Из чего состоит стартер для люминесцентных ламп: Стартер для люминесцентных ламп: конструкция и принцип работы

Содержание

Стартер для люминесцентных ламп: конструкция и принцип работы

Что такое стартер

Газоразрядные лампы давно вошли в повседневную жизнь. Они применяются для освещения жилых и производственных помещений и дают устойчивое освещение. Оно достаточно стабильно, когда нет никакой деградации элементов в схеме.

В типичную схему входят осветительный прибор, катушка индуктивности и устройство запуска. Дроссель – обычная катушка индуктивности, также участвует в запуске. Но основное назначение – защита. Катушка ограничивает напряжение при скачке. Она — самый долговечный элемент схемы.

Стартер нужен только для пуска схемы на газоразрядных лампах. Далее он не принимает участия в работе светильника.

Люминесцентная лампа (Она же газоразрядная или дневного света) является герметичной колбой. В ней расположены с разных сторон электроды. Внутренняя ее часть покрыта люминофором – веществом, которое светится при эмиссии электронов. Трубка содержит пары ртути.

Стандарт дает светильнику 10 секунд на включение с момента подачи напряжения.

Устройство стартера для лл (люминесцентной лампы)

Пусковое устройство – необходимый элемент схемы освещения на этом типе источника света. Это второй по важности элемент осветителя.

Классический стартер – вещь чувствительная к условиям эксплуатации, это самый недолговечный компонент системы. При его выходе из строя, осветительная система не может быть запущена.

Схема подключения стартера к лампам дневного света

При рассмотрении схемы становятся понятны функции, выполняемые стартером.

  • Включается в момент подачи напряжения питания,
  • В момент старта прогреваются катоды, так как без их прогрева эмиссия электронов не возможна.
  • Размыкает цепь после прогрева.

Схема биметаллического стартера всегда одна и та же. Существуют различные варианты исполнения.

Внешний вид стартера

Корпус зачастую изготавлен из пластика, контакты размещаются на пластине из текстолита (может использоваться и другой диэлектрический материал). Некоторые изготовители снабжают стартеры прозрачным смотровым окошком. Стартеры времен СССР имели корпуса из алюминия. Внутри всего два элемента: колба с биметаллическими контактами и конденсатор. Они включены параллельно. Конденсатор стартера требуется для сглаживания высоких токов, гасит дуговой разряд между электродами, также необходим для размыкания электродов. Конденсатор снижает износ стартера. Если конденсатора нет, то электроды могут спаяться в момент дугового разряда между ними. Как долго после будет работать схема – непредсказуемо. Дроссель (катушка индуктивности) необходим для создания импульса.

В колбе находятся два электрода, сама она заполнена инертным газом. Обычно применяют неон, реже – водородно-гелиевая смесь. Электроды биметаллические, подвижные. Разработаны две конструкци: либо два подвижных контакта (симметричный), либо один (несимметричный). Первый более распространен. Он дешевле при производстве. Пускатели старого образца стабильно работали при разбросе питающего напряжения в пределах 20 процентов. При большем отклонении от номинала работа не гарантировалась. Новые такой проблемы не имеют.

Принцип работы стартера

Компоненты пускового устройства рассмотрены. Как он работает?

  1. Нет напряжения – электроды внутри колбы разомкнуты.
  2. Подается напряжение питания. Между электродами стартера появляется тлеющий разряд, токи небольшие (обычно не более 50 мА).
  3. Тлеющий разряд ведет к разогреву электродов. Под действием температуры происходит обратимая деформация электродов. Разряд завершается с замыканием этих биметаллических электродов.
  4. Цепь замкнулась, начинается прогрев электродов для начала эмиссии.
  5. Электроды внутри колбы стартера начинают остывать и возвращаются в исходное положение. Цепь разрывается.
  6. Все вышеперечисленное приводило к появлению импульса высокого напряжения, проходящего через дроссель. Свет зажигается, яркость достигает нормативной.
  7. По схеме стартер подключен параллельно лампе. На его контактах напряжение ниже номинального. Уже не возникает тлеющего разряда, биметаллические контакты внутри колбы не разогреты. Сработать он не может самопроизвольно. Необходимый ток уходит на обеспечение эмиссии между катодами, это необходимо для свечения.

Схема подключения

Мощность источника света должна коррелировать с параметрами остальных компонентов. Если они не совпадают, то возможно либо, что схема вообще не запуститься, либо при запуске запуска электроды разрушатся из-за перегрева.

Для подключения двух ламп не требуется дубляж схемы. Целесообразно сократить количество элементов. В этом случае высвобождается один из дросселей.

На второй схеме дополнительный газоразрядные лампы соединены последовательно, а стартеры включены в параллель. В остальном схемы идентичны. Различие будет в номинале дросселя. Он должен быть рассчитан на суммарную мощность ламп. Стартер должен соответствовать мощности лампы. Обычно, в схеме с двумя лампами, используют одинаковые мощности. Конденсатор желателен в параллели источнику переменного тока. Он предназначен для улучшения параметров питания. При мощностях ламп порядка 40 Ватт, обычно достаточно емкости от 2 до 10 мкФ. Напряжение конденсатора выбирается не ниже двукратного напряжения питания.

Виды стартеров, их основные параметры и маркировки.

Сейчас встречается новый вид стартера – электронный. Это уже новинка. Конструктивно они выглядят точно также и полностью совместимы с «классикой». Можно заменить даже не задумываясь. Внутри вместо конденсатора и герметичных биметаллических пластин — электронная схема. Она выполняет аналогичные действия по запуску газоразрядного лампы. Изменять схему не потребуется. Из недостатков можно назвать только цену, она будет раз в пять выше, чем на «классику».

Конструкция стартера

Его преимущества:

  • Срок службы много больше.
  • При старении компонентов стартер не сработает, балластное устройство не перегреется.
  • Более широкий температурный диапазон.
  • Встроенная защита от перегрузки по току.
  • Исключаются полностью электромагнитные помехи при старте осветителя.
  • Фиксированного время прогрева электродов люминесцентной лампы, следовательно, повышается срок службы.
  • Лампа включается сразу без мерцания.

Сейчас есть и полностью готовые инженерные решения. Это так называемые ЭПРА – электронные пускорегулирующие аппараты.

ЭПРА

Этот вид представляет собой металлический корпус, в котором размещена электронная схема, дополнительные элементы не потребуются. На вход приходит напряжение питания, выходы предназначены для подключения к электродам.

При необходимости легко выбрать устройство на требуемое количество ламп. Монтаж и схема существенно упрощаются. Применение ЭПРА существенно продлевает срок эксплуатации благодаря «теплому запуску». Отсутствие подвижных биметаллических контактов обеспечивает бесшумность старта. Свечение ламп будет ровным. ЭПРА обеспечивают стабилизацию параметров питания. Соответственно параметры электронного пускорегулирующего аппарата и ламп должны совпадать.

Такое решение сочетает достоинства электронных стартеров и простоту схемы подключения. Это полностью готовое решение. Одно устройство может применяют для нескольких ламп.

Из минусов – цена. Электронные компоненты дороже чем совокупная цена пускателя, конденсатора и дросселя. Что удобно, сама схема подключения как правило разрисована на самом устройстве, либо в инструкции. Также схемы всегда есть на сайтах заводов-изготовителей.

Маркировка однозначно идентифицирует стартер и прописана в ГОСТ Р МЭК 60155-99 «Стартеры тлеющего разряда для люминесцентных ламп».

Маркировка стартеров

Внешне стартера для ламп дневного света выглядят так:

Cтартер ST

Стартер S2

Стартер S10

Не горит светильник, проверка исправности стартера.

Так как все имеет конечный срок службы, то бывает, что светильник не загорается. Тогда возникает вопрос «Кто виноват?». Точно уже не дроссель, межвитковые замыкания – это единичные случаи. Лампа или стартер?

Обычно ремонт производится на модульном уровне. Производится замена на заведомо исправный элемент. Ремонт на уровне компонентов – нецелесообразен.

При отсутствии компонентов придется выявить неисправность. Желательно просмотреть всю проводку светильника, так как если он не работает, то не обязательно виновник стартер или сам осветительный прибор. Не исключен вариант и плохого контакте, например в колодках или разъемах.

Если Вы решились на самостоятельный ремонт, то обязательно соблюдайте правила техники безопасности! Осветители используют высокое напряжение в своей работе. Имеется риск получения электротравмы! Запрещается прикасаться к токоведущим частям схемы под напряжением.

Начинать надо с проверки напряжения в сети. При снижении более чем на 20 процентов не гарантируется устойчивая работа старых модификаций стартера для люминесцентных ламп.

Первоначально необходимо проверить проводку. При помощи тестера нужно замерить питающее напряжение. Предположим, что оно есть и в норме. Для очистки совести можно измерить еще и сопротивление обмотки дросселя, нет ли обрыва или межвиткового замыкания. Это очень редкий случай. Допустим, этот элемент рабочий. Остается либо лампа, либо стартер.

 Для начала вскроем стартер, необходимо осмотреть его внутренности. Первым дело осматриваем целостность. Контакты в колбе не должны быть в спайке, визуально между ними должно быть расстояние. Конденсатор не должен иметь следов разрушения. Можно поступить иначе, соединить стартер с лампой накаливания мощностью от 40 до 60 Ватт (не более) и подать переменное напряжение 220 Вольт согласно схеме ниже.

Схема соединения лампы накаливания со стартером

Если нить накала не зажглась или горит постоянно, без кратковременных отключений, то такой стартер признается неработоспособным. Ремонтировать его экономически нецелесообразно, стоимость не велика. Если проверочная схема работает, то скорее всего неисправен осветительный прибор.

Его тоже можно проверить. Так как в какой-то момент у исправного пускателя происходит замыкание контактов, то газоразрядную лампу можно зажечь «вручную». Применяется механическая кнопка без фиксации вместо устройства запуска. При подаче питания на такую схему, при нажатии на кнопку, лампа дневного света должна зажечься, это будет говорить о неисправности стартера. Если этого не происходит, то придется заменить газоразрядную лампу. Случаи одновременного выхода из строя двух элементов достаточно редки.

Если применено электронное пускорегулирующее устройство, то стоит проверить сам осветительный прибор. Если новый работает и дает ровное свечение, то прежний подлежит замене.

Сделать ремонт пускорегулирующего устройства возможно. Они обычно ремонтопригодны. Но это уже потребует знаний электроники. Необходима будет измерительная аппаратура. Без необходимой квалификации такой ремонт невозможен.


 

Стартеры для ламп. Устройство и работа. Замена и как выбрать

Стартеры для ламп являются частью пускорегулирующей аппаратуры, которая служит для зажигания люминесцентных ламп при подключении к сети 220В с частотой 50 Гц. Помимо стартеров в состав ЭМПРА входит конденсатор и дроссель.

Как устроены и работают стартеры для ламп

Стартер представляет собой небольшую газоразрядную лампу, в которой поддерживается тлеющий разряд. Ее корпус состоит из стеклянной колбы, которая заполняется инертным газом. В качестве него может применяться неон или гелий-водород. В колбе размещено два электрода чаще всего биметаллических. Один электрод закреплен, а второй установлен подвижно. Может применяться два подвижных электрода, что повышает надежность и быстродействие системы. В случае снижения эффективности изгиба одного электрода, это компенсирует второй.

При подаче напряжения на стартер происходит тлеющий разряд. Он поддерживается незначительным током в пределах 20-50 мА. Тлеющий разряд поднимает температуру внутри колбы, от чего происходит разогрев подвижного биметаллического электрода, в результате чего он изгибается и прикасается ко второму. При замыкании цепи разряд переходит на соединительный дроссель и в последующем на саму лампу, вызывая ее подогрев. В это время ток заряда в самом стартере прекращается, поэтому его электроды охлаждаются и разгибаются. В результате в электрической цепи создается импульс высокого напряжения, который передается на дроссель и зажигает люминесцентную лампу, провоцируя ее стойкое белое свечение.

Цель стартера заключается в подогреве лампы, поскольку в противном случае она просто не зажжется при подаче напряжения. Подобный эффект можно наблюдать пытаясь включить низкокачественную люминесцентную лампочку на морозе. Если в тепле она работает безотказно, то в холоде не светит.

Для обеспечения продолжительного ресурса эксплуатации пускателя требуется наличие конденсатора. Его задача заключается в сглаживании экстра токов, благодаря чему осуществляется размыкание электродов прибора. Без наличия конденсатора электроды просто спаяются между собой. Конденсатор имеет емкость от 0,003 до 0,1 мкФ. Зачастую в конструкции люминесцентных ламп, особенно с патроном Е27, предусматривается подключение двух последовательно соединенных конденсаторов емкостью каждого по 0,01 мкФ. Это необходимо для компенсации создания радиопомех, которые обычно наблюдаются при работе ламп дневного света.

Специфика работы стартера требует соблюдение определенного напряжения. В случае его падения до уровня 80% лампочка не загорится, поскольку пускатель не сможет правильно ее прогреть. Дело в том, что напряжение зажигания самого стартера должно быть ниже, чем напряжение в сети, к которой он подключен. При этом рабочее напряжение вызывающее свечение самой люминесцентной лампы должно быть ниже, чем у пускателя.

Срок службы стартера и признаки его скорого выхода из строя

Стартеры для ламп выходят из строя чаще, чем непосредственно сама лампочка. По мере применения пускового устройства напряжение образующее тлеющий разряд снижается. Как следствие может наблюдаться замыкание между электродами стартера даже при работе лампы, когда она уже издает свет. Как следствие лампочка гасится и снова зажигается, что человеческим глазом воспринимается как мерцание. Симптомом начала таких проблем является легкое мигание при длительной работе, или вначале до набора максимального свечения.

В это время внутри стартера электроды то присоединяются, то разъединяются. Как только контакт между ними прекращается лампа горит. Подобные блики не только мешают, но и опасны для других элементов лампы, в первую очередь наблюдается перегрев дросселя. Может выйти из строя и сама колба.

Люминесцентные лампочки предлагаются в различных форматах. Лампы, применяемые в обыкновенных люстрах и светильниках, сделаны под цоколь Е14 и Е27. В этом случае стартер прячется прямо в корпусе лампочки, поэтому как только он выходит из строя, то меняется весь механизм. Для вытянутых ламп, устанавливаемых в потолочные светильники, применяются отдельные пусковые устройства. Такие стартеры для ламп нужно своевременно менять, чтобы предотвратить выход из строя всей осветительной системы.

Фактический ресурс стартера позволяет осуществлять не менее 6000 включений. Это довольно много, ведь даже пользуясь светом дважды в день, ресурс израсходуется только через 8 лет. Конечно, свет может включаться и отключаться гораздо чаще, поэтому стартеры для ламп на практике служат намного меньше.

Стартеры для ламп являются довольно специфической конструкцией, главный недостаток которой в низкой надежности. Зачастую устройство отказывает, в результате чего возникает фальстарт в виде несколько вспышек света при нажатии на включатель. Как следствие после короткого мерцания полноценное свечение так и не происходит. Любые неполадки пускателя негативно сказываются на ресурсе самой лампочки. Проблемы с запуском снижают и коэффициент полезного действия осветительного оборудования, увеличивая потребление энергии, что сопровождается малым количеством выделяемого света.

По мере эксплуатации рабочее напряжение стартера снижается, в то время как у самой лампы повышается. Такая несовместимость провоцирует возникновение тлеющего разряда даже в том случае, если лампочка уже светит, что тоже провоцирует мигание. Со временем стартер может терять в уровне эффективности разогрева лампы. В результате нажимая на выключатель, свет просто не зажигается. Чтобы все заработало, приходится по несколько раз жать на клавишу. При каждом срабатывании лампа понемногу прогревается, пока не достигнет достаточной температуры для свечения.  При этом создается впечатление, что вся проблема в самом выключателе, а точнее его контактами. По этой причине осуществляется сильное надавливание на его клавишу.

Критерии выбора
Выбирая стартер под определенный тип ламп, требуется в первую очередь обращать внимание на следующие показатели:
  • Ток зажигания.
  • Напряжение.
  • Уровень мощности.
  • Тип применяемого конденсатора.

Что касается тока зажигания, он должен быть выше рабочего напряжение лампы, но не ниже напряжения в сети питания. Только при соблюдении таких условий освещение будет работать корректно.

Базисное напряжение может составлять 127 или 220В. При включении в одноламповую схему применяется устройство на 220В. Для двухламповых систем используются стартеры на 127В.

Одним из самых важных критериев выбора стартера является уровень его мощности. Он измеряется в ваттах (Вт) и прописывается на боковой части корпуса стартера. В отдельных случаях мощность может изображаться на торцевой части стартера выдавленной в пластике. Подавляющее большинство представленных в продаже пускателей производятся с мощностью 60, 90 и 120 Вт. Также бывают стартеры для ламп с диапазоном мощности 4-22 Вт, 4-65 Вт и так далее.

В некоторых странах, в том числе и России, для обозначения параметров стартера применяется маркировка. На поверхность корпуса устройства наносится буквенно-цифровая надпись ХХ-С-ХХХ. Сначала идут две цифры, которые указывают на мощность устройства. Потом указывается буква «С», обозначающая что применяемый прибор это стартер. Дело в том, что при незнании пускатель можно спутать с конденсатором или другими устройствами, поэтому присутствие в маркировке «С» позволяет избежать подобных ошибок. Сразу после буквы идет трехзначное число, которое указывает на напряжение, применяемое для работы. Это может быть 127 или 220В.

Многие производители, поставляющие свою продукцию на рынки всего мира, применяют свою собственную фирменную маркировку. В этом случае для удобства потребителей помимо собственного буквенно-цифрового обозначения применяется и стандартная расшифровка с указанием параметров мощности и напряжения. Далеко не все бренды указывают на корпусе устройства для скольких лампочек оно может поменяться. При отсутствии нужной информации ее нужно искать в инструкции.

Процесс замены пускателя

Рекомендуется менять стартеры для ламп вместе с самими лампами.  В этом случае новые устройства не выйдут из строя в неподходящий момент, из-за износа старых элементов в схеме подключения.

Замену нужно осуществлять не только при полном перегорании лампы, но и в случае:
  • Мерцания.
  • Длительной задержки при включении.
  • Сильного шума при работе.
  • Существенного падения яркости.
  • Самовольного отключения на продолжительный срок с последующим включением.

В случае с люминесцентными лампами в формате цоколя Е14 и Е27 прибор просто выкручивается, а на его место ставится новая лампочка. Длинные лампы потолочного типа меняются по другой схеме. Колба лампочки поворачивается по своей осина на 45 градусов в направлении часовой стрелки. В результате ее электроды сдвигаются до выходного шлица. После этого лампа вытягивается. Стартер скрыт за отражающей крышкой светильника, поэтому ее нужно также демонтировать. Она может крепиться защелками или винтами. После извлечения крышки можно увидеть закрепленный в посадочном гнезде стартер. Он просто поворачивается против часовой стрелки до характерного щелчка и вытягивается как вилка из розетки. На его место ставится новый стартер.

Похожие темы:

Принцип работы стартеров люминесцентных ламп

Стартер представляет собой небольшую газоразряд­ную лампу тлеющего разряда. Стеклянная кол­ба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмас­совый корпус, на верхней крышке которого имеется смо­тровое окно.

Схемы включения люминесцентных ламп

Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; С — конденсатор; LL — дроссель; EL2 — лампа накаливания.

В некоторых конструкциях стартеров смотровое окно отсутствует. Стартер имеет два электро­да. Различают несимметричную и симметричную кон­струкции стартеров. В несимметричных стартерах один электрод неподвижный, а второй подвижный, изготовлен
из биметалла.

В настоящее время наибольшее распро­странение получила симметричная конструкция старте­ров, у которых оба электрода изготовляются из биметалла. Эта конструкция имеет ряд преимуществ по сравнению с несимметричной.

Напряжение зажигания в стартере тлеющего разряда выбирается таким образом, чтобы оно было меньше номинального напряжения сети, но больше рабочего на­пряжения, устанавливающегося на люми­несцентной лампе при ее горении.

Схема подключения двух люминесцентных ламп через стартер

Схема подключения двух люминесцентных ламп через стартер.

При включении схемы на на­пряжение сети оно полностью окажется приложенным к стартеру. Электроды стар­тера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20-50 мА). Этот ток на­гревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится.

Через дроссель и последовательно соединенные катоды начнет проходить ток, который будет подогревать катоды лампы. Величина этого тока определяется индуктивным сопротивлением дросселя, выбираемым таким образом, что­бы ток предварительного подогрева като­дов в 1,5 2,1 раза превышал номинальный ток лампы. Длительность предваритель­ного подогрева катодов определяется вре­менем, в течение которого электроды стар­тера остаются замкнутыми.

Когда элек­троды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, называемого временем контактирования, электроды раз­мыкаются. Так как дроссель обладает большой индуктивностью, то в момент размыкания электродов стар­тера в дросселе возникает большой импульс напряже­ния, зажигающий лампу.

После зажигания лампы в цепи установится ток, рав­ный номинальному рабочему току лампы. Этот ток обу­словит такое падение напряжения на дросселе, что на­пряжение на лампе станет примерно равным половине номинального напряжения сети. Так как стартер вклю­чен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стар­тере, его электроды останутся разомкнутыми при горе­нии лампы.

Стартеры тлеющего заряда

Стартеры тлеющего заряда.

Возможность зажигания лампы зависит от длитель­ности предварительного подогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера. Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с. и, следовательно, приложенного к лампе напряжения может оказаться недостаточной для ее зажигания, и лампа не зажжется. Поэтому, если при первой попытке стартер не зажжет лампу, он сразу же автоматически будет повторять описанный процесс до тех пор, пока не произойдет зажигание лампы. Со­гласно ГОСТ на стартеры зажигание лампы должно быть обеспечено за время до 10 сек.

Параллельно электродам стартера включен конден­сатор емкостью 0,003-0,1 мкф. Этот конденсатор обыч­но размещается в корпусе стартера. Конденсатор выпол­няет две функции: снижает уровень радиопомех, возни­кающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденса­тор оказывает влияние на процессы зажигания лампы. Конденсатор уменьшает величину импульса напряже­ния, образуемого в момент размыкания электродов стар­тера, и увеличивает его длительность.

При отсутствии конденсатора напряжение на лампе очень быстро воз­растает, достигая нескольких тысяч вольт, но продолжи­тельность его действия очень небольшая. В этих усло­виях резко снижается надежность зажигания ламп. Кро­ме того, включение конденсатора параллельно электро­дам стартера уменьшает вероятность сваривания или, как говорят, залипания электродов, получающегося в ре­зультате образования электрической дуги в момент размыкания электродов. Конденсатор способствует быстрому гашению дуги.

Принципиальная схема включения люминесцентной лампы

Принципиальная схема включения люминесцентной лампы.

Применение конденсаторов в стартёре не обеспечи­вает полного подавления радиопомех, создаваемых лю­минесцентной лампой. Поэтому необходимо дополни­тельно на входе схемы установить два конденсатора емкостью не менее 0,008 мкф каждый, соединен­ных последовательно, и среднюю точку заземлить.
Одним из рекомендуемых способов снижения уровня радиопомех является применение дросселей с симметри­рованной обмоткой где обмотка дросселя разделе­на на две совершенно одинаковые части, имеющие рав­ное число витков, намотанных на один общий сердеч­ник.

Каждая часть дросселя соединена последовательно с одним из катодов лампы. При включении такого дрос­селя с лампой оба ее катода работают в одинаковых условиях, что снижает уровень радиопомех. В настоящее время, как правило, выпускаемые промышленностью дроссели изготовляются с симметрированными обмот­ками.

В схеме из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т. е. они не будут одновременно достигать своих нулевых и максимальных значений. Как известно из теории переменного тока, в этом случае ток будет отставать по фазе от напряжения сети на некоторый угол, величина которого определяется соотношением индуктивного со­противления дросселя и активного сопротивления всей сети. Такие схемы называются отстающими.

В ряде случаев использования люминесцетных ламп требуется создавать такие условия, когда ток через лам­пу опережал бы по фазе напряжение сети. Такие схемы называются опережающими. Для выполнения этого условия последовательно с дросселем включается кон­денсатор, емкость которого рассчитывается таким обра­зом, чтобы его емкостное сопротивление было больше индуктивного сопротивления дросселя.

Устройство люминесцентной лампы

Устройство люминесцентной лампы.

В опережающем балласте в период зажигания лампы ток предварительного подогрева катодов имеет недостаточную величину. Для устранения этого явления необходимо на время зажигания лампы увеличить ток предварительного подогрева, что можно сделать, если частично компенсировать емкость индуктивностью. В цепь стартера включается дополнительная индуктивность в виде компенсирующей катушки.

При замыкании электродов стартера эта компенсирующая катушка включается последовательно с дросселем и конденсатором, общая индуктивность схемы возраста­ет, а вместе с ней увеличивается ток предварительного подогрева. После размыкания электродов стартера ком­пенсирующая катушка отключается, и в рабочем режиме лампы она не участвует. Индуктивность дополнительной катушки компенсирует емкость конденсатора, установ­ленного в стартере. Поэтому в схему вводится дополни­тельный конденсатор емкостью не менее 0,008 мкф, включаемый параллельно лампе и выполняющий в этом случае роль помехоподавляющего конденсатора.

Один из недостатков рассмотренных схем – низкий коэффициент мощности. Он составляет величину 0,5-0,6. Пускорегулирующие аппараты (ПРА), выполненные на основе этих схем, относятся к группе так называемых некомпенсированных аппаратов. При использовании та­ких аппаратов согласно правилам устройства электро­установок (ПУЭ) для повышения низкого коэффициента мощности необходимо предусматривать групповую ком­пенсацию коэффициента мощности, обеспечивающую до­ведение его для всей осветительной установки до вели­чины 0,9-0,95.

При невозможности или экономической неэффектив­ности применения групповой компенсации коэффициента мощности используют схемы, в которых дополнительно параллельно лампе включается конденсатор достаточной емкости, выбранный таким образом, чтобы коэффициент мощности схемы повысился до величины 0,85 -0,9 . ПРА, изготовленный по этой схеме, называют компенсированным. Расчеты показывают, что для ламп мощ­ностью 20 и 40 вт при напряжении 220 в емкость кон­денсатора составляет 3-5 мкф.

Основной недостаток стартерных схем зажигания – их низкая надежность, которая обусловлена ненадежно­стью работы стартера. Надежная работа стартера также зависит от уровня напряжения в питающей сети. Со сни­жением напряжения в питающей сети увеличивается время, необходимое для разогрева биметаллических элек­тродов, а при уменьшении напряжения более чем на 20% номинального стартер вообще не обеспечивает кон­тактирования электродов, и лампа не будет зажигаться. Значит, с уменьшением напряжения в питающей сети время зажигания лампы увеличивается.

Схема запуска сгоревшей люминисцентной лампы

Схема запуска сгоревшей люминисцентной лампы.

У люминесцентной лампы по мере старения наблю­дается увеличение ее рабочего напряжения, а у старте­ра, наоборот, с ростом срока службы напряжение зажи­гания тлеющего разряда уменьшается. В результате этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет.

При размыкании электродов стартера лампа вновь загорается и наблюдается мига­ние лампы. Такое мигание лампы, помимо вызываемого им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лам­пы. Подобные же явления могут иметь место при ис­пользовании старых стартеров в сети с пониженным уровнем напряжения. При появлении миганий лампы необходимо заменить стартер на новый.

Стартеры имеют значительные разбросы времени кон­тактирования электродов, и оно очень часто недостаточ­но для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после не­скольких промежуточных попыток, что увеличивает дли­тельность переходных процессов, снижающих срок служ­бы ламп.

Общий недостаток всех одноламповых схем – невоз­можность уменьшить создаваемую одной люминесцент­ной лампой пульсацию светового потока. Поэтому такие схемы можно применять в помещениях, где устанавли­вается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульса­ции светового потока лампы включать в различные фазы трехфазной цепи. Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от двух-трех ламп, включенных в разные фазы сети.

Двухламповые схемы включения. Применение двух­ламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пуль­сации светового потока каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. По­этому суммарный световой поток двух ламп никогда не будет равен нулю, а колеблется около некоторого сред­него значения с частотой, меньшей, чем при одной лам­пе. Кроме того, эти схемы обеспечивают высокий коэф­фициент мощности комплекта лампа – ПРА.

Наибольшее распространение получила двухлампо­вая схема, называемая часто схемой с расщепленной фазой. Схема состоит из двух элементов-ветвей: отстающей и опережающей. В первой ветви ток отстает по фазе от напряжения на угол 60°, а во второй – опе­режает на угол 60°. Благодаря этому ток во внешней цепи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0.9-0.95.

Эту схему можно отнести к группе компенси­рованных, и по сравнению с одноламповой некомпенси­рованной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повы­шения коэффициента мощности. При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для двух и одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.

устройство, принцип работы и схемы подключения ламп дневного света

Автор Aluarius На чтение 5 мин. Просмотров 229 Опубликовано

Люминесцентные лампы от сети напряжением 220 вольт напрямую не включаются. Для них нужен специальный блок, который называется пускорегулирующая аппаратура, укорочено ПРА. Этот блок состоит из трех элементов: дроссель, конденсатор и стартёр. Нас в этой статье будет интересовать стартер для ламп дневного света (ЛДС), что он собой представляет, какие функции на него возложены.

Стартер

По сути, стартёр – это стеклянная колба, заполненная газом (обычно используется или неон, или смесь гелий с водородом). То есть, это газоразрядная лампа миниатюрного типа, внутри которой тлеет разряд. Здесь же расположены электроды, поддерживающие данный разряд. Существует стартеры двух типов: симметричные и несимметричные. В первом все электроды являются подвижными, во втором – один стационарный. Электроды изготавливаются из биметалла. Чаще всего в люминесцентных светильниках используются конструкции симметричные.

Газоразрядная лампа помещается в металлический или пластмассовый корпус. Крепится она на специальной панели диэлектрического типа, где установлены два контакта. Здесь же устанавливается и конденсатор, который подсоединен к газоразрядной лампе параллельно.

Как работает

Когда в схему, где установлен стартер, подается напряжение, оно попадает на его электроды, между которыми появляется тлеющий разряд. Сила тока разряда незначительная, в пределах от 20 до 50 мА. Именно этот разряд начинает нагревать электроды, которые под действием тепла изгибаются и через какое-то время соприкасаются друг с другом. То есть, электрическая цепочка замыкается, и ток подается далее на дроссель, конденсатор и на лампы дневного света. При этом тлеющий разряд прекращается.

Обратите внимание, что напряжение включение стартера должно быть чуть меньше номинального сети, то есть, 220 вольт, но при этом оно должно быть больше, чем напряжения включения самих ламп дневного света.

Итак, электроды соприкоснулись между собой, что дальше? Так как между ними нет тлеющего разряда, соответственно нет температуры, которая их нагревает. Происходит их остывание, что в конечном итоге приведет к размыканию электродов и цепочки. Именно в этот момент появляется так называемое импульсное напряжение высокой величины внутри дросселя. От него и происходит зажигание люминесцентного осветительного устройства. В процессе работы самой лампы дневного света в цепочке ток имеет значение, равное силе тока источника света. Падение же напряжения, а соответственно и силы тока, делится между самой осветительным прибором и дросселем на равные части.

Зажигание

Как происходит зажигание стартера для лампы? Необходимо отметить, что на эффективность зажигания влияют две позиции:

  • величина силы тока на катодах лампы в момент размыкания электродов;
  • продолжительность нагрева катодов.

Электромагнитная сила внутри дросселя зависит от силы тока в нем. Понятно, что недостаточность силы тока не приведет к зажиганию люминесцентного устройства. А сила тока напрямую зависит от напряжения в цепи. И если последний показатель ниже номинального, то есть большая вероятность, что лампа сразу не зажжется. Поэтому стартер будет в автоматическом режиме пытаться снова и снова проделать ту же операцию, пока она не загорится. Периодичность попыток стандартная – 10 секунд.

Монтаж люминесцентной лампы

Если в питающей сети напряжение падает ниже 80% от номинального, то этого недостаточно, чтобы электроды нагрелись до необходимой температуры. То есть, при таком падении осветительное устройство просто не зажигается.

Конденсатор

Конденсатор в системе ПРА устанавливается параллельно стартеру. Эти два прибора взаимосвязаны. Основное назначение конденсатора:

  • снижение помех в процессе замыкания и размыкание электродов стартера;
  • увеличения длительности действия импульса при размыкании электродов;
  • предотвращение спаивания электродов за счет высокого импульсного напряжения.

Чаще всего в ПРА используются конденсаторы емкостью 0,003-0,1 мкФ.

Люминесцентные лампы

Как долго работает

Со временем эксплуатации стартера напряжение, создающее тлеющий разряд, снижается. Это может привести к обратному эффекту, когда при работающем люминесцентном светильнике электроды стартера вдруг начнут самопроизвольно замыкаться, что приведет к гашению самой лампы. Тут же будет происходить размыкание электродов, а соответственно и зажигание светильника. Оба процесса моментальные, что приводит к миганию светильника. Это не только влияет на эффективность его работы, но и снижает срок эксплуатации дросселя, потому что при такой работе он будет просто перегреваться.

Поэтому совет – периодически проверять стартер, и при необходимости менять его на новый. Как только увидели, что светильник замигал, не откладывайте замену в долгий ящик.

Схема подключения люминесцентного светильника

Схема подключения лампы дневного света – это несколько вариантов, зависящих от количества ламп дневного света в светильнике. Вот самая простейшая из них на рисунке ниже:

Самая простая схема подключения

Здесь четко видно, что две спирали лампы дневного света подключаются: одна через дроссель, вторая через стартер. Такое соединение чаще всего применяется, когда необходимо подключить один источник света. Если, к примеру, есть необходимость подключить светильник с двумя лампами дневного света, то приходится устанавливать два стартера на каждую, как это хорошо видно на рисунке схемы ниже (вариант номер два):

Схема подключения с двумя лампами

При этом необходимо учитывать, что мощность дросселя не должна быть меньше мощности двух источников света. К примеру, если у него мощность 40 Вт (этот показатель наносится на корпус элемента), то две лампы в сумме должны иметь мощность не больше 40 Вт (к примеру, по 20 Вт).

Одной из ярких представителей этой категории осветительных приборов является марка ЛВО 4х18. То есть, это металлический прибор с четырьмя лампами, мощностью каждой по 18 Вт. ЛВО 4х18 чаще всего используются в качестве встраиваемых осветительных устройств. Их обычно монтируют в потолках Армстронг, в гипсокартонных потолочных конструкциях и в других видах потолков. Причины популярности марки ЛВО 4х18 – это невысокая цена от отечественного производителя, простота установки, эффективное свечение и простая схема подключения.

Стартеры для ламп дневного света

Человечество стремится экономить на всех видах энергоносителей, особой строкой идёт электричество. Количество приборов бытовых увеличивается, плата за их использование растёт. Поэтому в жизнь прочно входят и активно используются лампы дневного света. И схема подключения люминесцентных ламп проста, не требует никаких специальных знаний в электротехнике.

Стартер – основной элемент схемы включения люминесцентных ламп, который выполняет функции замыкание и размыкание цепи питания лампы. В настоящее время существует три основных вида по действию стартера: тепловой, электронный и тлеющего разряда.

Стартер Филипс

Общие положения

Стартёры разных модификаций и видов конструктивно между собой очень похожи. Составными частями стартера являются малогабаритная газоразрядная лампа, колба, которая изготавливается из стекла, а внутрь ее помещается инертный газ.

Лампа располагается внутри корпуса, который изготавливается из металла или разновидностей пластика, и может иметь отверстие в верхней части прибора. Стартеры, теплового действия и работающие по принципу тлеющего разряда, оснащаются конденсатором, который предназначен для сглаживания скачков напряжения и гашения дуги.

Также конденсатор служит для снижения радиопомех, подключается он параллельно к контактам стартера.

Конструкция и условия работы

В зависимости от особенностей конструкции электродов стартёры различают как симметричные и несимметричные.

В несимметричных стартерах один электрод крепится подвижный, а второй – неподвижный, в симметричной конструкции – оба электрода подвижные. В цепь питания лампы стартер включается параллельно к последней.

Время зажигания источника дневного света регламентировано ГОСТом и ограничено 10 секундами. Условия, при которых происходит успешное зажигания, зависят от подогрева катодов лампы и величины тока, проходящего через них, в момент размыкания электродов стартера. При малом токе источник дневного света может не загореться, поэтому стартер повторит процесс зажигания, до тех пор, пока процесс розжига не завершится.

Виды стартеров

Стартеры выпускают различных видов:

  • Тепловые;
  • Тлеющего ряда;
  • Полупроводниковые.
Подключение стартера

При малом токе источник дневного света может не загореться, поэтому стартер повторит процесс зажигания, до тех пор, пока процесс розжига не завершится

Основные характеристики

Принципиальная электрическая схемаСтартеры теплового вида имеют следующее отличие от аналогов – это продолжительное время запуска источника дневного освещения. Устройства данного вида при работе потребляют большое количество электроэнергии, что негативно влияет на их экономичность.

Другое название стартеров данного вида – термо-биметаллические, они, как правило, применяются при эксплуатации при низких температурах. Основным отличием от прочих видов является то, что при отсутствии напряжения контакты уже замкнуты, и при подаче напряжения на прибор, возникает более высокий импульс.

Стартеры, использующие в своей работе принцип тлеющего разряда, содержат биметаллические электроды, изготовленные из сплавов с различными коэффициентами термического расширения. Работа приборов данного вида осуществляется следующим образом: при включении светильника в электрическую сеть, напряжение подается на стартер, электроды которого в этот момент разомкнуты.

Под действием поданного напряжения между электродами возникает тлеющий разряд. В цепи проходит небольшой электрический ток и под его действием происходит нагревание биметаллических электродов стартера. Они нагреваются и изгибаются, что обусловлено реакциями, проходящими в биметаллах, под воздействием электрического тока, и именно это и приводит к замыканию цепи.

После замыкания цепи происходит прекращение тлеющего разряда в колбе стартера. Одновременно электрический ток нагревает катоды лампы, электроды стартера в это время замкнуты и остывают, после остывания контакты стартера размыкаются.

Размыкание данной цепи приводит к возникновению особого импульса, обладающего повышенным напряжением, который формируется в дросселе и позволяет произвести пробой газа в лампе, и соответственно ее разжигание.

В стартерах, которые имеют контактную систему управления, процессы коммутации оказываются неуправляемыми. В тяжёлых условиях, таких как эксплуатация при пониженных температурах, скорость нагрева биметаллических контактов замедляется, соответственно лампа дневного света зажигается дольше или вообще выходит из строя. Однако, развитие полупроводниковой электроники позволило изготовить стартеры принципиально нового типа.

Полупроводниковые стартеры размещаются в обычном стандартном корпусе с полупроводниковыми компонентами. Они соответствуют всем требованиям предъявляемым к стартерам по мощности и напряжению питания подключаемой лампы. Работа стартеров данного вида, формирование импульса, происходит по принципу ключа – нагрева и размыкания цепи.

Наиболее оптимальными параметрами, данного вида стартеров, обладают приборы со ждущим режимом зажигания, при котором размыкание контактов происходит в необходимой фазе напряжения и достаточной температуре нагрева электродов.

Безусловно, использование электронных элементов позволяет увеличить срок эксплуатации лампы и срок работы самого стартера, в сравнении с тепловыми и биметаллическими аналогами. Основной недостаток данного вида – стоимость, они по цене значительно дороже.

Присоединение стартера к лампе

В стартерах, которые имеют контактную систему управления, процессы коммутации оказываются не управляемыми

Классификация стартеров

Стартеры классифицируются по следующим параметрам:

  • Мощность;
  • Напряжение.

Параметры, которые следует учесть при выборе стартера:

  • Температурный режим работы;
  • Тип конденсатора;
  • Номинальное напряжение;
  • Стоимость.

По способу подключения стартеры могут быть:

  • Для одиночного подключения;
  • Для последовательного подключения к сети напряжением 220/240 В или одиночного к сети напряжением 110/130 В.

Подключение к сети определяется способом подключения ламп, это одноламповый или двухламповый. При первом способе подключения, лампа и дроссель включаются последовательно, стартер – параллельно. При двухламповом подключении, последовательно подключаются две лампы и один дроссель, при этом к каждой лампе включается отдельный стартер.

Стартер и спичка

Обозначение и маркировка

Маркировка отечественных и зарубежных производителей отличается друг от друга. По ГОСТу действующему в РФ цифры (буквы) маркировки соответствуют:

  • 1-я – 60/90/120 – мощность подключаемой лампы;
  • 2-я – «С» – информирует что это «стартер»;
  • 3-я – 220/127 – напряжение питания лампы.

Для зарубежных аналогов для ламп мощностью от 4,0 до 80,0 Вт и напряжением 220 В применяются обозначения – S10, FS-U, ST111, а напряжением 127 В и мощностью до 22 Вт – S2, FS-2, ST151.

Особенности выбора

Достоинства и недостатки

Преимущества использования современных стартеров:

  • Экологическая безопасность;
  • Продление срока исправности ламп;
  • Долговечность;
  • Простота и удобство установки.

Важно помнить и о недостатках, а это:

  • Низкая надежность;
  • Зависимость от напряжения;
  • Разброс времени срабатывания контактов электродов.

Технические требования

Все технические средства, оборудование и комплектующие должны соответствовать техническим условиям и правилам. Так в отношении стартеров действуют следующие регламентирующие документы:

  • ГОСТ 8799-90 «Стартеры для трубчатых люминесцентных ламп. Технические условия»;
  • ГОСТ Р МЭК 60155-99 «Стартеры тлеющего разряда для люминесцентных ламп».

Популярные производители и модели

Многие известные производители светотехнической техники являются и производителями стартеров, наиболее известные это: Philips, Osram, Sylvania и другие.

Компания «Philips» (Нидерланды) выпускает широкий ассортимент продукции, в том числе и стартеры. Наиболее современные и совершенные из них это серии: «Ecoclick Starters», «Safety & Comfort Starters», «Green Starters».

Стартеры Philips

Фирмы «OSRAM» (Россия) выпускает большой ассортимент стартеров для разного типа и назначения ламп дневного света. Некоторые модификации имеют особые преимущества перед аналогами других производителей.

Такими приборами считаются:

  • Стартеры предохранители – DEOS® ST 171, DEOS® ST 172 и DEOS® ST 173;
  • Стартеры автоматы – DEOS® ST 172;
  • Универсальные – DEOS® ST 171, DEOS® ST 172 и DEOS® ST 173.

Автоматические стартеры отключают перегоревшие или неисправные лампы, а также осуществляют повторное включение.

Стартер OSRAM

Отдельного внимания заслуживают стартеры, применяемые для специальных ламп, к таким можно отнести лампы для соляриев. Именно такое оборудование, лампы и комплектующие выпускает компания «Havels Sylvania» (Германия). В ассортименте компании электронные стартеры различной мощности, времени подогрева и температуры эксплуатации.

Стартеры устойчивы к ультрафиолетовому излучению, напряжение 220/240 В, предназначены для одиночной схемы включения:

  • PureBronze PBS-25, мощностью 4 – 65 Вт;
  • PureBronze PBS-100, мощностью 80 – 100 Вт;
  • PureBronze PBS-160, мощностью 80 – 160 Вт.

Стартер Havels Sylvania

Ассортимент других фирм производителей также широк и разнообразен, что позволяет выбрать прибор по предъявляемым к нему требованиям, однако важно помнить, что не следует выбирать дешевые модели, т.к. в них, как правило, используются дешевые материалы, а это отрицательно скажется на сроке эксплуатации прибора.

Возможные неисправности

При использовании любого источника освещения всегда возникает вопрос о его ремонте, замене вышедших из строя элементов.

Одной из причин, не зажигания лампы дневного света, может стать неисправный стартер, неисправность которого может выразиться как:

  • Лампа не зажигается;
  • На концах лампы свечение есть, но лампа не зажигается.

Для замены стартера необходимо выполнить несложные операции:

  • Выключить светильник;
  • Снять плафон или иной защитный элемент светильника;
  • Извлечь неисправный элемент – стартер;
  • Вставить в цоколь новый прибор;
  • Произвести сборку светильника в обратном порядке;
  • Включить светильник.

Заменить стартер не составляет труда, когда есть запасной, если же такого нет, то необходимо убедиться, что извлеченный из светильника является именно тем элементом, из-за которого не горит лампа. Работоспособность его можно проверить простым способом.

Необходимо последовательно со стартером включить лампочку накаливания и подать на них напряжение. Если стартер рабочий, то лампочка будет гореть и периодически выключаться, при этом будет слышен характерный щелчок внутри стартера. Если, лампочка не горит, или горит и не моргает, значит, стартер неисправен, и точно подлежит замене.

Теоретически считается, что срок исправной работы стартера эквивалентен времени работы лампы, которую он зажигает. Однако необходимо учитывать, что с увеличением срока работы прибора, интенсивность напряжения тлеющего разряда, для стартеров данного вида, снижается, что сказывается на работе последнего. Тем не менее, все производители ламп дневного света рекомендуют производить замену стартеров одновременно с заменой ламп.

Блиц-советы

При необходимости выбрать замену вышедшему из строя стартеру нужно так:

  • Обратить внимание на напряжение питания лампы;
  • Определиться с необходимой мощностью прибора;
  • Выбрать производителя, исходя из ценовой политики и требуемой надежности.

Технологии не стоят на месте. Стартёр теперь монтируют прямо в цоколь ламп дневного света со стандартным патроном, эти лампы называют «экономлампы». Они аналогичны по своим принципам работы лампам дневного света, только вид их сильно изменён.

Принцип работы стартера люминесцентной лампы

Устройство люминесцентной лампы и принцип работы

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

Стартер для люминесцентных ламп

Лампы газоразрядного типа уже давно используются в системах внутреннего и наружного освещения. Их конструкция обеспечивает стабильное и устойчивое свечение, а срок эксплуатации по сравнению со стандартными лампочками накаливания значительно выше. Вся работа этих устройств осуществляется с помощью специальной аппаратуры, в состав которой входит и стартер для люминесцентных ламп.

Совместно с дросселем он принимает участие в запуске, защищает источник света от перенапряжения из-за высоких токов. Без стартера лампа не будет работать, поэтому нужно регулярно контролировать его состояние, осуществлять своевременный ремонт или замену.

Функции стартера в лампах газоразрядного типа

Независимо от модификации ламп дневного света, основной функцией стартера является их запуск. Он входит в общую структуру пускорегулирующего устройства, питается от сетевого переменного тока с рабочей частотой 50 Гц.

Активация осветительного прибора заключается в подаче на его контактные клеммы повышенного напряжения. Стандартное пусковое устройство внешне выглядит в виде небольшой стеклянной колбы, заполненную изнутри смесью инертных газов. Сама колба защищена от возможных повреждений пластиковым или металлическим корпусом. Снизу к подведены два электрода, которые и обеспечивают контакт с проводами лампы. Некоторые корпуса оборудуются смотровым окошком.

По мнению специалистов, стартеры для люминесцентных ламп обладает повышенной чувствительностью и чаще чем другие компоненты выходит из строя. В таких случаях лампу становится невозможно запустить, и она не будет работать. В случае необходимости этот компонент легко заменить своими руками.

Основными функциями стартера в системе ПРА являются следующие:

  • Немедленное включение в работу при подаче питающего напряжения.
  • Прогревает электроды.
  • Замыкает и размыкает биметаллическую пластину.
  • Передает повышенный ток к местам образования дуги.
  • Через него ток поступает к дросселю.

Следует помнить, что прямое включение лампы без стартера приводит к снижению срока службы и преждевременному выходу из строя. Эти компоненты бывают электромагнитными или электронными и выбираются в зависимости от конструкции источника света.

Устройство стартера

Различные виды и модификации стартеров в целом имеют одни и те же конструктивные элементы. Они отличаются лишь параметрами, поскольку используются во многих типах ламп. Зная общее устройство стартера, можно легко проверить его работоспособность, выявить неисправности и принять решение о возможности дальнейшего использования.

Итак, любое пусковое устройство состоит из следующих деталей и компонентов:

  • Корпус, изготовленный из металла или пластика, в котором размещаются все составляющие. Он защищает стеклянные детали от повреждений. В верхней части имеется отверстие, снизу выведены наружу ножки контактов.
  • Колба. Сделана из стекла и наполнена газом. Обычно используется неон или смесь водорода и гелия.
  • Электроды – анод и катод. Могут быть исполнены в двух вариантах: симметричные с двумя подвижными контактами или несимметричные, с одной движущейся частью. Каждый из них выведен наружу через цоколь. В практической деятельности чаще всего применяется первый вариант – с симметричной электродной системой.
  • Конденсатор. Играет важную роль в сглаживании высоких токов. Одновременно участвует в размыкании электродов и гасит дугу, возникающую между токоведущими частями. Отсутствие конденсатора может вызвать спайку контактов при появлении дуги, вызывая тем самым преждевременный износ стартера.

Надежная работа стартера обеспечивается биметаллическими электродами, нагрев которых связан с напряжением конкретной электрической сети. Если ток понизился до 80% от номинала, то стартер может не сработать и лампа не загорится. Современный электронный стартер для люминесцентной лампы, применяемый в ЭПРА, практически не подвержен перепадам напряжения и всегда находится в готовности к работе. Поэтому они устанавливаются во всех современных светильниках, а старые пускатели постепенно заменяются приборами нового образца.

При замене следует учесть, что каждой марке люминесцентной лампы требуется соответствующее ей пусковое устройство.

Принцип действия

Действие стартера неразрывно связано с работой всей люминесцентной лампы и происходит в следующем порядке:

  • Перед началом работы электроды разомкнуты.
  • После подачи напряжения из сети, внутри колбы возникает тлеющий разряд с параметрами тока 20-50 мА.
  • Разряд начинает воздействовать на биметаллические электроды, постепенно выполняя их разогрев.
  • Под действием нагрева электроды изгибаются, после чего тлеющий разряд прекращается и далее происходит замыкание электрической цепи внутри лампы.
  • По замкнутой цепи начинается движение электрического тока, разогревающего дроссель и катоды самой лампы.
  • После прекращения тлеющего разряда начинается постепенное остывание биметаллических электродов. В результате, они размыкаются, разгибаются и цепь разрывается.
  • Все предыдущие действия привели к появлению высокого импульсного напряжения, воздействующего на дроссель. Сам дроссель обладает индуктивностью, под влиянием котором лампа начинает зажигаться.
  • Постепенно свечение лампы возрастает и достигает нормы. Поскольку стартер подключен параллельно с лампой, ему уже недостаточно напряжения для создания нового тлеющего разряда, поскольку весь ток уходит на поддержку свечения. Поэтому электроды остаются разомкнутыми, а лампа все равно продолжает работать.

Схема подключения

Независимо от конструкции лампы, каждая схема подключения использует стартер. Обычно используются источники света на 36-40 Вт с соответствующим пусковым устройством.

Порядок действий будет одинаковым для всех люминесцентных ламп:

  • Каждый осветительный прибор оборудуется выходными контактами, установленными с торцов и соединенными с нитями накаливания. Снаружи они выглядят в виде небольших штырьков, к которым параллельно подключается стартер.
  • Для подключения пускового устройства используется один из контактов, расположенных на обеих сторонах лампы.
  • К контактам, оставшимся свободными, параллельно с электрической сетью подключается дроссель.
  • Конденсатор подключается в последнюю очередь параллельно с питающими контактами. Он защищает от сетевых помех и компенсирует реактивную мощность.

Различия в подключении становятся заметными при использовании разного количества источников света, для которых используется отдельная схема. Их особенности проявляются в следующем:

  • При использовании одной лампы стартер подключается параллельно, а дроссель – последовательно между лампой и источником питания. На входных контактах может быть установлен конденсатор, улучшающий параметры электрического тока.
  • В случае использования нескольких лампочек, они последовательно подключаются к питанию вместе с дросселем. Далее, к каждой лампе параллельно подключается стартер. Важным условием является равенство суммарной мощности всех подключенных компонентов, мощности используемого дросселя.

Параметры и маркировка

Выбирая пусковое устройство, необходимо обратить особое внимание на его параметры и технические характеристики:

  • Сроки эксплуатации, установленные производителями. По этому показателю лидируют компании Osram и Phillips, чья продукция способна выдерживать не менее 6 тысяч циклов включения и выключения. Однако, на практике этот параметр не всегда соблюдается по объективным причинам, например, из-за скачков сетевого напряжения.
  • Температурный диапазон рабочего режима. Обычно устанавливается в пределах 5-55 0 С. Если требуется использовать светильники за пределами установленных норм, то для этих случаев понадобятся специальные стартеры с гораздо более высокой стоимостью.
  • Временной промежуток, при котором катоды полноценно прогреваются. Этим фактором определяется период нахождения биметаллических электродов в замкнутом положении. У разных производителей данный показатель может существенно отличаться.
  • Разновидности и модификации конденсаторов, задействованных в том или ином устройстве. От его конструкции во многом зависит срок эксплуатации прибора.
  • Номинальное рабочее напряжение. Данная характеристика должна обязательно проверяться, поскольку прибор, рассчитанный на 127 В и подключенный к светильнику на 220 В, сразу же выйдет из строя.

Все параметры отображаются в маркировке устройства. У отечественных приборов она выглядит следующим образом:

  • Буква «С» указывает на принадлежность к категории стартеров.
  • Цифры, стоящие впереди буквы «С», обозначают мощность лампы, для которой предназначен данный стартер.
  • Цифры, нанесенные позади буквы «С», соответствуют параметрам рабочего напряжения, например, 127 или 220.

Таким образом, маркировка 60С-220, приведенная в качестве примера, указывает на устройство, которое является стартером для люминесцентной лампы мощностью 60 Вт, работающей от сети 220 В.

Проверка технического состояния стартера

В случае каких-либо неисправностей осветительного прибора с лампами дневного света, очень часто требуется отдельно проверить работоспособность стартера. В общей конструкции он определяется как довольно простая деталь с небольшими размерами. Поломка пускателя приносит массу проблем, в первую очередь связанных с прекращением работы всей лампы.

Частой причиной неисправности служит изношенная лампа тлеющего разряда или биметаллическая контактная пластина. Внешне это проявляется отказом при запуске или миганием во время работы. Устройство не запускается ни со второй попытки, ни с последующих, поскольку для пуска всей лампы недостаточно напряжения.

Наиболее простым способом проверки является полная замена стартера другим устройством такого же типа. Если после этого лампа нормально включится и заработает, значит причина была именно в пускателе. В данной ситуации измерительные приборы не требуются, однако при отсутствии запасной детали придется создавать простейшую проверочную схему с последовательным соединением стартера и лампы накаливания. После этого через розетку подключить питание 220 В.

Для подобной схемы лучше всего подойдут маломощные лампочки на 40 или 60 ватт. После включения они загораются, а затем со щелчком периодически отключаются на короткое время. Это указывает на исправность стартера и нормальную работу его контактов. Если же лампочка горит постоянно и не моргает или она не зажглась вовсе, следовательно пускатель нерабочий и его необходимо заменить.

В большинстве случаев можно обойтись одной лишь заменой, и лампа вновь заработает. Однако, если стартер точно исправен, а светильник все равно не работает, необходимо последовательно проверять дроссель и другие компоненты схемы.

Стартеры для ламп. Устройство и работа. Замена и как выбрать

Стартеры для ламп являются частью пускорегулирующей аппаратуры, которая служит для зажигания люминесцентных ламп при подключении к сети 220В с частотой 50 Гц. Помимо стартеров в состав ЭМПРА входит конденсатор и дроссель.

Как устроены и работают стартеры для ламп

Стартер представляет собой небольшую газоразрядную лампу, в которой поддерживается тлеющий разряд. Ее корпус состоит из стеклянной колбы, которая заполняется инертным газом. В качестве него может применяться неон или гелий-водород. В колбе размещено два электрода чаще всего биметаллических. Один электрод закреплен, а второй установлен подвижно. Может применяться два подвижных электрода, что повышает надежность и быстродействие системы. В случае снижения эффективности изгиба одного электрода, это компенсирует второй.

При подаче напряжения на стартер происходит тлеющий разряд. Он поддерживается незначительным током в пределах 20-50 мА. Тлеющий разряд поднимает температуру внутри колбы, от чего происходит разогрев подвижного биметаллического электрода, в результате чего он изгибается и прикасается ко второму. При замыкании цепи разряд переходит на соединительный дроссель и в последующем на саму лампу, вызывая ее подогрев. В это время ток заряда в самом стартере прекращается, поэтому его электроды охлаждаются и разгибаются. В результате в электрической цепи создается импульс высокого напряжения, который передается на дроссель и зажигает люминесцентную лампу, провоцируя ее стойкое белое свечение.

Цель стартера заключается в подогреве лампы, поскольку в противном случае она просто не зажжется при подаче напряжения. Подобный эффект можно наблюдать пытаясь включить низкокачественную люминесцентную лампочку на морозе. Если в тепле она работает безотказно, то в холоде не светит.

Для обеспечения продолжительного ресурса эксплуатации пускателя требуется наличие конденсатора. Его задача заключается в сглаживании экстра токов, благодаря чему осуществляется размыкание электродов прибора. Без наличия конденсатора электроды просто спаяются между собой. Конденсатор имеет емкость от 0,003 до 0,1 мкФ. Зачастую в конструкции люминесцентных ламп, особенно с патроном Е27, предусматривается подключение двух последовательно соединенных конденсаторов емкостью каждого по 0,01 мкФ. Это необходимо для компенсации создания радиопомех, которые обычно наблюдаются при работе ламп дневного света.

Специфика работы стартера требует соблюдение определенного напряжения. В случае его падения до уровня 80% лампочка не загорится, поскольку пускатель не сможет правильно ее прогреть. Дело в том, что напряжение зажигания самого стартера должно быть ниже, чем напряжение в сети, к которой он подключен. При этом рабочее напряжение вызывающее свечение самой люминесцентной лампы должно быть ниже, чем у пускателя.

Срок службы стартера и признаки его скорого выхода из строя

Стартеры для ламп выходят из строя чаще, чем непосредственно сама лампочка. По мере применения пускового устройства напряжение образующее тлеющий разряд снижается. Как следствие может наблюдаться замыкание между электродами стартера даже при работе лампы, когда она уже издает свет. Как следствие лампочка гасится и снова зажигается, что человеческим глазом воспринимается как мерцание. Симптомом начала таких проблем является легкое мигание при длительной работе, или вначале до набора максимального свечения.

В это время внутри стартера электроды то присоединяются, то разъединяются. Как только контакт между ними прекращается лампа горит. Подобные блики не только мешают, но и опасны для других элементов лампы, в первую очередь наблюдается перегрев дросселя. Может выйти из строя и сама колба.

Люминесцентные лампочки предлагаются в различных форматах. Лампы, применяемые в обыкновенных люстрах и светильниках, сделаны под цоколь Е14 и Е27. В этом случае стартер прячется прямо в корпусе лампочки, поэтому как только он выходит из строя, то меняется весь механизм. Для вытянутых ламп, устанавливаемых в потолочные светильники, применяются отдельные пусковые устройства. Такие стартеры для ламп нужно своевременно менять, чтобы предотвратить выход из строя всей осветительной системы.

Фактический ресурс стартера позволяет осуществлять не менее 6000 включений. Это довольно много, ведь даже пользуясь светом дважды в день, ресурс израсходуется только через 8 лет. Конечно, свет может включаться и отключаться гораздо чаще, поэтому стартеры для ламп на практике служат намного меньше.

Стартеры для ламп являются довольно специфической конструкцией, главный недостаток которой в низкой надежности. Зачастую устройство отказывает, в результате чего возникает фальстарт в виде несколько вспышек света при нажатии на включатель. Как следствие после короткого мерцания полноценное свечение так и не происходит. Любые неполадки пускателя негативно сказываются на ресурсе самой лампочки. Проблемы с запуском снижают и коэффициент полезного действия осветительного оборудования, увеличивая потребление энергии, что сопровождается малым количеством выделяемого света.

По мере эксплуатации рабочее напряжение стартера снижается, в то время как у самой лампы повышается. Такая несовместимость провоцирует возникновение тлеющего разряда даже в том случае, если лампочка уже светит, что тоже провоцирует мигание. Со временем стартер может терять в уровне эффективности разогрева лампы. В результате нажимая на выключатель, свет просто не зажигается. Чтобы все заработало, приходится по несколько раз жать на клавишу. При каждом срабатывании лампа понемногу прогревается, пока не достигнет достаточной температуры для свечения. При этом создается впечатление, что вся проблема в самом выключателе, а точнее его контактами. По этой причине осуществляется сильное надавливание на его клавишу.

Критерии выбора
Выбирая стартер под определенный тип ламп, требуется в первую очередь обращать внимание на следующие показатели:
  • Ток зажигания.
  • Напряжение.
  • Уровень мощности.
  • Тип применяемого конденсатора.

Что касается тока зажигания, он должен быть выше рабочего напряжение лампы, но не ниже напряжения в сети питания. Только при соблюдении таких условий освещение будет работать корректно.

Базисное напряжение может составлять 127 или 220В. При включении в одноламповую схему применяется устройство на 220В. Для двухламповых систем используются стартеры на 127В.

Одним из самых важных критериев выбора стартера является уровень его мощности. Он измеряется в ваттах (Вт) и прописывается на боковой части корпуса стартера. В отдельных случаях мощность может изображаться на торцевой части стартера выдавленной в пластике. Подавляющее большинство представленных в продаже пускателей производятся с мощностью 60, 90 и 120 Вт. Также бывают стартеры для ламп с диапазоном мощности 4-22 Вт, 4-65 Вт и так далее.

В некоторых странах, в том числе и России, для обозначения параметров стартера применяется маркировка. На поверхность корпуса устройства наносится буквенно-цифровая надпись ХХ-С-ХХХ. Сначала идут две цифры, которые указывают на мощность устройства. Потом указывается буква «С», обозначающая что применяемый прибор это стартер. Дело в том, что при незнании пускатель можно спутать с конденсатором или другими устройствами, поэтому присутствие в маркировке «С» позволяет избежать подобных ошибок. Сразу после буквы идет трехзначное число, которое указывает на напряжение, применяемое для работы. Это может быть 127 или 220В.

Многие производители, поставляющие свою продукцию на рынки всего мира, применяют свою собственную фирменную маркировку. В этом случае для удобства потребителей помимо собственного буквенно-цифрового обозначения применяется и стандартная расшифровка с указанием параметров мощности и напряжения. Далеко не все бренды указывают на корпусе устройства для скольких лампочек оно может поменяться. При отсутствии нужной информации ее нужно искать в инструкции.

Процесс замены пускателя

Рекомендуется менять стартеры для ламп вместе с самими лампами. В этом случае новые устройства не выйдут из строя в неподходящий момент, из-за износа старых элементов в схеме подключения.

Замену нужно осуществлять не только при полном перегорании лампы, но и в случае:
  • Мерцания.
  • Длительной задержки при включении.
  • Сильного шума при работе.
  • Существенного падения яркости.
  • Самовольного отключения на продолжительный срок с последующим включением.

В случае с люминесцентными лампами в формате цоколя Е14 и Е27 прибор просто выкручивается, а на его место ставится новая лампочка. Длинные лампы потолочного типа меняются по другой схеме. Колба лампочки поворачивается по своей осина на 45 градусов в направлении часовой стрелки. В результате ее электроды сдвигаются до выходного шлица. После этого лампа вытягивается. Стартер скрыт за отражающей крышкой светильника, поэтому ее нужно также демонтировать. Она может крепиться защелками или винтами. После извлечения крышки можно увидеть закрепленный в посадочном гнезде стартер. Он просто поворачивается против часовой стрелки до характерного щелчка и вытягивается как вилка из розетки. На его место ставится новый стартер.

{SOURCE}

Как проверить стартер люминесцентной лампы: инструкция

 

Люминесцентные лампочки сегодня очень часто используются как источники света. Они обладают многими положительными моментами, которые делают их незаменимыми как в системе освещения промышленного объекта, так и в домашней подсветки.

Внешний вид люминесцентных ламп

Люминесцентные лампы

Но из-за особенностей строения, такие источники света могут выходить из строе. В такой ситуации не нужно сразу же отправляют лампу на утилизацию, а можно попробовать починить ее своими руками. Для этого необходимо проверить у лампы ее стартер на предмет работоспособности. Ведь именно в этой детали часто кроются причины неисправности люминесцентной лампы.

Особенности источника света

Сегодня сложно встретить помещение, в котором бы не использовались люминесцентные лампы. Они покорили потребителей своей ценой и качественным свечением и стали отличной заменой морально устаревших ламп накаливания.

Обратите внимание! Сегодня люминесцентные лампочки представлены достаточно широко, что позволяет использовать их для освещения самых разнообразных помещений.

Офисное освещение люминесцентными лампами

Люминесцентные лампы в офисе

При этом такие источники света способны создавать свечения различных типов. Все технические характеристики данной продукции указаны в маркировке, которая отражает:

  • мощность лампы;
  • диаметр ее трубки;
  • цвет свечения.

Несмотря на столь обширное разнообразие, для люминесцентной лампы любого типа характерен один и тот же принцип работы. Поэтому, зная, каким образом функционирует данный тип лампы, можно проверить работоспособность каждого элемента электросхемы своими руками. Особенно, если сомнения вызывает именно стартер.
В отличие от своего предшественника, лампы накаливания, для люминесцентной продукции характерна более сложная конструкция. Внешне данный тип источника имеет вид стеклянной непрозрачной трубки или баллона, заполненного ртутными парами и инертным газом.

Внутреннее устройство люминесцентной лампочки

Строение люминесцентной лампочки

По краям баллона размещены электроды, имеющие вид подогреваемых спиралей. На них происходит подача напряжения, благодаря которой в парах ртути формируется электрический разряд, порождающее невидимое ультрафиолетовое излучение. Ультрафиолетовое излучение влияет на слой люминофора. Он нанесен на стекло изнутри ровным слоем. Благодаря ему такие лампы и образуют ровное свечение.

Обратите внимание! От состава люминофора зависит цвет свечения люминесцентной лампочки.

Такого рода лампы запускаются с помощью специального пускорегулирующего аппарата (ПРА). Это устройство может быть двух типов:

  • электронным;
  • электромагнитным.

В электромагнитном ПРА основным элементом является дроссель или балластное сопротивление. Дроссель имеет вид катушки с железным сердечником, которая последовательно подключена к лампе. Данный элемент обеспечивает стабильность разряда, а также ограничивает ток в осветительном приборе.
При включении дроссель ограничивает стартовый ток, пока катоды (электроды) разогреваются. После этого он создает повышенное напряжение, необходимое для зажигания лампы. Но кроме дросселя, у любой люминесцентной лампы есть еще один важный элемент – стартер тлеющего разряда. Именно стартер нужно проверить в первую очередь, если люминесцентный источник света перестал работать.

Предназначение второго по важности элемента

Стартер в конструкции данного типа источника света предназначен для замыкания электрической цепи в момент запуска. После этого часть напряжения падает на балласт, а другая – направлена на нагрев катода.

Внешний вид стартера

Стартер люминесцентной лампы

Кроме этого стартер осуществляет размыкание контактов, которые шунтируют лампу в момент разогрева электродов. Благодаря этому стартер формирует импульс высокого напряжения, который прилагается к лампе и зажигает ее. При подаче питания на лампу, стартер создает разряд, который нагревает биметаллические контакты. Благодаря этому они замыкаются, способствуя увеличению тока в лампе, что приводит к разогреву катодов и происходит остывание контактов. Затем он снова приводит к их размыканию. В результате этого в электроцепи лампы из-за явления самоиндукции в дросселе создается высоковольтный импульс, что приводит к зажиганию лампочки.
Как видим, стартер в работе люминесцентной продукции играет важную роль. В связи с этим в ситуации, когда данный тип прибора перестал функционировать, нужно проверить в самом начале стартер, а уж потом искать причину неисправности в другом.

Проверяем светильник

В ходе своей работы люминесцентный светильник может выйти из строя. При этом проверить его составные элементы электросхемы и исправить поломку можно своими руками. Для этого потребуется воспользоваться мультиметром или тестером.
Чтобы правильно проверить стартер у люминесцентного светильника, необходимо прежде всего знать вариант используемой для него электросхемы.

Кроме этого необходимо демонтировать или просто снять люминесцентный светильник с потолка или стены. После этого можно проверить все важные элементы электросхемы.

 

Электросхемы использования стартера

Два варианта

Рассмотрим оба варианта проверки электросхем, приведенных выше. При этом способ проверки в обоих случаях будет идентичной.

Обратите внимание! Для того чтобы проверить работоспособность стартера у люминесцентного светильника можно пользовать любым измерительным приборов (тестером, мультиметром и т.д.).

Наиболее часто для проверки используют следующие измерительные приборы:

  • оометр. На нем должна быть установлена позиция для требуемого измеряемого диапазона сопротивления;
  • тестер стредочного типа;
Внешний вид тестера

Тестер для проверки

Многие специалисты рекомендуют использовать более совершенный и универсальный измерительный прибор – мультметр. При этом диагностика светильника (дросселя и т.д.) должна проводиться исключительно пассивным способом. Это означает, что осветительную установку нельзя подключать к внешнему источнику напряжения.
Чтобы проверить люминесцентный светильник, необходимо провести следующие манипуляции:

  • кладем осветительный прибор на стол;
  • подключаем к выводам проводов два щупа измерительного прибора;
  • измеряем общее сопротивление.
Внешний вид мультиметра

Проверка мультиметром люминесцентного светильника

Но при наличии в схеме стартера таким образом проверить общее сопротивление будет невозможно, так как он буде разрывать электрическую схему. В связи с этим в обоих вариантах необходимо проделать следующие действия:

  • вынимаем стартер из его электрического патрона;
  • замыкаем контакты стартера и электрического патрона.

Только после этого можно проверить светильник на параметр общего сопротивления.
При этом помните, что в отключенном состоянии эта деталь имеет разомкнутые электроды. В связи с этим его невозможно проверить на работоспособность. Его можно только заменить резервным, который будет иметь такую же мощность.
Обратите внимание! Неисправный стартер, точно так же, как и другие сломанные детали, не подлежат ремонту. Их нужно сразу выбросить и поменять на рабочие.

Как проводится проверка стартера

При ремонте люминесцентных осветительных приборов часто возникает потребность в отдельной проверке стартера. В конструкции осветительного прибора он представляет собой небольшую и достаточно простую деталь, которая при выходе из строя может принести настоящую головную боль. Поэтому, если у вас имеется нерабочий светильник, работающий на люминесцентных источниках света, то всегда нужно в первую очередь проверить на работоспособность стартера.
Обычно они выходят из строя по причине износа лампы тлеющего разряда или биметаллической пластины. В такой ситуации светильник при запуске может вообще не загореться или во время работы мигать. При этом запустить прибор со второй попытки также не удастся. Это связано с тем, что ему просто не хватает напряжения для запуска лампы.
Самым простым способом проверить стартер на работоспособность является его замена на другой аналогичный прибор. Если поставить в лампу новую деталь и она начнет работать, значит проблема была именно здесь.

Внешний вид лампочки со стартером

Замена стартера на новый

Как видим, здесь можно обойтись вообще без какого-либо измерительного прибора. Но не всегда под рукой имеется запасная деталь той же мощности. Поэтому чаще всего для проверки создают простейшую схему в которой стартер нужно последовательно подключить с лампой накаливания. Питание схемы происходит от сети в 220 В через розетку.

Лучше всего брать лампочки, с небольшой мощностью примерно в 40-60 Вт. Включив в сеть такую схему, можно сразу же вычислить рабочий ли стартер или нет. Если лапочка зажглась, и будет гореть с периодическим отключением на доли секунды, то это сигнализирует о его работоспособности. При этом будет слышен характерный щелчок. Это будут срабатывать его контакты.
В ситуации, когда лампочка не загорается или наоборот, постоянно горит и не моргает, то наша деталь признается нерабочей и подлежит замене.

Обратите внимание! Очень часто замены стартера хватает для того, чтобы починить неисправный осветительный люминесцентный прибор.

Также бывают ситуации, когда деталь будет абсолютно исправной, но светильник не работает. В таком случае необходимо искать причину поломки в дросселе или других элементах электросхемы.

Особенности проверки стартера

Перед началом проверки необходимо помнить, что на сопротивление здесь невозможно проверить. Это связано со строением детали. Лампочка стартера состоит из 2-х впаяных электродов, размещенных между электродами. В результате этого между ними формируется разрыв.
Когда было определено, что деталь неисправна, необходимо подбирать ему замену с учетом мощности имеющейся люминесцентной лампы. Все работы по замене следует проводить только в специальных диэлектрических перчатках. Это позволит уберечься от соприкосновения незащищенными руками с оголенными контактными соединениями осветительного прибора.

Заключение

Проверить стартер любой люминесцентной лампы не так уж сложно. Главное здесь знать особенности проведения всей процедуры. При этом существует два достаточно простых способа достоверной проверки работоспособности. Как закономерный итог, вы можете отлично сэкономить на ремонте и получить рабочий осветительный приборы за стоимость одной детали.

 

Как работает люминесцентный стартер?

Флуоресцентный свет не имеет обычной светящейся нити лампы накаливания, но вместо этого содержит пары ртути , которые при ионизации испускают ультрафиолетовый свет. Ультрафиолетовый свет заставляет частицы, которые покрывают внутреннюю часть трубки, светиться или флуоресцировать (подробнее см. Как работают люминесцентные лампы).

Флуоресцентные стартеры используются в нескольких типах люминесцентных ламп.Стартер помогает лампе зажигать. При подаче напряжения на люминесцентную лампу происходит следующее:

Объявление

  1. Стартер (который представляет собой просто переключатель с таймером) позволяет току течь через нити на концах трубки.
  2. Ток вызывает нагрев и размыкание контактов пускателя, тем самым прерывая прохождение тока. Трубка загорается.
  3. Поскольку люминесцентная лампа с подсветкой имеет низкое сопротивление, балласт теперь служит ограничителем тока.

При включении люминесцентной лампы стартер замыкает выключатель . Нити на концах трубки нагреваются электричеством, и они создают облако электронов внутри трубки. Флуоресцентный стартер - это выключатель с выдержкой времени , который размыкается через секунду или две. Когда он открывается, напряжение на трубке позволяет потоку электронов течь по трубке и ионизировать пары ртути.

Без стартера между двумя нитями нити никогда не будет постоянного потока электронов, и лампа будет мерцать.Без балласта дуга представляет собой короткое замыкание между нитями накала, и это короткое замыкание содержит большой ток. Ток либо испаряет нити, либо вызывает взрыв лампы.

Согласно FAQ Sam's F-Lamp:


Наиболее распространенный люминесцентный стартер называется «стартером с тлеющей трубкой» (или просто стартером) и содержит небольшую трубку, заполненную газом (неоновым и т. Д.), И дополнительный конденсатор подавления радиочастотных помех (RFI) в цилиндрической алюминиевой емкости с 2-х контактный цоколь.Хотя все стартеры физически взаимозаменяемы, номинальная мощность стартера должна соответствовать номинальной мощности люминесцентных ламп для надежной работы и длительного срока службы.

В лампе накаливания есть переключатель, который нормально разомкнут. При подаче питания возникает тлеющий разряд, который нагревает биметаллический контакт. Примерно через секунду контакты замыкаются и подают ток на флуоресцентные нити. Поскольку свечение гаснет, нагрев биметалла больше не происходит и контакты размыкаются.Индуктивный толчок, возникающий в момент открытия, вызывает основной разряд в люминесцентной лампе. Если контакты размыкаются в неподходящий момент, индуктивного удара не хватает, и процесс повторяется.

.

Люминесцентные лампы - как работает люминесцентная лампа и ее применение

Что такое люминесцентные лампы?

Люминесцентные лампы - это лампы, в которых свет возникает в результате движения свободных электронов и ионов внутри газа. Типичная люминесцентная лампа состоит из стеклянной трубки, покрытой люминофором и содержащей по паре электродов на каждом конце. Он заполнен инертным газом, обычно аргоном, который действует как проводник, а также состоит из жидкой ртути.

Fluorescent lamp Fluorescent lamp Люминесцентная лампа

Как работает люминесцентная лампа?

Когда электричество подводится к трубке через электроды, ток проходит через газовый проводник в форме свободных электронов и ионов и испаряет ртуть.Когда электроны сталкиваются с газообразными атомами ртути, они испускают свободные электроны, которые перескакивают на более высокие уровни, а когда они возвращаются на исходный уровень, излучаются фотоны света. Эта излучаемая световая энергия находится в форме ультрафиолетового света, невидимого для человека. Когда этот свет попадает на люминофор, нанесенный на трубку, он возбуждает электроны люминофора на более высокий уровень, и когда эти электроны падают на свой исходный уровень, излучаются фотоны, и эта световая энергия теперь находится в форме видимого света.


Запуск люминесцентной лампы

В люминесцентных лампах ток течет через газовый проводник, а не через твердотельный проводник, где электроны просто текут от отрицательного конца к положительному. Должно быть много свободных электронов и ионов, чтобы позволить потоку заряда через газ. Обычно в газе очень мало свободных электронов и ионов. По этой причине необходим специальный пусковой механизм для введения большего количества свободных электронов в газ.

Два пусковых механизма для люминесцентной лампы

1.Один из методов заключается в использовании выключателя стартера и магнитного балласта для обеспечения протекания переменного тока к лампе. Выключатель стартера требуется для предварительного нагрева лампы, так что требуется значительно меньшее количество напряжения для запуска образования электронов на электродах лампы. Балласт используется для ограничения силы тока, протекающего через лампу. Без выключателя стартера и балласта большое количество тока будет течь непосредственно к лампе, что уменьшит сопротивление лампы и, в конечном итоге, нагреет лампу и разрушит ее.

Fluorescent lamp using a magnetic ballast and a starter switch Fluorescent lamp using a magnetic ballast and a starter switch Люминесцентная лампа с магнитным балластом и выключателем стартера

Используемый выключатель стартера представляет собой обычную лампу, состоящую из двух электродов, так что электрическая дуга образуется между ними, когда ток течет через лампу. В качестве балласта используется магнитный балласт, который состоит из катушки трансформатора. Когда через катушку проходит переменный ток, создается магнитное поле. По мере увеличения тока магнитное поле увеличивается, и это в конечном итоге препятствует прохождению тока. Таким образом ограничивается переменный ток.

Первоначально для каждого полупериода сигнала переменного тока ток течет через балласт (катушку), создавая вокруг него магнитное поле. Этот ток, проходя через нити трубки, медленно нагревает их, вызывая образование свободных электронов. Когда ток проходит через нить накала к электродам колбы (используется в качестве выключателя стартера), между двумя электродами колбы образуется электрическая дуга. Поскольку один из электродов представляет собой биметаллическую полосу, он изгибается при нагревании, и в конечном итоге дуга полностью гаснет, а поскольку через пускатель не течет ток, он действует как размыкающий переключатель.Это вызывает коллапс магнитного поля на катушке, и в результате возникает высокое напряжение, которое обеспечивает необходимое срабатывание для нагрева лампы, чтобы произвести необходимое количество свободных электронов через инертный газ, и в конечном итоге лампа загорится.

PCBWay PCBWay

6 причин, по которым магнитный балласт не считается удобным?

  • Потребляемая мощность довольно высокая, порядка 55 Вт.
  • Они большие и тяжелые
  • Они вызывают мерцание, поскольку работают на более низких частотах.
  • Они не служат дольше.
  • Потери от 13 до 15 Вт.

2. Использование электронного балласта для запуска люминесцентных ламп

Электронные балласты, в отличие от магнитного балласта, подают переменный ток в лампу после увеличения частоты сети с 50 Гц до 20 кГц.

Electronic Ballast to start a Fluorescent lamp Electronic Ballast to start a Fluorescent lamp Электронный балласт для запуска люминесцентной лампы

Типичная схема электронного балласта состоит из преобразователя переменного тока в постоянный, состоящего из мостов и конденсаторов, которые преобразуют сигнал переменного тока в постоянный и отфильтровывают пульсации переменного тока для выработки постоянного тока.Это постоянное напряжение затем преобразуется в высокочастотное прямоугольное напряжение переменного тока с помощью набора переключателей. Это напряжение приводит в действие резонансный контур LC-резервуара, чтобы произвести отфильтрованный синусоидальный сигнал переменного тока, который подается на лампу. Когда ток проходит через лампу с высокой частотой, он действует как резистор, образуя параллельную RC-цепь с цепью резервуара. Первоначально частота переключения переключателей снижается с помощью схемы управления, что приводит к предварительному нагреву лампы, что приводит к увеличению напряжения на лампе.В конце концов, когда напряжение на лампе достаточно увеличивается, она загорается и начинает светиться. Существует устройство для измерения тока, которое может определять количество тока, протекающего через лампу, и соответственно регулировать частоту переключения.

6 причин, по которым предпочтение отдается электронным балластам больше

  • Они имеют низкое энергопотребление, менее 40 Вт
  • Потери незначительны
  • Устранено мерцание
  • Они легче и больше подходят для разных мест
  • Они служат дольше

Типичное применение люминесцентной лампы - автоматическое переключение света

Вот вам полезная домашняя схема.Эта автоматическая система освещения может быть установлена ​​в вашем доме для освещения помещения с помощью КЛЛ или люминесцентных ламп. Лампа автоматически включается около 18:00 и гаснет утром. Таким образом, эта схема без выключателя очень полезна для освещения помещений дома, даже если заключенных нет дома. Обычно автоматические огни на основе LDR мерцают, когда интенсивность света изменяется на рассвете или в сумерках. Поэтому КЛЛ нельзя использовать в таких схемах. В автоматических осветительных приборах с симисторным управлением возможно использование только лампы накаливания, поскольку мерцание может повредить цепь внутри КЛЛ.Эта схема преодолевает все подобные недостатки и мгновенно включается / выключается при изменении заданного уровня освещенности.

Как это работает?

IC1 (NE555) - это популярная микросхема таймера, которая используется в схеме в качестве триггера Шмитта для получения бистабильного действия. Действия установки и сброса IC используются для включения / выключения лампы. Внутри ИС есть два компаратора. Компаратор с верхним порогом срабатывает при 2/3 В постоянного тока, а компаратор с нижним триггером срабатывает при 1/3 В постоянного тока. Входы этих двух компараторов связаны вместе и соединены на стыке LDR и VR1.Таким образом, напряжение, подаваемое LDR на входы, зависит от интенсивности света.

LDR - это разновидность переменного резистора, сопротивление которого изменяется в зависимости от интенсивности падающего на него света. В темноте LDR предлагает очень высокое сопротивление, достигающее 10 Мегаом, но при ярком свете оно уменьшается до 100 Ом или меньше. Итак, LDR - идеальный датчик света для автоматических систем освещения.

В дневное время LDR имеет меньшее сопротивление, и ток течет через него на пороговый (вывод 6) и триггерный (вывод 2) входы IC.В результате напряжение на пороговом входе превышает 2/3 Vcc, что сбрасывает внутренний триггер, и выход остается низким. В то же время триггерный вход получает более 1/3 В постоянного тока. Оба условия поддерживают низкий уровень выходного сигнала IC1 в дневное время. Транзистор драйвера реле подключен к выходу IC1, так что реле остается обесточенным в дневное время.

Auto switching light circuit diagram Auto switching light circuit diagram Схема автоматического переключения света

На закате сопротивление LDR увеличивается, и количество тока, протекающего через него, прекращается.В результате напряжение на входе компаратора пороговых значений (вывод 6) падает ниже 2/3 В постоянного тока, а напряжение на входе компаратора триггера (вывод 2) - менее 1/3 В постоянного тока. Оба эти условия вызывают высокий уровень на выходе компараторов, который устанавливает триггер. Это изменяет выход IC1 на высокий уровень и запускает T1. Светодиод указывает на высокий выход IC1. Когда T1 проводит, реле активируется и замыкает цепь лампы через общий (Comm) и NO (нормально разомкнутый) контакты реле.Это состояние продолжается до утра, и IC сбрасывается, когда LDR снова подвергается воздействию света.

Конденсатор C3 добавлен к базе T1 для чистого переключения реле. Диод D3 защищает Т1 от обратного ЭДС при выключении Т1.

Как настроить?

Соберите схему на общей печатной плате и поместите в противоударный корпус. Коробка переходника вставного типа - хороший выбор для включения трансформатора и цепи. Разместите блок в местах, где в дневное время доступен солнечный свет, предпочтительно вне дома.Перед подключением реле проверьте выход с помощью светодиодного индикатора. Отрегулируйте VR1, чтобы светодиод загорелся при определенном уровне освещенности, например, в 18:00. Если все в порядке, подключите реле и соединения переменного тока. Фаза и нейтраль могут быть отведены от первичной обмотки трансформатора. Возьмите фазный и нейтральный провода и подключите к патрону. Вы можете использовать любое количество ламп в зависимости от номинального тока контактов реле. Свет от лампы не должен попадать на LDR, поэтому установите лампу соответствующим образом.

Осторожно : На контактах реле 230 В во время зарядки. Поэтому не прикасайтесь к цепи, когда она подключена к сети. Используйте хорошую оплетку для контактов реле, чтобы избежать удара.

Фото предоставлено:

  • Люминесцентная лампа от wikimedia
  • Запуск люминесцентной лампы с использованием магнитного балласта и выключателя стартера от wikimedia
.

Стартер для люминесцентных ламп / Impa 791501

Для каждой люминесцентной лампы требуется стартер для предварительного нагрева перед зажиганием. При заказе укажите тип «E» или «P», а также мощность ламп.

7
2

7

КОД

Тип

Базовый тип

Размер мм

52 Диаметр × длина

791505

FG-7E
FG-1E
FG-7P
FG-1P
FG-4P

E-17
E-17
P-21
P-21
P-21

17 × 40
17 × 40
21 × 38
21 × 38
21 × 38

791506

FG-5P

P-21

21 × 38

FAQ

1.Каков объем продукции вашей компании?
Наша компания является одним из крупнейших оптовиков судовых складов, в основном занимается экспортом и оптовой продажей морской продукции. Китай COSCO закупает на нашем заводе в течение многих лет, и сотрудничество стабильно развивается.


2. В чем сфера деятельности вашей компании?
A: Мы можем экспортировать судовые запасы в любую страну мира, а также, когда ваш корабль отправляется в любые порты Китая, мы можем предоставить услуги по вашему запросу.


3. Что такое MOQ вашей продукции?
A: Различные продукты и типы имеют разные MOQ, но все товары, образцы заказа доступны.


4. Можете ли вы предоставить индивидуальный логотип?
A: Да, мы обеспечиваем печать логотипов, дизайн коробки, дизайн коробки и т. Д.


5. Какая у вас дата доставки?
A: У нас есть запасы для большинства повседневных товаров, обычное время подготовки составляет около 1-3 рабочих дней. Если продукты заказа требуют индивидуального обслуживания, время подготовки зависит от количества заказа.

Наши услуги

1. Предпродажное обслуживание

ü Профессиональная команда ответчиков: очень быстро и точно отправит ваши предложения

2. Сервис онлайн / продажи

ü Превосходное качество

ü Быстрая доставка

ü Стандартный экспортный пакет или по запросу

3. Послепродажное обслуживание

ü Помощь в строительстве завода

ü Ремонт и обслуживание, если возникнут какие-либо проблемы по гарантии

ü Монтаж и обучение технических специалистов

ü Запасные части и быстроизнашивающиеся детали бесплатно или с большой скидкой

ü Любые отзывы о машинах можно сообщить нам, и мы сделаем все возможное, чтобы поддержать

4.Другие услуги сотрудничества

ü Обмен знаниями в области технологий

ü Консультации по строительству завода

.

15-30 Вт Флуоресцентный стартер для люминесцентной лампы

Описание продукта

ОПИСАНИЕ ПРОДУКТА

Название продукта SUNLUX FL STARTER FG-1P 15-30 Вт
Описание Флуоресцентный стартер
Код IMPA 791504
Промышленное применение Морское, морское, промышленное, коммерческое использование
лампа
Марка

Брошюры и сертификаты

БРОШЮРЫ И СЕРТИФИКАТЫ

FAQ

FAQ

1.Где я могу найти брошюры о продуктах?

Пожалуйста, загрузите наши последние брошюры о продуктах здесь https://bh-estore.com/downloads.

2. Какие существуют способы оплаты?

Мы предлагаем следующие способы оплаты: наличные, чек, PayPal и телеграфный перевод (TT).

• Наличными или чеком при доставке (только для Сингапура)

• PayPal - обеспечивает быстрый и простой способ отправки и получения денег. Безопасные и зашифрованные платежи в Интернете с использованием кредитной карты: Visa, MasterCard, Discover или American Express.

• Банковские сборы за телеграфный перевод (TT) варьируются в зависимости от валюты. Ориентировочно около 60 сингапурских долларов, 40 евро и 40 долларов США.

3. Все ли товары доступны для доставки?

Все наши продукты доступны для местной доставки (Сингапур).

Обычно опасными материалами считаются аэрозоли, батареи, жидкие соединения и сжатые газы (аэрозольные баллончики).

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *