Источник электропитания. Вторичные источники электропитания: виды, устройство и особенности

Что такое вторичный источник электропитания. Какие бывают виды источников питания. Как устроены и работают линейные и импульсные блоки питания. В чем преимущества и недостатки разных типов источников.

Содержание

Что такое вторичный источник электропитания

Вторичный источник электропитания (блок питания) — это устройство, которое преобразует электроэнергию первичного источника (например, сети переменного тока) в энергию, пригодную для питания конкретного оборудования. Основные задачи вторичного источника питания:

  • Преобразование напряжения (понижение или повышение)
  • Преобразование переменного тока в постоянный
  • Стабилизация выходного напряжения
  • Защита питаемого оборудования
  • Гальваническая развязка с сетью

Вторичные источники питания могут быть встроенными в оборудование или выполненными в виде отдельных устройств. Они являются важнейшей частью любой электронной аппаратуры, от их надежности зависит работоспособность всей системы.


Основные виды источников питания

Существует два основных типа вторичных источников питания:

  1. Линейные (трансформаторные)
  2. Импульсные

Линейные источники питания имеют простую конструкцию и работают на низкой частоте. Импульсные источники более сложные, но обладают рядом преимуществ. Рассмотрим подробнее устройство и принцип работы каждого типа.

Устройство и принцип работы линейного источника питания

Классический линейный блок питания состоит из следующих основных элементов:

  • Понижающий трансформатор
  • Выпрямитель (диодный мост)
  • Сглаживающий фильтр (электролитический конденсатор)
  • Стабилизатор напряжения

Принцип работы линейного источника питания:

  1. Трансформатор понижает сетевое напряжение до нужного уровня
  2. Выпрямитель преобразует переменное напряжение в пульсирующее постоянное
  3. Сглаживающий фильтр уменьшает пульсации выпрямленного напряжения
  4. Стабилизатор поддерживает постоянный уровень выходного напряжения

Стабилизация в линейном источнике осуществляется за счет рассеивания избыточного напряжения на регулирующем элементе (транзисторе). Это приводит к низкому КПД, особенно при большой разнице между входным и выходным напряжением.


Устройство и принцип работы импульсного источника питания

Импульсный блок питания имеет более сложную структуру:

  • Входной выпрямитель и фильтр
  • Высокочастотный преобразователь на силовых транзисторах
  • Высокочастотный трансформатор
  • Выходной выпрямитель и фильтр
  • Схема управления с обратной связью

Принцип работы импульсного источника питания:

  1. Входное напряжение выпрямляется и фильтруется
  2. Высокочастотный преобразователь «нарезает» постоянное напряжение на импульсы
  3. Импульсы трансформируются высокочастотным трансформатором
  4. Выходной выпрямитель и фильтр формируют постоянное напряжение
  5. Схема управления регулирует ширину импульсов для стабилизации выхода

Стабилизация в импульсном источнике происходит за счет изменения длительности импульсов (ШИМ). Это обеспечивает высокий КПД во всем диапазоне входных напряжений.

Преимущества и недостатки линейных источников питания

Линейные источники питания имеют ряд достоинств и недостатков:

Преимущества линейных источников:

  • Простота конструкции
  • Высокая надежность
  • Малый уровень электромагнитных помех
  • Низкий уровень пульсаций выходного напряжения

Недостатки линейных источников:


  • Большие габариты и вес из-за трансформатора
  • Низкий КПД (40-60%)
  • Узкий диапазон входных напряжений
  • Невозможность работы от сети постоянного тока

Из-за этих недостатков линейные источники питания сейчас применяются в основном в маломощной аппаратуре, где важна простота и надежность.

Преимущества и недостатки импульсных источников питания

Импульсные источники питания обладают следующими достоинствами и недостатками:

Преимущества импульсных источников:

  • Малые габариты и вес
  • Высокий КПД (до 90-95%)
  • Широкий диапазон входных напряжений
  • Возможность работы от сети постоянного тока

Недостатки импульсных источников:

  • Сложность схемотехники
  • Высокий уровень электромагнитных помех
  • Пульсации выходного напряжения на высокой частоте
  • Более высокая стоимость

Несмотря на недостатки, импульсные источники питания сейчас почти полностью вытеснили линейные во многих областях применения благодаря своей эффективности и компактности.

Особенности применения разных типов источников питания

Выбор типа источника питания зависит от конкретного применения. Линейные источники питания целесообразно использовать:


  • В маломощной аппаратуре (до 10-20 Вт)
  • В устройствах, чувствительных к электромагнитным помехам
  • В аппаратуре, требующей высокой надежности
  • Когда важна простота конструкции

Импульсные источники питания предпочтительны:

  • В мощной аппаратуре (свыше 20-30 Вт)
  • При жестких требованиях к габаритам и весу
  • При широком диапазоне входных напряжений
  • Для питания от сети постоянного тока

В современной электронной аппаратуре (компьютеры, бытовая техника и т.п.) преимущественно используются импульсные источники питания. Линейные источники сохранили свои позиции в некоторых специальных применениях.


Вторичные источники электропитания (блоки питания) и аксессуары к ним

Вторичный источник электропитания — источник электропитания оборудования (шкафов управления, стоек или системных блоков), подключаемый к первичному источнику электропитания.

Источник электропитания может быть интегрированным в общую схему, выполненным в виде модуля (блока питания, стойки электропитания и так далее), или даже расположенным в отдельном помещении (цехе электропитания).

Задачи вторичного источника питания

Обеспечение передачи мощности — источник питания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.

Преобразование формы напряжения — преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.

Преобразование величины напряжения — как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины, для питания различных цепей.

Стабилизация — напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и так далее. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.

Защита — напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например, прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.

Гальваническая развязка цепей — одна из мер защиты от протекания тока по неверному пути.

Регулировка — в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.

Управление — может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть, как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).

Контроль — отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

 

Две наиболее типичных конструкции — это линейные (трансформаторные) и импульсные источники питания.

Линейные источники питания

Классическим блоком питания является линейный (трансформаторный) БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков (варисторы), защиты от короткого замыкания (КЗ), стабилизаторы напряжения и тока.

Достоинства трансформаторных БП.
  • Простота конструкции.
  • Надёжность.
  • Доступность элементной базы.
  • Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счёт гармонических составляющих).
Недостатки трансформаторных БП.
  • Большой вес и габариты, пропорционально мощности.
  • Металлоёмкость.
  • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.

Импульсный источник питания

Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определённой скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной фильтр нижних частот (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы — это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространёнными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящего от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.

Достоинства импульсных БП

Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами:

  • меньшим весом за счёт того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных тяжёлых низкочастотных силовых трансформаторов и мощных радиаторов силовых элементов, работающих в линейном режиме. Кроме того, благодаря повышенной частоте преобразования, значительно уменьшаются габариты фильтра выходного напряжения (можно использовать конденсаторы значительно меньшей ёмкости, чем для выпрямителей, работающих на промышленной частоте). Сам выпрямитель может быть выполнен по простейшей однополупериодной схеме, без риска увеличения пульсаций выходного напряжения;
  • значительно более высоким КПД (вплоть до 90-98 %) за счёт того, что основные потери в импульсных стабилизаторах связаны с переходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном из устойчивых состояний (то есть либо включен, либо выключен) потери энергии минимальны;
    • из этого прямо следует, что, при одной и той же схемотехнике и элементарной базе, КПД растёт с понижением частоты преобразования, так как переходные процессы занимают пропорционально меньшую часть времени. При этом, однако, растут габариты моточных элементов — но это даёт и выигрыш, из-за снижения омических потерь.
  • меньшей стоимостью, благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности. Кроме этого следует отметить значительно более низкую стоимость импульсных трансформаторов при сравнимой передаваемой мощности, и возможность использования менее мощных силовых элементов, поскольку режим их работы ключевой;
  • сравнимой с линейными стабилизаторами надёжностью.

Блоки питания вычислительной техники, оргтехники, бытовой электроники почти исключительно импульсные. Линейные БП малой мощности сохранились в основном только в следующих областях:

  • для питания слаботочных плат управления высококачественной бытовой техники вроде стиральных машин, микроволновых печей и отопительных котлов и колонок;
  • для маломощных управляющих устройств высокой и сверхвысокой надёжности, рассчитанной на многолетнюю непрерывную эксплуатацию при отсутствии обслуживания или затруднённом обслуживании, как, например, цифровые вольтметры в электрощитах, или автоматизация производственных процессов.
  • широким диапазоном питающего напряжения и частоты, недостижимым для сравнимого по цене линейного. На практике это означает возможность использования одного и того же импульсного БП для носимой цифровой электроники в разных странах мира — Россия/США/Англия, сильно отличных по напряжению и частоте в стандартных розетках.
  • наличием в большинстве современных БП встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания и от отсутствия нагрузки на выходе.
Недостатки импульсных БП
  • Работа основной части схемы без гальванической развязки от сети, что, в частности, несколько затрудняет ремонт таких БП.
  • Все без исключения импульсные блоки питания являются источником высокочастотных помех, поскольку это связано с самим принципом их работы. Поэтому требуется предпринимать дополнительные меры помехоподавления, зачастую не позволяющие устранить помехи полностью. В связи с этим часто недопустимо применение импульсных БП для некоторых видов аппаратуры.
  • Как правило, импульсные блоки питания имеют ограничение на минимальную мощность нагрузки. Если мощность нагрузки ниже минимальной, блок питания либо не запускается, либо параметры выходных напряжений (величина, стабильность) могут не укладываться в допустимые отклонения.
  • В распределённых системах электропитания: эффект гармоник кратных трём. При наличии эффективно действующих корректоров фактора мощности и фильтров во входных цепях этот недостаток обычно не актуален.

Вторичные источники электропитания: анатомия и опыт применения | Публикации

Источник питания является важнейшей составной частью любого электронного устройства, от надежности которого зависит работоспособность всего устройства.

В 60-х годах прошлого века были разработаны первые импульсные источники питания (ИИП), которые интенсивно развивались в течение десятков лет и сегодня почти полностью вытеснили линейные источники питания (ЛИП) практически во всех областях техники. В чем же разница между этими двумя типами источников питания и чем ИИП так хороши?

Широко применявшиеся повсеместно в технике на протяжении многих десятков лет ЛИП являются весьма простыми и даже примитивными устройствами, рис. 1, состоящими всего лишь из нескольких элементов: понижающего трансформатора, выпрямителя, сглаживающего фильтра на основе конденсатора и полупроводникового стабилизатора (стабилитрон с мощным транзистором или аналогичный по функции одиночный силовой полупроводниковый элемент).

В отличие от них, ИИП являются значительно более сложными устройствами, работающими на высокой частоте и состоящими из сотен активных и пассивных элементов, рис. 2. 

В чем же основные принципиальные отличия между этими двумя типами источников? В ЛИП входное переменное напряжение сначала понижается до необходимого уровня (или уровней, в случае многообмоточного трансформатора) с помощью трансформатора, затем выпрямляется диодным мостом, фильтруется с помощью электролитического конденсатора и стабилизируется нелинейным электронным элементом. Напряжение до стабилизирующего элемента выбирается большим, чем номинальное выходное напряжение источника, а его излишек гасится (рассеивается) в виде тепла на этом стабилизирующем элементе (что требует иногда использования радиаторов).

Наличие некоторого излишка напряжения позволяет осуществлять стабилизацию выходного напряжения источника как при уменьшении, так и при увеличении входного напряжения за счет изменения доли энергии, рассеиваемой на стабилизирующем элементе. По этой причине к.п.д. такого источника всегда намного ниже единицы.

В ИИП входное переменное напряжение сначала выпрямляется диодным мостом (или просто проходит без изменения через диоды этого моста в случае питания источника от сети постоянного тока), сглаживается и поступает на коммутатор (обычно, ключевой элемент на базе MOSFET транзистора), с помощью которого постоянное напряжение «нарезается» на узкие полоски (частота коммутатора составляет 70-700 кГц для мощных источников и 1-3 Мгц для маломощных). Сформированные таким образом прямоугольные высокочастотные импульсы поступают на трансформатор, выходное напряжение которого соответствует требуемому уровню напряжения, которое затем выпрямляется и фильтруется. Стабилизация уровня выходного напряжения при изменении уровня входного напряжения осуществляется с помощью цепи обратной связи, состоящей из специально предназначенного для этой цели драйвера, обеспечивающего широтно-импульсную модуляцию (ШИМ или PWM) сигнала управления коммутатором через узел гальванической развязки (обычно дополнительный развязывающий трансформатор). Этот драйвер представляет собой небольшую, но достаточно сложную микросхему, отслеживающую выходное напряжение источника и изменяющую ширину импульсов управления в ту или иную сторону при отклонении уровня выходного напряжения от заданного значения. Такую структуру имеют дешевые источники питания. Более качественные и дорогие ИИП содержат, как минимум, два дополнительных узла: входной высокочастотный фильтр и корректор коэффициента мощности, рис. 2. Первый нужен для защиты питающей сети (то есть всех остальных потребителей, питающихся от той же сети, что и ИИП) от высокочастотных гармоник, генерируемых в сеть ИИП. Второй применяется для увеличения коэффициента мощности источника питания. Проблема коррекции коэффициента мощности возникает в связи с наличием диодного моста со сглаживающим конденсатором на входе ИИП. При таком включении конденсатор потребляет из сети ток импульсами, только в те моменты времени, когда мгновенное значение синусоидально изменяющегося входного напряжения становится больше напряжения на конденсаторе (из-за его разряда на нагрузку). В остальное время, когда напряжение на конденсаторе больше мгновенного входного, диоды моста оказываются запертыми обратным напряжением конденсатора и потребление тока отсутствует. В результате ток, потребляемый ИИП, оказывается существенно сдвинутым по фазе относительно напряжения, рис. 3a. 

При большом количестве ИИП, подключенных к сети переменного тока, общее снижение коэффициента мощности в сети становится уже заметным (типичное значение коэффициента мощности ИИП без корректировки 0,65) в связи с чем применяется его активная коррекция с помощью так называемого корректора коэффициента мощности (ККМ или PFC — power factor corrector).

ККМ представляет собой самостоятельный преобразователь напряжения, так называемый бустерный конвертер (boost converter — BC), снабженный специальной схемой управления, рис. 4. 

Основными элементами ВС являются: дроссель L, диод VD2, конденсатор C2 и быстродействующий ключевой элемент VT на базе MOSFET транзистора. Работа этого устройства основана на явлении возникновения импульсов повышенного напряжения обратной полярности на индуктивности при разрыве тока в ее цепи. Транзистор VT с большой частотой (обычно, 200 кГц) включает и выключает ток в цепи индуктивности L, а образующиеся при этом импульсы повышенного напряжения через диод VD2 заряжают конденсатор С2, от которого питается нагрузка (в нашем случае собственно ИИП). Таким образом, напряжение на конденсаторе С2 всегда выше входного напряжения ВС. Благодаря этому свойству ВС они получили большое распространение в электронных устройствах в качестве преобразователя напряжения стандартного гальванического элемента (1,2-1,5 В) в другое стандартное напряжение 5 В, необходимое для управления микросхемами. В нашем случае конденсатор С2 заряжается до напряжения 385-400 В. Благодаря тому, что конденсатор С1 имеет очень небольшую емкость (это, по сути, высокочастотный фильтр), а схема управления с ШИМ ключевого элемента постоянно отслеживает фазу входного переменного напряжения и обеспечивает соответствующую привязку импульсов управления (то есть импульсов тока) к фазе напряжения, удается практически полностью устранить сдвиг фаз между током и напряжением, потребляемым накопительным конденсатором С2, рис.  3b. Кроме того, эта же схема управления

обеспечивает жесткую стабилизацию напряжения заряда конденсатора С2. Несмотря на малые габариты микросхемы управления ККМ, она имеет довольно сложную внутреннюю структуру, рис. 5, а в целом, с учетом большого количества необходимых пассивных элементов, устройство ККМ получается довольно сложным и занимает весьма заметную площадь печатной платы ИИП, рис. 6. 

Почему же такие сложные устройства вытеснили с рынка простые и хорошо зарекомендовавшие себя ЛИП?

Основными преимуществами ИИП перед ЛИП, которые обычно указываются в технической литературе, являются:

  1. Значительное уменьшение размеров и массы за счет меньшего понижающего трансформатора (высокочастотный трансформатор имеет значительно меньшие габариты и массу по сравнению с трансформатором промышленной частоты той же мощности).
  2. Возможность работы в очень широком диапазоне изменения входного напряжения.
  3. Значительно более высокий к.п.д. (до 90-95%, против 40-70 % для ЛИП).
  4. От себя добавим еще одно важное преимущество: возможность работы от сети и переменного, и постоянного тока.

Даже при беглом взгляде на два одинаковых по мощности и по свойствам источника питания хорошо заметны характерные отличия между ЛИП (слева) и ИИП (справа): ЛИП намного проще, но содержит значительно более крупный и тяжелый трансформатор (Т), рис. 7. 

Плоский модуль ИИП (рис. 7) является универсальным источником питания микропроцессорных реле защиты серии SPAC, SPAD, SPAU и др., который вдвигается по направляющим в корпус реле. Естественно, использовать в такой конструкции ЛИП с крупным трансформатором затруднительно.

Но что мешает вместо одного крупного многообмоточного трансформатора с тремя выходными напряжениями применить три отдельных маленьких трансформатора, для которых вполне достаточно места на печатной плате ЛИП? В этом случае габаритные размеры ЛИП будут не намного отличаться от ИИП. Даже в случае мощного источника с одним уровнем выходного напряжения можно использовать несколько плоских трансформаторов, соединенных между собой параллельно. Так что наличие малого по размерам трансформатора не является абсолютным преимуществом ИИП.

Что касается очень широкого диапазона входных напряжений, при которых обеспечивается работоспособность ИИП за счет использования ШИМ в системе управления основного ключевого элемента, то это преимущество представляется нам весьма условным. Ну, действительно, так уж важно на практике, что ИИП может работать при входных напряжениях, изменяющихся в пределах от 48 до 312 В? Ведь этот диапазон охватывает сразу несколько рядов номинальных напряжений, таких как: 48, 60, 110, 127, 220 В. Совершенно очевидно, что в конкретной аппаратуре ИИП будет работать при каком-то одном номинальном напряжении (изменяющемся в пределах не более чем ±20%), а не сразу на всех одновременно. А если необходимо использовать аппаратуру при напряжении и 110 В и 220 В, то для этого существуют хорошо известные решения в виде маленького переключателя и отвода от обмотки трансформатора.

Коэффициент полезного действия является важным показателем, если речь идет о мощном источнике, а не об источнике мощностью 25-100 Ватт, которые мы рассматриваем. Кроме того, высокий к.п.д. и отсутствие заметного выделения тепла (что характерно для ИИП) может быть важно в миниатюрном переносном источнике питания полностью закрытого исполнения, например в таком, как источник питания лэптопов. Во множестве других случаев, например в источниках питания контроллеров и электронных реле промышленного назначения, вопрос о к.п.д. источника питания не является актуальным.

Возможность работы от сети постоянного тока является важнейшим и абсолютным преимуществом ИИП. Линейные источники принципиально не могут работать от сети постоянного тока.

Вот, вкратце, анализ преимуществ ИИП перед ЛИП. Рассмотрим теперь недостатки ИИП.

К недостаткам ИИП можно отнести наличие высокого уровня импульсных шумов на выходе источника, рис. 8. 

В отличие от ЛИП с его слабой 50-герцовой пульсацией, пульсации выходного напряжения в ИИП, как правило, имеют значительно большую амплитуду и лежат в диапазоне от нескольких килогерц до нескольких мегагерц, что создает проблемы распространения излучений в цепи электронной аппаратуры, для питания которой предназначен ИИП, а также (по проводам и даже через эфир) в цепи совершенно посторонних электронных приборов. Кроме того, в ИИП приходится принимать специальные меры для предотвращения проникновения высокочастотных излучений в питающую сеть (по которой они распространяются и могут нарушить работу других электронных приборов) путем использования специальных фильтров, рис. 9. 

Наличие высокочастотной составляющей в выходном напряжении и в промежуточных узлах схемы предъявляет повышенные требования к многочисленным электролитическим конденсаторам, имеющимся в схеме ИИП, которые, к сожалению, редко учитываются разработчиками ИИП. Как правило, типы этих конденсаторов выбираются лишь по емкости, рабочему напряжению и габаритам, без учета их характеристик на высокой частоте. А между тем далеко не все типы конденсаторов способны длительно работать под воздействием напряжения высокой частоты, а лишь имеющие низкий импеданс на высоких частотах. В результате неучета этого обстоятельства электролитические конденсаторы заметно нагреваются из-за повышенных диэлектрических потерь на высокой частоте. Повышенная температура электролита интенсифицирует химические реакции в конденсаторе, что, в свою очередь, приводит к ускоренному растворению элементов корпуса конденсатора и вытеканию электролита прямо на печатную плату, это при очень плотном монтаже приводит к коротким замыканиям между разнопотенциальными выводами или, наоборот, к обрыву цепей вследствие растворения медных дорожек печатной платы (даже несмотря на наличие прочного покрытия дорожек платы), рис. 10. 

Другой распространенный тип повреждений ИИП, обусловленный повышенной температурой электролита, — быстрое (в течение нескольких лет) высыхание электролита и значительное (на 30-70%) снижение емкости конденсаторов, что приводит к резкому ухудшению характеристик источника питания, а иногда и полной потере его работоспособности [1].

Для обеспечения эффективной работы ККМ, силовой коммутационный элемент (обычно, транзистор MOSFET) должен обладать как можно более низким сопротивлением в открытом состоянии. Величина этого сопротивления в значительной степени зависит от максимального рабочего напряжения транзистора.

Для транзисторов с максимальным рабочим напряжением 500-600 В это сопротивление составляет 0,05- 0,3 Ом, тогда как для транзисторов на более высокие напряжения (1000-1500 В) это сопротивление на один-два порядка выше (например, 12 Ом для транзистора 2SK1794 на напряжение 900 В; 17 Ом для транзистора IXTP05N100 на напряжение 1000 В; 7 Ом для транзистора STP4N150 на напряжение 1500 В). Этим объясняется выбор относительно низковольтных (с максимальным рабочим напряжением 500-600 В) транзисторов для ККМ. Например, в реальных конструкциях ИИП весьма ответственных устройств, используемых в электроэнергетике, таких как микропроцессорные реле защиты и регистраторы аварийных режимов, широко применяются транзисторы типов IRF440, APT5025 и др. с максимальным напряжением 500 В, что совершенно недостаточно для работы в промышленной электрической сети с напряжением 220 В из-за наличия значительных коммутационных и атмосферных перенапряжений. Как известно, для защиты от таких перенапряжений электронная аппаратура снабжается обычно варисторами. Однако из-за недостаточной нелинейности характеристики вблизи рабочей точки варисторы выбираются таким образом, чтобы между длительно приложенным рабочим напряжением и напряжением срабатывания под воздействием импульсного перенапряжения (так называемое clamping voltage) была бы довольно существенная разница. Например, для ва-ристоров любого типа, предназначенных для длительной работы при номинальном напряжении переменного тока 220 В clamping voltage составляет 650-700 В. В источниках питания упомянутых выше микропроцессорных устройств использованы варисторы типа 20К431 с clamping voltage 710 В. Это означает, что при воздействии импульсов напряжениях с амплитудой ниже 700 В варистор не обеспечит защиты электронных компонентов источника питания, особенно силовых транзисторов (500 В), включенных напрямую в цепь сети.

На высокой рабочей частоте трансформатор и катушка индуктивности в ККМ обладают высоким импедансом, ограничивающим ток, протекающий через них и через коммутирующие элементы. Однако сбой в работе микросхем, обеспечивающих управление силовыми ключами ККМ или основного силового ключа ИИП (например, в результате воздействия импульсной помехи), приводит к переходу в режим работы на постоянном токе (то есть с очень низким импедансом) и резкой токовой перегрузке сразу многих силовых элементов схемы и мгновенному выходу их из строя. Учитывая высокую плотность монтажа ИИП, это приводит часто к повреждению соседних элементов схемы, выгоранию целых участков печатного монтажа. Вообще-то, что касается надежности, должно быть совершенно ясно, что надежность такого сложного устройства, как ИИП, содержащего множество сложных микросхем и силовых элементов, в том числе работающих на высоких напряжениях в импульсном режиме с высокими скоростями нарастания тока и напряжения, всегда будет заметно ниже надежности такого простого устройства, как ЛИП, в котором имеется всего лишь несколько электронных компонентов, работающих в линейном режиме.

Плотность монтажа и энергоемкость ИИП постоянно растут, например, источник типа EMA212, рис.  2, при размерах 12,7×7,62×3 см имеет мощность 200 ватт. Этому способствует применение схем управления на миниатюрных элементах поверхностного монтажа, очень плотный монтаж силовых элементов, постоянный рост рабочей частоты. Когда-то эта частота не превышала 50-100 кГц. Сейчас уже многие мощные источники с выходным током до 20 А работают на частоте 300-600 кГц, а менее мощные, например, работающие под управлением контроллера ADP1621, уже на частоте более 1 МГц и более, что способствует дальнейшему снижению массогабаритных показателей ИИП. Обратной стороной этой медали (которую всячески рекламируют как достоинство ИИП) становится практически полная потеря ремонтопригодности таких устройств. Это является источником серьезных проблем для потребителя, использующего такие ИИП. И дело здесь даже не в материальных затратах на приобретение нового ИИП, а в том, что ИИП в подавляющей массе не унифицированы ни по размерам, ни по виду присоединений. Это могут быть и специальные жесткие разъемы, и колодки с винтами, и гибкий провод с разъемом, рис.  11, а могут быть и втычные разъемы на печатных платах, вдвигаемых по направляющим в корпус аппаратуры.

Такой разнобой в конструкциях ИИП приводит к невозможности замены поврежденного источника, как правило, встроенного внутри аппаратуры, на источник другого типа, если старые ИИП уже не выпускаются. Обновляются ИИП довольно часто, поэтому при выходе их из строя через несколько лет эксплуатации в составе более сложной аппаратуры перед потребителем возникает сложная проблема: чем и как заменить этот ИИП? Автору неоднократно приходилось решать эту головоломку путем приобретения более компактного нового ИИП и встраивания его в корпус старого, вышедшего из строя, или размещения нового ИИП на плате, аналогичной по размерам старому ИИП. Все эти вынужденные ухищрения отнюдь не добавляют очков ИИП.

В системах промышленной автоматики применяется большое количество всевозможных электронных приборов: измерительных преобразователей, контролеров и т.п., установленных в шкафах управления. Как правило, каждый из таких приборов имеет собственный встроенный источник питания. Из-за стремления уменьшить размеры приборов и удешевить их встроенные источники питания выполняются до предела упрощенными (часто даже с гасящими резисторами вместо изолирующих трансформаторов). А элементная база таких источников выполняется на относительно дешевых элементах, не имеющих достаточных запасов по мощности и по напряжению. В результате такие приборы часто выходят из строя по причине выхода из строя источников питания. Однако так ли уж нужны такие источники в этих приборах? Вопрос можно поставить еще шире: а нужны ли вообще встроенные источники питания в электронных приборах и контроллерах промышленного назначения, предназначенные для установки в шкафах управления вместе с десятками других аналогичных приборов? Почему бы не выпускать для комплектных систем автоматики такие устройства, как контроллеры, электронные реле, электронные измерительные преобразователи и т.п. вообще без источников питания, а лишь с разъемом, предназначенным для подключения внешнего источника? Этот внешний источник питания, расположенный в шкафу, должен быть, по-нашему мнению, линейным, иметь хороший запас по мощности, должен быть снабжен необходимыми элементами для защиты от перенапряжений, коротких замыканий, и т. п. Более того, в шкафах, относящихся к системам автоматики повышенной надежности, таких линейных источников, соединенных между собой через диод, должно быть два (так называемый горячий резерв).

Как это ни покажется странным, но в эпоху импульсных источников питания существует множество компаний (VXI, Lascar, Calex Electronics, Power One, HiTek Power, R3 Power и много других) продолжающих выпускать ЛИП, что свидетельствует об их популярности в определенных областях техники и об их доступности для практического применения. По нашему мнению, указанный выше подход позволил бы значительно повысить надежность систем автоматики, телеуправления, релейной защиты (с питанием от сети переменного тока) без увеличения ее стоимости (вследствие меньшей стоимости электронных приборов без встроенных источников питания).

Аналогичный подход может использоваться и в случае питания электронной аппаратуры (например, тех же микропроцессорных реле защиты), установленной в шкафах, от сети постоянного тока, с той лишь разницей, что два общих на шкаф источника питания должны быть импульсными, а не линейными. При этом эти источники должны быть подвергнуты серьезной реконструкции. Во-первых, из них должны быть исключены корректоры коэффициента мощности, как совершенно бессмысленные узлы при питании от сети постоянного тока, что само по себе уже повысит надежность источников. Во-вторых, эти ИИП шкафного типа должны быть достаточно крупными и удобными для поиска неисправностей и ремонта (в источниках шкафного типа нет смысла гнаться за компактностью), они не должны содержать элементов поверхностного монтажа. В-третьих, многочисленные электролитические конденсаторы, имеющиеся в ИИП, должны быть сконцентрированы на отдельной плате, предназначенной для простой замены ее после каждых 5 лет эксплуатации (то есть до того, как конденсаторы начнут выходить из строя). Сетевой фильтр должен использоваться готовый (такие фильтры представлены на рынке сотнями моделей), а не собираться из отдельных элементов, для того, чтобы его можно было просто и быстро заменить в случае необходимости.

Предлагаемые меры, по нашему мнению, позволят снизить зависимость стационарной электронной промышленной аппаратуры от вторичных источников электропитания и значительно повысить ее надежность.

В заключение несколько слов о новейших тенденциях, появившихся в области конструирования вторичных источников электропитания. Речь идет о попытках применения микропроцессоров в этих источниках, причем и в линейных [2], и в импульсных [3]. Может быть, наш взгляд покажется читателю чрезмерно консервативным, но, по нашему мнению, микропроцессоры нужны в источниках питания так же сильно, как и в сиденьях для унитаза, где они применяются для точного измерения температуры соответствующей части тела и подогрева этого сиденья до температуры, соответствующей температуре упомянутой части тела. Ведь совершенно очевидно, что наличие функционально неоправданных сложных узлов в аппаратуре — это путь, однозначно ведущий к снижению ее надежности.

  1. В. И. Гуревич Надежность микропроцессорных устройств релейной защиты: мифы и реальность. — Проблемы энергетики, 2008, № 5-6, с. 47-62.
  2. Ю. Садиков Блок питания в виде сетевого адаптера с регулировкой выходного напряжения от 1,5 до 15 В и выходным током до 1 А.  — Электроника-инфо, 2008, № 12, с. 42-43.
  3. EFE-300/EFE-400. 300/400 Watts, Digital Power Solution. — Datasheet TDK-Lambda, 2009.

В. ГУРЕВИЧ,
канд. техн. наук

Официальный интернет-магазин Staples®

День Земли, каждый день

22 апреля — День Земли, но в Staples вы можете принимать экологически сознательные решения для своего дома и офиса в течение всего года. Ищите значок ECO-ID или фильтруйте по факторам окружающей среды во время просмотра и посетите Центр устойчивого развития Staples, чтобы узнать больше о нашем ассортименте экологически чистых продуктов. Получайте вознаграждения за участие в программе Staples In-Store Recycling Services. Найдите ближайший к вам магазин скобяных товаров, участвующий в программе, и сдайте использованные картриджи с чернилами и тонером, электронику и батареи для ответственной переработки.

Снижение энергопотребления

Установите систему «Умный дом», чтобы снизить энергопотребление в вашем доме. Легко управляйте температурой в вашем доме с помощью интеллектуального термостата и устанавливайте расписания для освещения и электроники с помощью простых в установке интеллектуальных розеток. Ищите этикетку ENERGY STAR, чтобы найти самую эффективную и энергосберегающую электронику. От принтеров ENERGY STAR до компьютеров и другой электроники Staples предлагает широкий ассортимент энергосберегающих продуктов.

Повторное использование восстановленной технологии

Уменьшите свое влияние, покупая восстановленную технику вместо новой! Staples предлагает ряд восстановленных электронных устройств, включая восстановленные ноутбуки и восстановленные настольные компьютеры. У нас всегда есть выбор Восстановленных принтеров на выбор, а также Восстановленные детали для принтеров для самостоятельного ремонта принтеров. При покупке чернил и тонера обязательно ищите восстановленные картриджи с чернилами и тонером.

Переработка и покупка переработанных продуктов

Специально для бумажных изделий легко найти переработанный вариант. От переработанной бумаги для копий и принтеров до переработанных бумажных полотенец — уменьшите занимаемую вами площадь, используя продукты, изготовленные из переработанной бумаги. А при отправке посылок используйте переработанные транспортировочные коробки, переработанные почтовые ящики и водоактивируемую ленту, сделанную из бумаги, а не из пластика. Перейдите с пластиковых пузырчатых рулонов на упаковочную бумагу, пригодную для вторичной переработки, и не допускайте попадания пластика на свалку, сохраняя при этом свою упаковку в безопасности при транспортировке.

Весна (уборка) витает в воздухе

Весенняя уборка и расхламление — это традиция, призванная обновить наши помещения на год вперед. В Staples есть все, что вам нужно, чтобы убрать беспорядок, хранить и организовать ваши вещи, а также все необходимые чистящие средства.

Разберитесь с беспорядком

Начните с составления контрольного списка и убедитесь, что у вас есть все необходимые материалы. Используйте контейнеры для хранения и устройство для изготовления этикеток, чтобы упростить сортировку и организацию. Подготовьте дополнительные коробки для пожертвований и мешки для мусора для вещей, которые вам больше не нужны. Ищите декоративные коробки и корзины, которые дополнят декор вашего дома, и используйте их для организации вещей. Вы также можете использовать органайзеры для шкафов и ящики для хранения в любом месте, где они необходимы.

Начните с основ

Универсальное чистящее средство, чистящая щетка и салфетки из микрофибры справятся с большинством поверхностей. Используйте тряпку для удаления нежелательной грязи и полироли для мебели, чтобы оживить деревянные поверхности. Модернизируйте свою метлу, совок, влажную швабру и пылесос, чтобы сделать уборку любого типа пола легкой задачей.

Важная информация

Весенняя уборка на этом не заканчивается. Вы можете сделать так много, чтобы перезагрузить свой дом:

  • Улучшите качество воздуха и удалите пыльцу и перхоть домашних животных с помощью нового очистителя воздуха и освежителя воздуха с любимым ароматом.
  • В солнечный день воспользуйтесь возможностью помыть окна. Вам понадобится стеклоочиститель, ведро, швабра и бумажные полотенца.
  • Держите под рукой стремянку или стремянку для доступа к труднодоступным местам, таким как верх шкафов и верхнее освещение.
  • Замените перегоревшие лампочки и проверьте батарейки в детекторах дыма.
  • Используйте средство для чистки канализации, чтобы прочистить стоки раковин и ванн.

Улучшите свои навыки печати с помощью принтера Supertank

Ищете принтер с большей емкостью печати, безопасный для окружающей среды и вашего кошелька? Покупайте Staples в ассортименте принтеров Supertank, чтобы воспользоваться всеми преимуществами струйных принтеров, а также удобством и экономией сменных бутылок с чернилами, которые служат дольше и стоят меньше в расчете на одну страницу, чем стандартные картриджи для струйных принтеров.

Найдите принтер Supertank от вашего любимого ведущего производителя принтеров, включая:

  • Принтеры HP Smart Tank и Neverstop
  • Принтеры Brother INKVestment Tank
  • Принтеры Canon MegaTank
  • Принтеры Epson EcoTank

И не забудьте воспользоваться программой поиска чернил и тонера для скрепок, чтобы найти подходящие чернила для замены вашего нового принтера. Независимо от того, какой у вас принтер, введите марку, картридж или модель принтера в простое в использовании средство поиска чернил и тонера и найдите совместимые чернила.

Будьте уверены, товар будет доставлен в целости и сохранности

Независимо от того, отправляете ли вы деловые документы или товары для клиентов, доставка и отправка почтовых отправлений от Staples упрощают процесс.

Подготовьте упаковочные материалы для легкой транспортировки. Мягкие конверты и пузырчатые почтовые ящики идеально подходят для отправки небольших нехрупких предметов. Упакуйте более крупные предметы в упаковочные коробки, которые немного больше самого предмета, и используйте упаковочные арахис, пузырчатую пленку или другие упаковочные материалы, чтобы предотвратить перемещение предметов в коробке во время транспортировки. Выберите правильную упаковочную ленту, чтобы ваши посылки оставались запечатанными. Компания Staples использует прозрачную акриловую упаковочную ленту для повседневной транспортировки и армированную или активируемую водой ленту для упаковок, требующих более надежного уплотнения.

Управляйте повседневной офисной корреспонденцией с помощью широкого выбора деловых конвертов, конвертов для внутренних документов и конвертов для каталогов в почтовом отделении. Держите под рукой подушечки для пальцев и увлажнители конвертов для быстрой сортировки документов и быстрой печати. Выбирайте защищенные конверты для конфиденциальной служебной переписки и внутриведомственной связи. Если ваш офис или организация рассылает большие почтовые отправления, рассмотрите возможность использования фальцевальной машины и самозапечатывающихся конвертов для повышения эффективности.

Гибридная работа стала еще проще

Независимо от того, работаете ли вы в традиционном офисе, дома или где-то еще, подходящие расходные материалы и технологии обеспечат вам эффективную работу, где бы вы ни находились. Обновите свои технологии с помощью нового ноутбука или планшета 2-в-1 для работы в пути. Держите важные файлы доступными, где бы вы ни находились, с портативными жесткими дисками и флэш-накопителями USB, которые легко помещаются в сумку для ноутбука. Выберите гарнитуру для виртуальных встреч или наушники с шумоподавлением, чтобы блокировать нежелательные звуки при работе в общественных местах.

Убедитесь, что в вашем домашнем офисе есть удобная обстановка, созданная с учетом ваших потребностей. Выберите эргономичное офисное кресло или игровое кресло, а также просмотрите наш ассортимент столов для сидения и стояния, чтобы создать трансформируемую рабочую зону. Добавьте к своей системе дополнительный компьютерный монитор и выберите из нашего широкого ассортимента мышей и клавиатур. И не забудьте запастись канцелярскими товарами. От блокнотов и копировальной бумаги до ручек и маркеров — Staples предлагает гибкие варианты AutoRestock для всех основных товаров, поэтому вы можете получить расходные материалы с доставкой к вашей двери, не забывая о заказе.

Блоки питания для ПК (PSU) — NeweggBusiness — NeweggBusiness

  1. Домашний
  2. >Компьютерное оборудование
  3. > Блоки питания
  4. > Блоки питания

Поиск внутри

Перейти

Вид: 244896

Продавец:

NeweggБизнес

Все продавцы

Наличие:

В наличии

Фильтр (0)

Сортировать: Лучший матчЛучший рейтингСамая низкая ценаСамая высокая ценаБольшинство отзывовОт новых к старым

Seasonic FOCUS GX-1000, 1000 Вт, 80+ Gold, полностью модульный, управление вентилятором в безвентиляторном, бесшумном и .
..

от $ 221 .75

Бесплатная доставка

  • Вентиляторы: 120 мм вентилятор с гидродинамическим подшипником
  • Основной разъем: 20+4 контакта
  • Направляющие +12 В: одиночные
  • Разъем PCI-Express: 6 x 6+2-контактный
  • Разъем питания SATA: 10
  • Защита от перенапряжения: Да
  • Входное напряжение: 100–240 В
  • Диапазон входных частот: 50/60 Гц
  • Модель №: FOCUS GX-1000
  • Артикул №: 9SIV0F27264965
  • Политика возврата: Политика возврата TELeasy

от $ 221 . 75

Выберите из 6 продавцов

Посмотреть подробности

Сравнить

$ 394 .99

Продавец: ЛИНХУ

Добавить в корзину

Сравнить

$ 30 .72

Продавец: Airlink Tech

Добавить в корзину

Сравнить

$ 21 .46

Продавец: Airlink Tech

Добавить в корзину

Сравнить

$ 186 . 21

Продавец: Airlink Tech

Добавить в корзину

Сравнить

$ 72 .16

Продавец: Airlink Tech

Добавить в корзину

Сравнить

от $ 129 .00

Выберите из 2 продавцов

Посмотреть подробности

Сравнить

$ 21 .40

Продавец: Airlink Tech

Добавить в корзину

Сравнить

Thermaltake Toughpower GF3 850 Вт, стандарт ATX 3.
0, PCIe Gen.5 450 Вт, 12 В HPWR …

$ 139 .99

Бесплатная доставка

  • Вентиляторы: 1 x 140 мм гидравлический подшипник Smart Zero Fan
  • Главный разъем: 24-контактный
  • Направляющие +12 В: одиночные
  • Разъем PCI-Express: Поддержка 12VHPWR Мощность: 450 Вт
  • Входное напряжение: 100–240 В
  • Диапазон входных частот: 50–60 Гц
  • Входной ток: 10–5 А
  • Выход: +3,3 В при 22 А, +5 В при 22 А, +12 В при 70,8 А, -12 В при 0,3 А, +5VSB при 3 А
  • Модель #: PS-TPD-0850FNFAGU-4
  • Артикул №: 9Б-17-153-438
  • Политика возврата: Политика возврата только при замене

$ 139 . 99

Добавить в корзину

Сравнить

$ 68 .99

В корзину

Сравнить

от $ 28 .09

Выберите из 3 продавцов

Посмотреть подробности

Сравнить

ENERMAX REVOLUTION D.F. 2 Полностью модульный блок питания 1050 Вт, 80 Plus Gold 1050 Вт, 100% …

от $ 169 .99

Бесплатная доставка

  • Вентиляторы: 1 x 120-мм вентилятор FDB
  • Направляющие +12 В: одиночные
  • Разъем PCI-Express: 6 x 6+2-контактный
  • Разъем питания SATA: 8
  • Входное напряжение: 100–240 В
  • Диапазон входных частот: 47–63 Гц
  • Входной ток: 13–6,5 А
  • Выход: +3,3 В при 20 А, +5 В при 20 А, +12 В при 87,5 А, -12 В при 0,3 А, +5VSB при 2,5 А
  • Модель #: ERS1050EWT
  • Артикул №: 9B-17-194-146
  • Политика возврата: Политика возврата только при замене

от $ 169 . 99

Выберите из 2 продавцов

Посмотреть подробности

Сравнить

$ 222 .99

В корзину

Сравнить

от $ 16 .85

Выберите из 3 продавцов

Посмотреть подробности

Сравнить

$ 22 .04

Продавец: Airlink Tech

В корзину

Сравнить

$ 115 .58

Продавец: Airlink Tech

Добавить в корзину

Сравнить

$ 105 . 61

Продавец: Airlink Tech

Добавить в корзину

Сравнить

$ 37 .47

Продавец: Airlink Tech

Добавить в корзину

Сравнить

от $ 62 .62

Выберите из 3 продавцов

Посмотреть подробности

Сравнить

$ 23 .89

Продавец: Airlink Tech

Добавить в корзину

Сравнить

от $ 182 . 43

Выберите из 2 продавцов

Посмотреть подробности

Сравнить

от $ 103 .29

Выберите из 3 продавцов

Посмотреть подробности

Сравнить

$ 86 .65

Продавец: Airlink Tech

Добавить в корзину

Сравнить

Советы по покупке блока питания компьютера (БП)

Введение

Блок питания компьютера является одним из важнейших компонентов компьютера, так как он отвечает за стабильное и регулируемое питание системы. Если вы покупаете блок питания для компьютера, поиск идеального потребует от вас рассмотрения нескольких важных критериев. Эти критерии включают в себя размер и форм-фактор корпуса, требования к мощности системы, эффективность и ваши предпочтения по внутренним кабелям.

Стандарты размеров

Компьютерные блоки питания доступны в различных размерах и форм-факторах. Крайне важно, чтобы выбранный вами блок питания (PSU) соответствовал размеру вашего корпуса и материнской платы. Например, если у вас есть корпус Mini ITX, вы не можете использовать стандартный блок питания ATX. Дополнительные сведения о форм-факторах блоков питания см. ниже.

  • ATX
    Стандартный размер блока питания, который подходит для большинства средних и полноразмерных корпусов Tower. В некоторых корпусах micro ATX также можно использовать блоки питания ATX.
  • Mini ITX
    Блоки питания Mini ITX разработаны специально для систем mini ITX, но могут также подходить для других компьютерных корпусов малого форм-фактора.
  • SFX
    Компьютерные блоки питания SFX меньше, чем стандартные блоки питания ATX, и предназначены для микро-ATX и других компьютерных корпусов малого форм-фактора.
  • TFX
    Еще один компьютерный блок питания малого форм-фактора, который тоньше и подходит для систем micro ATX, Mini ITX и других небольших систем.
Мощность в ваттах

Номинальная мощность компьютерного блока питания — это показатель мощности, которую он может обеспечить для оборудования. При покупке блока питания необходимо учитывать, какая мощность требуется вашей компьютерной системе. Чтобы рассчитать энергопотребление вашей системы, сложите потребляемую мощность всех компонентов.

Начните с материнской платы и процессора, а затем включите видеокарты, системную память, устройства хранения и другие платы расширения. Для еще более точной оценки следует включить USB-устройства, внутренние вентиляторы и другие аксессуары. Получив оценку, попытайтесь найти компьютерный блок питания, который способен хотя бы на это. Для большего запаса прочности вы должны получить блок питания, который значительно выше этого минимума.

Укладка кабелей

Существует два варианта укладки кабелей для компьютерных блоков питания: модульные и немодульные. Модульная разводка кабелей позволяет подключать и отключать внутренние силовые кабели от самого источника питания, поэтому неиспользуемые кабели и разъемы не будут болтаться внутри корпуса. Компьютерные блоки питания с модульным кабелем обычно стоят дороже, чем без него.

Эффективность

Эффективность блока питания компьютера представляет собой соотношение мощности, которую он обеспечивает, и мощности, которую он потребляет. Например, блок питания, который обеспечивает мощность 200 Вт, но потребляет 400 Вт из розетки, имеет коэффициент полезного действия 200/400 или 50%. Чем эффективнее блок питания вашего компьютера, тем меньше вам будет стоить его эксплуатация.

Одним из показателей, который можно использовать для оценки эффективности, является уровень сертификации 80 PLUS® блока питания, если таковой имеется. Различные уровни сертификации 80 PLUS включают 80 PLUS, 80 PLUS Bronze, 80 PLUS Silver, 80 PLUS Gold, 80 PLUS Platinum и 80 PLUS Platinum. Самая базовая сертификация — 80 PLUS, что указывает на рейтинг эффективности не менее 80%.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *