диоды вторичных выпрямителей заперты и не мешают процессу. Как только ключ входит в режим насыщения, нарастание тока прекращается, напряжение на базе ключа становится равным начальному, коллекторный ток ключа резко уменьшается, что приводит к изменению полярности на обмотках трансформатора, в том числе появляется минус на выводе обмотки обратной связи, подключенной к базе ключа, ключ закрывается, диоды импульсных выпрямителей открываются и энергия, накопленная трансформатором, через диоды переходит в разряженные конденсаторы фильтров импульсных выпрямителей. Так как конденсаторы представляют собой в этот момент короткое замыкание, то энергия трансформатора убывает очень быстро. После нескольких циклов заряда конденсаторов автогенератор переходит в нормальный режим и больше схема запуска не используется. Во многих импортных ИБП цепь запуска не отключается, что иногда приводит к выходу из строя ключа при неисправности одного из вторичных выпрямителей, если не применяется схема защиты от короткого замыкания.

В отечественных телевизорах применяются несколько схем запуска ИБП. Одна из них – генератор, собранный на однопереходном транзисторе КТ117. В течение некоторого времени, задаваемого схемой и достаточного для надежного запуска автогенератора, генератор на КТ117 генерирует импульсы, которые подаются на базу ключа как начальное смещение и вызывают запуск цикла работы автогенератора. Если неисправность отсутствует, то конденсаторы фильтров заряжаются и автогенератор входит в нормальный режим. Иначе схема запуска отключится и ИБП не запустится.

 

Схемы управления.

На схемы управления возлагается функция отслеживания уровня выходного напряжения, выработка сигнала ошибки и, часто, непосредственного управления ключом. Обычно схема управления представляет собой схему сравнения реального выходного напряжения и образцового, выработанный сигнал ошибки подается на исполнительную схему, управляющую непосредственно ключевым транзистором (см. рис. 5).

 Рис. 5

Несмотря на кажущуюся сложность функциональной схемы устройства управления сама схема не сложна и работа ее для понимания труда не представляет.

Схема управления питается от одной из обмоток трансформатора, поэтому напряжение питания на ней всегда соответствует напряжению на других обмотках, т.е. реальному. Пока автогенератор не вошел в нормальный режим, напряжение питания мало и транзистор закрыт. По мере увеличения напряжения питания на стабилитроне появляется образцовое напряжение и затем транзистор начинает открываться. В рабочем режиме на выходе присутствует положительное напряжение, которое подается на исполнительную схему. Понятно, что при изменении реального напряжения напряжение, подаваемое на исполнительное устройство, также будет изменяться, изменяя условия работы исполнительного устройства. Исполнительное устройство представляет собой либо ключевую схему, срабатывающую при достижении импульсом тока коллектора силового ключа определенной величины, либо схему, шунтирующую переход база-эмиттер того же силового ключа при достижении определенного уровня напряжения на базе.

 Рис. 6

На рис. 6 приведены эпюры, поясняющие работу устройства управления при ШИМ-модуляции. По ним видно, как изменение реального напряжения и вместе с ним сигнала ошибки влияет на ширину импульса, вырабатываемого ключевым транзистором. Меандр Uзг – работа автогенератора без управления. При работе с управлением напряжение ошибки Uош воздействует на исполнительное устройство совместно с напряжением обратной связи Uп, меняя порог его срабатывания. В результате при изменении тока нагрузки изменяется ширина импульсов, вырабатываемых ключевым транзистором.

Схемы защиты.

Сложность того или иного ИБП зависит, в основном, от примененных схем защиты. В дешевых моделях ИБП используются простейшие виды защит. Вообще защитные устройства можно разделить на следующие типы по функциям: защитные устройства всего ИБП, сетевого выпрямителя, от большого напряжения сети, от малого напряжения сети, от перегрузки (короткого замыкания), от холостого хода и так далее. По сложности исполнения их можно разделить на простые (предохранители, защитные резисторы), среднего уровня сложности и большой сложности. В ИБП может быть применено сразу несколько типов защит, различной степени сложности. Однако, несмотря на то, что встраивание сложных защит мотивируется благими целями, увеличение сложности устройств в результате оборачивается уменьшением их надежности, так как увеличивается число элементов схем, ухудшением ремонтопригодности и, значит, увеличением стоимости ремонта. А так как защиты встраиваются непосредственно в ИБП, то и выход из строя элементов защиты также приводят к выходу из строя и элементы самого ИБП.

Простейшим защитным элементом является предохранитель. В любом устройстве он ставится на входе питания сетевым напряжением. Предохранитель является инерционным элементом, поэтому он не защищает ни ключевой транзистор ИБП, ни его элементы. Назначение предохранителя – защита диодов выпрямителя при пробое ключа или конденсатора сетевого фильтра, а также размагничивающего устройства при неисправности позистора.

Следующий защитный элемент – защитный резистор, который выполняет две функции. Первая – ограничивает мгновенный ток через схему, на входе которой он стоит. И вторая – выполняет функции предохранителя. Как и предохранитель защитный резистор – инерционный элемент. Он перегорает по факту превышения среднего тока через него. Если защитный резистор стоит в сетевой части ИБП, то он защищает сетевой выпрямитель при пробитом ключе или конденсаторе сетевого фильтра, если он стоит перед выпрямительными диодами вторичных выпрямителей, то защищает весь ИБП от перегрузки.

Часто во вторичных выпрямителях применяют защитные диоды. На схемах они обозначаются как стабилитроны, но это не так. Когда на защитном диоде напряжение меньше порога срабатывания, он не потребляет тока и не мешает работе. При появлении на таком «стабилитроне» напряжения, на которое он рассчитан (например, R2M, который ставится для защиты выходного каскада строчной развертки, рассчитан на 150 В), «стабилитрон» пробивается, становится коротким замыканием для ИБП, который выключается. ИБП, в котором применяются такие «стабилитроны», должны иметь защиту от перегрузок. А напряжение на защитном диоде может повыситься из-за резких скачков сетевого напряжения, мощной импульсной помехи в сети, неисправности самого ИБП. Таким образом, защитный диод защищает устройства, стоящие в данной цепи питания, например, выходной каскад строчной развертки. Защитный диод не восстанавливается и после срабатывания подлежит замене, но ни в коем случае не на обычный стабилитрон!

Остальные устройства защиты представляют собой схемы, состоящие из нескольких элементов и интегрированы со схемой ИБП. Такие устройства могут быть с внутренним управлением, отслеживающие состояние ИБП и управляющие им и с внешним управлением, следящими за состоянием цепей вторичных источников питания и даже исправность всего устройства в целом, например, телевизора. Чем больше применено таких защитных устройств, тем сложнее ремонт. Иногда приходится изобретать способы запуска ИБП, выключенного каким-либо защитным устройством, отключать защиту, прибегать к различным уловкам, чтобы найти неисправность.

 

Ну что? Очень сложно? Если вы хоть что-то поняли, переходите во вторую главу статьи, где мы разберем конкретные схемы ИБП.

 

Начало документа

<<< Назад   Титульный   Глава 2 >>>

ККВ        Страница создана 17.02.2004 г.

© 2002-2003г. Кравченко Кирилл Васильевич (ККВ)

переключателей — используйте транзистор для автоматического переключения источника питания

спросил

Изменено 9 лет, 3 месяца назад

Просмотрено 2к раз

\$\начало группы\$

По сути, я хочу использовать простую транзисторную схему для отключения одного V+ (или земли) при подключении другого и автоматического переключения обратно при удалении источника переключения. Например, иметь небольшую литиевую батарею в устройстве с внешней цепью зарядки. Когда источник заряда подключен, я хотел бы запускать устройство от внешнего источника во время зарядки аккумулятора и автоматически переключаться обратно на источник питания при отключении зарядного устройства. Планируется работа с 5VDC.

В основном ищете подсказки о том, как настроить такой переключатель? уже есть внешнее зарядное устройство отработано.

Для ясности: Я хотел бы заряжать аккумулятор, пока он все еще находится в цепи с нагрузочным устройством, при подаче питания на устройство. Разве батарея не должна быть снята с нагрузки, чтобы сделать это безопасно? Может ли это быть достигнуто путем обнаружения входа зарядного устройства с переключением транзисторов и как?

  • переключатели
  • блок питания
  • источник

\$\конечная группа\$

5

\$\начало группы\$

Это часто называют «путем питания», и вы используете полевые транзисторы, подключенные как идеальные диоды. Многие зарядные устройства имеют эту встроенную функцию, например, LTC4160 от Linear. У TI также есть ряд зарядных устройств с Power Path. (Прямой ссылки нет, нужно искать на сайте TI).

У Microchip есть примечание к приложению о распределении нагрузки, если вы хотите развернуть свою собственную простую версию.

Вы также можете получить идеальные диоды в красивой упаковке.

\$\конечная группа\$

\$\начало группы\$

Если вы можете жить с падением диода на аккумуляторе, то проще всего использовать два диода. Используйте диоды Шоттки для снижения падения напряжения. Для таких низких напряжений и скромных токов вы, вероятно, можете снизить напряжение до 200 мВ или около того. Если падение на 200 мВ приемлемо, то я бы просто согласился.

Если падение напряжения на диоде неприемлемо, вы все равно используете диоды, но вокруг каждого из них размещаете полевой транзистор. Затем схема должна определить, доступен ли внешний источник, и включить/отключить соответствующие полевые транзисторы. Это более сложно, и вы должны учитывать, насколько быстро может реагировать схема, но вы должны быть в состоянии найти полевые транзисторы с Rdson в несколько десятков мВ, поэтому падение напряжения практически исключено при небольших токах.

Возможно, вам нужно сделать это только через диод батареи, если внешний источник может иметь достаточно высокое напряжение. В конце концов, напряжение батареи будет меняться в зависимости от состояния заряда и температуры, поэтому даже после падения диода Шоттки вы можете организовать внешний источник питания, чтобы обеспечить по крайней мере такое же напряжение, как наихудший уровень заряда батареи, с которым должна работать схема.

\$\конечная группа\$

4

\$\начало группы\$

То, что вы просите, является переключателем «Исключающее ИЛИ» (диод или транзистор), когда все, что вам может понадобиться, это «Включающее ИЛИ». Это уже делается путем простого разряжения батареи все время и использования диспетчера зарядного устройства для принятия решения о том, должна ли батарея находиться в плавающем состоянии или получать заряд, мгновенно проверяя ее емкость при подключении. Явная логика этой конструкции заключается в том, что нагрузка будет получать питание от одного и того же разъема, а зарядное устройство ИЛИ аккумулятор будет подавать питание от того, что выше по напряжению.

Однако, если ваше зарядное устройство НЕ определяет, когда и как поддерживать плавающее напряжение заряда, ваша батарея может НЕ перейти в состояние покоя при полной зарядке, и, таким образом, постоянная утечка зарядного тока может сократить срок службы. Умные зарядные устройства предназначены для отключения при достижении полного заряда.

Подумав об этом, теперь кажется, что именно так устроены мобильные телефоны и ноутбуки с интеллектуальными зарядными устройствами. Так что это зависит от вашего зарядного устройства. Если это не интеллектуальный переключатель, вам, возможно, придется изучить это подробнее или использовать переключатель исключающего ИЛИ, такой как контакт в разъеме питания постоянного тока (gnd), диодный мост или мост на полевых транзисторах.

\$\конечная группа\$

6

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

. 9Схема 0000. Что мешает вам поставить переключающий транзистор на выходную сторону источника питания?

спросил

Изменено 1 год, 7 месяцев назад

Просмотрено 795 раз

\$\начало группы\$

Когда вы ищете теорию электропитания в Интернете, все примеры схем имеют переключающий транзистор на входной стороне трансформатора. Для этого есть причина? Какие инженерные компромиссы возникают, если можно разместить переключающий транзистор на выходной стороне трансформатора?

Особенно в случае источника питания, преобразующего 100 вольт или более в более низкое напряжение, казалось бы, вы можете снизить требования к напряжению транзистора, поместив его после трансформатора. Это также полностью изолировало бы схему регулирования напряжения/тока от стороны высокого напряжения схемы. Кроме того, было бы очень просто сделать сильноточный источник питания постоянного тока для хобби. Вы можете взять микроволновый трансформатор, поставить силовой транзистор на выход трансформатора, а затем соединить выход транзистора с выпрямительным диодом и сглаживающим конденсатором. Быстро, грязно, просто, достаточно опасно и дешево.

Так как мой главный вопрос заключается в том, можете ли вы преобразовать один из стандартных типов источников питания, чтобы иметь переключающий транзистор на выходной стороне трансформатора, я полагаю, что эта примерная схема обратноходового преобразователя (на фото ниже) из Википедии будет хорошей схемой для фокусировки вопрос по.

Основные моменты, на которые я хотел бы получить ответы:

  • Возможно ли вообще, чтобы блок питания работал на практике, если он спроектирован таким образом?
  • Есть ли в связи с этим какие-либо технические компромиссы?
  • Есть ли какие-то конструктивные ошибки, которых следует избегать, чтобы все заработало? (Например, потребует ли эта конструкция, чтобы вы поместили переключающий транзистор непосредственно после трансформатора, или вы могли бы поместить его после конденсатора и выпрямительного диода, и он все еще работал нормально — эта часть, возможно, должна быть второй ответной публикацией вопроса, хотя . )

Если на практике невозможно разместить переключающий транзистор на выходе трансформатора, объясните, почему. Для целей вопроса я предполагаю, что источник входного питания составляет 100 В постоянного тока. Я также предполагаю, что обмотки трансформатора не имеют соотношения витков 1: 1. Это изменение конструкции потребует от трансформатора изменения напряжения.

Редактировать: я пользуюсь мобильным телефоном, поэтому мне сейчас нелегко отредактировать правильное изображение, но, по моему вопросу, переключатель S должен быть на вторичной стороне трансформатора. В узле с надписью «I нижний индекс D» на рисунке ниже.

  • схема
  • импульсный источник питания
  • преобразователь постоянного тока

\$\конечная группа\$

2

\$\начало группы\$

Вы всегда должны иметь вход переменного тока для работы трансформатора, выполняющего свою работу по понижению напряжения. Таким образом, питание трансформатора напрямую от 100 В постоянного тока не работает. Вы должны использовать первичный переключатель только для того, чтобы заставить трансформатор что-то делать.

Допустим, у вас есть источник питания 120 В переменного тока. Вы действительно можете сделать понижающий импульсный источник, используя трансформатор, за которым следует выпрямитель, чтобы получить необработанный постоянный ток низкого напряжения, и использовать импульсный стабилизатор во вторичной обмотке. До того, как автономные коммутаторы стали обычным явлением, это делалось именно так. Это был и остается очень простой способ сделать источник питания переменного/постоянного тока. Он позволяет избежать почти всех хлопот, связанных с высоковольтными компонентами и сертификацией безопасности, и может использовать легкодоступные трансформаторы. это хороший способ, учитывая технологии и средства проектирования, доступные нам сейчас? Тяжело сказать.

Давным-давно я сделал аудиопродукт, который использовал именно этот подход AC/DC, чтобы уменьшить шум. В этом продукте использовался большой, тяжелый (и дорогой — это был тороидальный трансформатор с малой утечкой) для работы на частоте 60 Гц. Дизайнер/производитель был специалистом по аудиотехнике, который занимался гитарными усилителями как бизнесом (к тому же известным) и настаивал на таком подходе, поэтому я согласился.

Было ли это лучше, чем использование более типичных 30 кГц или около того, используемых с первичной коммутацией? Он, безусловно, был тяжелее и дороже, а также добавлял вес продукту, делая его более солидным. Тем не менее, я не думаю, что сделал бы это снова. Он менее эффективен, более громоздкий и стоит дороже, чем подход с первичным коммутатором.

\$\конечная группа\$

6

\$\начало группы\$

Основная причина, по которой это вообще не работает, заключается в том, что трансформатор не работает с постоянным током.

\$\конечная группа\$

6

\$\начало группы\$

Возможно ли, чтобы источник питания работал на практике, когда разработан таким образом?

Да, вы можете сделать это, но тогда вы потеряете огромную выгоду от того, что гораздо меньший и более дешевый высокочастотный трансформатор переключается на высокой частоте (около 100 кГц) на первичной обмотке. Это не просто, когда вы думаете об этом.

Возможны ли в связи с этим какие-либо технические компромиссы?

Да, большим компромиссом является трансформатор, потому что, если вы «переключаете» вторичную сторону, ваш трансформатор должен быть рассчитан на низкие частоты, такие как 50 Гц, а это означает гораздо больший импеданс первичной намагниченности и полностью больший и более дорогой дизайн.

Есть ли какие-то конструктивные ошибки, которых следует избегать, чтобы все заработало? (За например, эта конструкция потребует от вас поставить переключающий транзистор сразу после трансформатора или можно поставить после конденсатора и выпрямительный диод, и все еще работает нормально — эта часть может хотя должен быть второй ответный пост с вопросами.)

Вы просто не стали бы этого делать, учитывая явные преимущества переключения основного на частоте около 100 кГц.

было бы очень просто создать сильноточный преобразователь постоянного тока в постоянный. поставка для целей хобби.

Да, концептуально проще, но не экономический шедевр. По сути, это то, как был разработан традиционный старомодный источник питания, но в большинстве случаев на выходе использовались линейные стабилизаторы, а не понижающий стабилизатор. Он работает, но при той же выходной мощности он больше, тяжелее, менее энергоэффективен и дороже.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *