Каковы основные компоненты импульсного блока питания. Как работает инвертор в импульсном БП. Какие микросхемы используются в качестве ШИМ-контроллеров. Какие бывают топологии импульсных преобразователей. Как происходит запуск и стабилизация выходного напряжения в импульсных БП.
Основные компоненты импульсного блока питания
Импульсный блок питания состоит из нескольких ключевых компонентов:
- Входной выпрямитель и фильтр
- Инвертор (преобразователь постоянного тока в переменный)
- ШИМ-контроллер
- Силовые ключи (MOSFET транзисторы)
- Импульсный трансформатор
- Выходной выпрямитель и фильтр
Рассмотрим подробнее работу инвертора и ШИМ-контроллера, как ключевых элементов импульсного преобразования.
Принцип работы инвертора в импульсном блоке питания
Инвертор преобразует постоянное напряжение с входного фильтра (обычно около 310 В) в переменное высокочастотное напряжение для подачи на импульсный трансформатор. Основные элементы инвертора:
- ШИМ-контроллер — формирует управляющие импульсы
- Силовые MOSFET транзисторы — коммутируют ток через первичную обмотку трансформатора
- Драйверы — согласуют выход ШИМ-контроллера с затворами MOSFET
ШИМ-контроллер изменяет ширину управляющих импульсов, регулируя таким образом передаваемую через трансформатор энергию и стабилизируя выходное напряжение.
Эволюция схем инверторов импульсных блоков питания
Первые импульсные блоки питания строились на дискретных компонентах по схеме автогенератора. Затем появились специализированные микросхемы ШИМ-контроллеров, что позволило упростить схемотехнику и повысить надежность:
- Автогенераторные схемы на биполярных транзисторах
- Схемы с логическими микросхемами в качестве генератора импульсов
- Специализированные микросхемы для электронных балластов (IR2151, IR2153)
- Интегральные ШИМ-контроллеры (TL494, UC3842 и др.)
Современные импульсные блоки питания в основном используют интегральные ШИМ-контроллеры.
Топологии импульсных преобразователей
Существуют различные топологии импульсных преобразователей, отличающиеся схемой включения силовых ключей и трансформатора:
- Однотактная обратноходовая (Flyback) — самая распространенная для маломощных БП
- Однотактная прямоходовая (Forward)
- Двухтактная полумостовая
- Двухтактная мостовая
- Резонансные и квазирезонансные преобразователи
Выбор топологии зависит от требуемой мощности, КПД, габаритов и других параметров блока питания.
Принцип работы ШИМ-контроллера в импульсном блоке питания
ШИМ-контроллер является «мозгом» импульсного блока питания. Его основные функции:
- Формирование управляющих импульсов для силовых ключей
- Регулировка ширины импульсов для стабилизации выходного напряжения
- Обеспечение плавного запуска
- Защита от перегрузки, короткого замыкания и перенапряжения
Рассмотрим работу ШИМ-контроллера на примере популярной микросхемы TL494.
Устройство и принцип работы ШИМ-контроллера TL494
TL494 содержит следующие основные функциональные блоки:
- Генератор пилообразного напряжения
- Два компаратора для регулировки по напряжению и току
- Источник опорного напряжения
- Усилитель ошибки
- ШИМ-компаратор
- Выходной драйвер
Принцип работы заключается в сравнении пилообразного напряжения с сигналом обратной связи, что позволяет формировать ШИМ-сигнал для управления силовыми ключами.
Запуск и стабилизация выходного напряжения импульсного блока питания
Процесс запуска импульсного блока питания происходит в несколько этапов:
- Подача питания на ШИМ-контроллер через пусковой резистор
- Проверка входного напряжения
- Формирование первых управляющих импульсов
- Появление напряжения на вспомогательной обмотке
- Переход на питание от вспомогательной обмотки
Стабилизация выходного напряжения осуществляется за счет изменения ширины управляющих импульсов. ШИМ-контроллер сравнивает опорное напряжение с напряжением обратной связи и корректирует скважность импульсов.
Современные тенденции в разработке импульсных блоков питания
Основные направления развития импульсных блоков питания:
- Повышение рабочей частоты для уменьшения габаритов
- Применение синхронных выпрямителей для повышения КПД
- Использование цифровых ШИМ-контроллеров
- Внедрение технологий «мягкого переключения» (ZVS, ZCS)
- Разработка интеллектуальных систем управления и мониторинга
Эти инновации позволяют создавать более эффективные, компактные и надежные импульсные блоки питания для различных применений.
Ir2153 описание на русском
Самотактируемый полумостовой драйвер
Отличительные особенности:
- Интегрированный 600В полумостовой драйвер
- 15.6В стабилитрон на линии Vcc
- Действительная микромощность при старте
- Более жесткое начальное управление временем паузы
- Низкий температурный коэффициент длительности паузы
- Функция выключения (1/6 от Vcc на выводе СТ)
- Увеличенный гистерезис блокировки при снижении напряжения (1 В)
- Более маломощная схема преобразования уровня
- Постоянная ширина импульсов LO,HO при старте
- Уменьшено di/dt для лучшей нечувствительности к шумам
- Выход драйвера нижнего уровня в фазе с RT
- Внутренний 50нс диод запуска (IR2153D)
- Увеличенная стойкость к защелкиванию на всех входах и выходах
- Защита от электростатических разрядов на всех выводах
- Напряжение смещения VOFFSET не более 600В
- Скважность 2 (меандр)
- Tr/Tp 80/40нс
- Vclamp 15. 6В
- Пауза 1.2 мкс
Типовая схема включения:
Rt | Резистор задающего генератора, для нормального функционирования в фазе с LO |
Ct | Конденсатор задающего генератора |
VB | Напряжение питания ключей верхнего уровня |
HO | Выход драйвера верхнего уровня |
VS | Возврат питания верхнего уровня |
VCC | Питание драйверов нижнего уровня и логики |
LO | Выход драйвера нижнего уровня |
COM | Общий питания и логики |
IR2153 – улучшенная версия драйвера IR2155 и IR2151, которая содержит драйвер високовольтного полумоста с генератором аналогичным промышленному таймеру 555 (К1006ВИ1). IR2153 отличается лучшими функциональными возможностями и более прост в использовании по сравнению с предыдущими микросхемами. Функция выключения в данном устройстве совмещена с выводом СТ, при этом выключение обоих каналов происходит при подаче управляющего сигнала низкого уровня.
Кроме того, формирование выходных импульсов связано с моментом пересечения увеличивающегося напряжения на Vcc порога схемы блокировки от понижения напряжения, тем самым была достигнута более высокая стабильность импульсов при запуске.
Стойкость к шумам была значительно улучшена за счет уменьшения скорости изменения тока драйверов (di/dt) а также за счет увеличения гистерезиса схемы блокировки от понижения напряжения (до 1В). Наконец, существенное внимание было уделено повышению стойкости защелок и обеспечению всесторонней защиты от электростатических разрядов на всех выводах.
Принципиальные электросхемы, подключение устройств и распиновка разъёмов
На основе микросхемы IR2153 и силовых IGBT транзисторов было сконструировано множество схем, таких как драйвер и генератор индукционного нагревателя, источник питания для катушки Тесла, DC-DC преобразователи, импульсные источники питания и так далее. А связка NGTB40N120FL2WG + IR2153 работают вместе как нельзя лучше, где IR2153 является драйвером — задающим генератором импульсов, а пара биполярных транзисторов с изолированным затвором на 40А/1000В может обрабатывать большой ток нагрузки.
Схемы включения IR2153
Если вы собираетесь повторить одну из этих схем — вот архив с файлами печатных плат. Схема формирователя стробирующих импульсов для их управления работает от 15 В постоянного тока — на транзисторы выходного каскада подаётся до 400 В напряжения.
IR2153 импульсный блок питания на плате
Кстати, IR2153 — это улучшенная версия популярных микросхем IR2155 и IR2151, которая включает высоковольтный полумостовой драйвер затвора. IR2153 предоставляет больше возможностей и проще в использовании, чем предыдущие м/с. Тут имеется функция отключения, так что оба выхода формирователя стробирующих импульсов могут быть отключены с помощью низкого напряжения сигнала. Помехоустойчивость была значительно улучшена, как за счет снижения пиковых импульсов. Наконец, особое внимание было уделено максимально всесторонней защите от электростатических разрядов на всех выводах.
Хочу предоставить вашему вниманию четыре разные схемы импульсных блоков питания на всеми любимой народной IR2153. Все эти схемы были мною собраны и проверены в 2013-2015 годах. Сейчас, в 2017 году, я раскопал все эти схемы в своих архивах и спешу с вами поделиться. Пусть вас не смущает что не ко всем схемам есть фото собранных устройств, что на фото будут и не полностью собранные блоки питания, но это все что мне удалось найти в своих архивах.
Итак первый блок питания, условно назовем его «высоковольтным»:
Схема классическая для моих импульсных блоков питания. Драйвер запитывается непосредственно от сети через резистор, что позволяет снизить рассеиваемую на этом резисторе мощность, по сравнению с запиткой от шины +310В. Этот блок питания имеет схему мягкого старта (ограничения пускового тока) на реле. Софт-старт питается через гасящий конденсатор С2 от сети 230В. Этот блок питания оснащен защитой от короткого замыкания и перегрузки во вторичных цепях. Датчиком тока в ней служит резистор R11, а ток при котором срабатывает защита регулируется подстроечным резистором R10. При срабатывании защиты загорается светодиод HL1. Этот блок питания может обеспечить выходное двухполярное напряжение до +/-70В (с данными диодами во вторичной цепи блока питания). Импульсный трансформатор блока питания имеет одну первичную обмотку из 50 витков и четыре одинаковые вторичные обмотки по 23 витка. Сечение провода и сердечник трансформатора выбираются исходя из требуемой мощности, которую необходимо получить от конкретного блока питания.
Второй блок питания, условно его будем называть «ИБП с самопитанием»:
Этот блок имеет похожую с предыдущим блоком питания схему, но принципиальное отличие от предыдущего блока питания заключается в том, что в этой схеме, драйвер запитывает сам себя от отдельной обмотки трансформатора через гасящий резистор. Остальные узлы схемы идентичны предыдущей представленной схеме. Выходная мощность и выходное напряжение данного блока ограничено не только параметрами трансформатора, и возможностями драйвера IR2153, но и возможностями диодов примененных во вторичной цепи блока питания. В моем случае — это КД213А. С данными диодами, выходное напряжение не может быть более 90В, а выходной ток не более 2-3А. Выходной ток может быть больше только в случае применении радиаторов для охлаждения диодов КД213А. Стоит дополнительно остановиться на дросселе Т2. Этот дроссель мотается на общем кольцевом сердечнике (допускается использовать и другие типы сердечников), проводом соответствующего выходному току сечения. Трансформатор, как и в предыдущем случае, рассчитывается на соответствующую мощность с помощью специализированных компьютерных программ.
Блок питания номер три, условно назовем «мощный на 460х транзисторах» или просто «мощный 460»:
Эта схема уже более значительно отличается от предыдущих схем представленных выше. Основных больших отличий два: защита от короткого замыкания и перегрузки здесь выполнена на токовом трансформаторе, второе отличие заключается в наличии дополнительных двух транзисторов перед ключами, которые позволяют изолировать высокую входную емкость мощных ключей (IRFP460), от выхода драйвера. Еще одно небольшое и не существенное отличие заключается в том, что ограничительный резистор схемы мягкого старта, расположен не в шине +310В, как это было в предыдущих схемах, а в первичной цепи 230В. В схеме так же присутствует снаббер, включенный параллельно первичной обмотке импульсного трансформатора для улучшения качества работы блока питания. Как и в предыдущих схемах чувствительность защиты регулируется подстроечным резистором (в данном случае R12), а о срабатывание защиты сигнализирует светодиод HL1. Токовые трансформатор мотается на любом небольшом сердечнике который у вас окажется под рукой, вторичные обмотки мотаются проводом небольшого диаметра 0,2-0,3 мм, две обмотки по 50 витков, а первична обмотка представляет собой один виток провода достаточного для вашей выходной мощности сечения.
И последний на сегодня импульсник — это «импульсный блок питания для лампочек», будем его условно так называть.
Да да, не удивляйтесь. Однажды появилась необходимость собрать гитарный предусилитель, но под рукой не оказалось необходимого трансформатора и тогда меня очень выручил данный импульсник, который был построен именно по тому случаю. Схема отличается от трех предыдущих своей максимальной простотой. Схема не имеет как таковой защиты от короткого замыкания в нагрузке, но необходимости в такой защите в данном случае нет, так как выходной ток по вторичной шине +260В ограничен резистором R6, а выходной ток по вторичной шине +5В — внутренней схемой защиты от перегрузки стабилизатора 7805. R1 ограничивает максимальный пусковой ток и помогает отсекать сетевые помехи.
Общие рекомендации:
- Импульсный трансформатор для каждой из схем необходимо рассчитывать в соответствии с вашими личными требованиями к блоку питания и вашими возможностями, поэтому конкретные намоточные данные я не привожу.
- Для расчета импульсного трансформатора очень удобно пользоваться программами «Старичка» — Lite-CalcIT и RingFerriteExtraSoft.
- Перед включением в сеть импульсного блока питания необходимо тщательно проверить монтаж на отсутствие ошибок, «соплей» на плате и так далее
- Обязательно необходимо промывать плату со стороны монтажа бензином, ацетоном, керосином, любым растворителем или спиртом для полного удаления остатков флюса. Импульсный блок питания работает на высокой частоте и даже незначительная паразитная проводимость или емкость может привести к тому, что собранный из исправных деталей блок питания не заработает или взорвется при первом же включении.
- Первое включение необходимо производить только с ограничением тока, его можно ограничить либо мощным резистором, либо мощной лампой накаливания, могут быть и другие варианты.
- Необходимо помнить и никогда не забывать о правилах электробезопасности. В каждой из схем блока питания присутствует опасное для жизни напряжение.
Автогенераторы в импульсных источниках питания
Автогенераторы в импульсных источниках питания
Из анализа известных статей В.Козельского и А.Колганова напрашивается вывод, что тема по разработке хороших мощных импульсных источников питания до сих пор является актуальной. Проблема со сквозным током вроде бы окончательно решена. Недостаток рассмотренных схем заключается только в громоздкости конструкции и несколько устаревшей элементной базе. Но выражаю огромную благодарность за аккуратное описание рассматриваемых в этих статьях технических решений.
Предлагаемая конструкция – просто переход на более современную элементную базу. На рис.1 приведена типовая схема полумостового преобразователя напряжения, с одной первичной обмоткой.
Цепи входного выпрямителя определяются выходной мощностью преобразователя. При выходной мощности до 100Вт, в качестве диодного моста можно использовать DB107. При увеличении мощности можно использовать мосты типа BR310 и более мощные. Выпрямитель во вторичной обмотке импульсного трансформатора не представляет интереса и поэтому не показан. Его можно выполнить по любой схеме, в зависимости от параметров и характера нагрузки. Подстроечный резистор предназначен для изменения частоты автогенератора в широких пределах.
В качестве автогенератора используется одна микросхема, типа IR2153 (можно использовать практически любую из целого ряда микросхем: IR2151, IR2152, IR2155, IR21531). Если найдете, то желательно с индексом “D” в конце названия. Типовая схема включения показана на рис.2.
Автогенератор IR2153 имеет внешнее регулирование частоты, фиксированную паузу на 1,2мкс, миниатюрный DIP-8 и SOIC корпус. Схемно заложенной фиксированной паузы на 1,2мкс достаточно при использовании любых современных мощных MOSFET транзисторов. В автогенераторе встроен стабилитрон на 15,6В, который и стабилизирует напряжение питания, получаемое через мощный токоограничительный резистор от цепи основного питания. Для питания цепи управления верхнего ключа, используется внешний высоковольтный, быстрый диод. В IR2153D этот диод встроен в микросхему.
В качестве выходных ключей необходимо использовать мощные MOSFET транзисторы с встроенным диодом защиты, например IRFBC40. При питании от первичной сети ~220В допустимое напряжение сток-исток выбираемого транзистора должно быть не менее 400В. Величина тока выбираемого MOSFET транзистора определяется необходимой мощностью преобразователя. Фактически выходная мощность определяется только применяемыми выходными транзисторами. Если посмотреть каталог фирмы International Rectifier, то видно, что выбор MOSFET транзисторов огромен, диапазон токов — от единиц до сотен ампер.
Токоограничительные резисторы в цепях затвора предназначены для ограничения выходного тока управления при перезаряде входной емкости MOSFET транзисторов. При выходной мощности более 50Вт, все мощные MOSFET транзисторы, конечно же, необходимо устанавливать на радиаторы.
Рабочая частота автогенератора задается одной RC-цепью. Рекомендуется использовать резистор номиналом не менее 5..10 кОм. Частота генерации определяется формулой 1.
Особое внимание необходимо уделить аккуратной трассировке управляющих и силовых цепей MOSFET транзисторов. Особенности расположения элементов около микросхемы и трассировки земли показаны на рис.3.
При сборке платы необходимо обеспечить электростатическую защиту MOSFET транзисторов. Запаивать в плату их надо в последнюю очередь.
Выбор рабочей частоты и расчет выходного трансформатора достаточно подробно приведен в различной литературе.
Выбранная для примера микросхема IR2153, конечно же не является последним словом техники. Кто хочет в широком диапазоне регулировать время паузы между импульсами, могут поработать с такими автогенераторами, как R2156 или IR21571.
Из чего состоит импульсный блок питания часть 3. Инвертор блока питания. Из чего состоит инвертор импульсного блока питания
Что вообще такое — инвертор.Данный узел предназначен для преобразования постоянного тока в переменный. В данном случае мы имеем на входе 310 Вольт постоянного тока, которые надо подать на трансформатор. Но так как трансформаторы не хотят работать на постоянном токе, то и нужен инвертор.
Инвертор состоит из двух основных узлов.
ШИМ контроллера.
А также выходных высоковольтных транзисторов. Попутно весьма кстати попал в кадр трансформатор управления этими транзисторами.
Впрочем инвертор может выглядеть заметно проще, например у известного блока питания.
Микросхема, жменька деталей, вот и весь ШИМ контроллер.
В данном случае схемотехника блока питания, а также его мощность заметно отличаются от предыдущего варианта, потому транзистор всего один.
Еще один вариант, слева конденсаторы входного фильтра, справа трансформатор, между ними инвертор.
Так как на силовом транзисторе выделяется значительная мощность, то чаще всего он устанавливается на радиатор.
Но давайте немного отвлечемся на историю, с чего собственно все начиналось. Возможно конечно начиналось не с этого, потому точнее будет сказать, с чего начинал я.
Как вы понимаете, раньше не было ШИМ контроллеров, а иногда и обычную «кренку» купить была проблема, но прогресс не стоял на месте и радиолюбители пытались заменить большие трансформаторы на импульсные блоки питания.
На схеме показан типичный автогенератор, но были схемы и с простой логикой в качестве генератора импульсов.
Тогда схемы подобных блоков питания часто встречались в журнале Радио в контексте усилителей мощности. Но мое знакомство было на примере блока питания для Синклера. Кстати на фото один из них, который я оставил себе на память 🙂
Правда вышеприведенная схема требовала подбора транзисторов и в моем случае сильно перегревалась.
Схема с автогенератором считается самой простой, в данном примере она даже не имеет стабилизации выходного напряжения.
При всем современном разнообразии микросхем показанная выше схема также нашла себя в современном мире, в качестве «электронного трансформатора» для галогенных ламп.
Правда постепенно такие лампы заменяют на светодиоды, но все равно электронные трансформаторы довольно популярны, в основном из-за свой простоты и дешевизны.
Уже через довольно большое время подобные схемы получили второе дыхание. Известная фирма International Rectifier выпустила весьма простую микросхему для электронного балласта люминесцентных ламп. Но выяснилось, что данная микросхема отлично работает в качестве задающей для импульсного БП. К ним относятся микросхемы IR2151, IR2153 и подобные.
Вообще некоторые радиолюбители делали и стабилизированные блоки питания на базе этой микросхемы, но работает это не всегда корректно.
По сути для этой микросхемы надо только несколько мелких деталей и пара полевиков, вот и вся схема инвертора. Именно с применением этой микросхемы я делал первичный блок питания для своего лабораторного.
Кстати, именно эту микросхему я рекомендую для питания усилителей мощности, как неприхотливую и довольно надежную. А также хочу сказать, что нерегулируемые БП лучше себя ведут в плане шумов.
Так выглядит трехканальный блок питания с мощностью в 300 Ватт и ШИМ регулировкой вентилятора. Более полная информация есть в обзоре лабораторника.
Также довольно часто можно встретить и однотактные блоки питания на основе автогенератора. Особенно часто они попадались в АТХ боках в качестве дежурки.
Также они могут попасться и в очень бюджетных зарядных для телефонов. Автогенератор является самым простым типом инвертора.
Хотя бывают и исключения, например блок питания довольно дорогого фирменного кондиционера также имел в своем составе автогенератор, правда сделан довольно качественно и имеет стабилизацию напряжения.
В следующий раз мне попались импульсные блоки питания в новых тогда телевизорах. После больших и тяжелых трансформаторов это был прогресс.
Схемотехника правда была жуткая, ремонтопригодность слабая, да и габарит я не назвал маленьким. На фото блок питания мощностью 80 Ватт.
Сначала они также делались по схеме с автогенератором, но потом начали ставить микросхему, правда особо ничего это не изменило.
Вот и подошли мы к теме более современных инверторов, так как на этом этапе блоки питания вышли на тот схемотехнический уровень, который мы сейчас наблюдаем в современных блоках.
Да, поднимали частоту, расширяли диапазон работы, мощность, но суть осталась той же что и была 30 лет назад. Правда так как тогда интегральные ШИМ контроллеры были слабо развиты, то делали их в виде сборок.
Впрочем и в современных блоках питания не стесняются применять такие вот унифицированные модули, по своему это даже удобно.
Типовая блок схема распространенных моделей инверторов состоит из пяти узлов.
1. Узел контроля напряжения питания, защита от работы при пониженном и повышенном напряжении.
2. Вспомогательное питания или цепь запуска.
3. Силовой элемент и датчик тока. Этот узел может заметно отличаться в зависимости от топологии блока питания.
4. Собственно ШИМ контроллер, мозги блока питания.
5. Узел основного питания ШИМ контроллера.
Рассмотрим как происходит запуск большинства блоков питания, эта информация может помочь в поиске неисправностей.
После того как подали высокое напряжение, оно через резистор попадает в цепь питания ШИМ контроллера.
Как только напряжение достигнет порога включения ШИМ контроллер запускается, питаясь в это время от конденсатора в цепи питания.
Если ваш блок питания не подает признаков жизни, проверьте, есть ли питание на входе ШИМ контроллера, иногда эти резисторы уходят в обрыв.
Затем ШИМ контроллер проверяет, в порядке ли питающее напряжение. Эта цепь есть далеко не у всех инверторов, потому если ее нет, то можно сразу перейти к следующему шагу.
Если с питанием все отлично, то контроллер начинает выдавать управляющие импульсы силовому транзистору. попутно при этом контролируется ток в цепи этого транзистора и если он превышен, то ШИМ контроллер переходит в режим защиты.
Если все нормально, то буквально после нескольких тактов на выходе цепи основного питания появляется рабочее напряжение, которое и питает контроллер. Кстати это один из узлов отказа, если питания нет, то блок питания будет работать в старт-стоп режиме.
Если все этапы запуска прошли корректно, то дальше вступает в дело ШИМ стабилизация. В данном случае я всегда сравниваю ее с бочкой, в которую мы порциями подаем воду и сливая ее через другой кран с разным напором. Задача контроллера поддерживать всегда один и тот же уровень воды в бочке при том, что вводной кран может быть только в двух состояниях, открыто и закрыто.
Кстати, многие видели на выходе блоков питания резистор, подключенный параллельно питанию, он нужен чтобы обеспечить некую минимальную нагрузку, так как блоку питания тяжело работать при очень малой ширине импульса.
Для примера ширина импульсов при небольшой нагрузке.
Если увеличить нагрузку, то ШИМ контроллер увеличит подачу энергии в трансформатор, а через него в нагрузку.
Даже если к примеру нагрузить блок питания на полную, то ширина импульсов не будет полной.
Запас необходим для компенсации снижения входного напряжения.
Если снизить входное напряжение еще больше, то ШИМ контроллер просто выставит максимальную ширину импульса. Кстати, ШИМ контроллеры блоков питания не формируют 100% заполнение, так как всегда необходимо «мертвое» время для защиты выходных транзисторов. В это время выходные транзисторы закрыты.
Для обратноходовых однотактных блоков питания, а именно они используются в качестве блоков питания небольшой мощности, максимальное заполнение составляет 50%.
Самым первым ШИМ контроллером, с которым я познакомился, была легендарная TL494. Микросхема очень старая, но так получилось, что у разработчика дешевый и очень универсальный контроллер и даже спустя много лет и при наличии современных решений он еще весьма широко применяется в блоках питания.
Выпускается она многими фирмами и иногда под разными названиями, например аналог от Самсунга называется КА7500.
На первый взгляд его внутреннее устройство может показаться довольно сложным, но на самом деле таковым не является.
Если немного упростить картинку, то будет примерно так:
1 и 2, стабилизатор питания и источник опорного напряжения.
3. Генератор импульсов, задает частоту работы контроллера.
4. Два компаратора, один обычно используется для стабилизации тока, второй — напряжения.
5. Задатчик мертвого времени, т.е. минимальной паузы между открытым состоянием выходов.
6. Узел сложения всех сигналов.
7. Триггер, который управляет выходными ключами и задает логику работы, двухтактный или однотактный режим. В некоторых аналогах этот триггер сбоил на частотах ниже 100 Гц, чем доставлял немало сюрпризов строителям повышающих инверторов в 220 Вольт.
Микросхема выполнена в корпусе с 16 выводами. Сама по себе надежна, но иногда в блоках питания АТХ, где ее питание идет от источника дежурного напряжения, выходит из строя после его ухода в разнос, когда высыхал конденсатор по выходу 5 Вольт. Пробивало стабилизатор опорного напряжения и на выходе БП запросто могло появиться высокое напряжение. Потому при проверке прежде всего смотреть наличие 5 Вольт на выводе 14.
В блоках питания АТ, а потом в распространенных китайских БП в кожухе она питается от своего же силового трансформатора. Запуск происходит за счет резисторов в базовых цепях силовых ключей. При включении они сначала входят в автогенераторный режим, на выходе трансформатора появляется небольшое напряжение, микросхема начинает работать и перехватывает управление на себя. Потому если БП не запускается, то в первую очередь проверяем резисторы выделенные на схеме резисторы.
Вторым, не менее легендарным ШИМ контроллером является семейство однотактных UC384х.
Думаю что вы могли из встречать раньше в блоках питания и преобразователях напряжения.
Внутреннее устройство весьма похоже на TL494, но немного отличается. Для начала у микросхемы только один выход, а не два.
Кроме того компараторы привязаны к определенному напряжению, заданному внутри микросхемы, а не универсальные.
Ну и конечно ключевая особенность, микротоковый старт. пока микросхема не начнет работать, он потребляет очень маленький ток, потому запустить ее можно прямо от входного напряжения через резистор, TL494 так не умеет.
Чтобы запуск проходил корректно, у микросхемы есть пороговая схема определяющая напряжение включения и выключения микросхемы. Существует два варианта, около 9 и 15 Вольт.
Кроме того микросхема может иметь 50 и 100% рабочий цикл, первая идет в блоки питания, вторая в преобразователи напряжения.
Так получается четыре варианта исполнения этого контроллера.
Микросхема выпускается в разных корпусах, но наиболее распространен корпус с восемью выводами.
Типовая схема блока питания с этой микросхемой выглядит примерно так.
Сейчас на рынке есть много блоков питания с другими микросхемами, но если посмотреть на их схему, то вы увидите очень много общего, все те же узлы и элементы. Отличия если и есть, то они минимальны.
Инверторы блоков питания могут иметь разную топологию, и об этом я обязательно расскажу отдельно, но большинство выполнено по схемотехнике флайбек или полумост, две верхние схемы на чертеже. Собственно все описанные сегодня блоки питания работают именно так.
Но вернемся к ШИМ контроллерам. Перед этим я описывал варианты, когда ШИМ контроллер отдельно, а силовой узел отдельно. но также получили распространение и полностью интегрированные контроллеры, например серии TOP от Power integrations где практически все собрано в одном корпусе.
Не так давно мне даже попалась подделка, причем что интересно, она слева, с лазерной маркировкой, справа оригинал.
Распространение они получили благодаря простейшей схемотехнике, где в простом варианте блок питания состоит буквально из нескольких деталей.
Потом появились более продвинутые контроллеры, где можно задавать напряжение включения и отключения, а также ограничение выходной мощности. Но при желании их можно перевести в трехвыводный режим, соединив выводы как было на фото раньше.
Но в любом случае данные контроллеры гораздо умнее и имеют комплекс защит от разных проблем, например они выдерживали напряжение более 300 Вольт по входу просто блокируя свою работу.
Но секрет их популярности был также и в удобной программе расчета, которую предоставлял производитель. Она позволяла рассчитать все, вплоть до укладки обмоток трансформатора. А при обнаружении проблем в расчетах, выдавала подсказки.
Производитель предоставлял варианты применения своих микросхем в виде примеров. Был даже вариант компьютерного блока питания, но как-то не пошло.
Зато в небольших блоках питания, например мониторов, он встречаются весьма часто.
Кроме того я и сам их очень активно использую уже наверное лет 15.
Китайские производители также не отстают, выпуская свои варианты подобных микросхем.
Которые довольно успешно применяют в небольших блоках питания
Кстати, при желании можно использовать ШИМ контроллеры и без обратной связи от выходного напряжения, используя обмотку питания самого контроллера. Схема упрощается, но стабильность конечно будет немного ниже чем при правильной обратной связи.
В общих чертах на этом все. Вообще мне иногда кажется, что чем больше я рассказываю, тем больше остается за кадром, что еще хотелось бы рассказать более подробно, но не успеваешь. Потому скорее всего будут еще выпуски по отдельным узлам и принципам работы.
Видео получилось слишком длинным, даже сам не ожидал, и это при том, что еще почти ничего не сказал за ключевые транзисторы и часть даже вырезал, наверное болтаю слишком много 🙁
Несколько ссылок, на полезные обзоры, которые упоминались в видео.
Неплохой модуль DC-DC ZXY6005S или лабораторный блок питания своими руками
12 Вольт 6-8 Ампер блок питания, который приятно удивил
12 Вольт 5 Ампер блок питания или как это могло быть сделано
DC-DC преобразователь, как это иногда бывает
S-180-12 180W 12V / 15A блок питания в непривычном формфакторе
36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус
48 Вольт, 5 Ампер и 240 Ватт или блок питания который смог удивить
Блоки питания, маленькие и очень маленькие
Файл | Краткое описание | Размер |
Страницы >>> [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0] | ||
triter.html |
| 95 Kb |
chugun.djvu |
| 54.3 Kb |
Test_fer.html |
| 400 Kb |
Erst.pdf |
| 446 Kb |
Barmaley2.zip |
| 458 Kb |
uzel.html |
| 360 Kb |
Bimax 132.rar |
| 1.48 Mb |
oscill1.html |
| 9.33 Kb |
an-952.pdf + an-953.pdf + an-956.pdf + an-959.pdf + an-960.pdf + an-961.pdf + an-962.pdf + an-963.pdf + an-964.pdf + an-966.pdf + an-969.pdf + an-970.pdf + an-971.pdf + an-972.pdf + an-973.pdf + an-975.pdf |
| 186 Kb + 115 Kb + 115 Kb + 128 Kb + 108 Kb + 105 Kb + 86 Kb + 89 Kb + 362 Kb + 345 Kb + 459 Kb + 743 Kb + 1250 Kb + 137 Kb + 164 Kb + 194 Kb |
dt92-5.pdf + dt92-6.pdf + dt93-1.pdf + dt93-3.pdf + dt93-4.pdf + dt93-6.pdf + dt94-2.pdf + dt94-3.pdf + dt94-4.pdf + dt94-5.pdf + dt94-7.pdf + dt94-8.pdf + dt94-9.pdf + dt94-11.pdf + dt94-12.pdf + dt94-13.pdf + dt94-14.pdf + dt94-16.pdf + dt94-17.pdf + dt95-1.pdf + dt95-2.pdf + dt95-3.pdf + dt98-1.pdf |
| 34.6 Kb + 52.4 Kb + 44.3 Kb + 69.4 Kb + 48 Kb + 225 Kb + 148 Kb + 43.6 Kb + 45.3 Kb + 30.3 Kb + 77.4 Kb + 99.4 Kb + 149 Kb + 28 Kb + 26.1 Kb + 21.8 Kb + 25.8 Kb + 122 Kb + 51.4 Kb + 33.1 Kb + 118 Kb + 77 Kb + 621 Kb |
Страницы >>> [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0] |
Блок питания на ир2153 печатная плата
Импульсный блок питания на IR2153
В данной статье опубликована схема блока питания на IR2153, который можно использовать в качестве блока питания для УНЧ. Также эту схему можно использовать в качестве источника питания для шуруповерта изменив выходной каскад и пересчитав силовой трансформатор на нужно напряжение.
Схема импульсного блока питания на IR2153
Собственно схема блока питания на IR2153 с защитой от кз, приведена на следующем скрине.
Разъем XT1 на схеме — это подключение обмотки самопитания микросхемы, которая намотана на силовой трансформатор и рассчитана на 15 вольт. Запуск схемы производится через резистор R44 и диод VD17. После запуска схемы, микросхема начинает записываться от этой обмотки через диоды VD2 и VD4.
Сопротивление резистора R44 выбрано таким образом, чтобы схема надежно запускалась и в процессе работы сам резистор не сильно грелся.
Разъем XT2 на схеме — подключение вторичных обмоток трансформатора тока.
Пару слов о защите от кз. В схему введен трансформатор тока, первичная обмотка которого состоит из одного витка проводом диаметр 1 мм. На плату ставится трансформатор (кольцо) и через окно припаивается к плате перемычкой, эта перемычка и является витком первичной обметки.
Ниже, на фото печатной платы, стрелкой указано, как припаивается перемычка.
Вторичная обмотка токового трансформатора содержит две обмотки по 50 витков проводом 0,2 мм.
Резистором R50 подбираем нужный порог срабатывания защиты по току. Светодиод D2 сигнализирует нам, что схема находится в режиме защиты.
Также хотел отметить, схема защиты работает по «икающему» типу, то есть если выход закорочен, то защита отключает микросхему и на выходе блока питания нет напряжения, если выход не закорочен, то схема блока питания с защитой на ir2153 работает в штатном режиме.
Печатная плата блока питания на IR2153
На скрине представлен внешний вид печатной платы с обоих сторон. Также там указано место впайки перемычки (белая полоса), которая используется как первичная обмотка трансформатора тока (писал об этом выше).
Фото готовых печатных плат блока питания с защитой на IR2153 сделанных своими руками.
Данная статья опубликована на сайте whoby.ru. Постоянная ссылка на эту статью находится по этому адресу http://whoby.ru/page/blok-pitanija-na-ir2153
Читайте статьи на сайте первоисточнике, не поддерживайте воров.
Внешний вид импульсного блока питания на IR2153
После изготовления печатных плат, пора приступить к сборке этого мощного блока питания. Результат этой работы работы вы ведите на следующих фото.
Файлы для изготовления
Чтобы собрать данную схему источника питания на ir2153 с защитой, скачайте файл печатной платы по этой ссылке.
Если возникнут трудности с намоткой силового трансформатора, то как его правильно намотать, можно посмотреть в этой статье .
Заключение
Расчет силового трансформатора здесь не рассматривается, предполагается, что радиолюбитель рассчитает его сам, на нужные ему напряжения.
Собранная без ошибок и исправных элементов, плата источника питания запускается сразу. Остается только отрегулировать нужный ток срабатывания защиты и пользоваться устройством.
На этом я заканчиваю, всем стабильного напряжения.
Статью написал: Admin Whoby.Ru
Если вам понравилась статья, нажмите на кнопку нужной социальной сети расположенной ниже. Этим действием вы добавите анонс статьи к себе на страницу. Это очень поможет в развитии сайта.
ПЕЧАТНЫЕ ПЛАТЫ ДЛЯ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ
НА IR2151, IR2153, IR2155
Сразу оговорочка — печатные платы есть не на все преобразователи.
Хит парад печатных плат на IR2153 откроет плата схемы с надписью «СХЕМА №1«. Для скачивания платы в формате LAY 5 нажмите на эскиз платы:
Предохранитель впаивается в плату на специанлных стояках, изготовленных из медного провода диаметром 1,5 мм. Можно просто запаять провод диаметром соответствующим таблице токов. Двуполярное питания можно организовать из двух вторичных напряжений, формируемых диодами Шотки и выпрямителей со средней точкой. Имеет дополнительный двуполярный источник для питания предварительных каскадов. Плата расчитана под использование ферритового кольца и усеяна вентиляционными отверстиями — на частотах выше 50 кГц кольца из 2000-го феррита уже саморазогреваются.
Следующая плата под импульсный блок питания на IR2153 для «СХЕМЫ №2». Содержит пару специфичных радиаторов, используемых в телевизорах на кадровой развертке.
В принципе подобрать что то аналогичное или подправить плату под себя большого труда не составит
Данный блок питания так же имеет защиту от перегрузки на трансформаторе тока. В блок встроена ситема мягкого старта вторичного напряжения, предусмотрены выпрямители под питание предварительных каскадов и вентилятор принудительного охлаждения. В качестве выпрямительных диодов вторичного питания используются ультрабыстрые диоды в корпусе ТО-220. В качестве сердечников индуктивностей используются ферриты от фильтров питания телевизоров на которых намотан провод до заполнения окна. Диаметр провода, лучше конечно суммарный диаметр жгута из проводов рсачитывается исходя из соотношения 3-4 А на 1 кв мм сечения:
Эта плата к преобразователю напряжения, приведенному на «СХЕМЕ №4». Ну почти как на схеме. Данный вариант имеет дополнительные транзисторы для ускорения закрытия полевых транзисторов полумоста преобразователя и содержит 4 однополярных выходных напоряжения из которых можно собрать либо два двуполярных напряжения, либо одно для питания усилителя с двухуровневым питанием класса «H» или «G».
Выпрямительные диоды Шотки, а поскольку они больше 150 В бывают крайне редко, то выходное напряжение не может быть выше 75 В и то при условии, что Вы согласны работать на технологическом запасе и готовы к ремонту блока питания в любую минуту. Для повышения надежности следует рачет вести исходя из того, что блок питания будет отдавать в нагрузку не более 50-55 В.
Теперь же собственно плата на «СХЕМУ №4»:
Компоновка платы данного инвертора почти такая же, но уже имеет свою специфику — используются телевизионные радиаторы и ферриты. Для фильтра первичного питания, трансформатора тока и фильтров вторичного питания посадочные места расчитаны на установку феррита приведенного выше на фото. Однако ни кто не запрещает впаять в имеющиеся отверстия провода идущие от ферритовых колец. Для фильтров намотка до заполнения сечением из расчета 3-4 А на кв мм. В качестве сердечника силового трансформатора используется 4 сложенных сердечника от телевизионных ТДКС , на рисунке показанно как средечники складываются, а более подробно об этих сердечниках на следующей странице.
Диодный мост вторичного питания этого варианта источника питания выполнен на ультрабыстрых диодах в корпусе TO-247.
Схема №5 — автомобильный преобразователь напряжения на IR2155. На приведенной ниже плате подразумевается силовой трансформатор на Ш-образном феррите от импульсного блока питания телевизора с 72-м кинескопом. Однако на это место и кольцо диаметром 45 мм тоже хорошо становится. Диодный мост вторичного питания на ультафастах в корпусе ТО-220, установлен на листовой радиатор. Фильтр вторичного питания выполнен на одном сердечнике
Следующий импульсный блок питания взят с сайта «ПАЯЛЬНИК», эcкиз чертежа печатной платы приведен ниже:
Предлагаемые автором диоды FR602 слишком медленные и будут греться даже без нагрузки, поэтому их лучше заменить диодами серии HER.
В интернете нашлось два варианта печатной платы для импульсного блока питания по схеме №7. На одной правда есть ошибочка — потерялся резистор по питанию микросхемы ( R4), но добавить его не трудно.
На верхнем варианте фильтр первичного питания двухобмоточный, на втором обмотка одна. Оба варианта имеют однополярное вторичное питание.
Плата преобразователя для «Схемы №8» имеет SMD компоненты в обвязке IR2155. Выходное напряжение — двуполярное, защиты от перегрузки нет:
Далее несколько схем без плат и следующий варинт на который плата имеется — «Схема №12»:
Плата спланирована под ферритовое кольцо, диоды вторичного питания без теплоотводов.
Еще один вариант платы — «Схема №13», принципиальной схемы которой нет. По сути это сборка типового преобразователя с защитой на трансформаторе тока который управляет собранным на транзситорах аналогом тиристора. Данный блок питания имеет двуполярное выходное напряжение.
Однако перед тем как начинать готовить плату будет весьма полезным ознакомиться с заключительной частью данной статьи, в которой будет рассмотренно множество ньюнасов и технологических особенностей, позволящих сделать выбор варианта который подходит Вам максимально
Следующий вариант источника питания предназначен для усилителя системы типа 7.1. Основной проблемой самодельный усилителей мощности подобного класса являтеся правильная разводка общего провода — в подавляющем большинстве случаев появлется фон в колонках из за возникновения «земляной» петли. Данный вариант блока питани лишен этого недостатка, поскольку содержит 4 выходных напряжения, что позволяет сгруппировать усилители мощности парами, что дает возможность зазвязать «землю» и избавится от фона.
Разумеется, что диоды выпрямителей вторичного питания не стоят друг на друге, а разенесены по высоте и верхние соединяются с платой при помощи проводников. Так же на плате имеется дополнительный двуполярный выход для предварительных каскадов.
Сборка и наладка импульсного блока питания на базе IR2153 — IR2155 подробно описана тут.
ВИДЕОИНСТРУКЦИЯ ПО САМОСТОЯТЕЛЬНОЙ СБОРКЕ
ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ НА БАЗЕ IR2153 ИЛИ IR2155
Несколько слов об изготовлении импульсных трансформаторов:
Как определить количество витков не зная марку феррита:
Термоскотч я покупал на Алиэкспресс, если конкретно, то продавец указан тут.
Хочу предоставить вашему вниманию четыре разные схемы импульсных блоков питания на всеми любимой народной IR2153. Все эти схемы были мною собраны и проверены в 2013-2015 годах. Сейчас, в 2017 году, я раскопал все эти схемы в своих архивах и спешу с вами поделиться. Пусть вас не смущает что не ко всем схемам есть фото собранных устройств, что на фото будут и не полностью собранные блоки питания, но это все что мне удалось найти в своих архивах.
Итак первый блок питания, условно назовем его «высоковольтным»:
Схема классическая для моих импульсных блоков питания. Драйвер запитывается непосредственно от сети через резистор, что позволяет снизить рассеиваемую на этом резисторе мощность, по сравнению с запиткой от шины +310В. Этот блок питания имеет схему мягкого старта (ограничения пускового тока) на реле. Софт-старт питается через гасящий конденсатор С2 от сети 230В. Этот блок питания оснащен защитой от короткого замыкания и перегрузки во вторичных цепях. Датчиком тока в ней служит резистор R11, а ток при котором срабатывает защита регулируется подстроечным резистором R10. При срабатывании защиты загорается светодиод HL1. Этот блок питания может обеспечить выходное двухполярное напряжение до +/-70В (с данными диодами во вторичной цепи блока питания). Импульсный трансформатор блока питания имеет одну первичную обмотку из 50 витков и четыре одинаковые вторичные обмотки по 23 витка. Сечение провода и сердечник трансформатора выбираются исходя из требуемой мощности, которую необходимо получить от конкретного блока питания.
Второй блок питания, условно его будем называть «ИБП с самопитанием»:
Этот блок имеет похожую с предыдущим блоком питания схему, но принципиальное отличие от предыдущего блока питания заключается в том, что в этой схеме, драйвер запитывает сам себя от отдельной обмотки трансформатора через гасящий резистор. Остальные узлы схемы идентичны предыдущей представленной схеме. Выходная мощность и выходное напряжение данного блока ограничено не только параметрами трансформатора, и возможностями драйвера IR2153, но и возможностями диодов примененных во вторичной цепи блока питания. В моем случае — это КД213А. С данными диодами, выходное напряжение не может быть более 90В, а выходной ток не более 2-3А. Выходной ток может быть больше только в случае применении радиаторов для охлаждения диодов КД213А. Стоит дополнительно остановиться на дросселе Т2. Этот дроссель мотается на общем кольцевом сердечнике (допускается использовать и другие типы сердечников), проводом соответствующего выходному току сечения. Трансформатор, как и в предыдущем случае, рассчитывается на соответствующую мощность с помощью специализированных компьютерных программ.
Блок питания номер три, условно назовем «мощный на 460х транзисторах» или просто «мощный 460»:
Эта схема уже более значительно отличается от предыдущих схем представленных выше. Основных больших отличий два: защита от короткого замыкания и перегрузки здесь выполнена на токовом трансформаторе, второе отличие заключается в наличии дополнительных двух транзисторов перед ключами, которые позволяют изолировать высокую входную емкость мощных ключей (IRFP460), от выхода драйвера. Еще одно небольшое и не существенное отличие заключается в том, что ограничительный резистор схемы мягкого старта, расположен не в шине +310В, как это было в предыдущих схемах, а в первичной цепи 230В. В схеме так же присутствует снаббер, включенный параллельно первичной обмотке импульсного трансформатора для улучшения качества работы блока питания. Как и в предыдущих схемах чувствительность защиты регулируется подстроечным резистором (в данном случае R12), а о срабатывание защиты сигнализирует светодиод HL1. Токовые трансформатор мотается на любом небольшом сердечнике который у вас окажется под рукой, вторичные обмотки мотаются проводом небольшого диаметра 0,2-0,3 мм, две обмотки по 50 витков, а первична обмотка представляет собой один виток провода достаточного для вашей выходной мощности сечения.
И последний на сегодня импульсник — это «импульсный блок питания для лампочек», будем его условно так называть.
Да да, не удивляйтесь. Однажды появилась необходимость собрать гитарный предусилитель, но под рукой не оказалось необходимого трансформатора и тогда меня очень выручил данный импульсник, который был построен именно по тому случаю. Схема отличается от трех предыдущих своей максимальной простотой. Схема не имеет как таковой защиты от короткого замыкания в нагрузке, но необходимости в такой защите в данном случае нет, так как выходной ток по вторичной шине +260В ограничен резистором R6, а выходной ток по вторичной шине +5В — внутренней схемой защиты от перегрузки стабилизатора 7805. R1 ограничивает максимальный пусковой ток и помогает отсекать сетевые помехи.
Общие рекомендации:
- Импульсный трансформатор для каждой из схем необходимо рассчитывать в соответствии с вашими личными требованиями к блоку питания и вашими возможностями, поэтому конкретные намоточные данные я не привожу.
- Для расчета импульсного трансформатора очень удобно пользоваться программами «Старичка» — Lite-CalcIT и RingFerriteExtraSoft.
- Перед включением в сеть импульсного блока питания необходимо тщательно проверить монтаж на отсутствие ошибок, «соплей» на плате и так далее
- Обязательно необходимо промывать плату со стороны монтажа бензином, ацетоном, керосином, любым растворителем или спиртом для полного удаления остатков флюса. Импульсный блок питания работает на высокой частоте и даже незначительная паразитная проводимость или емкость может привести к тому, что собранный из исправных деталей блок питания не заработает или взорвется при первом же включении.
- Первое включение необходимо производить только с ограничением тока, его можно ограничить либо мощным резистором, либо мощной лампой накаливания, могут быть и другие варианты.
- Необходимо помнить и никогда не забывать о правилах электробезопасности. В каждой из схем блока питания присутствует опасное для жизни напряжение.
Bakon BK950D, небольшая паяльная станция с паяльником T12
Описание переделки большое, потому я его убрал под спойлер
Для начала разберемся, какую мощность реально имеет станция.Я измерил сопротивление паяльника вместе с кабелем, так как работать то он будет в таком режиме и блок питания я буду переделывать именно под него.
У меня получилось 8.73 Ома. Зная что на выходе БП напряжение около 19.36 Вольта получаем ток 2.22 Ампера. Общая мощность при этом (в холодном «стартовом» режиме) составляет 42,9 Ватта.
На нагреватель при этом приходится — (8.43/8.73)х42,9=41,4 Ватта. На моя взгляд для «тяжелых» работ такой мощности все таки мало.
«За компанию» проверил сопротивление цепи заземления жала, 0.24 Ома, вполне нормально.
Вариантов переделки есть много, перечислю их:
1. Просто изменение номиналов делителя обратной связи и делителя защиты микросхемы.
Есть опасность выхода из строя высоковольтного транзистора, так как напряжение на нем вырастет, а он и так без запаса.
2. То же самое, но с заменой транзистора. Нормально, но БП будет работать в не очень оптимальном режиме, так как выходное напряжение повышается более чем на 20%.
3. Домотать несколько витков к вторичной обмотке трансформатора и изменить номиналы делителя ОС. На мой взгляд самый оптимальный вариант, можно даже не менять высоковольтный транзистор, так как по напряжению режим работы у него останется почти тем же. Но в минусах сложность переделки.
Были даже совсем дикие варианты.
1. Просто заменить БП. Не получилось, габарит «народного» БП явно больше чем родного.
2. Переделать высоковольтную часть, убрав ШИМ контроллер и всю его обвязку вместе с высоковольтным транзистором и заменив все это на TOP248 или его аналоги. Сложно, дорого.
3. Убрать и трансформатор, а БП сделать на базе IR2151-2153. Так как паяльнику стабилизированное напряжение не очень то и нужно, то решение хорошее, особенно в плане нагрева. Но мотать трансформатор, все делать почти с нуля, не, долго и сложно.
В общем подумал я и решил пойти по пути увеличения количества витков вторичной обмотки трансформатора и изменения делителя обратной связи.
Но для начала надо определиться с тем, что может дать родной БП.
На фото ниже сравнение с БП 24 Вольт 100-120 Ватт. Наш трансформатор явно меньше.
Так как частота работы ШИМ такая же как у используемых мною микросхем TOP2xx, то я попробовал смоделировать примерно похожий и посмотреть какую примерно мощность может иметь трансформатор такого размера и работающий на той же частоте.
У меня вышло, что максимальная мощность данного трансформатора около 62-63 Ватта при длительной работе в закрытом корпусе.
В принципе в моем варианте переделки высоковольтный транзистор можно было не менять, так как я решил доматывать обмотку.
Но для увеличения надежности я все таки решил заменить и транзистор.
Также при такой переделке обязательно надо менять выходные конденсаторы.
Родные имеют емкость 1000мкФ и рассчитаны на напряжение 25 Вольт. Для 19 Вольт выходного это уже впритирку, а уж о 23-24 и говорить не приходится.
Конденсаторы лучше брать низкоимпедансные, так как частота преобразования 133кГц.
У меня дома нашелся LowESR Capxon LZ 1000мкФ 35 В, но он был длинный и 470 мкФ х 35 В серии KF. Лучше подошли бы конденсаторы серии KF, мне они кажутся более надежными, но 1000х35 этой серии будет большим в диаметре, потому я решил сделать небольшой «гибрид», до фильтра стоит 1000х35, а после фильтра 470х35.
Почему я сделал именно так, покажу позже.
Для доработки я выбрал транзистор SPP20N60C3, этот транзистор использован в блоке питания 25 Вольта 4-5 Ампер, на который я уже как то делал обзор. Транзистор обошелся чуть меньше двух долларов в оффлайне.
В качестве сравнения основные данные из даташита, видно что замена гораздо лучше родного варианта, единственное в чем новый проигрывает, это емкость затвора, которая в два раза выше.
Увеличенная емкость затвора влияет на нагрев при переключении, чем больше емкость, тем медленнее транзистор включается и выключается, но я решил что 133кГц не так частота, чтобы особо на это обращать внимание, да и потом попробую как он себя ведет в реальных условиях.
Первым делом выпаиваю выходные конденсаторы и высоковольтный транзистор. Перфекционисты могут попутно выровнять радиаторы. В моем случае радиатор выходного диода был наклонен в сторону трансформатора и я немного отогнул его в обратную сторону. Естественно не просто отогнул, а прогрел выводы диода и потом отогнул 🙂
Решение доматывать витки я принял не просто так. У трансформатора просто вагон места для дополнительной обмотки и грех этим не воспользоваться.
Для того, чтобы корректно домотать обмотку, надо понимать как намотана существующая. Разматывать трансформатор мне не хотелось, даже выпаивать его было лень, потому я просто внимательно посмотрел куда направлены провода от выводов.
Зачастую в трансформаторах так витки и укладывают, крест накрест, но все равно надо быть бдительным, так как можно случайно включить обмотку в противофазе и долго удивляться что ничего не работает.
Дальше прорезаем дорожку, идущую к выходному диоду так, как показано на фото, а также сверлим пару отверстий. Отверстие делается диаметром около 1.8-2мм.
Контактную площадку, получившуюся справа, зачищаем от лака и залуживаем.
Берем пару кусочков медной проволоки (естественно изолированной), диаметром около 0.5-0.7мм и длиной как две длины платы.
Применять лучше именно два провода, а не один большего сечения, так как в таком варианте будут меньше выбросы напряжения и меньше нагрузка на снаббер, т.е. выше надежность.
Зачищаем и залуживаем кусочки проволоки с одного конца, вставляем в отверстие слева от вывода трансформатора (выше на фото) и припаиваем к выводу трансформатора.
Затем мотаем два витка в два провода. При намотке стремимся мотать не кучей, но и не близко к краям, так как с краю выступают витки других обмоток и это может быть небезопасно.
В общем надо получить равномерную укладку витков, хотя бы как на фото.
Экспериментальным путем выясняем необходимую длину провода для запаивания в плату, обрезаем лишнее, зачищаем, залуживаем, одеваем кусочек кембрика или термоусадки и вставляем в правое отверстие.
Запаиваем так, как показано на фото, слева тот контакт, который паяем первым, потом мотаем, потом припаиваем правый.
Если есть настроение, то можно вернуть на место родную изолирующую ленту.
Я поленился выпаивать входной конденсатор, и делал все с ним, но удобнее сначала выпаять его, а потом только мотать обмотку и ленту.
Не пугайтесь, это не выходное напряжение 🙂
На фото напряжение на конденсаторе питания ШИМ контроллера. Сейчас объясню, зачем я его измерил.
Так как выходное напряжение у нас стабилизированное, то можно доматывать витки или отматывать, напряжение на выходе не изменится (разве что если мы совсем не выведем БП из режима).
Для того, чтобы понять, правильно ли мы все сделали или подключили обмотку наоборот, можно ориентироваться на напряжение питания микросхемы.
Если мы все сделали правильно, то напряжение должно снизиться на 3-4 Вольта, если подключили наоборот, то напряжение повысится на то же значение.
Внимание, напряжение измеряется на «горячей» стороне блока питания, которая имеет непосредственную связь с сетевым напряжением, будьте очень аккуратны!
Кроме того, первые тесты рекомендую проводить включая питание БП через лампочку, например на 15 Ватт. Лампа должна вспыхнуть и либо совсем погаснуть, либо еле еле накаляться.
Я допустил ошибку и не измерил напряжение до переделки, но так как я знал что ШИМ контроллер имеет питания выше 11 Вольт, а у меня получилось 12, то повысить я его не мог, так как в этом случае до повышения оно было бы за пределами нормального.
Но лучше измерить его до переделки.
Дальше надо немного изменить номинал делителя обратной связи, чтобы поднять напряжение.
Вариантов здесь также несколько.
1. Припаять параллельно нижнему резистору на 4.42кОм другой, на 20кОм. Это значение я рассчитал для выходного в 23 Вольта (23 Вольта я получил исходя из макс мощности в 62 Ватта).
2. Заменить нижний резистор делителя на другой, номиналом — 3,6кОм
3. Заменить верхний резистор делителя на другой, номиналом — 36кОм
4. Комплексные варианты, но их я приводить не буду.
Номиналы по п2-3 не дадут точно 23 Вольта, но напряжение будет ближайшим к этому. Такие номиналы приведены потому, что они из распространенного ряда Е24, а не из более редких — точных.
А вот в варианте переделки под 24 Вольта рядом Е24 можно обоятись не везде, потому номиналы выходят такие (соответственно списку выше):
1. 16 кОм.
2. 3,45 кОм
3. 38 кОм (можно поставить 39, но будет больше чем 24 Вольта)
Припаяли поверх одного резистора другой, проверяем что получилось.
А получились у нас расчетные 23 Вольта, немного больше, но не страшно.
На конденсаторе питания ШИМ контроллера напряжение также стало выше. Кстати, в связи с этим у меня возникло подозрение, что количество витков вторичных обмоток все таки изначально было разное, так как напряжение питания ШИМ контроллера тогда бы вернулось к тем же 19 Вольт. Но утверждать не буду, так как не проверил до переделки.
После этого я планировал уложить плату в корпус и погонять ее часок-другой. А кроме того показать на этом фото, почему я выбрал такие выходные конденсаторы.
Дело в том, что конденсатор справа нужен короче чем слева, иначе он будет упираться в стойку корпуса. Можно конечно выгнуть его набок, но это смотрелось бы не эстетично. Так как правый конденсатор включен после дросселя, то в данном случае снижение его емкости до 470мкФ почти никак не скажется на работе. Т.е. 1000мкФ до дросселя и 470 после вполне терпимо, а вот наоборот я бы не ставил, так как работать ему до дросселя тяжелее, а с учетом сниженной емкости ситуация еще ухудшится.
Но увы, тест не получился. Паяльник довольно бодро включился, но при достижении температуры 350, перезагрузился. В блоке питания на короткое время сработала защита от перегрузки, мощность то мы повысили. Подождал пока паяльник остынет и повторил тест, на этот раз станция перезагрузилась два или три раза.
Стало понятно, что БП работает на пределе ограничения по току, т.е. вроде все нормально, но чуть чуть не хватает.
Было решено немного увеличить ток срабатывания защиты, тем более транзистор я поставил мощнее. Но так как ток срабатывания был почти равен реальному, то я решил сильно его не увеличивать.
Последовательно с высоковольтным транзистором стоит резистор номиналом 0.27 Ома, у меня было два пути, заменить его на резистор меньшего номинала или поставить другой, параллельно существующему.
Под руку попался резистор номиналом 2.4 Ома (хотя изначально хотел 2.7). Если его подключить параллельно, то сопротивление уменьшится (а ток увеличится) примерно на 12%, что меня более чем устраивало.
В таком варианте можно применить резисторы номиналами 2-3Ома. Если менять, то на номинал 0.22-0.24 Ома.
На резистор одел термоусадку и запаял его со стороны дорожек.
Теперь все стартует нормально, ничего не перезагружается.
Закрываем крышкой и переходим к тестам.
Некоторое время станция просто была включена на 400 градусов, потом я снизил температуру до 350 и паял какую то плату, но так как с обычными платами станция и до переделки работала отлично, то под конец я опять перешел к более «тяжелому» тесту.
При попытке выпаять такой же конденсатор, как и в прошлый раз, я увидел явное улучшение, все таки мощность выросла почти в 1.5 раза. Но при попытке выпаять мелкие конденсаторы, трудности все таки были, в основном из-за нагрева их корпуса.
Ситуацию можно улучшить, если поднять температуру до 380-400 градусов и применить более правильное жало чем острый конус.
А вот температурный режим остался неизменным.
Как так, спросят наверняка некоторые читатели, было 40 Ватт, стало 60 и нагрев БП остался прежним?
А вот так. Дело в том, что большее напряжение (и соответственно мощность) влияют на скорость разогрева и «приемистость» паяльника и при нормальной работе средняя мощность даже упадет.
Представим ситуацию, мощность паяльника 50 Ватт, греем боооольшой полигон, минут 5, но паяльником на 100 Ватт этот полигон можно прогреть не за 2.5 минуты, а за 1.5. вот и экономия.
А паяльником на 25 Ватт возможно вообще прогреть не получится и греть мы будем бесконечно.
Понятно что если обеспечить постоянный отвод тепла от 50 и 100 Ватт паяльников, то 100 Ватт рассеет ровно в 2 раза больше, но в случае с обычной работой этот расчет не действует.
Попутно проверил температуру внутри без крышки.
Трансформатор около 60, можно мощность еще поднимать, запас есть.
Радиатор высоковольтного транзистора около 40-45
Радиатор диода около тех же 60 что и трансформатор.
Все температуры более чем с запасом, а вот стабилизатор 5 Вольт разогрелся почти под сотню, что не есть хорошо.
Для стабилизатора 5 Вольт я сделал такой вот импровизированный «радиатор» из залуженного куска провода сечением 2.5мм. Кому то он покажется смешным, но такого мини радиатора достаточно чтобы сбить температуру на 15-20 градусов, а больше мне и не надо, зато он всегда под рукой 🙂 Гурманы могут применить лепесток от мощных диодов.
Ну а раз уж начал ковырять, то на всякий случай заменил и межобмоточный помехоподавляющий конденсатор.
Меня часто спрашивают, как они выглядят в магазине и как их вообще искать.
Номинал обычно не критичен, достаточно 100-2200пФ, оптимально 1000.
Напряжение определено классом конденсатора, т.е. они подходят все.
А выглядят они так, или так.
Я же взял конденсатор с платы блока питания какого то монитора.
Чуть не забыл. Если вы хотите еще большей безопасности, то не вкручивайте саморез около стабилизатора 5 Вольт. Дело в том, что производитель плату сделал правильно, защитные воздушные зазоры, правильная трассировка.
Но забыл одну вещь, если вкрутить этот саморез, то суммарное расстояние от компонентов «горячей» стороны и фланцем стабилизатора будет совсем маленьким. И если и будет пробой, то как раз в этом месте.
Ситуация конечно скорее гипотетическая, но теоретически возможная.
Справа то, что получилось в итоге, а слева то, что осталось. Выбрасывать оставшиеся компоненты не стоит, они вполне могут пригодиться 🙂
А это принципиальная схема с учетом произведенных изменений.
Красным обозначены замененные компоненты, синим — добавленные.
Убираем за собой следы при помощи ватки с ацетоном. Думал покрыть плату лаком, потом передумал.
Припаиваем обратно кабель питания и заземления, собираем все в кучку.
Кстати, собирать не очень удобно, кнопка включения постоянно норовит вылезти.
Cypress Semiconductor Производитель Cypress Semiconductor Corp Тип Fanout Buffer (Distribution), Multiplexer Количество цепей 1 Соотношение — Вход: Выход 2:4 Дифференциальный — Вход: Выход Yes/Yes Ввод CML, HCSL, LVDS, LVPECL частота — макс. 1.5GHz Напряжение — Питание 2.375V ~ 3.465V рабочая температура 0°C ~ 70°C Тип монтажа Surface Mount Упаковка / Коробка 20-TSSOP (0.173″, 4.40mm Width) Пакет устройства поставщика 20-TSSOP | IDT, Integrated Device Technology Производитель IDT, Integrated Device Technology Inc Тип Fanout Buffer (Distribution) Количество цепей 1 Соотношение — Вход: Выход 1:16 Дифференциальный — Вход: Выход No/No частота — макс. 200MHz Напряжение — Питание 2.375V ~ 3.465V рабочая температура 0°C ~ 70°C Тип монтажа Surface Mount Упаковка / Коробка 32-LQFP Пакет устройства поставщика 32-TQFP (7×7) | Microchip Technology Производитель Microchip Technology Серия 100EP, Precision Edge® Тип Fanout Buffer (Distribution) Количество цепей 2 Соотношение — Вход: Выход 1:5 Дифференциальный — Вход: Выход Yes/Yes Ввод HSTL, LVECL, LVPECL частота — макс. 3GHz Напряжение — Питание 2.375V ~ 3.8V рабочая температура -40°C ~ 85°C Тип монтажа Surface Mount Упаковка / Коробка 32-TQFP Пакет устройства поставщика 32-TQFP (7×7) | IDT, Integrated Device Technology Производитель IDT, Integrated Device Technology Inc Тип Fanout Buffer (Distribution) Количество цепей 2 Соотношение — Вход: Выход 1:5 Дифференциальный — Вход: Выход No/No частота — макс. 100MHz Напряжение — Питание 4.75V ~ 5.25V рабочая температура 0°C ~ 70°C Тип монтажа Surface Mount Упаковка / Коробка 20-SOIC (0.295″, 7.50mm Width) Пакет устройства поставщика 20-SOIC | Производитель Тип Fanout Buffer (Distribution), Data Количество цепей 1 Соотношение — Вход: Выход 1:10 Дифференциальный — Вход: Выход No/No частота — макс. 100MHz Напряжение — Питание 3.135V ~ 3.465V рабочая температура 0°C ~ 70°C Тип монтажа Surface Mount Упаковка / Коробка 28-SSOP (0.209″, 5.30mm Width) Пакет устройства поставщика 28-SSOP |
IR2102 | Infineon Technologies | ДРАЙВЕР IC HIGH / LOW SIDE 8-DIP | 2817 | $ 0,00000 / шт | Ongeza kwenye gari la RFQ? | |
IR21362 | Infineon Technologies | МОСТ ДРАЙВЕРА IC 3-ФАЗНЫЙ 28-DIP | 2811 | 0 руб.00000 / шт | Ongeza kwenye gari la RFQ? | |
IR2132S | Infineon Technologies | МОСТ ДРАЙВЕРА ИС 3-ФАЗНЫЙ 28-SOIC | 2798 | 0 руб.00000 / шт | Ongeza kwenye gari la RFQ? | |
IR21593PBF | Infineon Technologies | IC CTLR BALLAST DIMMING 16-DIP | 2790 | 0 руб.00000 / шт | Ongeza kwenye gari la RFQ? | |
IR21094STRPBF | Infineon Technologies | ДРАЙВЕР IC ПОЛОВИНА МОСТ 14-SOIC | 73144 | $ 1.27858 / шт | Ongeza kwenye gari la RFQ? | |
IR2235STRPBF | Infineon Technologies | ДРАЙВЕР IC МОСТ 3ФАЗНЫЙ 28SOIC | 10130 | $ 9.23160 / шт | Ongeza kwenye gari la RFQ? | |
IR2101SPBF | Infineon Technologies | ДРАЙВЕР IC ВЫСОКАЯ / НИЗКАЯ СТОРОНА 8SOIC | 45843 | $ 2.04000 / шт | Ongeza kwenye gari la RFQ? | |
IR21592STRPBF | Infineon Technologies | IC CTLR БАЛЛАСТНАЯ ДИММИРОВАНИЕ 16SOIC | 2776 | 0 руб.00000 / шт | Ongeza kwenye gari la RFQ? | |
IR2135J | Infineon Technologies | МОСТ ДРАЙВЕРА ИС, 3 ФАЗЫ 44-PLCC | 2776 | 0 руб.00000 / шт | Ongeza kwenye gari la RFQ? | |
IR2304PBF | Infineon Technologies | ДРАЙВЕР IC ПОЛУМОСТ 8-DIP | 45843 | $ 2.04000 / шт | Ongeza kwenye gari la RFQ? |
IRS2128PBF — Технический паспорт PDF — Цена — PMIC — Драйверы затворов — International Rectifier
Подробная информация о деятельности на Рождество и Новый год в 2021 году Приближается Рождество и Новый год в 2021 году, Утмель хочет предоставить вам дополнительную поддержку при заказе компонентов.
В период с 27 ноября по 10 января 2021 года при достижении другой стоимости заказа вы получите скидку непосредственно в период нашей деятельности.Номер детали:
(1) При стоимости заказа более 1000 долларов в одном заказе вы получите прямую скидку в размере 20 долларов.
(2) Если стоимость одного заказа превышает 5000 долларов США, вы получите прямую скидку в размере 100 долларов США.
(3) Если стоимость одного заказа превышает 10000 долларов США, вы получите прямую скидку в размере 200 долларов США.
(4) Если стоимость одного заказа превышает 20000 долларов, вы получите прямую скидку в размере 400 долларов.
(5) «Большая» сделка: 27 ноября, 30 ноября и 4 января 2021 года, в пекинское время с 0:00 до 24:00, на все оплаченные заказы будет действовать скидка 10% непосредственно на ваш заказ.Только стоимость продукта будет подходить для скидки, не включая фрахт и банковский сбор / плату Paypal.
(6) Для автономного заказа вы можете получить бесплатную доставку, если стоимость вашего заказа соответствует приведенному ниже условию:
6.1 При стоимости заказа более 1000 долларов США вы можете получить бесплатную доставку с весом брутто в пределах 0,5 кг.
6,2 При сумме заказа более 2000 у.е. возможен бесплатный фрахт с массой брутто в пределах 1 кг.
Выберите все товары, которые вам нужны, в корзину, вы увидите скидку при оформлении заказа.
2.Можно ли воспользоваться бесплатным фрахтом и скидкой вместе?Да, Utmel предоставит вам бесплатную доставку и скидку вместе, если ваш заказ соответствует нашим условиям.
3.Как получить скидку при офф-лайн заказе? Наши специалисты по продажам сделают скидку непосредственно в PI для вас, если ваш заказ
соответствует стандарту нашего правила деятельности.
Тестер микросхем серии IR2153 PWM-TEST2153 Проверка работоспособности и работы микросхемы. Набор для пайки своими руками
ТЕСТЕР-ГЕНЕРАТОР для автоколебательного полумостового привода IR2153 и аналогичные ИС с ВИЗУАЛЬНЫМ УПРАВЛЕНИЕМ + стабилитрон / TVS диоды / TL431 ТЕСТЕР + 46В / 4А (8А МАКС) РЕГУЛЯТОР НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА PWM-TEST
9
На базе микросхем IR2153 и полевых МОП-транзисторов спроектировано большое количество схем импульсного питания.К сожалению, очень часто эта микросхема выходит из строя, просто горит при некорректной работе прибора или во время экспериментов радиолюбителя. На микросхеме серии IR2153 перестает работать блок питания? Нет генерации импульсов микросхемы серии IR2153? Микросхема IR2153 сгорела или вышла из строя? Как проверить исправность микросхемы серии IR2153? Эту задачу решает прибор PWM TEST2153.
Также очень важно проверить новые микросхемы серии IR2153 перед установкой их в устройство.Часто микросхемы, купленные в Китае, бывают бракованными или просто подделками. Для фальшивой микросхемы отдельный блок может не работать, либо, например, генерация нестабильна. Возможны даже варианты с одновременным включением обоих каналов, что приведет к 100% выходу из строя дорогих и мощных MOSFET транзисторов, которыми управляет микросхема IR2153. Часто бывает некорректная маркировка микросхем серии IR2153, когда микросхема без встроенного диода маркируется как микросхема с его наличием IR2153D.Конечно, схема работать не будет.
Поэтому рекомендуем проверить на работоспособность даже новые микросхемы серии IR2153. Даже оригинальные полупроводниковые интегральные схемы могут быть повреждены статическим напряжением во время транспортировки. Устройство PWM-TEST2153 позволяет проверить микросхемы серии IR2153 просто, легко и с визуальным контролем работы. Даже без осциллографа можно проверить микросхемы серии IR2153. А с помощью осциллографа можно более подробно проверить качество и параметры работы.Но обычно визуального осмотра с помощью светодиодов бывает достаточно.
Тестирование SMD-версий микросхем IR2153
Микрочип IR2153 и его аналоги могут изготавливаться в SMD корпусах: 8-выводный SOIC. Адаптер для тестирования SMD в комплект не входит. стандартный КОМПЛЕКТ, но вы можете купить переходники SMD отдельно, если планируете тестовые чипы не только в DIP-корпусе. Компания PWM продает микросхемы SMD переходники для SOIC8⇒DIP8.
Тестер микросхем серии IR2153 с автоколебательным полумостовым приводом доступен в двух версиях:
1.Самодельный вариант устройства для самостоятельной сборки. Данная версия представлена в виде деталей и набора электронных компонентов для сборки устройства. Необходимо спаять электронные компоненты на печатной плате, скрутить и собрать детали устройства.
2. Готовая версия устройства, собранная компанией PWM и готова к использованию
Электронная документация и руководства устройства PWM-TEST2153
Компания PWM предоставляет два руководства для этого инструмента тестирования на веб-сайте компании http: // ШИМ.Компания. Вы можете найти всю информацию, используя название модели TEST2153:
- Руководство для самостоятельной сборки компонентов печатной платы, для тестирования и использования
- Руководство по сборке корпусов для тестеров PWM-TOOLS.
Основные функции инструмента PWM-TEST2153:
1. Популярный тестер серии IC IR2153 и генератор двухтактного режима ШИМ с регулируемой частотой
2.Генератор высокого напряжения МАКСИМУМ 46 В со встроенным регулятором напряжения и вольтметром. Максимальный входной ток 4А.
3. Тестер стабилитронов 40V max / Тестер диодов TVS / Тестер регулируемого стабилитрона IC TL431.
Официально поддерживаемые микросхемы для тестирования в пакете DIP8
IR2153 IR2153D IR2520 IR2151 IR2151 IR2153 IR2155 L6569 L6571. Этот список может быть расширен в будущем. Этот инструмент тестирования позволяет тестировать ИС в корпусе DIP8, но с помощью адаптера корпуса ИС можно тестировать и микросхемы SMD.Адаптер SMD не входит в стандартную комплектацию.
Инструмент тестирования обеспечивает тестирование основных блоков микросхем серии IR2153:
1. Тест блока генерации выходного сигнала ШИМ для обоих каналов HIGH и LOW. Визуальное тестирование светодиодов и режимы тестирования внешнего осциллографа.
2. Тест блока регулятора опорного напряжения (прибл. 15,6 В)
3. Проверка наличия внутреннего диода (с переключателем SW4)
4. Тест регулирования частоты
Выход микросхем серии IR2153 можно проверить в двух режимах:
1.визуальный режим с миганием светодиода в режиме низких частот (переключатель SW2 должен быть включен)
2. Режим осциллографа с использованием внешнего осциллографа
Тестер стабилитронов 40V max / Тестер TVS-диодов / Тестер регулируемых стабилитронов TL431
Устройство может проверить опорное напряжение и отобразить результат стабилизации на вольтметре на плате. 40V ZENER & TVS MAX можно протестировать. Для тестирования TL431 сначала установите напряжение ниже 36 В!
Питание
Адаптер питания переменного и постоянного тока в комплект не входит.Для питания устройства вы можете использовать любой адаптер постоянного тока или любой источник постоянного тока 10–20 В с минимальным выходным током 0,3 А. Тип разъема: штекер DC Power Jack 5.5×2.1мм (DC-005 Jack). Не превышайте входное напряжение 22 В. Запитывайте устройство от источника с ограничением по току МАКСИМАЛЬНЫЙ 8А и защищенного от сети по соображениям безопасности.
1111J1004P30DQT | Ноулз Сайфер, CAP CER 4.3PF 100V C0G / NP0 1111, 1111 (2828 метрическая система), — | 查看 | |
1808Y1000683KXT | Ноулз Сайфер, CAP CER 0,068 мкФ 100 В X7R 1808, 1808 (4520 метрическая система), — | 查看 | |
GRM0335C1E910GA01D | Murata, КРЫШКА CER 91PF 25V NP0 0201, 0201 (0603 метрическая система), — | 查看 | |
УМ5К1НТР | Rohm Semiconductor, полевой МОП-транзистор 2N-CH 30V.1А СОТ-353, 5-ЦСОП, СК-70-5, СОТ-353, — | 查看 | |
PI74FCT240ATS | Diodes Incorporated, IC INVERTER DUAL 4-INPUT 20SOIC, 20-SOIC (0.295 дюймов, ширина 7,50 мм), — | 查看 | |
XPEWHT-U1-0000-006Z7 | Cree Inc., LED XLAMP WARM WHITE 3000K 2SMD, 1414 (3535 метрическая система), — | 查看 | |
CRM2010-FX-R820ELF | Bourns Inc., RES SMD 0.82 OHM 1% 1W 2010, 2010 (5025 метрических единиц), — | 查看 | |
800-10-004-40-002000 | Mill-Max Manufacturing Corp., CONN HEADER 4POS .100 «HORIZ SMD, -, — | 查看 | |
CN0967C12A12S8-200 | Cinch Connectivity Solutions, CONN RCPT FMALE 12POS GOLD CRIMP, -, — | 查看 | |
TV07DT-15-35BA | Amphenol Aerospace Operations, CONN RCPT HSG FMALE 37POS PNL MT, -, — | 查看 | |
VE-20D-CY-B1 | Vicor Corporation, КОНВЕРТЕР MOD DC / DC 85V 50W, Full Brick, — | 查看 | |
XC6223N30BMR-G | Torex Semiconductor Ltd, РЕГУЛЯТОР ВЫСОКОСКОРОСТНОГО LDO 300 мА, -, — | 查看 |