Испытания сопротивления изоляции: Измерение сопротивления изоляции кабелей — МАКС-ЭНЕРГО в Самаре и Тольятти

Содержание

Измерение сопротивления изоляции электрооборудования

Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.

Измерение сопротивления изоляции проводов, силового оборудования, кабелей, аппаратов, других элементов электроустановки производятся с целью устранения возможных нарушений соответствия сопротивления установленным нормам.

Стандарты измерения изоляции

Измерение сопротивления изоляции электрооборудования до 1000В производится по правилам, установленным п. 612. 3 стандарта МЭК 364-6-61. При измерении сопротивления изоляции проводов ( кабелей) сначала проводят измерения между фазными проводниками всех пар фаз поочередно. Затем измеряется сопротивление изоляции каждого фазного провода относительно земли. Основное условие – отсоединить электроприборы, вывернуть лампы и снять предохранители.

В том случае, если к цепи стационарно подключены электронные приборы, то измерение должно проводиться по другой методике: соединяются фазные и нейтральные проводники и измеряется сопротивление между ними и землей. Если не соблюдать это правило при измерении сопротивления изоляции электрооборудования, то есть риск повреждения электронных приборов.

Дополнительно требования к измерению сопротивления изоляции изложены в п. 1. 20 приложения 1 ПТЭЭП и п.413.3 ГОСТ Р 50571.3-94. Они касаются не только состояния системы, в которой проводится измерение. Особое внимание уделяется помещению, в котором проводятся электроизмерительные работы как части электрохозяйства: пол и стены помещения, зоны или площадки, где проводится измерение сопротивления изоляции, должны быть непроводящими. Это необходимо для того, чтобы при прикосновении к частям аппаратуры с разными потенциалами в случае, если изоляция повреждена, не произошло поражения током.

Требования жестко устанавливают расположение токопроводящих частей при измерении сопротивления изоляции: так, открытые проводящие части и сторонние проводящие части разводятся на расстояние. Между открытыми проводящими частями и сторонними проводящими частями должны быть установлены эффективные приборы. Сторонние проводящие части изолируются с определенным напряжением: при измерении сопротивления изоляции электрооборудования при номинальном напряжении электроустановок не выше 500 В – 50 кОм, при напряжении свыше 500 В — 100 кОм. Для того, чтобы измерить изоляцию поверхностей, требуется провести три измерения: в одном метре от сторонних проводящих частей, два других – на большем удалении. Нормативы измерений установлены в МЭК 364-6-61.

Измерения сопротивления изоляции проводится с помощью мегаоомметра, а испытания оборудования с подачей повышенного напряжения промышленной частоты или выпрямленного напряжения в электроустановках до и выше 1 кВ – выполняется только бригадой от двух человек и больше, с группой допуска по электробезопасности у производителя работ — не ниже четвертой ( IV) , у члена бригады –должна быть третья группа ( III) по электробезопасности (ЭБ) ,у охраняющего рабочее место допускается вторая (II) группа по ЭБ.

Все испытания электрооборудования, выполняемые с помощью передвижной установки, проводятся по наряду. Допуск к работам в электроустановке осуществляет оперативный персонал, а вне электроустановок – ответственный руководитель работ или производитель работ. Если напряжение в установке ниже 1 кВ, для измерения все равно требуются два работника, один из которых должен иметь допуск по электробезопасности не меньше третьей группы. Измерение сопротивления изоляции может проводиться одним работником с третьей группой по электробезопасности. Ротор работающего генератора в части измерения сопротивления изоляции проверяется двумя работниками третьей и четвертой группой по электробезопасности. После подключения мегаоомметра к токоведущим частям надо снять заземление. Заземление необходимо для снятия заряда с токоведущих частей.

В соответствии с нормативным документом «Правила по охране труда при эксплуатации электроустановок» (ПОТ), список мероприятий по измерению сопротивления изоляции электрооборудования определяет лицо, выдающее наряд или распоряжение. Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормативных документах: Объем и нормы испытаний электрооборудования ( ОиНИЭ, РД (СО) 34.45-51.300-97), Правила устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП). В ГОСТ Р 50571.16-99 также указаны нормируемые величины сопротивления изоляции электроустановок.

Важно, чтобы соблюдался температурный режим и уровень влажности, допустимый при измерении сопротивления: температура изоляции не должна подниматься выше +35 градусов Цельсия и опускаться ниже +5 градусов. Степень увлажненности рассчитывается по формуле Kабс=R60/R15, где R60 – измеренное сопротивление изоляции через 60 секунд после приложения напряжения мегаоомметра, R15 – через 15 секугд. Отношение этих двух величин называется коэффициентом абсорбции. Практика измерения сопротивления изоляции электрооборудования показывает, что оптимальная влажность воздуха для достижения коэффициента абсорбции, отличающегося от заводских показателей не более, чем на 20%, должна быть не выше 80%. Коэффициент абсорбции не должен превышать величину 1,3 (нормируется в ПТЭЭП) при температуре от +10 до +30 градусов Цельсия. Если по результатам измерений электрооборудование имеет коэффициент абсорбции ниже 1,3- оно подлежит сушке.

Измерение сопротивления изоляции электроустановок производится с помощью цифровых измерителей с преобразованием напряжения, либо мегаоомметры генераторного типа. Ежегодная поверка приборов проводится органами Госстандарта РФ, в Санкт-Петербурге — ФГУ Тест –Санкт Петербург, или ВНИИМ им. Д.И.Менделеева о чем выдаются свидетельства о проверке. Если проверка не проведена в срок, прибор к эксплуатации не допускается. Измерение сопротивления изоляции групповых кабельных линий электропроводок проводится мегаоомметрами на 1 кВ для магистральных кабелей — на напряжение 2,5 кВ . Для измерения сопротивления изоляции электрооборудования после монтажа значения напряжения мегаомметра (0,5 или 1 кВ) указаны в НД ПУЭ ,глава 1.8 в таб. 1.8.34. Заключение о непригодности проводки делается в случае, если после измерения сопротивления изоляции выясняется, что сопротивление менее нормируемого значения.

Порядок измерения сопротивления изоляции

В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5). Мегаомметры серии Ф. 4100, с электронным питанием от электросети, рассчитаны на номинальное рабочее напряжение 100, 500, 1000 (Ф4101, Ф4102). Мегаоомметры ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) уже не выпускаются, тем не менее, мегаомметры типа M l101 М, МС-05, МС-06 используются с большим успехом. Минимальный класс точности приборов – четвертый. Измерение сопротивления изоляции электроустановок происходит путем присоединения мегаоомметров к схеме. Присоединение проводится с помощью гибких одножильных проводов. Сопротивление изоляции этих проводов, длина которых должна составлять не менее 2-3 метров, должна составлять 100 Мом. Концы проводов маркируются, на них со стороны мегаоомметра надеваются оконцеватели, а противоположные концы снабжаются зажимами типа «крокодил», при этом зажимы снабжаются специальными щупами или изолированными ручками.

Провода при измерении сопротивления изоляции электроустановок «не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей. При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) — к проводнику тока».

Измерение сопротивления изоляции силовых кабелей и электропроводок

Начало измерения сопротивления изоляции начинается с проверки кабеля на напряжение – оно должно отсутствовать. Заземление на 2-3 минуты снимает с токоведущей жилы остаточные заряды, и можно приступать к работе. Пыль, грязь, другие посторонние субстанции затрудняют точное измерение сопротивления изоляции, поэтому кабель нужно от них очистить. Сверка с заводским паспортом дает нашим экспертам величину предполагаемого сопротивления, исходя из чего, выбирается предел измерений. После контрольной проверки – определения показаний на шкалах мегаоомметра при замкнутых и разомкнутых проводах – прибор допускается эксплуатацию.

При разомкнутых проводах стрелка должна указывать на бесконечность, при замкнутых – на ноль.

Измерение сопротивления изоляции начинается с проверки каждой фазы относительно заземления. Если показания выявят нарушения изолирующей функции, проводится замер относительно земли изоляции каждой фазы, а также между двумя фазами. Количество замеров варьируется: для трехжильного кабеля могут быть проведены 3-6 замеров, для пятижильного – 4, 8 или 10. Поскольку существует несколько схем, в паспорте замеров обязательно указывать схему, по которой выполнялись работы.

Граничные показатели мегаомметра – 15 и 60 секунд с момента присоединения к исследуемому объекту, из них вычисляется и коэффициент абсорбции, то есть влажности изоляции. Если значения явно не соответствуют ожидаемому, рекомендуется повторно снять остаточное напряжение, наложив заземление, переключить предел и повторить замер. По правилам техники безопасности измерения сопротивления изоляции электрооборудования, эту операцию требуется проводить в диэлектрических перчатках.

Помимо этого, строго рекомендуется соблюдать правила измерений, указанные в п.п. 1.7.81, 2.1.35 ПУЭ: «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»; «как со стороны источников питания, так и со стороны приемника, нулевые проводники должны быть отсоединены от заземленных частей», «схема испытания… имеет различия лишь в количестве замеров (4 или 8, вместо 3 или 6) и в отсутствие необходимости использовать зажим «Экран» на мегаомметрах»; «измерение сопротивления изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, аппаратах, вывернутых электролампах».

Измерение сопротивления изоляции силового электрооборудования

Как и для изоляции кабелей, для электрических аппаратов и машин большое значение имеет температура. Так, для изоляции класса А характерно увеличение сопротивления изоляции в полтора раза при понижении температуры на каждые 10 градусов. Изоляция класса В увеличивает сопротивление в два раза при повышении температуры на 10 градусов. Поэтому установлены температурные пределы для измерения сопротивления изоляции электрооборудования, а также разработаны специальные коэффициенты: для электрических машин – Кт, для трансформаторов – Кз, которые можно посмотреть в таблице. Нормы для сопротивления изоляции приведены в двух документах: для уже работающих установок – в ПТЭЭП, для находящихся в процессе ввода в эксплуатацию – в ПУЭ.

Помимо изоляции проводки, при измерении сопротивления изоляции электрооборудования, замеряется и сопротивление относительно корпуса и наружных металлических частей при выключенном двигателе. Как правило, такие замеры проводятся для переносных электроинструментов. Если корпус инструмента выполнен из диэлектрика, его перед измерением оборачивают металлической фольгой и соединяют с контуром заземления. Для переносных трансформаторов дополнительно проводятся замеры сопротивления изоляции между корпусом и обмотками. А также между обмотками, при этом вторичную обмотку надо закоротить на корпус. Измерения сопротивления изоляции электрооборудования включают в себя и измерения сопротивления изоляции автоматических выключателей и устройств защитного отключения.

Правила измерения регулируются ГОСТ Р 50345-99 и ГОСТ Р 50030.2-99, которых рассматриваются разные типы УЗО и АВ, первый устанавливает правила измерений для аппаратов с минимальным сопротивлением изоляции 2 или 5 МОм (п.п. 1,2 и п.3 — соответственно), второй документ устанавливает правила измерений для аппаратов с минимальным сопротивлением изоляции не менее 0,5 МОм. Согласно ГОСТам, измерение сопротивления изоляции электрооборудования такого типа производятся:

  1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО;
  2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО;
  3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.

При работе с измерительными приборами в части замеров сопротивления изоляции УЗО и АВ, необходимо помнить о разнице параметров выходного напряжения и наибольшего значения измеряемого сопротивления у разных видов измерительных приборов: только в семействе мегаомметров Ф4100 насчитывается пять разных типов.

Все виды измерений сопротивления изоляции электрооборудования проводятся нашими специалистами в точном соответствии с требованиями ГОСТ Р, ПТЭЭП, ПУЭ , ОиНИЭ и других нормативных документов, оформляются протоколами со всеми необходимыми приложениями. Электроизмерительная лаборатория имеет все разрешительные документы для проведения видов работ.

Измерение сопротивления изоляции | Заметки электрика

Здравствуйте, уважаемые гости сайта «Заметки электрика».

В предыдущей статье я Вам рассказал про электролабораторию, чем она занимается и для чего нужны электрические измерения и испытания.

Сегодня Я Вам подробно расскажу про измерение сопротивления изоляции.

Измерение сопротивления изоляции постоянному току электрооборудования и электрических цепей является неотъемлемой частью электрических измерений, т.к. является самым важным и основным показателем состояния изоляции. Если сопротивление изоляции меньше, чем установлено в нормативной документации, то это может привести к плачевным последствиям — пожару и электрическим травмам.

Периодичность проверки  и нормы сопротивления изоляции изложены в нормативных документах ПУЭ (Правила устройства электроустановок) и ПТЭЭП.

Измерение сопротивления изоляции

Измерение сопротивления изоляции постоянному току проводится специальным прибором под названием — мегомметр.

Мегомметры бывают:

  • с ручным приводом (внутри прибора встроен генератор)
  • электронные (от аккумулятора)

Обычно мегомметры изготавливают на следующие пределы напряжений:

  • 500 (В)
  • 1000 (В)
  • 2500 (В)
  • 5000 (В)

Замер сопротивления изоляции необходимо начинать с осмотра электропроводки: силовых кабельных линий и проводов, мест соединения проводов в распределительных и соединительных коробках. Также необходимо обследовать места соединения проводов к аппаратам защиты и другому электрооборудованию.

Если во время осмотра Вы заметили оплавленные участки, то значит что электропроводка во время эксплуатации подвергается нагреву. Нагрев возникает при слабом соединении проводов, неисправном или неправильном выборе номинального тока автоматического выключателя.

До начала работ необходимо отключить все электрооборудование от источника напряжения.

Замер сопротивления изоляции необходимо выполнять:

  • между фаз (A – B; В – С; С – А)
  • между фазой и нулем (А – N; B – N; C – N)
  • между фазой и землей (А – РЕ; В – РЕ; С – РЕ)
  • между нулем и землей (N – PE)

Более подробно о том, как произвести измерение сопротивления изоляции кабельных линий различного назначения с наглядными примерами и картинками, Вы можете узнать из статьи измерение сопротивления изоляции кабеля.

Допустимое значение сопротивления изоляции не должно быть меньше 0,5 (МОм).

По результатам измерения электролаборатория выдает протокол измерения сопротивления изоляции. Если показания ниже, чем предусмотрено технической литературой, то электрооборудование запрещается к дальнейшей эксплуатации.

P.S. В следующей статье я Вам расскажу про основные показатели сопротивления изоляции.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Измерение сопротивления изоляции — Страница 2

Страница 2 из 4

Сопротивление изоляции обычно измеряют в омах, но так как величина его может исчисляться в миллионах, десятках и даже сотнях миллиона ома, то для удобства принято измерять сопротивление изоляции в мегомах (1 МОм=1 млн. Ом). Сопротивление изоляции можно также измерять по способу моста (имеются электронные мегомметры, построенные по мостовой схеме). В условиях депо пользуются обычным мегомметром, работающим по принципу логометра, т. е прибора, измеряющего не ток, а отношение токов в цепи двух катушек, одна из которых подвижная. Стрелка указателя, связанная с подвижной частью прибора, устанавливается в направлении результирующего магнитного поля, в котором оно находится.
На рис. 15, а показана схема подключения мегомметра к якорю 5 электрической машины. Ручной генератор постоянного тока 2 питает подвижную рамку 3 (с намотанной катушкой) и неподвижную 4. Резисторы Rl, R2, R3 служат для установления требуемого соотношения вращающих моментов рамок. При замерах зажим 3 (земля) мегомметра соединяют с корпусом или валом электрической машины, зажим П служит для переключения на другой предел измерения — «килоомы», а зажим Л — с токоведущими частями или коллектором (как показано на рисунке). При вращении ручки прибора с частотой вращения около 2,5 об/с — стрелка 1 прибора, установленная на подвижной рамке, покажет величину сопротивления изоляции якоря 5.
Для присоединения мегомметра обычно применяют два провода с игольчатыми щупами на конце. Перед началом измерений проверяют исправность прибора и выводных проводов. Для этого сначала оба щупа приводят в соприкосновение друг с другом и, вращая рукоятку прибора, проверяют положение стрелки — она должна показывать нуль. Затем щупы разводят и, вращая рукоятку, опять смотрят на положение стрелки прибора — она должна показывать бесконечность. Такие показания подтверждают исправность прибора.


Рис. 15. Схема подключения мегомметра для замера сопротивления: а — якоря, б — катушек главных полюсов электродвигателя

На рис. 15, б показана проверка сопротивлений изоляции катушек главных полюсов на собранном двигателе. Для этого вывод Л мегомметра присоединяют к одному из выводов катушек главных полюсов К или КК (маркировка такая имеется на кабелях), а вывод 3 подсовывают под болт, крепящий шапку моторно-осевого подшипника. Наконечник кабеля другого конца данной обмотки не должен касаться корпуса, иначе прибор покажет «нуль», а не величину измеряемого сопротивления.
Присоединяя провод прибора Л (линия) к наконечнику кабеля Я или ЯЯ (т. е. выводом цепи якоря), можно замерить сопротивление изоляции этой цепи. При измерении сопротивления следует иметь в виду, что обмотки таких машин, как тяговые электродвигатели, тяговые генераторы, трансформаторы высокого напряжения, имеют большую емкость. Будучи заряжены при измерении изоляции, они способны продолжительное время сохранять этот заряд, поэтому при случайном прикосновении к обмотке можно получить электрический удар, иногда представляющий опасность для жизни. Чтобы не допустить этого, после измерения сопротивления изоляции обмотки следует разрядить присоединением к ней конца провода, другой конец которого заземлен.
Мегомметром удобно пользоваться при «прозвонке» цепей тепловоза, а также для отыскания «своих» выводов различных обмоток. Этот способ состоит в том, что один из щупов мегомметра соединяют с тем выводом обмотки, к которому следует найти парный. После этого при медленном вращении рукоятки прибора вторым щупом поочередно касаются к другим выводам до тех пор, пока стрелка не покажет «нуль», т. е. наличие цепи. Например, у электрической машины, поступившей в ремонт, на выводных проводах не оказалось маркировки, а нужно определить цепь катушек полюсов (найти выводы). Для «прозвонки» цепей применяют и тестер, который позволяет производить большее количество измерений.
Измерение сопротивления изоляции производят между проводом и землей, а также между двумя проводами разного потенциала. В последнем случае оба конца мегомметра подсоединяют к проводам, сопротивление между которыми измеряют. Необходимо помнить, что при определении сопротивления изоляции и «Прозвонке» цепей другие работы на данной машине или на тепловозе должны быть прекращены, если они связаны с ремонтом токоведущих частей.

Методика измерения сопротивления изоляции | Элкомэлектро

Электролаборатория » Услуги электролаборатории » Методики измерений » Методика измерения сопротивления изоляции

Компания «Элкомэлектро» выполнит измерение сопротивления изоляции и на основании полученной информации составит протоколы проверки. При выполнении замеров используется лучшее современное оборудование. Свои заявки Вы можете оставить через наш сайт, либо связавшись со специалистом электролаборатории по телефону. Проверка сопротивления изоляции будет выполнена оперативно и качественно. С клиентом строго согласуется время, когда лучше всего приступить к выполнению заказа. Ещё до начала проверки сопротивления изоляции Вы можете задать свои вопросы нашим консультантам.

Общие положения

Эта методика используется при определении параметров сопротивления изоляции кабелей, электропроводок и различного электронного оборудования — таких низковольтных установок, как ВРУ, квартирные щитки и др. С помощью замеров определяются и соответствующие показатели тех материалов, из которых сделаны полы, стены, что позволяет оценить эффективность изоляции объекта в целом. По существующим нормам и правилам сопротивление изоляции кабелей и иных частей электроцепи должна быть не меньше 0,5 МОм. Как только все измерительные работы будут выполнены, полученные данные необходимо внести в протокол проверки сопротивления изоляции проводов, кабелей, обмоток электрических машин.

Все мероприятия по измерению сопротивления изоляции осуществляются строго в соответствии с п. 612.3 ГОСТ Р 50571.16-99. Любые измерения выполняются и будут объективными только в том случае, если электроприборы отсоединены, предохранители вынуты, а лампы выкручены.

В том случае, когда в электроцепи имеются электронные приборы, выполняется измерение сопротивления изоляции между фазными проводниками и нулевыми, которые соединены вместе и заземлены. Такая предосторожность вовсе не случайна, ведь если осуществлять испытания, не соединяя токоведущие проводники, то это в итоге может привести к повреждению электроприборов. Кроме того, при вычислении параметров изоляции оборудования необходимо ориентироваться на требования, изложенные в п. 1.20. приложения 1 ПЭЭП.

В п. 413.3 Госстандарта ГОСТ Р 50571. 3-94 указывается, что токонепроводящие помещения необходимы для того, чтобы при повреждении основной изоляции нельзя было одновременно прикоснуться к тем участкам, что оказались под совершенно разными потенциалами.

Предъявляемые стандартом требования можно считать выполненными, если стены и пол помещения изолированы, а также соблюдаются следующие условия:

  • Открытые проводящие части между собой и сторонними проводящими частями должны быть удалены на расстояние, равное не менее двух метров. За зоной досягаемости эта дистанция должна как минимум равняться 1,25 метра.
  • Между открытыми и сторонними проводящими частями должен быть создан хороший барьер.
  • Сторонние проводящие части тщательно изолируются.

Сопротивление пола и стен в любой точке помещения не может быть ниже:

  • 50 кОм, если Un электрооборудования составляет не более 500 В.
  • 100 кОм, если Un электрооборудования составляет не более 500 В.

В помещениях с изоляцией требуется осуществить не менее трех измерений. Одно из них проводится в метре от сторонних токопроводящих частей, два других выполняются на большом удалении.

Методы измерения сопротивления изоляции мегаомметром

Один из самых распространенных и используемых видов мегаомметров – М 4100/1-5 на U = 100-250-500-1000-2500 В. Питание данных установок идет от генератора, который приводится в действие вручную. Оборудование также оснащено выпрямителем и логометрическим измерителем. Что касается скорости вращения рукоятки, то в процессе измерения сопротивления изоляции кабеля оптимально делать это с частотой до 120-ти оборотов в минуту.

Вал якоря оснащен эффективным центробежным регулятором, благодаря которому обеспечивается постоянное напряжение, когда увеличивающаяся скорость вращения оказывается выше номинальной.

В соответствии с принятыми стандартами с целью измерения сопротивления изоляции в электроцепи установок используют модифицированные приборы – мегаомметры М 4100/4 и М 4100/3. Они хорошо зарекомендовали себя на практике. Шкала измерений лежит в пределах 0-1000 кОм и 0-200 и 0-100 МОм. Когда измерения проходят в “кОм”, то перемычку на оборудовании требуется подсоединить к зажимам “Л” и “I”. Если измерение сопротивления изоляции кабеля осуществляется на пределе “МОм”, то сопротивление идет к зажимам “Л” и “I”.

Для того чтобы подготовить прибор и убедиться в том, что он функционирует исправно, требуется вынуть его из футляра и поставить горизонтально на устойчивую поверхность. Вращая ручку генератора, поставьте стрелку на “00” шкалы “МОм”.

Когда отклонение стрелки заметно отличается от требуемых отметок, то есть превышает расстояние, то, скорее всего, мегаомметр не исправен и его необходимо отключить. Кроме того, крайне важно, чтобы поверхность крышки была не грязной, так как пыль приводит к неточностям в измерениях при проведении проверки сопротивления изоляции. Кроме того, набившаяся грязь снижает срок службы прибора.

Прежде чем первый раз измерить сопротивление изоляции кабеля, обязательно необходимо изучить прилагаемую к мегаомметру инструкцию. Это позволит выполнить работу максимально оперативно и качественно.

МIC-1000

Диапазон

Разрешение (q)

Предел допускаемой основной погрешности

50,00…99,90 кОм

0,01 кОм

±3%ФВ±20q

100,0…999,0 кОм

0,1 кОм

1,000…9,990 Мом

0,001 Мом

10,00…99,90 Мом

0,01 Мом

100,0…999,0 МОм

0,1 Мом

1,000…9,990 ГОм

0,001 ГОм

10,00…99,90 ГОм

0,01 ГОм

100,0…110,0 ГОм

0,1 ГОм

МIC-2500   

Диапазон

Разрешение (q)

Предел допускаемой основной погрешности

50,00…99,90 кОм

0,01 кОм

±3%ФВ±20q

100,0…999,0 кОм

0,1 кОм

1,000…9,990 Мом

0,001 Мом

10,00…99,90 Мом

0,01 Мом

100,0…999,0 Мом

0,1 Мом

1,000…9,990 ГОм

0,001 ГОм

10,00…99,90 ГОм

0,01 ГОм

100,0…999,0 ГОм

0,1 ГОм

1000…1100ГОм

1 ГОм

Безопасные приемы работы

Измерять сопротивление изоляции кабеля, используя мегаомметры, должны специалисты, имеющие все необходимые допуски и аттестованные по ПОТ РМ-016-2001 и ПЭЭП. Выполнять работу можно только в спецодежде и с обязательным использованием индивидуальных средств защиты. До начала выполнения серии замеров требуется отключить от напряжения объект. Нельзя выполнять замеры при повышенной влажности, например, во время дождя.

Оформление результатов измерений

В соответствии с существующими требованиями ГОСТ Р 50571.16-99, все данные записываются в рабочий журнал. После окончания всех работ составляется протокол испытаний.

Как проходят измерения сопротивления изоляции проводки

Проверка состояния изоляции кабелей является важной составляющей мер безопасности. Для замеров созданы специальные лаборатории, оснащенные необходимым оборудованием. В каких случаях, и как именно происходят замеры сопротивления?

В каких случаях проводятся измерения

Согласно действующим нормативам измерение сопротивления изоляции электропроводки осуществляется в следующих случаях:

  • при проведении технического обслуживания (ТО) любой категории сложности;
  • по окончании пусковых испытаний электротехнических объектов;
  • в случаях обнаружения неисправностей, проявляющихся в процессе текущей эксплуатации в виде токовых утечек;
  • по окончании ремонта электросетей и оборудования.

При техобслуживании замер сопротивления изоляции электропроводки составляет основу используемых при испытаниях методик, согласно которым электрические цепи проверяются на отсутствие утечек. Аналогичным образом проводятся замеры и во всех остальных случаях, отличающихся от техобслуживания только особенностями организации предстоящих испытаний.

В соответствии с действующими стандартами при проведении ТО параметры изоляции электропроводки, в том числе сопротивление, проверяются между всеми её жилами (фазной, нулевой и заземляющей). Особую важность приобретает это требование в случае проверки питающих цепей электродвигателей самых различных классов.

Теми же нормативами (ПТТЭП, в частности) оговаривается и периодичность измерения параметров изоляции в рамках техобслуживания электропроводки.

Измерительные средства

Для проведения испытаний электрического провода или кабеля на целостность изоляции используются специальные приборы, называемые мегомметрами (делают замер высокого сопротивления).

Они работают по принципу воздействия на измеряемую цепь высоковольтным напряжением, формируемым встроенной в устройство схемой.

Современные образцы этих приборов работают от аккумулятора с формирователем высокого напряжения.

Известные модели мегомметров различаются по величине испытательного напряжения, подаваемого на изоляцию проверяемой цепи. Согласно этому показателю они делятся на устройства с номинальными контрольными напряжениями из следующего ряда: 100, 500, 1000 и 2500 Вольт.

Сразу оговоримся, что померить сопротивление изоляционной оболочки с помощью обычного цифрового прибора не представляется возможным. Указанное ограничение объяснятся тем, что изоляция электропроводки обладает высоким сопротивлением и напряжение, выдаваемое прибором в соответствующем режиме, очень мало для оценки защитных свойств оболочки провода.

Мультиметром удаётся проверить лишь целостность оболочки силовых проводов, для чего сначала следует внимательно осмотреть их изоляцию, а затем зачистить места вывода контактных групп.

И только после этого можно будет подсоединять к ним щупы мультиметра, переведённого в режим замера «Ω» (на пределе десятки кОм). При исправной изоляции прибор будет показывать сопротивление в пределах 3,5-10 кОм.

Нормируемые показатели

Для современных кабельных изделий действующие нормативы по сопротивлению изоляции в режиме проверки постоянным током выглядят следующим образом:

  1. для силового кабеля, эксплуатируемого в сетях с напряжениями более 1000 Вольт, величина сопротивления строго не нормируется; при этом её рекомендуемое значение должно превышать 10 МОм;
  2. для образцов кабельной продукции, работающих в сетях с максимумом напряжения до 1000 Вольт, нормируемое сопротивление не должно быть меньше, чем 0,5 МОм;
  3. для проводных изделий контрольного назначения сопротивление не должна быть менее 1 МОм.

При изучении вопроса о том, какова периодичность проведения испытаний изоляции, необходимо отметить, что этот показатель определяется нормативами, приводимыми в ПТЭЭП.

Так для осветительных установок и сетей, например, сопротивление изоляции измеряется один раз в три года. Аналогичные требования предъявляются и к электропроводке большинства категорий промышленных сетей.

Дополнительная информация! В наружных электрических сетях, а также в особо опасных помещениях проверка изоляции проводки организуется ежегодно.

Такие же сроки должны соблюдаться и в случаях, когда испытывают проводку промышленного оборудования специального назначения (краны, лифты и тому подобное).

Правила работы с мегомметром

Для проведения специальных испытаний, организуемых с учётом требований к периодичности замеров сопротивления у изоляции электропроводки, применяются мегомметры с пределами замеров до нескольких Мегом.

При работе с этими приборами должны соблюдаться определённые правила, позволяющие избегать опасных ситуаций в обращении с высоковольтным оборудованием.

Последнее означает, что непосредственно перед началом замеров сопротивления следует проверить мегомметр на работоспособность. Для этого необходимо закоротить контрольные выводы прибора, а затем, вращая ручку встроенного в него генератора, убедиться в наличии короткого замыкания по отклонению стрелки прибора.

Вслед за тем следует разомкнуть концы измерительных шин и тем же способом проверить отсутствие отклонения, свидетельствующего об обрыве цепи.

При выполнении контрольных замеров должны быть приняты необходимые меры защиты от высоковольтного напряжения, позволяющие организовать проверку без повышенной опасности для испытателя.

С этой целью перед обследованием промышленных установок с помощью мегомметра со всех цепей, на которых должно замеряться сопротивление изоляции, в первую очередь необходимо снять рабочее напряжение.

И лишь после этого можно приступать к проверке изоляции между фазным, нулевым и заземляющим проводниками электрической цепи. Во всех указанных случаях показания прибора должны превышать 0,5 МОм.

После того, как испытание изоляции завершено, все замеры выполнены – фазный провод исследуемой цепи следует разрядить, прикоснувшись к нему хорошо заземлённым проводом.

Внимательное ознакомление с приведённым материалом позволит пользователю иметь представление о сроках и методах проведения испытаний. При этом всегда следует помнить о том, что подобными замерами занимаются специальные лаборатории, оснащённые высоковольтным оборудованием и располагающие штатом классных специалистов.

Измерение сопротивления изоляции \ Акты, образцы, формы, договоры \ Консультант Плюс

]]>

Подборка наиболее важных документов по запросу Измерение сопротивления изоляции (нормативно–правовые акты, формы, статьи, консультации экспертов и многое другое).

Судебная практика: Измерение сопротивления изоляции Открыть документ в вашей системе КонсультантПлюс:
Постановление Арбитражного суда Московского округа от 17.09.2018 N Ф05-14248/2018 по делу N А40-102130/2017
Требование: Об обязании передать техническую документацию, присуждении денежных средств на случай неисполнения судебного акта.
Решение: В удовлетворении требования отказано, поскольку установлено, что у общества данные документы отсутствуют, так как всю имеющуюся техническую документацию на дом общество передало товариществу собственников жилья по акту приема-передачи, таким образом, у общества отсутствует возможность передачи документов товариществу.Между тем, истцом не представлено в материалы дела решения общего собрания собственников помещений, оформленное протоколом, о включении документов: Акта приемки многоквартирного дома от строительных организаций; Исполнительные чертежи контуров заземления; Журнала заявок жителей; Протоколов измерения сопротивления изоляции электросетей; Протоколы измерения вентиляции в перечень иных документов, связанных с управлением дома и которые надлежит передать совместно с иными документами, которые указаны в Пункте 24 и 26 Постановления N 491.

Статьи, комментарии, ответы на вопросы: Измерение сопротивления изоляции Путеводитель по судебной практике. Подряд. Общие положенияВ этой связи судом кассационной инстанции отклоняется довод жалобы о том, что односторонние акты выполненных работ, справки стоимости работ, а также акт Ростехнадзора и разрешение на ввод в эксплуатацию электроустановки от 06.02.2010, акт осмотра электроустановки и разрешение на допуск в эксплуатацию Ростехнадзора от 25.02.2010, акт технической готовности электромонтажных работ, протоколы испытания силового кабеля, акт освидетельствования скрытых работ по монтажу заземляющих устройств, протоколы измерения сопротивления изоляции, не могут являться доказательствами выполнения работ подрядчиком в заявленном объеме силами и средствами истца, как противоречащий выводам судов об установленных ими обстоятельствах дела…»

Нормативные акты: Измерение сопротивления изоляции

Измерение сопротивления изоляции электрооборудования и сетей лифта

Изоляция под воздействием окружающей среды, механических напряжений, влаги, пыли, температуры и других факторов постоянно разрушается. Предупредить нарушение изоляции, а следовательно, и появление опасности поражения людей электрическим током, предупредить отключение установки или выход ее из строя — основная цель измерения сопротивления изоляции электрических цепей и оборудования лифта.

Изоляция испытывается на вновь сооружаемых и реконструируемых лифтах, при капитальном ремонте и не реже 1 раза в год в условиях эксплуатации. Проверке подвергается изоляция обмоток электродвигателей, электроаппаратуры и всех участков цепи лифта.

Для испытания изоляции электрооборудования лифта применяются два метода: измерение сопротивления изоляции и испытание изоляции повышенным напряжением. Первый метод применяется при всех проверках, второй — в тех случаях, когда сопротивление изоляции испытываемого участка окажется менее величины, предусмотренной нормами.

Сопротивление изоляции измеряют переносным магнито-электрическим мегомметром М-1101 с рабочим напряжением 500 и 1000 В. Изоляцию повышенным напряжением на лифтах удобно испытывать мегомметром МС-05 на 2500 В.

Всякое электрическое сопротивление, в том числе и сопротивление изоляции, измеряется в омах (мегомах).

У электрических двигателей в холодном состоянии сопротивление изоляции обмоток должно быть не менее 1 МОм при температуре свыше +60° С — не менее 0,5 МОм. Сопротивление изоляции электроаппаратуры и проводки должно быть не менее 0,5 МОм, причем сопротивление изоляции цепи управления — не менее 1 МОм. Сопротивление изоляции — один из главных показателей технического состояния лифта и его безопасности. Периодическая проверка изоляции, контроль за ее исправностью являются обязательными. Без проверки состояния изоляции лифт не может быть включен в работу.

Испытание сопротивления изоляции | Цветность

При испытании сопротивления изоляции (IR) измеряется общее сопротивление между любыми двумя точками, разделенными электрической изоляцией. Таким образом, испытание определяет, насколько эффективно диэлектрик (изоляция) сопротивляется прохождению электрического тока. Такие испытания полезны для проверки качества изоляции не только при первом производстве продукта, но и в течение долгого времени по мере его использования.

Выполнение таких испытаний через регулярные промежутки времени может обнаружить надвигающиеся нарушения изоляции до того, как они произойдут, и предотвратить несчастные случаи с пользователем или дорогостоящий ремонт изделия.

Как показано на Рисунке 15, двухпроводное незаземленное соединение является рекомендуемой установкой для тестирования незаземленных компонентов. Это наиболее распространенная конфигурация для тестирования 2-контактных устройств, таких как конденсаторы, резисторы и другие дискретные компоненты.

Как показано на Рисунке 16, 2-проводное заземленное соединение является рекомендуемым подключением для тестирования заземленных компонентов. Заземленный компонент — это компонент, в котором одно из его соединений идет на землю, тогда как незаземленный компонент — это компонент, в котором ни одно соединение не идет на землю.Измерение сопротивления изоляции кабеля в водяной бане является типичным применением 2-проводного заземленного соединения.

Процедура измерения

Проверка сопротивления изоляции обычно состоит из четырех этапов: зарядки, выдержки, измерения и разрядки. Во время фазы заряда напряжение нарастает от нуля до выбранного напряжения, что обеспечивает время стабилизации и ограничивает пусковой ток тестируемого устройства. Как только напряжение достигнет выбранного значения,

Затем можно позволить напряжению

оставаться на этом уровне до начала измерений.

После измерения сопротивления в течение выбранного времени тестируемое устройство снова разряжается до 0 В во время последней фазы.

Измерители сопротивления изоляции

обычно имеют 4 выходных соединения — заземление, экран, (+) и (-) — для различных применений. Выходное напряжение обычно находится в диапазоне от 50 до 1000 вольт постоянного тока. При выполнении теста оператор сначала подключает тестируемое устройство, как показано на рисунках 15 или 16.

Прибор измеряет и отображает измеренное сопротивление.При подаче напряжения через изоляцию сразу же начинает течь ток. Этот ток имеет три компонента: ток «диэлектрического поглощения», зарядный ток и ток утечки.

Диэлектрическое поглощение

Диэлектрическое поглощение — это физическое явление, при котором изоляция медленно «поглощает» и сохраняет электрический заряд с течением времени. Это демонстрируется приложением напряжения к конденсатору в течение длительного периода времени, а затем его быстрой разрядкой до нулевого напряжения.Если конденсатор оставить разомкнутым в течение длительного периода, а затем подключить к вольтметру, измеритель покажет небольшое напряжение. Это остаточное напряжение вызвано «диэлектрическим поглощением». Это явление обычно связано с электролитическими конденсаторами.

При измерении ИК-излучения различных пластиковых материалов это явление приводит к увеличению значения ИК-излучения с течением времени. Завышенное значение ИК-излучения вызвано тем, что материал медленно поглощает заряд с течением времени. Этот поглощенный заряд выглядит как утечка.

Зарядный ток

Поскольку любое изолированное изделие демонстрирует основные характеристики конденсатора, то есть два проводника, разделенных диэлектриком, приложение напряжения через изоляцию вызывает протекание тока по мере зарядки конденсатора. В зависимости от емкости продукта этот ток мгновенно повышается до высокого значения при приложении напряжения, а затем быстро спадает экспоненциально до нуля, когда продукт становится полностью заряженным. Зарядный ток спадает до нуля намного быстрее, чем ток диэлектрического поглощения.

Ток утечки

Установившийся ток, протекающий через изоляцию, называется током утечки. Оно равно приложенному напряжению, деленному на сопротивление изоляции. Цель теста — измерить сопротивление изоляции. Чтобы вычислить значение IR, подайте напряжение, измерьте установившийся ток утечки (после того, как токи диэлектрической абсорбции и заряда снизятся до нуля), а затем разделите напряжение на ток. Если сопротивление изоляции соответствует требуемому значению или превышает его, испытание считается успешным.В противном случае тест не пройден.

Основы испытания сопротивления изоляции

Насколько важно испытание сопротивления изоляции? Поскольку 80% технического обслуживания и тестирования электрооборудования включает оценку целостности изоляции, ответ «очень важен». Электрическая изоляция начинает стареть, как только она сделана. А старение ухудшает его характеристики. Суровые условия установки, особенно с экстремальными температурами и / или химическим загрязнением, вызывают дальнейшее ухудшение состояния.В результате может пострадать безопасность персонала и надежность энергоснабжения. Очевидно, что важно как можно быстрее выявить это ухудшение, чтобы вы могли принять необходимые корректирующие меры.

Что такое проверка сопротивления изоляции?

По сути, вы прикладываете напряжение (в частности, строго регулируемое, стабилизированное постоянное напряжение) на диэлектрик, измеряете величину тока, протекающего через этот диэлектрик, а затем вычисляете (используя закон Ома) измерение сопротивления.Давайте поясним, как мы используем термин «ток». Речь идет о токе утечки. Сопротивление измеряется в МОмах. Это измерение сопротивления используется для оценки целостности изоляции.

Прохождение тока через диэлектрик может показаться несколько противоречивым, но помните, что никакая электрическая изоляция не идеальна. Значит, ток потечет.

Какова цель проверки сопротивления изоляции?

Вы можете использовать как:

  • Мера контроля качества при производстве электрооборудования;
  • Требование к установке для обеспечения соответствия спецификациям и проверки правильности подключения;
  • Задача периодического профилактического обслуживания; и
  • Инструмент для устранения неполадок.

Как вы проводите испытание сопротивления изоляции?

Обычно вы подключаете два провода (положительный и отрицательный) через изоляционный барьер. Третий вывод, который подключается к защитному терминалу, может отсутствовать в вашем тестере. Если это так, вы можете или не должны использовать его. Эта защитная клемма действует как шунт для отключения подключенного элемента от измерения. Другими словами, это позволяет вам избирательно оценивать определенные компоненты большого электрического оборудования.

Очевидно, неплохо было бы получить базовое представление о тестируемом элементе. В принципе, вы должны знать, что предполагается от чего изолировать. Оборудование, которое вы тестируете, определит, как вы подключите мегомметр.

После подключения вы подаете тестовое напряжение на 1 мин. (Это стандартный отраслевой параметр, позволяющий относительно точно сравнивать показания прошлых тестов, выполненных другими техническими специалистами.)

В течение этого интервала показание сопротивления должно падать или оставаться относительно стабильным.Более крупные системы изоляции будут демонстрировать неуклонное снижение; меньшие системы останутся стабильными, потому что емкостные токи и токи поглощения падают до нуля быстрее, чем в более крупных системах. Через 1 мин вы должны прочитать и записать значение сопротивления.

При проверке сопротивления изоляции необходимо соблюдать согласованность. Почему? Поскольку электрическая изоляция будет демонстрировать динамическое поведение в ходе вашего испытания; является ли диэлектрик «хорошим» или «плохим». Чтобы оценить несколько результатов испытаний на одном и том же оборудовании, вы должны каждый раз проводить испытание одинаково и при относительно одних и тех же параметрах окружающей среды.

Ваши показания измерения сопротивления также будут меняться со временем. Это связано с тем, что электроизоляционные материалы обладают емкостью и будут заряжаться во время испытания. Это может немного расстроить новичка. Однако для опытного техника он становится полезным инструментом.

По мере того, как вы приобретете больше навыков, вы познакомитесь с этим поведением и сможете максимально использовать его при оценке результатов теста. Это один из факторов, который обеспечивает неизменную популярность аналоговых тестеров.

Что влияет на показания сопротивления изоляции?

Сопротивление изоляции зависит от температуры. При повышении температуры сопротивление изоляции уменьшается, и наоборот. Общее практическое правило — сопротивление изоляции изменяется в два раза на каждые 10 градусов по Цельсию. Итак, чтобы сравнить новые показания с предыдущими, вам придется скорректировать свои показания до некоторой базовой температуры. Например, предположим, что вы измерили 100 МОм при температуре изоляции 30 ° C.Скорректированное измерение при 20 градусах Цельсия составит 200 МОм (100 МОм умноженные на два).

Кроме того, «допустимые» значения сопротивления изоляции зависят от оборудования, которое вы тестируете. Исторически сложилось так, что многие полевые электрики используют несколько произвольный стандарт 1 МОм на кВ. Спецификация Международной ассоциации электрических испытаний (NETA) «Спецификации технического обслуживания для оборудования и систем распределения электроэнергии» предоставляет гораздо более реалистичные и полезные значения.

Не забывайте, сравнивайте свои тестовые показания с показаниями, полученными на аналогичном оборудовании.Затем исследуйте любые значения ниже стандартных минимумов NETS или внезапные отклонения от предыдущих значений.

Как выбрать лучший тестер сопротивления изоляции

Пытаетесь выбрать тестер сопротивления изоляции? Не уверены, какая именно модель, какие функции или какое выходное испытательное напряжение вам нужно?

При выборе лучшего тестера сопротивления изоляции необходимо учитывать шесть факторов, в том числе:

  1. Какое оборудование необходимо проверить?
  2. Какие требования к напряжению?
  3. Где будут проходить испытания?
  4. На какие вопросы мне поможет тестер сопротивления изоляции?
  5. Каков уровень опыта специалиста, проводящего тесты?
  6. Какую роль играет безопасность при выборе нового инструмента?

Выбранный вами тестер изоляции должен соответствовать вашим требованиям к испытаниям.Многие портативные тестеры изоляции могут подавать испытательное напряжение до 1000 вольт.

Обзор продуктов

Прежде чем исследовать эти шесть вопросов, давайте рассмотрим соответствующие продукты.

90 143 x: только 9036 контакт), фильтр нижних частот, емкость, проверка диодов, частота, MIN / MAX
Характеристики тестера изоляции Инструменты два в одном: тест изоляции плюс цифровой мультиметр Автономные инструменты: специализированные тестеры изоляции
Fluke 1587 FC Мультиметр изоляции Fluke 1577 Insulation Fluke 1503 Измеритель сопротивления изоляции Fluke 1507 Измеритель сопротивления изоляции Fluke 1550C FC 5 кВ Цифровой тестер сопротивления изоляции Fluke 1555 FC 10 кВ Измеритель сопротивления изоляции
Испытательное напряжение 506 500 В
100 В В
1000 В
500 В
1000 В
500 В
1000 В
50 В
100 В
500 В
1000 В
250 В
5000 В
250 В
10 000 В
Изоляция диапазон сопротивления 0.От 01 МОм до 2 ГОм от 0,01 МОм до 600 ГОм от 0,01 МОм до 2000 ГОм от 0,01 МОм до 10 ГОм 200 кОм до 1 ТОм 200 кОм до 2 ТОм
PI / DAR144 x x x
Авторазряд x x x x x x 90d118 ramp тест x x
Сравнение годен / не годен x x x
Est.Количество тестов IRT 1,000 1,000 2,000 2,000 Разное Разное
Предупреждение о напряжении> 30 В x x x x x x x
Память x x
Дистанционный измерительный датчик x x x 9014- 9014 9014 9014 9014 9014 9014 9014 целостность связи Источник 200 мА (разрешение 10 мОм) Источник 200 мА (разрешение 10 мОм)
Дисплей Цифровой ЖК-дисплей Цифровой ЖК-дисплей Цифровой ЖК-дисплей Цифровой ЖК-дисплей 90 ЖК-дисплей Цифровой ЖК-дисплей / аналоговый Цифровой ЖК-дисплей / аналоговый
Удержание / блокировка x x x x x
Характеристики мультиметра
1577: напряжение переменного / постоянного тока, ток, сопротивление, датчик непрерывности, температура, подсветка

Какое оборудование требует тестирования?

Во-первых, составьте список типового оборудования, которое, как вы ожидаете, потребует проверки сопротивления изоляции.Запишите номинальное напряжение оборудования (указано на паспортной табличке оборудования) и приблизительное количество испытаний сопротивления изоляции, которые вы планируете проводить ежегодно. Номинальное напряжение поможет определить, какое испытательное напряжение необходимо от тестера. Ежегодное количество оценок сопротивления изоляции может вызывать удивление. Чем больше тестов предстоит провести, тем важнее станут общее качество, долговечность и удобство тестового прибора.

Каковы требования к напряжению?

Выходное испытательное напряжение, прикладываемое к оборудованию, должно основываться на рекомендованном изготовителем испытательном напряжении сопротивления изоляции постоянного тока.Если испытательное напряжение не указано, используйте данные передового опыта. См. Таблицу рекомендаций Международной ассоциации электрических испытаний. Убедитесь, что вы выбрали тестер сопротивления изоляции, который будет обеспечивать необходимое выходное испытательное напряжение. Не все тестеры сопротивления изоляции одинаковы: некоторые могут подавать только до 1000 В постоянного тока, а другие могут подавать испытательное напряжение постоянного тока 5000 В или более.

Где будут проходить испытания?

Рассмотрение условий тестирования и других возможных применений тестера сопротивления изоляции поможет в выборе дополнительных функций.Например, возможность использовать один прибор как для проверки сопротивления изоляции, так и в качестве обычного цифрового мультиметра может добавить удобства. Поскольку все цепи и оборудование должны быть проверены как обесточенные до того, как тестер сопротивления изоляции будет подключен к оборудованию, часто бывает менее удобно носить с собой цифровой мультиметр для проверки напряжения и тестер сопротивления изоляции в разные места.

значенийМеждународная ассоциация электрических испытаний (NETA) предоставляет репрезентативные испытания и минимальные значения изоляции для различных номинальных напряжений оборудования для использования, когда данные производителя недоступны.

Размышляя об окружающей среде для тестирования, задайте себе следующие вопросы:

  • «Будет ли тестер сопротивления изоляции использоваться для поиска и устранения неисправностей, профилактического обслуживания или и того, и другого?»
  • «Где будет использоваться тестовый прибор — только в магазине или на промышленном предприятии?»

Некоторые тестеры сопротивления изоляции могут быть относительно большими и не очень портативными, в то время как другие можно легко переносить.

Специалисты по обслуживанию систем отопления, вентиляции и кондиционирования воздуха не только проверяют неисправность изоляции, но также обычно проверяют наличие открытых предохранителей и неисправных конденсаторов. Технические специалисты, которые часто проводят проверки напряжения, проверки конденсаторов, измерения температуры и испытания сопротивления изоляции, могут предпочесть испытательный инструмент, который объединяет все эти функции в одном приборе. Такие тестовые инструменты доступны.

Также учитывайте особенности, необходимые в зависимости от типа выполняемого испытания сопротивления изоляции. На самом деле, может возникнуть вопрос: «Если нужен только один простой тест изоляции, зачем вообще покупать тестер сопротивления изоляции, если стандартный мультиметр уже может измерять сопротивление?» Чтобы ответить на этот вопрос и лучше понять некоторые функции, которые могут потребоваться в тестере сопротивления изоляции, необходимо понять, что происходит в процессе измерения сопротивления изоляции и для чего предназначен тест.

Что вы узнаете из теста сопротивления изоляции

Тестирование сопротивления изоляции дает качественную оценку состояния изоляции проводов и внутренней изоляции различных частей электрического оборудования. В начале испытания сопротивления изоляции подайте напряжение постоянного тока на проверяемый провод или оборудование. Некоторый ток течет из испытательного оборудования в проводник и начинает заряжать изоляцию. Этот ток называется емкостным зарядным током, и его можно наблюдать на лицевой панели счетчика.

Когда зарядный ток начинает расти, показания сопротивления на лицевой стороне измерителя будут указывать на низкое значение. Думайте об этом как о том, что электроны начинают поступать внутрь самой изоляции и накапливаться в ней. Чем больше тока выходит из испытательного комплекта, тем ниже значение МОм. Изоляция быстро заряжается, и показания счетчика начинают устанавливаться при более высоком значении МОм — при условии хорошего качества изоляции.

Следующий ток, который протекает, — это ток поглощения или поляризации.Величина тока поглощения зависит от загрязнения изоляции. Например, если в изоляции присутствует влага, ток поглощения будет высоким, что указывает на более низкое значение сопротивления. Однако важно понимать, что этот ток поглощения требует больше времени, чем ток емкостной зарядки. Следовательно, тестер изоляции, работающий слишком короткое время, будет наблюдать только емкостной зарядный ток и не начнет показывать наличие загрязнений в изоляции.

Наконец, ток, протекающий через поврежденную изоляцию в нетоковедущие металлические компоненты, является током утечки. Этот ток чаще всего учитывается при испытании сопротивления изоляции. Однако для более точного поиска и устранения неисправностей и обслуживания необходимо также учитывать ток поглощения или поляризации. Некоторые тестеры сопротивления изоляции можно запрограммировать на выполнение тестов, необходимых для учета всех токов.

Будете ли вы измерять ток поляризации?

Поскольку для формирования тока поляризации требуется больше времени, тестер сопротивления изоляции должен работать дольше.Промышленный стандарт для этого теста — десять минут. Чтобы определить степень загрязнения и общее состояние изоляции, снимите показания измерителя сопротивления изоляции через одну минуту и ​​еще одно показание через десять минут. Показания за десять минут делятся на показания за одну минуту, чтобы получить индекс поляризации. В рамках программы регулярного технического обслуживания следует записывать как значения точечного считывания, так и значения индекса поляризации. Всегда сравнивайте самые последние показания с предыдущими.Индекс поляризации никогда не должен быть меньше 1,0.

Будете ли вы измерять ток утечки?

В то время как все тестеры сопротивления изоляции будут показывать ток утечки и предоставлять информацию, помогающую оценить загрязнение изоляции, для промышленных сред вам следует рассмотреть те тестеры, которые автоматически получают эти данные. Чтобы получить ток утечки, приложите испытательное напряжение к проверяемому компоненту, а затем через одну минуту снимите показание сопротивления. Это часто называют тестом на чтение.Тест точечного считывания позволяет стабилизировать токи емкостной зарядки и является отраслевым стандартом для определения тока утечки через изоляцию. Минимальные значения сопротивления изоляции в МОм должны основываться на тесте на точечное считывание.

Каков ваш уровень опыта?

Качество любого испытательного прибора зависит от уровня знаний и опыта человека, использующего это оборудование и интерпретирующего его показания. При выборе измерителя сопротивления изоляции учитывайте опыт лиц, которые будут проводить испытания сопротивления изоляции.Очевидно, что следует учитывать простоту и ограниченные функции, если потребности приложения минимальны, а уровень опыта минимален. Однако обучение тестированию сопротивления изоляции необязательно. Для этой цели доступны руководства производителей и базовые тексты. Для неопытного персонала рассмотрите возможность обучения на рабочем месте для правильного и безопасного использования тестеров сопротивления изоляции. Убедитесь, что приобретенный тестер сопротивления изоляции соответствует требованиям приложения для выходного испытательного напряжения и других функций.Затем проведите обучение тех, кто будет проводить тесты.

Какую роль играет безопасность при тестировании и устранении неисправностей?

Безопасность превыше всего, когда речь идет о тестировании и устранении неисправностей. Поскольку тестер сопротивления изоляции выдает значительные постоянные напряжения, его нельзя подключать к цепи под напряжением. Также выход тестера может вывести из строя электронные схемы. Никогда не подключайте тестер сопротивления изоляции к электронным источникам питания, ПЛК, преобразователям частоты, системам ИБП, зарядным устройствам или другим твердотельным устройствам.Некоторые тестеры сопротивления изоляции имеют встроенную систему предупреждения, которая сообщит техническим специалистам о наличии напряжения в цепи.

Как и все контрольно-измерительные приборы, тестеры сопротивления изоляции должны быть аттестованы для своего применения, подходить для среды, в которой они будут работать, и проверяться в признанной на национальном уровне испытательной лаборатории. Если он также используется в качестве мультиметра, тестер сопротивления изоляции должен иметь номинальную категорию. Измерительные провода должны быть прочными, рассчитанными и испытанными.

Изоляция может удерживать значительный заряд напряжения в течение некоторого времени после завершения испытания сопротивления изоляции.Большинство тестеров автоматически разряжают изоляцию после завершения теста; некоторые не будут. Это важный момент, который следует учитывать при выборе измерителя сопротивления изоляции. Некоторые тестеры показывают уровни напряжения, а также значения сопротивления изоляции. На таких тестерах можно наблюдать спад уровня напряжения до нуля после отключения тестового выходного напряжения. Некоторые производители рекомендуют, чтобы тестер сопротивления изоляции оставался подключенным к тестируемой цепи или компоненту после завершения теста до четырех раз, пока тест проводился, чтобы гарантировать безопасный разряд.Большинство техников заземляют тестируемую цепь после завершения теста, чтобы убедиться, что изоляция разряжена. При выборе измерителя сопротивления изоляции внимательно изучите функцию саморазряда тестера.

Следующий шаг в выборе измерителя сопротивления изоляции

Выбор правильного измерителя сопротивления изоляции обеспечивает эффективность поиска и устранения неисправностей, а также точные и полные записи о техническом обслуживании с течением времени. Составьте список оборудования, требующего проверки сопротивления изоляции, определите испытательные напряжения, необходимые для этого оборудования и изоляции, определите среду тестирования, тщательно подумайте о любых необходимых специальных функциях, проверьте уровень опыта технических специалистов и изучите функции безопасности испытательное оборудование.Тестер сопротивления изоляции — ценный инструмент для технических специалистов по ОВК, но только в том случае, если он является подходящим тестером сопротивления изоляции для работы.

Высокоэффективные тестеры изоляции от производителей

ИСПЫТАНИЯ ИЗОЛЯЦИИ

Электрооборудование Испытание изоляции потребности существуют столько же, сколько и сами электрические активы. Хорошо задокументированные недостатки ранних систем изоляции стали очевидны почти сразу после того, как более 125 лет назад были заложены первые системы освещения.Хотя с тех пор изоляционные системы претерпели значительные изменения, необходимость в их тестировании никогда не исчезает. Последствия неудачи слишком велики.

ИСПЫТАНИЯ ИЗОЛЯЦИИ ПОСТОЯННОГО ТОКА

Самые ранние испытания систем изоляции включали подачу постоянного напряжения на изоляцию и измерение утечки или резистивного тока через нее. Истоки мостов постоянного тока восходят к 1833 году и относятся к Сэмюэлю Хантеру Кристи, который изобрел первый мост, известный как мост Уитстона, в честь Чарльза Уитстона, который просто более четко описал схему Кристи и ее преимущества.Первый переносной тестер изоляции постоянного тока был разработан в 1889 году нашими основателями Сиднеем Эвершедом и Эрнестом Виньолесом, а к 1903 году продавался как тестер изоляции Megger®.

Проверка сопротивления изоляции, также известная как «тест мегомметра», актуальна как никогда и во многих случаях предпочтительнее других методов проверки изоляции. Сегодня Megger предлагает лучшую линейку тестеров сопротивления изоляции 5 кВ, 10 кВ и 15 кВ (постоянного тока), доступных повсюду. В частности, наша линейка тестеров изоляции серии S1 предлагает беспрецедентные возможности, включая работу от батареи или линии, лучшие диапазоны измерения, высочайшую шумостойкость, пять автоматических тестов, хранение данных, загрузку через RS232 или USB и МНОГОЕ ДРУГОЕ.

ИСПЫТАНИЯ ИЗОЛЯЦИИ ПЕРЕМЕННОГО ТОКА

В начале 1900-х годов, по мере совершенствования систем изоляции, возникла необходимость в обнаружении различных типов диэлектрических повреждений. Например, испытание коэффициента мощности (также известное как тангенс дельта или испытание на рассеяние) стало важным испытанием диэлектрика из-за его уникальной способности обнаруживать локальные загрязнения в многослойной системе изоляции. Емкостный ступенчатый ввод, исторически известный как конденсаторный ввод, представленный примерно в 1910 году, является наиболее узнаваемым активом с такой системой изоляции; Широкое использование этих вводов, следовательно, закрепило популярность теста коэффициента мощности.Между тем, в литературе говорится, что производители кабелей использовали тесты изоляции коэффициента мощности в лаборатории с самого начала 1900-х годов.

Серия Delta 4XXX — это специальный прибор Megger для измерения коэффициента мощности / коэффициента рассеяния (PF / DF) и измерения емкости для использования в полевых условиях. TRAX в сочетании с TDX также обеспечивает возможности тестирования PF / DF. Это не обычные наборы коэффициента мощности. Они однозначно корректируют влияние температуры на результаты испытаний PF / DF (см. Бюллетень ITC TLM) — необходимо, чтобы укрепить уверенность в ваших выводах испытаний — и позволяют проводить измерения частотной характеристики узкополосной диэлектрической проницаемости (NB DFR) — следующий шаг вперед в тестировании коэффициента мощности .

ТЕСТ ЧАСТОТНОГО ДОМЕНА

Опыт и исследования показали, что традиционный тест коэффициента мощности не очень чувствителен к механизмам полностью диэлектрического повреждения. Например, факторы проводящих потерь (например, вода), когда они присутствуют на низких уровнях, практически останутся незамеченными, если полагаться на одно измерение коэффициента мощности. Этот недостаток может быть восполнен путем повторения испытаний коэффициента мощности на нескольких заданных частотах (также известных как диэлектрическая частотная характеристика или DFR).

Компания Megger продолжает оставаться лидером в области диэлектрической оценки и сегодня, поскольку мы были в авангарде разработки испытательного оборудования для измерения диэлектрической проницаемости, представив первый коммерчески доступный инструмент для измерения диэлектрической проницаемости более 20 лет назад — IDAX. Большинство аспирантов, изучающих диэлектрики, расширили свои знания за счет использования IDAX.

Область диэлектриков большая. Методы оценки широки, потому что есть много параметров тестирования, таких как уровень стресса (т.е., величина источника испытания), которому должен подвергнуться испытательный образец во время испытания, а также особенности применения, в котором используются системы изоляции. Например, кабели создают проблемы для испытаний на переменном токе, потому что они представляют собой очень большие емкостные образцы, особенно когда кабели становятся довольно длинными.

ИЗОЛЯЦИЯ КАБЕЛЯ — ИСПЫТАНИЯ ПОСТОЯННОГО, ПОСТОЯННОГО И СНЧ

В конкретном приложении для оценки кабеля, в дополнение к возможностям тестирования DFR, Megger предлагает различные решения для тестирования изоляции переменного, постоянного и СНЧ.VLF-тестирование сочетает в себе преимущества тестирования переменного тока с преимуществами, присущими источнику тестирования постоянного тока.

Теория тестирования изоляции

ИК-тестирование: как и что измеряется

При обычных испытаниях обычно используется напряжение постоянного тока (DC), как и в случае с мегомметром. Однако при непрерывном мониторинге с помощью ИК-тестера, такого как устройство контроля изоляции (IMD), обычно используется какая-либо форма сигнала переменного тока (AC). Это связано с тем, что измерения постоянного тока чувствительны к помехам из-за шума или паразитных токов.Обсуждаемые здесь испытания в основном относятся к испытаниям напряжением постоянного тока.

Когда напряжение E (Вольт, В) подается между металлическим проводом и землей, ток течет через изоляцию кабеля. Это называется током утечки. Однако ток, измеренный ИК-тестером, представляет собой полный ток, который включает в себя емкостной ток и ток поглощения. Емкостной ток связан с зарядкой конденсатора. Конденсатор состоит из двух проводящих сред, разделенных диэлектрическим материалом (изолятором), например изолированным медным кабелем, погруженным в морскую воду.Когда между двумя проводниками, разделенными изолятором, прикладывается постоянное напряжение, происходит накопление равного и противоположного заряда на обращенных друг к другу поверхностях проводников. С другой стороны, диэлектрик создает электрическое поле, с которым выстраиваются молекулярные диполи в диэлектрике. Именно это движение носителей заряда к / от поверхности проводников вызывает емкостной ток утечки. Токи поглощения возникают из-за движения диполей внутри изолятора из-за наличия электрического поля.

Итак, как емкостной и поглощающий токи влияют на ИК-тест? В начале ИК-теста постоянного напряжения присутствуют емкостные токи, токи поглощения и утечки. Емкостной ток преобладает в начале и обычно намного больше, чем токи утечки и поглощения. Со временем емкость и токи поглощения будут рассеиваться, что диктуется способностью материала накапливать заряд (что изоляторы делают более эффективно). Емкостной ток (связанный с проводниками) быстро рассеивается по сравнению с током поглощения (связанным с изолятором).Таким образом, уменьшение тока вызывает постоянное увеличение IR во время теста IR. Однако большинство методов тестирования IR учитывают эти эффекты.

▷ Важность испытаний изоляции

Изоляционный материал — это материал, который очень сильно сопротивляется прохождению через него электрического тока. Электрическая изоляция состоит из смеси материалов, таких как ПВХ, стекло, смола, лак, керамика, стекловолокно и т. Д., Цель которых — предотвратить протекание электрического тока там, где он не нужен.

Прочтите советы своего коллеги Джинни по тестированию изоляции ниже!

Старение электрической изоляции ухудшает ее характеристики, вызывая широкий спектр последствий от повреждения электрических компонентов до смертельных травм или смерти человека, поэтому испытание изоляции так необходимо и должно проводиться периодически, чтобы проводить профилактическое обслуживание и проверки контроля качества.

Задача при испытании изоляции состоит в том, чтобы знать, что измерять, как это измерять и интерпретировать результаты.

Какое оборудование следует использовать для проверки изоляции?

Megger и Doble (показаны на рисунках 1 и 2 соответственно) являются наиболее часто используемыми мегомметрами для проверки изоляции, но мы должны быть осторожны, поскольку каждый из них измеряет разные параметры.

Рисунок 1. Megger

Фото 2. Doble

Для измерения изоляции мегомметр подает напряжение постоянного тока, предварительно установленное пользователем, и результаты будут связаны с моделью изоляции постоянного тока испытываемого электрического оборудования.Этот прибор довольно прост в использовании, но результаты не очень точные, учитывая, что сторона постоянного тока измеряет ток проводимости, который составляет лишь небольшой процент (1%) от общего тока утечки.

Чтобы узнать фактическое состояние изоляции, нам необходимо принять во внимание часть переменного тока, которую можно измерить с помощью Doble. Этот прибор намного сложнее в использовании, и вам необходимо знать модель изоляции испытываемого электрооборудования, чтобы знать, что вы измеряете, какой режим тестирования следует использовать (да, этот инструмент имеет несколько режимов тестирования) и проверить результаты.

Как интерпретировать результаты?

Если вы используете Megger, у вас есть несколько индексов, которые можно использовать для определения целостности изоляции. Например, индекс поляризации (PI) — это отношение мегаомов, измеренных через десять минут, к мегамам через одну минуту, и он в основном используется для проверки изоляции двигателей и генераторов.

Кроме того, у нас есть тест на коэффициент диэлектрической абсорбции (DAR), который представляет собой отношение мегаомов, измеренных через одну минуту, к мегамамам через 30 секунд, и он широко используется для тестирования трансформаторов.

При использовании Doble рекомендуется проверить результаты, сравнив их со значениями, предоставленными производителем, если таковые имеются.

Как проверить изоляцию?

Одна важная вещь, которую вы должны знать об испытании электрической изоляции, заключается в том, что процедуры различаются в зависимости от элемента, который вы пытаетесь проверить, все это имеет смысл, учитывая, что каждый элемент работает по-разному, но то, что вы измеряете, одинаково : электрическое сопротивление.

При работе с однофазными трансформаторами необходимо проверить изоляцию между обмоткой и землей. Если вы имеете дело с трехфазным трансформатором, вам необходимо измерить электрическое сопротивление между фазами для трансформаторов, соединенных по схеме треугольник, и между фазой и землей для трансформаторов в звезду. Необходимо внимательно изучить другие типы трансформаторов.

Подобно трансформаторам, испытание двигателей и генераторов заключается в измерении электрического сопротивления между обмотками и обмотками относительно земли, когда машина полностью отключена.Если вы тестируете машину постоянного тока, вы должны учитывать, что ваши результаты могут включать сопротивление щеток.

Чтобы избежать каких-либо неудобств, вызванных повреждением изоляции, существует множество типов оборудования и электрических элементов, которые требуют периодических испытаний изоляции, и каждый из них должен выполняться в соответствии с различными процедурами, поэтому для получения точных результатов необходимо предварительное исследование нужно сделать, чтобы убедиться, что мы все сделаем правильно.

Спасибо, что прочитали статью Джинни.Вы также можете отправить свой, отправив нам письмо. Если вы стесняетесь это делать, просто отреагируйте на эту статью 🙂

Проверка сопротивления изоляции | SCHLEICH

Чувствую ли я себя в безопасности?

Я все делаю правильно?

Вы узнаете наверняка через несколько минут.

Испытания на безопасность являются обязательными и являются частью каждой окончательной проверки вашего электрического изделия.
Узнайте самые важные факты об испытании сопротивления изоляции .
Мы объясняем ПОЧЕМУ? ГДЕ? КАК? а также КОГДА НЕТ!
А если вы хотите узнать больше, вы можете бесплатно скачать еще более подробную информацию в конце этой страницы!

ПОЧЕМУ?

Надежная изоляция — это основная защитная мера для обеспечения электробезопасности. Это гарантирует, что пользователь не прикоснется к токоведущим проводам и что не может произойти короткое замыкание между проводниками или корпусом оборудования.Потому что, если это произойдет, опасный для жизни ток может протекать через пользователя, если он или она коснется корпуса. Очевидно, что защитный заземляющий провод должен гарантировать, что этого не произойдет. Но в худшем случае он тоже может быть бракованным. И это также было бы лишь уклонением от следствия, а не от причины.

Чтобы все это было гарантировано, изоляция должна работать безупречно! И вы должны доказать и задокументировать это, выполнив испытание сопротивления изоляции перед поставкой электрического изделия.

Проверка сопротивления изоляции — это стандартная проверка. Это означает, что каждая деталь, то есть каждое отдельное электрическое изделие, которое вы выставляете на рынок, обязательно требует испытания сопротивления изоляции.

ГДЕ?

Это несколько сложнее, чем, например, с проводом защитного заземления. В принципе, между токоведущими проводниками или между ними и частями корпуса должна быть хорошая изоляция. Обычно это делается путем изоляции электрических проводов от опасного контакта, т.е.е. покрытие их изоляционным материалом. Но эту защитную оболочку необходимо снимать не позднее, чем при подсоединении электрического проводника к другим электрическим компонентам. В этих точках обеспечивается изоляция на безопасном расстоянии. Тогда это вопрос безопасных расстояний через зазоры и пути утечки.

Кроме того, токопроводящие жилы могут быть изолированы друг от друга, например, с помощью литейных смесей, изолирующей фольги или твердых тел.
Когда какой тип изоляции используется?
Это всегда связано с конструкцией электрического изделия, типом спецификации, например, высокой температурой или механической нагрузкой и т. Д.

Теперь понятно, что изоляция в светильнике, утюге, электродвигателе или высоковольтном изоляторе на электростанции имеет очень разные требования и конструкции.
Из этого разнообразия от случая к случаю возникают довольно сложные электротехнические изоляционные конструкции.

КАК?

Поскольку изоляция «имеет какое-то отношение к напряжению», испытание проводится с определенным уровнем испытательного напряжения. Это может быть увеличено или применено непосредственно к тестируемому устройству в полном объеме.

Цель состоит в том, чтобы измерить ток, а затем рассчитать сопротивление изоляции, так как это критерий оценки изоляции. Оно должно быть равным указанному минимальному сопротивлению или превышать его.
Нижний предел сопротивления изоляции может быть определен по-разному от продукта к продукту и в разных регионах / континентах. Поэтому вы всегда должны брать параметры теста из стандарта, применимого к продукту и региону.

Часто сопротивление изоляции измеряется одно за другим между всеми проводниками, участвующими в электрическом изделии.Это могут быть комбинированные группы проводников или отдельные проводники и, конечно же, корпус или его части. Быстро становится ясно, что испытание может и должно проводиться в самых разных местах, в зависимости от сложности электрического изделия.
Это можно сделать путем сканирования контрольных точек с помощью тестового щупа — подход, который может быстро оказаться длительным и дорогостоящим.
Таким образом, в течение 25 лет комплексные испытания всегда выполнялись автоматически в любых контрольных точках с помощью типовой матрицы SCHLEICH , которая полностью программируется:

Коммутационные матрицы SCHLEICH гибко переключаются по 2- и 4-проводной технологии.В особенности 4-проводная технология имеет большое значение в автоматизированных системах и установках. Это гарантирует безопасное управление контактом испытательного напряжения и, следовательно, стабильность процесса.

Номинальное напряжение оборудования Минимальное сопротивление изоляции испытательное напряжение постоянного тока Рекомендуемое минимальное сопротивление изоляции в МОмах
250 500 25 1000 1000
1,000 1,000 100
5,000 2,500 1,000
15,000 2,500 5,000
Параметры теста типовые нормативные значения SCHLEICH | от стандартного к индивидуальному
минимально допустимое сопротивление изоляции 1, 2, 100 МОм от 100 кОм до 10 ТОм
минимально необходимое испытательное напряжение 500 В постоянного тока от 30 до 50 000 В постоянного тока
макс.ток проверки безопасности по SCHLEICH 3 — 12 мА от 3 до 100 мА
минимальная продолжительность теста 1 с от 0,1 с до 1 месяца
рампа пуска выкл; 1 с — 1 мин выкл; от 0,5 с до 1 месяца
рампа вниз выкл; 1 с — 1 мин выкл; от 0,5 сек до 1 месяца
испытание ступенчатым напряжением выкл; за 5 шагов выкл; за любое количество шагов
DAR / PI выкл; 3–5 выкл; 1–10

При таком диапазоне требований, конечно, идеально использовать испытательное устройство, которое соответствует как можно большему количеству мировых стандартов.
В этом сила SCHLEICH.

ПРОДОЛЖИТЕЛЬНОСТЬ ИСПЫТАНИЯ?

Изоляция всегда состоит из сопротивления изоляции и конденсатора? Почему конденсатор? Это вообще было встроено? …


Измерение изоляции всегда проводится между электрическими проводниками и / или частями корпуса. В абстрактном смысле эти два компонента образуют две металлические поверхности, между которыми есть определенное расстояние. Между ними утеплитель. И эта структура соответствует конденсатору.Следовательно, вся изоляционная конструкция также ведет себя подобно конденсатору.
После подачи испытательного напряжения сначала заряжается конденсатор. Только когда конденсатор заряжен, остается только ток через сопротивление изоляции.

Становится ясно, что поэтому измерение сопротивления изоляции во многих случаях не может быть выполнено в течение десятых долей секунды из-за физических ограничений. Тестер мог — но тестируемое устройство «еще не готово».

емкостная часть изоляции типичное время тестирования Примеры
низкий 1 с Хозтовары, лампы, агрегаты, электроинструменты, машины и оборудование…
средний 10-30 с электродвигатели малые и средние, преобразователи частоты…
высокий 60-600 с большие электродвигатели / генераторы, кабельные барабаны / кабели, длиной несколько сотен метров

Сложные конструкции, такие как электродвигатели, обмотки в целом и длинные кабели / заземляющие кабели, по-прежнему проявляют поляризационные эффекты.Подробное описание этого явления выходит за рамки данной статьи, но его можно прочитать в бесплатном скачивании.

КОГДА НЕТ?

Проверка сопротивления изоляции обычно требуется всегда. Если, в качестве альтернативы, не требуется испытание высоким напряжением.
Испытание высоким напряжением еще более интенсивно и очень надежно обнаруживает слабые места изоляции. Однако он также имеет решающий недостаток, поскольку точное измерение сопротивления изоляции в МОм или ГОм невозможно при высоком напряжении переменного тока.Таким образом, оценка NOGO основана на слишком высоком токе утечки, а не на слишком низком сопротивлении изоляции!

Использование обоих методов испытаний также часто встречается в стандартах.
Испытание сопротивления изоляции 500 В постоянного тока для очень точного определения сопротивления изоляции и испытание высоким напряжением переменным током и, как правило, испытательным напряжением 1500 или 1800 В с током короткого замыкания 100 мА и мощностью 500 ВА.

Все готово? Хотите подробностей?

Наша миссия — ноу-хау, ноу-хау, ноу-хау … Те, кто разбирается в методах испытаний с технической и нормативной уверенностью, извлекут из своего тестового устройства максимум возможностей.
— Дипл. Ing. Мартин Ларманн

Да, расскажите подробнее. Я хочу максимальной безопасности для наших клиентов, нашей компании и себя.

Пришлите мне более подробную информацию из справочника SCHLEICH по методам испытаний.


Ручной

Тестер сопротивления PE и сопротивления изоляции
  • Испытание сопротивления защитного проводника до 10 A AC
  • испытание сопротивления изоляции до 1000 В
  • мобильный — Легкий — Внутренний / Открытый
  • Транспортный чемодан — ремень для переноски
  • Программное обеспечение для ПК
  • привлекательные затраты на приобретение…
  • больничная служба
  • Испытание молниезащиты лопастей ротора ветряных турбин…

читать далее

GLP1-g

PE-проводник, изоляция, устройство для проверки высокого напряжения и работоспособности

Самый маленький тестер безопасности в мире!

  • Тестеры сопротивления PE / GB
  • Тестеры сопротивления изоляции
  • — IR
  • тестеры высокого напряжения AC / DC
  • Тестеры безопасности и работы
  • Более 50 конфигураций устройств — объединение до 9 методов тестирования в одном устройстве
  • Цепь безопасности PLe, SIL3, Kat4 (в зависимости от варианта устройства и степени риска)
  • для настольного монтажа или для монтажа в 19-дюймовую стойку
  • ½ 19 ″ или 19 ″ формат

читать далее

GLP2-BASIC

Защитный провод, изоляция, высокое напряжение, ток утечки и тестер функций
  • Тестеры сопротивления изоляции — IR
  • тестеры высокого напряжения AC / DC
  • Тестеры «все в одном»
  • Тестеры безопасности и работы
  • ок.40 вариантов устройства — объединены до 21 метода испытаний
  • Цепь безопасности PLe, SIL3, Kat4 (в зависимости от варианта устройства и степени риска)
  • сеть
  • протокол и печать этикеток
  • сканер…
  • Технологический пакет для еще большей эргономики
  • для настольного монтажа или для монтажа в 19-дюймовую стойку

читать далее

GLP2-МОДУЛЬНЫЙ

Комбинированный тестер с 25 методами тестирования
  • «Все в одном»
  • тестеры безопасности
  • Тестеры безопасности и работы
  • Возможна модульная комбинация из более чем 25 методов испытаний
  • до 250 тестовых соединений
  • больших коммутационных матричных модулей для всех методов испытаний
  • PLe, SIL3, Kat4 Цепь безопасности (в зависимости от варианта устройства и степени риска)
  • сеть
  • протокол и печать этикеток
  • сканер…
  • Технологический пакет для еще большей эргономики

читать далее

GLP3

Неограниченное количество передовых технологий тестирования.

ТОП-класс испытательной и измерительной техники для безопасности и функционального тестирования.

  • «Все в одном»
  • Тестеры безопасности и работы
  • для сложных проектов
  • для комплексной автоматизации
  • для самых высоких требований
  • модульное сочетание более 30 методов испытаний
  • до 350 тестовых соединений
  • больших коммутационных матричных модулей для всех методов испытаний
  • PLe, SIL3, Kat4 цепь безопасности
  • Окна 10 ®
  • сеть
  • протокол и печать этикеток
  • промышленность 4.0
  • интерфейсы к MES, ERP, SPS…

читать далее

MotorAnalyzer2

R2 Тестер экспертного уровня для вашего автосервиса

Проверьте исправность своего мотора!

  • машины асинхронные, синхронные и постоянного тока, тормоза, трансформаторы, катушки…
  • Ремонт, обслуживание, обслуживание, обслуживание
  • ALL-IN-ONE — 15 методов испытаний в одном приборе
  • Испытание импульсным напряжением до 3 кВ!
  • высокое напряжение постоянного тока и изоляция до 6 кВ
  • сопротивление, индуктивность, импеданс, емкость, тест RIC
  • Устранение неисправностей и поиск неисправностей
  • регулировка нейтральной зоны на двигателях постоянного тока
  • легкий переносной
  • работа от аккумулятора или от сети
  • Программное обеспечение для ПК для печати и сохранения

читать далее

MTC2

Измеритель импульсных перенапряжений на 6, 12, 15, 25, 30, 40 или 50 кВ

Современный тестер обмоток.

  • Испытание на импульсные перенапряжения плюс измерение частичных разрядов в соответствии со стандартами
  • сопротивление
  • сопротивление изоляции
  • высокое напряжение постоянного тока плюс индекс поляризации / DAR
  • высокое напряжение переменного тока

идеально подходит для обслуживания, производства, автоматизации, контроля качества, лаборатории, НИОКР…

читать далее

MTC3

Неограниченное количество передовых технологий тестирования.

Надежные испытания обмоток для производства, исследований и качества.

▪ стандартные двигатели
▪ специальные двигатели
▪ автомобильные приводы
▪ трансформаторы
▪ катушки…

▪ ALL-IN-1 с более чем 20 методами испытаний
▪ поточное испытание частичных разрядов

▪ интерфейсы для автоматизации, такие как PROFINET, EtherCAT, TCP / IP…
▪ интерфейсы к системам ERP, MES и CAQ…

читать далее

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *