Измерение сопротивления заземления мегаомметром: Измерение сопротивления заземления мегаомметром и мультиметром

Содержание

Измерение сопротивления заземления мегаомметром и мультиметром

«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.

Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев. И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата).

Примечание

Для измерения R заземления мультиметр не очень подходит. Почему, поясняется ниже. В интернете встречаются рекомендации, что лучше пользоваться приборами аналоговыми М-416, Ф4103 (М1), ИСЗ-2016, МС-08 или цифровыми серии MRU (модели 105, 120 или 200). А в чем разница, непонятно. Схемы их подключения аналогичны.

Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.

Измерение мультиметром

Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.

Почему данный тип измерительного прибора применяется лишь в редких случаях?

  • Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
  • Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
  • Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.

Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:

Как подготовить мультиметр

Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:

  • подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
  • заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
  • произвести калибровку (если она предусмотрена для конкретной модели).

Как подготовить рабочее место

Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.

Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).

Где измерять сопротивление

Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.

Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.

Кроме того, агрессивные хим/соединения вступают с ним в прямой контакт, что вызывает появление на поверхности этого электрода окисной пленки. Как результат – снижение способности стержня отводить в землю эл/ток (наведенный, возникший вследствие пробоя изоляции или в ином аварийном случае). Следовательно, такое заземление уже не способно обеспечить безопасность пользователя (обслуживающего персонала).

  • Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
  • Величина R заземления должна быть < 0,05 Ом.
  • При таком способе измерения погрешность в пределах 15%.
  • Диагностику контура необходимо проводить при благоприятных погодных условиях.

Измерение мегаомметром

Принцип измерений тот же самый. Отличия лишь в некоторых моментах.

  1. Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
  1. Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
  • Переключатель – в «Контроль».
  • Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
  1. Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.

Следует напомнить, что перед началом измерений необходимо произвести визуальный осмотр контура заземления на целостность всех соединений, швов и так далее. И только если дефекты не выявлены, можно приступать к работе с прибором.

Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.

Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.

Успехов вам в измерениях!

Измерение сопротивления заземления токовыми клещами, мегаомметром

Заземляющее устройство – это совокупность проводников из металла, соединенных с деталями электроустановки, и заземлителя (один или несколько проводников, которые закапываются в землю). Их используют, чтобы повысить безопасность электроустановок и с целью защиты людей от воздействия электрического тока.

Если возникает аварийная ситуация, когда происходит пробой изоляции проводника, напряжение через заземление уходит в землю, не причиняя вреда человеку, который соприкасается с оборудованием. Именно поэтому необходимо, чтобы заземление всегда находилось в исправном состоянии.

Одной из его важных характеристик является сопротивление, величина которого регламентируется нормативными документами.

Основные понятия

Сопротивление заземляющего устройства (оно так же именуется сопротивление растеканию тока) имеет прямо пропорциональную взаимосвязь с напряжением и обратно пропорциональную с током растекания в «землю».

Можно выделить три вида заземлений:

  • рабочее. С его помощью заземляются определенные места, оно используется в процессе эксплуатации электрооборудования;
  • защита от молний. Молниеприемники заземляются с целью перенаправления на металлические конструкции токов, которые возникают под воздействием молний;
  • защитное. Используется для защиты от поражающего действия электрического тока, если кто-то непреднамеренно соприкоснется с деталью, которая при нормальной работе не должна пропускать ток.

Существует несколько методик измерения сопротивления заземляющих устройств, которые будут рассмотрены более детально. Способы измерений определяются специалистами электротехнической лаборатории и зависят от конкретных условий эксплуатации оборудования.

Применение амперметра и вольтметра

Метод заключается в следующем. С двух сторон от конструкции заземления, которое подлежит проверке, на равном удалении (около 20 метров) размещают два электрода (основной и дополнительный), после чего на них подается переменный ток. По образованной таким образом цепи начинает протекать электрический ток, а его значение отображается на дисплее амперметра.

Подключенный к заземляющему устройству и основному заземлителю вольтметр покажет уровень напряжения. Чтобы определить общее сопротивление заземления нужно воспользоваться законом Ома, разделив значение напряжения, показанного вольтметром, на ток, значение которого показывает амперметр.

Этот способ измерений является наиболее простым, но имеет невысокий уровень точности, поэтому чаще всего используются иные методы.

Компенсационный метод

Данная методика дает возможность проводить измерения сопротивления заземления с использованием готовых приборов, которые выпускает промышленность. Известные модели таких приборов – Ф4103-М1, М416, ИС-10 и другие.

Как и в предыдущей методике, здесь применяются два электрода, углубляемые аналогичным образом в почву. Далее необходимо к заземляющему устройству подключить сам измерительный прибор, а его провода зафиксировать на укрепленных в грунте электродах.

Генерируется ток, движущийся сквозь первичную обмотку трансформатора прибора, которым осуществляется измерение сопротивления заземляющего проводника. Одновременно с этим на вторичной обмотке наводится ЭДС, и вольтметр показывает определенное значение.

С помощью реохорда на измерительном приборе добиваются того, чтобы стрелка на вольтметре находилась в нулевом положении. Это будет свидетельствовать о равенстве напряжений U1 и U2. Вращая ручку реостата, необходимо зафиксировать значение сопротивления заземления по показаниям стрелки реохорда.

Трехпроводный метод

В этом методе измерение сопротивления заземления проводится с помощью специальных измерителей, как старого образца (например, мегаомметром), так и современного, использующих цифровые технологии и микропроцессоры (например, MRU-200).

Необходимо очистить от коррозии шинопровод заземляющего устройства, после чего подключить к нему контакт измерителя. На указанном в инструкции расстоянии в почву вбиваются электроды, к которым прикрепляются катушки.

Их концы подключают к измерительному прибору и убеждаются, что схема готова к функционированию.

Необходимо учитывать, что напряжение помехи между укрепленными в земле электродами не должно быть больше чем 24 Вольта. Если этого не удалось добиться, то необходимо электроды разместить иначе.

Нажатием кнопки на приборе запускают процесс автоматического измерения сопротивления, наблюдая на дисплее показания. Для большей точности следует провести несколько замеров и убедиться, что показания отличаются друг от друга не более чем на 5%.

Если имеется необходимость добиться повышенной точности измерения, может использоваться четырехпроводный метод, который исключает влияние сопротивления измерительных приборов.

Токовые клещи

Главным достоинством данного метода является то, что не нужно использовать дополнительное оборудование и производить отключение заземления.

Достаточно просто использовать клещи для измерения величины сопротивления.

Токовые клещи функционируют на основе взаимоиндукции. В головке измерительных клещей спрятана обмотка (первичная обмотка). Ток в ней генерирует ток в заземляющем проводнике, играющем роль вторичной обмотки.

Чтобы узнать величину сопротивления, нужно разделить показатель ЭДС вторичной обмотки на значение тока, которое было измерено клещами (оно появляется на дисплее клещей).

В более современных приборах ничего делить не надо. При соответствующих настройках значение сопротивления заземления сразу же отображается на дисплее.

Периодичность проверки

Проведение визуальных осмотров, измерений и вскрытие грунта (если это нужно) проводится на основании графика, который составляется и утверждается предприятием, однако эти сроки должны находиться в пределах 12 лет.

Наиболее корректные результаты можно получить, если померить сопротивление заземления в середине лета или зимы. Именно тогда почва обладает максимальным сопротивлением.

Важно помнить, что измерения стоит проводить в сухую погоду.

Минимальный уровень сопротивления заземляющих устройств, который допускается, нормируется «Правилами устройства электроустановок».

Если электроустановка работает с напряжением до 1000 В, то значение сопротивления должно находиться в пределах от 2 до 8 Ом в зависимости от уровня напряжения (2 – если 660 В, 4 – если 380 В, 8 – если 220 В).

В электроустановках напряжением свыше 1000 В уровень сопротивления не должен превышать 0,5 Ом.

Составление протокола

Когда осмотр окончен, проведены все необходимые измерения и испытания, работники организации, проводившей работы, составляют «Протокол измерения сопротивления заземления». Он оформляется в соответствии с ГОСТом Р 50571.16-2007 Электроустановки низковольтные. Часть 6. Испытания. Приложение Н.

Этот нормативный акт условно состоит из трех структурных частей:

  • данные о специальной организации, которая выполняла порученные работы по измерению сопротивления заземления, и заказчике этих работ;
  • начальная статичная информация;
  • итоги проведения измерений.

Основываясь на ГОСТе, сведения об организации, проводившей измерения, должны представляться в развернутом виде. Необходимо указать название и адрес, на который зарегистрирована данная лаборатория, номер регистрации, информацию об аттестатах аккредитации (когда был выдан и до какой даты действует).

Указывают название организации, которая проводила аккредитацию или свидетельство о регистрации в структуре Государственного Энергонадзора.

Помимо этого протокол должен содержать сведения о заказчике, монтажной и проектной организациях.

Начальная статичная информация – это данные об электроустановке и ее системе заземления, информация о почве, в которой закреплено заземление, температуры окружающей среды, уровень атмосферного давления на момент испытаний. То есть это все данные об условиях, в которых проводились измерения сопротивления заземления, и приборах, которые для этого использовались.

Итоги проведенных измерений вносят в табличную форму, где указывают полученные приборами данные.

В конце протокола обязательно дается заключении о пригодности заземления для дальнейшего использования, а так же отражаются фамилии работников, которые проводили измерительные работы.

Как измерить сопротивление заземления мегаомметром

Главная » Разное » Как измерить сопротивление заземления мегаомметром

Измерение сопротивления заземления мегаомметром и мультиметром

«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.

Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев. И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата).

Примечание

Для измерения R заземления мультиметр не очень подходит. Почему, поясняется ниже. В интернете встречаются рекомендации, что лучше пользоваться приборами аналоговыми М-416, Ф4103 (М1), ИСЗ-2016, МС-08 или цифровыми серии MRU (модели 105, 120 или 200). А в чем разница, непонятно. Схемы их подключения аналогичны.

Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.

Измерение мультиметром

Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.

Почему данный тип измерительного прибора применяется лишь в редких случаях?

  • Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
  • Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
  • Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.

Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:

Как подготовить мультиметр

Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:

  • подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
  • заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
  • произвести калибровку (если она предусмотрена для конкретной модели).
Как подготовить рабочее место

Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.

Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).

Где измерять сопротивление

Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.

Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.

Кроме того, агрессивные хим/соединения вступают с ним в прямой контакт, что вызывает появление на поверхности этого электрода окисной пленки. Как результат – снижение способности стержня отводить в землю эл/ток (наведенный, возникший вследствие пробоя изоляции или в ином аварийном случае). Следовательно, такое заземление уже не способно обеспечить безопасность пользователя (обслуживающего персонала).

  • Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
  • Величина R заземления должна быть < 0,05 Ом.
  • При таком способе измерения погрешность в пределах 15%.
  • Диагностику контура необходимо проводить при благоприятных погодных условиях.

Измерение мегаомметром

Принцип измерений тот же самый. Отличия лишь в некоторых моментах.

  1. Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
  1. Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
  • Переключатель – в «Контроль».
  • Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
  1. Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.

Следует напомнить, что перед началом измерений необходимо произвести визуальный осмотр контура заземления на целостность всех соединений, швов и так далее. И только если дефекты не выявлены, можно приступать к работе с прибором.

Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.

Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.

Успехов вам в измерениях!

Как измерить сопротивление заземления?

I Введение

Методы тестирования сопротивления заземления обычно следующие: двухлинейный метод, трехлинейный метод, четырехлинейный метод, метод одиночного зажима и метод двойного зажима. У каждого свои особенности. В реальном тестировании мы должны выбрать правильный метод тестирования, чтобы результаты теста были точными.

В этой статье в основном будут представлены несколько методов проверки сопротивления заземления, включая принцип тестирования, использование тестера сопротивления заземления и так далее.

Это видео знакомит с функцией сопротивления заземления и объясняет важность заземления, факторов окружающей среды и тестирования.

Каталог

II Что такое сопротивление заземления

Сопротивление заземления - это сопротивление, возникающее, когда ток течет от заземляющего устройства к земле, а затем течет через землю к другому заземляющему телу или распространяется на расстояние. Значение сопротивления заземления отражает хорошую степень контакта электрического устройства с `` землей '' и масштаб заземляющей сети.

Сопротивление заземления - важный параметр, используемый для определения хорошего состояния заземления. Это сопротивление, при котором ток течет от заземляющего устройства к земле, а затем течет к другому заземляющему телу или к дальнему концу. И он включает в себя сопротивление заземляющего провода и самого заземляющего тела, контактное сопротивление между заземляющим телом и сопротивлением земли, а также сопротивление земли между двумя заземляющими телами или сопротивление заземления заземляющего тела на бесконечное расстояние. .Величина сопротивления заземления напрямую отражает хорошую степень контакта электрического устройства с «землей», а также отражает масштаб сетки заземления.

Концепция сопротивления заземления подходит только для небольшой сети заземления. Однако с увеличением площади заземления сети заземления и уменьшением удельного сопротивления почвы влияние индуктивной составляющей в импедансе земли становится все больше и больше, и крупномасштабная сеть заземления должна проектироваться с учетом сопротивление заземления.

Рисунок 1. Проверка сопротивления заземления

III Метод вольтметра-амперметра

(1) Область применения: подходит для измерения заземляющих устройств с сопротивлением менее 0,5 Ом.

(2) При использовании одного заземляющего электрода измеряемый одиночный заземляющий электрод, токовый заземляющий электрод и заземляющий электрод напряжения должны быть расположены по прямой линии 20–40 м.

(3) Если заземляющее устройство представляет собой сеть заземления, измеренная сеть заземления G, токовый заземляющий электрод C и заземляющий электрод P по напряжению также должны быть расположены по прямой линии.Расстояние между токовым заземляющим электродом C и краем измеряемой заземляющей сетки G должно быть D GC = (4-5) D, а расстояние между измеряемой заземляющей сеткой G и заземляющим электродом P должно быть D GP = 90,5-0,618)

(4) D - максимальная длина диагонали заземляющей сетки G, которую необходимо измерить. Электрод заземления напряжения P помещается в область фактического нулевого потенциала токового поля в земле. Чтобы найти фактическую область нулевого потенциала токового поля в земле, заземляющий электрод напряжения P можно переместить три раза в направлении подключения ГХ.Расстояние каждого хода составляет около 5% от DGC. Измерьте напряжение между PG.

(5) Если погрешность между тремя показанными вольтметром погрешностью не превышает 5%. Среднее положение можно использовать как положение электрода напряжения для измерения.

(6) Отношение показанного значения вольтметра к показанному значению амперметра является измеряемым сопротивлением заземления G заземляющей сети.

Рисунок 2. Измерение низкого сопротивления

IV Использование тестера сопротивления заземления
4.1 Введение в тестер сопротивления заземления

Тестер сопротивления заземления, он также обычно выдает источник питания переменного тока с напряжением холостого хода 6 В, и источник переменного тока с постоянным током 10 А или 25 А добавляется между двумя точками, которые будут измеряется. Тестер может проверить падение напряжения между двумя точками и, согласно закону Ома, напрямую показывает сопротивление между двумя измеряемыми точками.

4.2 Как использовать тестер сопротивления заземления

(1) Подготовка к использованию тестера сопротивления заземления

1) Прочитать инструкции к тестеру сопротивления заземления и понять структуру, характеристики и метод применения прибора.

2) Инструмент и все принадлежности тестера, необходимые для подготовки и измерения, должны быть очищены, а тестер и заземляющий зонд должны быть вытерты, особенно заземляющий зонд, а грязь и пятна ржавчины на поверхности тестера должны быть очищены. .

3) Чтобы отсоединить заземляющую магистраль от точки подключения заземляющего корпуса или точки подключения заземляющей основной линии, чтобы заземляющий корпус был отделен от любого соединения и стал независимым корпусом.

(2) Этапы измерения при использовании тестера сопротивления заземления

1) Два зонда заземления вставляются в землю на расстоянии 20 м и 40 м соответственно вдоль направления излучения заземляющего корпуса, а глубина вставки составляет 400 мм, как показано на следующем рисунке.

  • Измеритель сопротивления заземления помещается рядом с заземляющим корпусом и выполняется электромонтаж. Метод подключения следующий:

Рисунок 3.а) Фактическая работа проверки сопротивления заземления

б) Эквивалентный принцип испытания сопротивления заземления

① Самый короткий специальный провод используется для подключения заземляющего корпуса к клемме заземляющего средства измерения «Е1» (измеритель трехконтактной кнопки) или к короткозамкнутой общей клемме «С2» (четырехконтактной ручку счетчика).

② Для подключения измерительного щупа (токового щупа) от заземляющего корпуса 40 м к измерительной ручке «C1» измерительного прибора с помощью самого длинного выделенного провода.

③ Для подключения измерительного щупа (потенциального щупа) от заземляющего корпуса 20 м к клемме «P1» измерительного прибора с помощью специального провода, центрированного на оставшейся длине

Рисунок 4. Метод подключения

3) После того, как измерительный прибор расположен горизонтально, убедитесь, что стрелка гальванометра указывает на центральную линию, в противном случае отрегулируйте «регулятор нулевого положения» так, чтобы указатель измерителя был направлен на центральную линию.

4) Установить «шкалу увеличения» (или ручку грубой настройки) на максимум и медленно повернуть шток генератора (указатель начинает смещаться), одновременно поворачивая «шкалу измерения» (или ручку точной настройки) до точки. указатель гальванометра на осевую линию.

5) Когда стрелка гальванометра приближается к весам (стрелка находится близко к центральной линии), кривошип поворачивается, чтобы скорость достигала 120 об / мин или более, а «измерительная шкала» устанавливается на точку. указатель на центральную линию.

6) Если показание шкалы измерения слишком мало (меньше 1), его трудно прочитать точно, что указывает на то, что множитель шкалы множителя слишком велик. В это время «шкала увеличения» должна быть установлена ​​на небольшое кратное, а «шкала измерения» должна быть заново отрегулирована так, чтобы указатель указывал на центральную линию и считывал точное значение.

7) Результаты измерения рассчитываются, т. Е. R = шкала увеличения x количество показаний шкалы.

4.3 Меры предосторожности при использовании измерителя сопротивления заземления

(1) При измерении сопротивления заземления с помощью измерителя сопротивления заземления руководство по продукту требует использования метода полюсов длиной 20-40 метров. Измерители сопротивления заземления оснащены выделенными проводами 20M и 40M.

(2) Чтобы исключить влияние взаимного сопротивления, расстояние между заземляющим электродом P по напряжению и токовым заземляющим электродом C должно быть не менее 20M.Если токовый заземляющий электрод C расположен вдали от заземляющего электрода P по напряжению, токовый заземляющий электрод C не может быть размещен.

(3) Токовый заземляющий электрод C и заземляющий электрод P по напряжению могут быть расположены перпендикулярно проверяемой заземляющей сети G; или токовый заземляющий электрод C и заземляющий электрод напряжения P, а также заземляющая сеть G, которая должна быть проверена, сформированы в виде треугольника, длина каждой стороны которого составляет 20 метров. .

(4) Когда окружающая сетка грунта G покрыта асфальтом или бетонным покрытием, две плоские стальные пластины (250 мм × 250 мм) могут быть размещены на мостовой и поливаться водой между ними.Тестовый зажим зажимается на стальной пластине. Ткань, которая может удерживать воду, также может быть размещена на поверхности дороги, а ткань с водой окружает вспомогательный заземляющий электрод.

(5) Также возможно насыпать песок и сбрасывать воду на поверхность дороги, а вспомогательный заземляющий электрод помещается в песчаную лужу.

Рисунок 5. Тестер сопротивления заземления

В, двухпроводной метод

(1) Условия

Должно быть заземленное заземление, например, PEN.Результат измерения - это сумма сопротивлений измеренного и известного заземления. Если известно, что заземление намного меньше, чем сопротивление измеренного заземления, результат измерения можно использовать как результат измерения заземления.

(2) Заявление

Зоны с плотной застройкой или бетонными полами нельзя использовать для грунтовых свай.

(3) Электропроводка

E + ES подключен к измеряемой земле, H + S подключен к известной земле.

VI Трехстрочный метод

(1) Условия

Должно быть два заземляющих стержня: вспомогательное заземление и электрод обнаружения. Расстояние между каждым заземляющим электродом не менее 20 метров.

(2) Принцип

Ток добавляется между вспомогательной землей и измеряемой землей для измерения падения напряжения между измеряемой землей и электродом обнаружения. Результаты измерения включают сопротивление самого кабеля.

(3) Заявление

Заземление, заземление на стройплощадках и заземление молниеотвода QPZ.

(4) Электропроводка

S подключен к детектирующему электроду, H подключен к вспомогательному заземлению, а E и ES подключены к измеряемой земле.

VII Четырехпроводной метод

Четырехпроводной метод в основном такой же, как и трехпроводной. Он заменяет трехлинейный метод измерения низкого сопротивления заземления и устраняет влияние сопротивления измерительного кабеля на результат измерения.E и ES должны быть подключены непосредственно к земле для раздельного измерения. Этот метод является наиболее точным из всех методов измерения сопротивления заземления.

Рисунок 6. Проверка сопротивления заземления

VIII Измерение одним зажимом

(1) Условия

Измерьте сопротивление каждой точки заземления в многоточечной системе заземления. Во избежание опасности не отсоединяйте заземление.

(2) Заявление

Многоточечное заземление.Не отсоединять. Измерьте сопротивление каждой точки заземления.

(3) Электропроводка

Используйте токовые клещи для контроля тока в измеренной точке заземления.

Рисунок7. Испытание зажимом сопротивления заземления на опорах башни

IX Метод двойного зажима

(1) Условия

Многоточечное заземление без измерения дополнительных стоек заземления, измерение одиночного заземления.

(2) Электропроводка

Используйте токовые клещи, указанные производителем, для подключения к соответствующей розетке и зажмите двумя зажимами на заземляющем проводе.Расстояние между двумя зажимами должно быть больше 0,25 метра.

X Один вопрос по заземлению
10.1 Вопрос

В какой из следующих систем идентификация неисправности утомительна:

  1. Сопротивление заземления
  2. Твердое заземление
  3. Реактивное заземление
  4. Нешлифованные
10.2 Ответ

D


Вам также может понравиться:

Основная информация о варисторе

Как измерить сопротивление и как определить сопротивление?

Что такое микросхема постоянного резистора?

Что такое токоограничивающий резистор и его функция?

.

Как измерить сопротивление с помощью мультиметра »Электроника

Знать, как измерить сопротивление с помощью мультиметра, легко - здесь мы приводим некоторые инструкции по измерению сопротивления с помощью мультиметра, а также даем несколько советов и подсказок.

Учебное пособие по мультиметру Включает:
Основы работы с измерителем Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр DMM Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Тест диодов и транзисторов Диагностика транзисторных цепей


Одно из важных измерений, которое можно выполнить с помощью мультиметра, - это измерение сопротивления.Это можно сделать не только для проверки точности резистора или проверки его правильного функционирования, но измерения сопротивления могут потребоваться и во многих других сценариях.

Это может быть измерение сопротивления неизвестного проводника или проверка на короткое замыкание и разрыв цепи.

На самом деле, во многих случаях измерение сопротивления представляет большой интерес и важность. Во всех этих случаях мультиметр является идеальным испытательным оборудованием для измерения сопротивления

.

Основы измерения сопротивления

При измерении сопротивления все musltimeters используют один и тот же принцип, будь то аналоговые мультиметры или цифровые мультиметры.Фактически, другие виды испытательного оборудования, которые измеряют сопротивление, также используют тот же основной принцип.

Основная идея заключается в том, что мультиметр подает напряжение на два щупа, и это вызывает протекание тока в элементе, для которого измеряется сопротивление. Измеряя сопротивление, можно определить сопротивление между двумя щупами мультиметра или другого измерительного оборудования.

Как измерить сопротивление аналоговым мультиметром

Аналоговые мультиметры хороши при измерении сопротивления, хотя следует отметить несколько моментов в том, как это делается.

Первое, что следует отметить, это то, что сам счетчик реагирует на ток, протекающий через тестируемый компонент. Высокое сопротивление соответствует низкому току, и стрелка измерителя устанавливается на левой стороне шкалы, а низкое сопротивление соответствует более высокому току, и стрелка измерителя отклоняется сильнее, поэтому она появляется на правой стороне шкалы как показано ниже.

Также можно заметить, что калибровки становятся намного ближе друг к другу по мере увеличения сопротивления, т.е.е. на левой стороне циферблата.

Калибровка циферблата аналогового мультиметра

Другой аспект использования аналогового мультиметра для измерения сопротивления состоит в том, что перед выполнением измерения его необходимо обнулить. Это делается путем соединения двух щупов вместе так, чтобы возникло короткое замыкание, а затем с помощью «нулевого» регулятора, чтобы получить полное отклонение шкалы на измерителе, то есть нулевое сопротивление.

Каждый раз, когда изменяется диапазон, измеритель необходимо обнулять, поскольку положение может меняться от одного диапазона к другому. Измеритель необходимо обнулить, потому что отклонение полной шкалы будет меняться в зависимости от таких аспектов, как состояние батареи.

Для измерения сопротивления аналоговым мультиметром необходимо выполнить несколько простых шагов:

  1. Выберите элемент для измерения: это может быть что угодно, где необходимо измерить сопротивление, и оценить, какое сопротивление может быть.
  2. Вставьте щупы в требуемые гнезда. Часто мультиметр имеет несколько гнезд для контрольных щупов.Вставьте их или проверьте, что они уже вставлены в правильные гнезда. Обычно они могут быть помечены как COM для общего, а другие, где виден знак ома. Обычно он совмещен с гнездом для измерения напряжения.
  3. Выберите требуемый диапазон Требуется включить аналоговый мультиметр и выбрать требуемый диапазон. Выбранный диапазон должен быть таким, чтобы можно было получить наилучшее показание. Обычно на переключателе функций мультиметра указывается максимальное значение сопротивления. Выберите тот, при котором расчетное значение сопротивления будет ниже, но близко к максимуму диапазона.Таким образом можно сделать наиболее точное измерение сопротивления.
  4. Обнулить счетчик: необходимо обнулить счетчик. Это делается путем плотного соединения двух щупов вместе, чтобы возникло короткое замыкание, а затем регулировкой нулевого уровня для получения показания нулевого сопротивления (отклонение полной шкалы). Этот процесс необходимо повторить, если диапазон изменен.
  5. Проведите измерение Когда мультиметр будет готов к измерению, датчики могут быть применены к объекту, который необходимо измерить.При необходимости диапазон можно отрегулировать.
  6. Выключите мультиметр. После измерения сопротивления целесообразно повернуть функциональный переключатель в положение высокого напряжения. Таким образом, если мультиметр снова используется для другого типа считывания, то не будет причинен ущерб, если он будет использован случайно без выбора правильного диапазона и функции.

Аналоговые мультиметры - идеальное тестовое оборудование для измерения сопротивления. Они относительно дешевы и предлагают достаточно хороший уровень точности и общих характеристик.Обычно они обеспечивают уровень точности, более чем достаточный для большинства работ.

Как измерить сопротивление цифровым мультиметром, DMM

Измерение сопротивления с помощью цифрового мультиметра проще и быстрее, чем измерение сопротивления с помощью аналогового мультиметра, поскольку нет необходимости обнулять счетчик. Поскольку цифровой мультиметр дает прямое показание измерения сопротивления, аналогового мультиметра также нет эквивалента обратному показанию.

Для измерения сопротивления цифровым мультиметром необходимо выполнить несколько простых шагов:

  1. Выберите элемент для измерения: это может быть что угодно, где необходимо измерить сопротивление, и оценить, какое сопротивление может быть.
  2. Вставьте щупы в требуемые гнезда. Часто цифровой мультиметр имеет несколько гнезд для контрольных щупов. Вставьте их или проверьте, что они уже вставлены в правильные гнезда. Обычно они могут быть помечены как COM для общего, а другие, где виден знак ома.Обычно он совмещен с гнездом для измерения напряжения.
  3. Включите мультиметр
  4. Выберите требуемый диапазон Необходимо включить цифровой мультиметр и выбрать требуемый диапазон. Выбранный диапазон должен быть таким, чтобы можно было получить наилучшее показание. Обычно на переключателе функций мультиметра указывается максимальное значение сопротивления. Выберите тот, при котором расчетное значение сопротивления будет ниже, но близко к максимуму диапазона. Таким образом можно сделать наиболее точное измерение сопротивления.
  5. Проведите измерение Когда мультиметр будет готов к измерению, датчики могут быть применены к объекту, который необходимо измерить. При необходимости диапазон можно отрегулировать.
  6. Выключение мультиметра После измерения сопротивления мультиметр можно выключить для сохранения батарей. Также целесообразно установить функциональный переключатель в диапазон высокого напряжения. Таким образом, если мультиметр снова используется для другого типа считывания, то не будет причинен ущерб, если он будет использован случайно без выбора правильного диапазона и функции.
Цифровые мультиметры

- идеальное испытательное оборудование для измерения сопротивления. Они относительно дешевы, отличаются высокой точностью и общими характеристиками.

Общие меры предосторожности при измерении сопротивления

Как и при любом другом измерении, при измерении сопротивления следует соблюдать некоторые меры предосторожности. Таким образом можно предотвратить повреждение мультиметра и сделать более точные измерения.

  • Измерьте сопротивление, когда компоненты не подключены в цепь: Всегда рекомендуется , а не для измерения сопротивления элемента, находящегося в цепи.Всегда лучше проводить измерение компонента самостоятельно, вне схемы. Если измерение выполняется внутри схемы, все остальные компоненты вокруг него будут иметь значение. Любые другие пути, по которым будет проходить ток, будут влиять на показания, делая их в некоторой степени неточными.
  • Не забудьте убедиться, что на тестируемую цепь не подается питание. В некоторых случаях необходимо измерить значения сопротивления на самом деле. При этом очень важно убедиться, что не подключен к цепи питания .Любой ток, протекающий в цепи, не только приведет к аннулированию любых показаний, но и при достаточно высоком напряжении возникший ток может повредить мультиметр.
  • Убедитесь, что конденсаторы в проверяемой цепи разряжены. Опять же, при измерении значений сопротивления в цепи необходимо убедиться, что все конденсаторы в цепи разряжены. Любой ток, протекающий в результате них, приведет к изменению показаний счетчика. Также любые разряженные конденсаторы в цепи могут заряжаться под действием тока мультиметра, и в результате может потребоваться некоторое время для стабилизации показаний.
  • Помните, что диоды в цепи будут давать разные показания в любом направлении. При измерении сопротивления в цепи, которая включает диоды, измеренное значение будет другим, если соединения поменять местами. Это потому, что диоды проводят только в одном направлении.
  • Путь утечки через пальцы в некоторых случаях может изменить показания. При выполнении некоторых измерений сопротивления необходимо удерживать резистор или компонент на щупах мультиметра.Если проводятся измерения высокого сопротивления, утечка через пальцы может стать заметной. При некоторых обстоятельствах путь сопротивления через пальцы можно измерить всего на несколько МОм, и в результате это может стать значительным. К счастью, уровни напряжения, используемые в большинстве мультиметров при измерении сопротивления, низкие, но некоторые специализированные измерители могут использовать гораздо более высокие напряжения. Целесообразно проверить.

Измерить сопротивление мультиметром очень просто и удобно. При рассмотрении того, как измерить сопротивление, это довольно просто как для аналоговых, так и для цифровых мультиметров, и процесс практически одинаков в обоих случаях, хотя считывание показаний может быть не так просто, если сопротивление велико и измерения должны быть взяты, когда калибровки близки друг к другу. Тем не менее, какое бы испытательное оборудование ни использовалось, сопротивление легко измерить.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG
Вернуться в меню тестирования.. .

.

Омметр Использование | Основные концепции и испытательное оборудование

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться

0:00 / 0:00

  • Подкаст
  • Последний
  • Подписывайся
    • Google
    • Spotify
    • Яблоко
.

Как измерить ток с помощью мультиметра »Электроника

Мультиметр обеспечивает один из самых простых способов измерения переменного и постоянного тока (AC и DC). Мы даем некоторые из основных рекомендаций. . .

Учебное пособие по мультиметру Включает:
Основы работы с измерителем Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр DMM Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Тест диодов и транзисторов Диагностика транзисторных цепей


Часто бывает необходимо знать, как измерить ток с помощью мультиметра. Измерения тока выполнить легко, но они выполняются несколько иначе, чем измерения напряжения и другие измерения. Однако измерения тока часто необходимо проводить, чтобы выяснить, правильно ли работает цепь, или чтобы обнаружить другие факты, связанные с ее потреблением тока.

Ток является одним из основных электрических / электронных параметров, поэтому часто необходимо измерить ток, протекающий в цепи, чтобы проверить ее работу.

... как цифровые, так и аналоговые мультиметры могут очень легко измерять ток ....

Измерения тока можно выполнять с помощью различных измерительных приборов, но наиболее широко используемым измерительным оборудованием для измерения тока является цифровой мультиметр. Это испытательное оборудование широко доступно по очень разумным ценам.

Измерение тока: основы

Измерения тока выполняются иначе, чем измерения напряжения и другие измерения.Ток состоит из потока электронов вокруг цепи, и необходимо иметь возможность контролировать общий поток электронов. В очень простой схеме показана ниже. В нем есть батарейка, лампочка, которую можно использовать как индикатор, и резистор. Чтобы изменить уровень тока, протекающего в цепи, можно изменить сопротивление, а количество протекающего тока можно измерить по яркости лампы.

Простая схема для измерения тока

При использовании мультиметра для измерения тока единственный способ, который может быть использован для определения уровня протекающего тока, - это разорвать цепь, чтобы ток проходил через измеритель.Хотя временами это может быть сложно, это лучший вариант. Типичное измерение тока можно выполнить, как показано ниже. Из этого видно, что цепь, в которой протекает ток, должна быть разорвана, а мультиметр вставлен в цепь. В некоторых схемах, где часто может потребоваться измерение тока, могут быть добавлены клеммы с перемычкой для облегчения измерения тока.

Как измерить ток с помощью мультиметра

Чтобы мультиметр не влиял на работу цепи, когда он используется для измерения тока, сопротивление счетчика должно быть как можно меньшим. Для измерений около ампера сопротивление метра должно быть намного меньше ома. Например, если измеритель имел сопротивление в один Ом и протекал ток в один ампер, то на нем было бы напряжение в один вольт. Для большинства измерений это было бы неприемлемо высоким. Поэтому сопротивление счетчиков, используемых для измерения тока, обычно очень низкое.

Как измерить ток аналоговым мультиметром

Использовать аналоговый измеритель для измерения электрического тока довольно просто.Есть несколько незначительных отличий в способах измерения тока, но используются те же основные принципы.

... аналоговые мультиметры также могут легко и точно измерять ток ....

При использовании аналогового мультиметра можно выполнить несколько простых шагов:

  1. Вставьте датчики в правильные соединения - это необходимо, потому что может быть несколько различных соединений, которые можно использовать.Убедитесь, что вы выбрали правильные соединения, так как могут быть отдельные соединения для диапазонов очень низкого или очень высокого тока.
  2. Установите переключатель на правильный тип измерения (т. Е. Для измерения тока) и диапазон, в котором будет выполняться измерение. При выборе диапазона убедитесь, что максимум для конкретного выбранного диапазона выше ожидаемого. При необходимости диапазон мультиметра может быть позже уменьшен. Однако выбор слишком большого диапазона предотвращает перегрузку измерителя и любое возможное повреждение движения самого измерителя.
  3. При снятии показаний оптимизируйте диапазон для наилучшего считывания. Если возможно, отрегулируйте его так, чтобы можно было добиться максимального отклонения счетчика. Таким образом будет получено наиболее точное показание.
  4. Как только считывание будет завершено, рекомендуется поместить щупы в гнезда для измерения напряжения и повернуть диапазон в положение максимального напряжения. Таким образом, если счетчик случайно подключен, не задумываясь о том, какой диапазон будет использоваться, вероятность повреждения счетчика мала.Это может быть неправдой, если он оставлен на текущее значение, а счетчик случайно подключен к точке высокого напряжения!

Как измерить ток цифровым мультиметром

Чтобы измерить ток цифровым мультиметром, можно выполнить несколько простых шагов:

  1. Включите счетчик
  2. Вставьте зонды в правильные соединения - на многих счетчиках существует несколько различных соединений для зондов. Часто один помечен как обычный, в который обычно помещается черный зонд.Другой датчик должен быть вставлен в правильное гнездо для измерения тока. Иногда используется специальное соединение для измерения тока, а иногда - отдельное соединение для измерений низкого или высокого тока. Выберите правильный вариант для текущего измерения.
  3. Установите главный селекторный переключатель на переключателе измерителя на правильный тип измерения (т. Е. Ток) и диапазон для измерения, которое необходимо выполнить. При выборе диапазона убедитесь, что максимальный диапазон превышает ожидаемое значение.При необходимости диапазон цифрового мультиметра может быть уменьшен. Однако выбор слишком большого диапазона предотвращает перегрузку счетчика.
  4. При измерении тока оптимизируйте диапазон для наилучшего считывания. Если возможно, разрешите всем начальным цифрам не читать ноль, и таким образом можно будет прочитать наибольшее количество значащих цифр.
  5. Как только считывание будет завершено, рекомендуется поместить щупы в гнезда для измерения напряжения и установить максимальное напряжение.Таким образом, если счетчик случайно подключен без учета используемого диапазона, вероятность повреждения счетчика мала. Это может быть неправдой, если он оставлен на текущее значение, а счетчик случайно подключен к точке высокого напряжения!

Следуя этим шагам, очень легко измерить ток с помощью любого цифрового мультиметра.

Альтернативные методы измерения силы тока

Самый очевидный метод измерения тока с помощью мультиметра - разорвать цепь и быстро измерить измеритель внутри цепи.Однако это не единственный метод, который можно использовать.

Есть несколько методов, которые могут быть реализованы, которые не требуют разрыва цепи и последовательного подключения счетчика.

Эти методы часто используются там, где важно не разорвать цепь, и используются методы, которые тем или иным образом определяют ток.

Точность часто может быть почти такой же хорошей, как при включении измерителя в цепь, но для этого могут потребоваться уже установленные компоненты или использование различных типов датчиков.

Использование последовательного резистора для измерения тока

Этот метод измерения тока может дать некоторые преимущества при некоторых обстоятельствах, когда предполагается, что ток может потребоваться регулярно измерять в цепи.

Этот метод измерения тока предполагает включение в схему небольшого резистора подходящего номинала. Обычно один конец резистора находится под потенциалом земли, чтобы избежать риска случайного замыкания на землю высокого напряжения при проведении теста.

Метод измерения тока путем вставки в цепь последовательного резистора.

Измеряя напряжение на резисторе, можно легко рассчитать ток.

Например, резистор 10 Ом вставлен в цепь и на нем обнаружено значение 100 мВ, тогда, используя закон Ома, можно сделать вывод, что ток составляет V / R = 0,1 / 10 = 10 мА.

При использовании этого метода измерения тока значение резистора должно быть достаточно точным для проведения измерений.Любой допуск на резистор e даст такой же допуск, но не при измерении. К счастью, многие измерения в этой ситуации не требуют особой точности, и поэтому даже 10% резисторов будут достаточно точными - 2% также может быть адекватным в зависимости от необходимых допусков.

В показанном случае последовательный резистор, используемый для измерения тока, помещается рядом с землей, а также он обходится конденсатором для обхода любого сигнала на землю. Это особенно важно, если схема используется на радиочастотах, РЧ, поскольку это поможет предотвратить излучение любого сигнала по выводам измерительного прибора.

Метод измерения тока с использованием датчика тока / катушки

Если невозможно каким-либо образом прорваться в цепь, можно использовать датчик тока.

Датчики тока обычно имеют форму датчика, который размещается вокруг токонесущего проводника. Он может обнаруживать ток, протекающий в проводнике, и таким образом давать показания.

Эти датчики часто входят в состав законченного измерителя, поэтому часто невозможно использовать стандартный мультиметр для этого типа теста.

Существует несколько различных типов датчиков / измерителей, которые можно использовать с этим методом измерения тока.

  • Трансформатор тока: Одна из наиболее распространенных форм датчика тока называется токовыми клещами. Он состоит из разрезного кольца из феррита или мягкого железа, на которое намотана катушка - по одной на каждую половину. Сердечник пропускается по проводнику, в котором необходимо измерить ток, и две половины сердечника зажимаются на месте. Таким образом, сборка действует как трансформатор, а катушки зажима улавливают магнитное поле от тока, протекающего в проводнике.Поскольку вся сборка фактически представляет собой трансформатор, этот метод измерения тока работает только для переменного тока. Также расходомеры, использующие это, обычно поставляются как отдельные «клещи».
  • Датчик Холла: Датчик Холла, использующий другую технологию. Он может измерять как переменный, так и постоянный ток, протекающий в проводнике. Он часто используется вместе с осциллографами и цифровыми мультиметрами высокого класса, хотя их использование становится все более распространенным.

Существуют и другие аналогичные методы измерения тока с использованием датчиков, но токовые клещи и датчики на эффекте Холла являются наиболее распространенными.

Как измерить переменный ток мультиметром

Часто бывает необходимо измерить переменный ток. Хотя для измерения переменного тока используются те же основные шаги, что и при нормальном измерении постоянного тока, есть несколько дополнительных моментов, на которые следует обратить внимание.

  • Требуется настройка переменного тока: Различия в измерениях возникают из-за того, что мультиметр должен исправлять переменную форму волны, чтобы он мог измерять переменный ток.Основное отличие цифрового мультиметра состоит в том, что переключатель типа измерения должен быть установлен на измерение переменного тока, а не постоянного.
  • Для аналоговых счетчиков требуется выпрямитель: Для аналогового мультиметра ситуация немного иная. Поскольку аналоговый мультиметр не содержит активной электроники, диодный выпрямитель, используемый для выпрямления переменного сигнала, имеет определенное напряжение включения, и это повлияет на низкое напряжение на некоторых шкалах. Некоторые измерители могут быть не в состоянии измерять переменный ток или у них будут очень ограниченные диапазоны.

Хотя измерение электрического тока не так распространено, как измерение напряжения, тем не менее, способность измерять ток является важной и важной возможностью. Также важно знать, как измерять ток, чтобы получить лучшее от мультиметра.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG
Вернуться в меню тестирования.. .

.

Как проверить контур заземления самому,метод электрочайника

Контур защитного заземления в электропроводке дома или квартиры переоценить довольно сложно. Во-первых – это Ваша безопасность, а во-вторых – это долгий срок службы практически всех ваших бытовых потребителей электроэнергии.Но довольно часто попадаются в интернете статьи о том как правильно своими силами проверить смонтированный контур.

Давайте познакомимся с этими советами...

Совет №1 (из форума электриков)

Цитата: народ,кто хорошо разбирается в тонкостях контуров заземления?Есть у меня вопросики.Сегодня захреначили контур 6 арматурин по 4 метра.Прибора специального для замера сопротивления не было сегодня.Сделали по деревенски.Подключили через фазу и контур(без рабочего ноля) чайник на 1.5КВта.Получилось следующее.Без нагрузки напряжение 247 В.Включаем чайник,на нём падение напряжения 220 В.Значит на контуре падение 27 В.Сопротивление чайника 27 Ом.Если посчитать по закону ома,то получается,что сопротивление контура чуть выше 3-х Ом.Вот у меня вопрос.Насколько данный метод объективен?Если я не учёл что-то,то хотелось бы понять,что именно? И тут понеслось...

Советы,разные советы,электрики со стажем в десятки лет...Все разговоры крутятся вокруг сопротивления чайника,а о контуре заземления забыли.Понравилось то,что все остались при своем мнении и каждый уверен что он прав на 100%.

Совет №2 (как проверить контур заземления тестером)

Цитата: не стоит проводить подобные работы, не обладая соответствующим опытом. Хотя правила их выполнения довольно просты.

Все гениальное просто...
А теперь советы "опытных электриков":

1.Необходимо определить контакт фазы в розетке. Это делается специальной отверткой-тестером с индикатором фазы. Индикатором касаются поочередно проверяемых проводов с током, пальцем касаются специального контакта на ручке отвертки, лампочка горит только при касании к фазе;

2.Измерительным прибором в режиме измерения сопротивления определяется сопротивление между нулевым контактом сети и контактом заземления.

Описанный выше способ имеет высокую погрешность из-за низких токов измерительного прибора. Более правильной будет методика со специальным генератором, который подает питающий ток на контакт заземления, и тогда измеряются напряжение в проводе заземления и сила тока. Сопротивление заземления в этом случае рассчитывается по закону Ома.

Предлагаем посмотреть видео как проверить заземление на  нашем канале :

Если в результате измерений вы выясните, что полученный результат отклоняется от требуемой нормы, то можно предпринять ряд мер по уменьшению сопротивления:

  • увеличение кислотности грунта,
  • замена грунта в месте нахождения заземлителя,
  • увеличение площади заземлителя.

Таких советов можно найти множество.Но удивляет то что люди которые называют себя электриками-думают не о том как проверить контур заземления правильно по методикам и с помощью специальных приборов,а как провести провести электрические измерения с помощью каких-то чудометодов (метод электрочайника) или приборами которые не предназначены для испытания контура заземления.

Это равноценно тому,что при посещении врача в поликлинике-он будет измерять температуру Вашего тела с помощью какой-то таблицы,а слушать хрипы в легких прикладывая ухо к спине.А в итоге предложит приобрести "амулетик здоровья" вместо лекарств.

Звучит смешно?Вот также смешно выглядят "кулибины" которые готовы доказать любую теорию которую они якобы прочитали в какой-то "умной книге".

Не выглядят смешными последствия деятельности таких электриков.

Если Вам необходимо проверить контур заземления обращайтесь в электроизмерительную лабораторию которая имеет сертификат позволяющий проводить такие измерения.И не забудьте спросить свидетельство о поверке измерителя сопротивления заземления.


Заказать проверку контура заземления или модульное заземление Вы можете через онлайн форму или по телефонам указанным на нашем сайте www.energomag.net

+38(095)235-49-95,+38(096)262-98-48, +38(063)103-80-04

Доставка комплектов заземления в любую точку Украины Новой почтой по предоплате или наложенным платежом.

Если Вы сомневаетесь в выборе или не знаете как выбрать комплект заземления,мы будем рады Вам помочь.

Звоните, пишите мы Вам подскажем.

Статьи по категории "Заземление для дома"

Аккумулятор для ИБП,гелевый,AGM или мультигелевый,разница?
Аккумуляторные батареи для котла отопления или насоса
Вода из крана бьется током,в чем причина,как устранить?
Гальмар заземление инструкция по монтажу
Гибридный инвертор,как работает,как выбрать?
Заземление дома или дачи своими руками,как сделать
Заземление зарядной станции для электромобиля
Заземление МРТ или медицинского оборудования
Заземление своими руками,уголком или модульное заземление?
ИБП для дома,генератор или солнечная станция что лучше?
Измерение сопротивления заземления,проверка контура заземления
Как выбрать бесперебойник?Советы бывалых
Как выбрать заземление правильно
Как выбрать солнечный инвертор для дома?
Как выгодно купить твердотопливный котел?
Как заземлить бойлер правильно
Как заземлить дом
Как заработать на солнечной энергии?
Как защитить розетки от перегрузки?Решение есть!!!
Как настроить регулятор тяги котла твердотопливного Огонек
Как получить зеленый тариф в Украине,порядок оформления
Как проверить контур заземления самому,метод электрочайника
Как сделать заземление в розетке и проверить заземление розеток?
Какие колосиники бывают,котлы с охлаждамыми колосниками
Какой генератор лучше синхронный или асинхронный?
Комплект ИБП+аккумулятор для газового котла
Котел длительного горения Огонек ДГ модернизированный
Можно ли фундамент использовать для заземления дома?
Молниезащита дома своими руками,монтаж молниезащиты дома
Молниезащита дома,цена,или от чего зависит стоимость?
Пиролизные котлы,как они работают?
С праздником пасхи,получите подарок
Система уравнивания потенциалов для борьбы с блуждающими токами
Солнечная станция для дома,выгодно или нет?
Солнечные инверторы SAJ выставка SOLAR Ukraine 2018
Солнечные инверторы для дома,как выбрать
Солнечные станции для дома,зеленый тариф
Твердотопливные котлы Огонек с электротенами
Твердотопливный котел для отопления дома,выгодно или нет?
Термическая сварка Galmar weld,для монтажа заземления
Требования к заземлению
УЗО без заземления работает или нет?
Чем забивать модульное заземление на глубину
Что такое сетевой солнечный инвертор?
Электромонтажные работы в квартире,офисе,доме в Киеве,расценки
Что такое заземление и зачем это нам нужно?
Как выбрать твердотопливный котел
Молниезащита внутренняя,зачем она нужна?
Как выбрать электрогенератор для дома правильно?
Как правильно выбрать стабилизатор напряжения

Обзор методов измерения сопротивления заземления


Заземление используется в реализации различных проектов электрических систем. Само понятие “заземление” схематично рассматривается подключением участка электрической цепи к потенциалу земли.

Контур заземления содержит проводник и электрод, внедрённый глубоко в грунт. Традиционным действием в электротехнической практике является измерение сопротивления заземления только ещё запускаемых и уже эксплуатируемых сетей. Мы расскажем, как и каким образом производится это важное действие.

Содержание статьи:

Для чего необходимы измерения?

Блестящее решение перечисленных ниже задач достигается идеальным нулевым сопротивлением в заземляющей цепи:

  1. Не допустить появления напряжения на корпусе технологических машин.
  2. Добиться эффективного опорного потенциала электроаппаратуры.
  3. Полностью устранить статические токи.

Правда электротехнический опыт показывает: результат под идеальный нуль получить невозможно.

Процедура исполнения необходимых замеров с помощью прибора для определения сопротивления заземляющей шины. Такие процедуры проводятся по графику, который утверждается руководством обслуживающей организации

В любом случае, заземлённый электрод выдаёт какое-никакое сопротивление.

Конкретную величину resistance определяют:

  • сопротивление электрода в точке контакта с проводящей шиной;
  • контактная область между земляным электродом и грунтом;
  • структура грунта, дающая разное сопротивление.

Практика измерений сопротивления контура заземления отмечает, что первыми двумя факторами вполне можно пренебречь, но при соблюдении логичных условий:

  1. Заземляющий электрод сделан из металла с высокой электропроводимостью.
  2. Тело штыря электрода тщательно зачищено и плотно посажено в грунт.

Остаётся фактор третий – резистивная поверхность грунта. Он видится главной расчётной деталью для измерений сопротивления контура заземления.

Вычисляется же благодаря формуле:

R = pL / A,

где: p – удельное сопротивление грунта, L – условное заглубление, А – рабочая площадь.

Чтобы обезопасить владельцев дома/квартиры, заземлением должны быть снабжены все виды мощного домашнего электрооборудования:

Галерея изображений

Фото из

Все виды бытового энергозависимого оборудования, эксплуатируемого в квартирах и домах, необходимо подключать к автономным или общественным системам заземления

Для подключения электроприборов к заземляющей системе необходимо устанавливать розетки с заземляющими контактами, снабженными либо выходящими за пределы корпуса медными скобами, либо третьим отверстием, предназначенным для погружения контакта штепселя с тремя штырями

Обязательному заземлению подлежат все виды холодильного оборудования (холодильники, морозильные шкафы, МВП, электроплиты, стиральные машины

Подключение к заземляющему контуру обязано производится согласно схеме, приложенной производителем технической продукции, с использованием рекомендованных им средств

Обязательно необходимо выполнить заземление гидромассажной ванны, т.к. в ее работе используются электроприборы

В беспрекословном заземлении нуждаются все виды сетевых машин, начиная от домашнего стационарного компьютера до серверных шкафов, в том числе электрошкафы для автоматов и УЗО

Необходимо заземлять все модели энергозависимых газовых котлов: как напольные, так и настенные

Все линии заземления прокладывают по параллельной схеме, последовательное подключение к заземляющей системе недопустимо

Варианты заземляющих контактов

Штепсельная розетка с заземляющим контактом

Заземление кухонной бытовой техники

Подключение стиралки к заземляющему контуру

Устройство заземления гидромассажной ванны

Способ заземления сетевого оборудования

Заземление напольного газового котла

Подключение линий заземления к шине

При тестировании сопротивления каждую из заземляющих линий проверяют отдельно. Сопротивление между заземляющим элементом и каждой не проводящей ток частью электрооборудования, попадание под напряжение которой возможно, должно быть меньше 0,1 Ом.

Обзор измерительных способов

Существует несколько вариантов измерения сопротивления , каждый из которых вполне точно позволяет определить искомую величину.

3-точечная система определения

Так, например, часто применяется методика 3-х точечной схемы, основанная на эффекте падения потенциала.

Графическая схема так называемой трёхточечной системы, которую достаточно часто применяют, когда требуется измерить значение сопротивления заземляющего контура

Измерения выполняют за три основных шага:

  1. Замер напряжения на электроде Э1 и зонде Э2.
  2. Замер силы тока на электроде Э1 и зонде Э3.
  3. Расчёт (формулой R = E / I) сопротивления заземляющего электрода.

Для этой методики точность замеров логически зависима от места инсталляции зонда Э3. Его рекомендуется внедрять в грунт на удалении – оптимально за пределы так называемой области ЭСЭ (эффективного сопротивления электродов) Э1 и Э2.

Измерения по технологии «62%»

Если структура грунта под размещение заземляющего электрода отличается однородным содержимым, методика «62%» для определения сопротивлений контуров заземления обещает хорошую результативность.

Схема под технологию измерений под интересным названием «62%». Однако название взято от оптимальной величины отступа между электродами, при которой получают приемлемый результат

Способ применим под схемы с единственным заземляющим электродом. Точность показаний здесь обусловлена возможностью расположения рабочих зондов  на прямолинейном участке, относительно заземляющего электрода.

Точки инсталляции контрольных зондов

Заглубление электрода, мРасстояние до зонда Э1, мРасстояние до зонда Э2, м
1,813,721,9
2,415,2524,4
3,016,7526,8
3,618,329,25
5,521,635,0
6,022,536,6
9,026,242,65

Упрощённый двухточечный метод

Применение этого способа измерений требует наличия ещё одного качественного заземления помимо того, которое будет подвергаться исследованию. Методика актуальна для территорий густонаселённых, где часто нет возможности широко оперировать вспомогательными рабочими электродами.

Упрощённая методика измерений производится по двухточечной схеме. При такой технологии требуется меньше манипуляций с оборудованием и расчётами, но точность расчетов невысока

Метод двухточечного измерения отличается тем, что одновременно показывает результат для двух устройств заземления, включенных последовательно. Этим и объясняются требования к высокому качеству исполнения второго заземления, чтобы не учитывать его сопротивление.

Для выполнения вычислений также измеряется сопротивление заземляющей шины. Полученный результат вычитывают из результатов общих замеров.

Точность этого способа оставляет желать лучшего по сравнению с двумя вышеизложенными. Здесь существенную роль играет расстояние между заземляющим электродом, сопротивление которого измеряется и вторым заземлением. Стандартно такая методика не применяется. Это своего рода альтернатива, когда нельзя использовать другие способы измерений.

Точные измерения по четырём точкам

Для большинства вариантов измерения сопротивлений наиболее оптимальным способом, помимо 2-х и 3-х точечных, считается 4-х точечная технология. Такой технологией замеров наделены приборы, подобные тестеру 4500 серии. Судя из наименования метода, на рабочей площадке в одну линию и на равных расстояниях размещаются четыре рабочих электрода.

По такой схеме – четырехточечной, производятся самые точные измерения. Используется современная аппаратура и есть возможность выполнять работы без отключения заземляющей цепи

Генератор тока прибора подключается на крайние электроды, в результате чего между ними течёт ток, значение которого известно. На других клеммах прибора подключены два внутренних рабочих электрода.

На этих клеммах присутствует значение падения напряжения. Конечный результат по замерам – сопротивление заземления (в Омах), значение которого прибор демонстрирует на дисплее.

Приборами из серии 4500 часто пользуются для измерения напряжения прикосновения. Устройством при помощи специального модуля генерируется в земле напряжение небольшой величины – имитация повреждения кабеля.

Одновременно на шкале прибора указывается ток, текущий по цепи заземления. Показания на экране берут за основу и умножают на предполагаемую величину тока в земле. Таким способом вычисляют напряжение прикосновения.

Выполнение мероприятий по контролю за состоянием электротехнической аппаратуры и линий заземления. Для работы используется измерительный прибор типа 4500

К примеру, максимальное значение ожидаемого тока на участке повреждения равно 4000А. На экране прибора отмечается величина 0,100. Тогда величина напряжения прикосновения будет равна 400В (4000*0,100).

Измерение прибором С.А6415 (6410, 6412, 6415)

Уникальность этого способа – возможность проведения замеров без отключения заземляющей цепи. Также здесь следует выделить преимущественную сторону, когда измерять общее сопротивление устройства заземления допустимо методом включения в цепь заземления резистивной составляющей всех соединений.

Принцип работы примерно следующий:

  1. Специальным трансформатором в цепи создаётся ток.
  2. Ток течёт в образованном контуре.
  3. С помощью синхронного детектора регистрируется измеряемый сигнал.
  4. Полученный сигнал преобразуется АЦП.
  5. Результат выводится на ЖК-дисплей.

Устройство оснащается модулем (избирательный усилитель), благодаря которому полезный сигнал эффективно очищается от разного рода помех – н.ч. и в.ч. шумов. Лапами клещей в их сочленённом состоянии образуется возбуждаемый контур, охватывающий проводник заземления.

Инструкция измерения прибором С.А6415

Последовательность действий при работе с прибором серии С.А6415 доходчиво описывается в инструкции, прилагаемой к этому уникальному устройству.

Уникальный измерительный прибор – клещи, благодаря которому относительно просто и легко удаётся измерить сопротивление земляного контура в различных условиях

Например, есть необходимость провести измерения сопротивления заземления какого-либо электрического модуля (трансформатора, электросчётчика и т.п.).

Последовательность действий:

  1. Открыть доступ к заземляющей шине, сняв защитный кожух.
  2. Захватить клещами проводник (шину или непосредственно электрод) заземления.
  3. Выбрать режим измерения «А» (измерение тока).

Максимальное значение тока прибора составляет 30А, поэтому в случае превышения этой цифры выполнять измерение нельзя. Следует снять прибор и повторить попытку измерений в другой точке.

Процесс выполнения замеров с помощью измерительных устройств типа С.А6415 и 3770. Результаты измерений фиксируются в таблице и сравниваются при следующем ТО

Когда полученная на шкале величина тока укладывается в допустимый диапазон, можно продолжить работу переключением прибора на измерение сопротивления «?».

Высвеченный на дисплее результат покажет общее значение сопротивления, включая:

  • электрод и шину заземления;
  • контакт нейтрали с электродом заземления;
  • контакт соединений на линии между нейтралью и заземляющим электродом.

Работая с клещами, следует иметь в виду: завышенные показания прибора по сопротивлению заземления, как правило, обусловлены плохим контактом заземляющего электрода с грунтом.

Также причиной высокого сопротивления может быть оборванная токоведущая шина. Высокие цифры сопротивлений в точках соединений (сращиваний) проводников тоже могут влиять на показания прибора.

Общие рекомендации по измерению УСГ

Прежде чем , к примеру для газового котла, следует получить точные сведения о том, в область каких грунтов будет закладываться заземляющий электрод. Часто для определения значений “p” грунта предлагается обращаться к существующим таблицам.

Однако этот вариант с таблицами даёт чисто ориентировочные данные. Поэтому полагаться на них не стоит. Истинные значения сопротивления грунта могут отличаться в разы.

Вариант #1: однослойный грунт

Если грунт имеет однородную составляющую, его удельное сопротивление измеряют методикой «пробного электрода».

Структура однородного грунта. При таких условиях измерить и вычислить сопротивление значительно проще, чем проделывать ту же самую работу на многослойных грунтах

Метод предполагает выполнение определённой процедуры в два этапа:

  1. Берут стержневой контрольный зонд длиной чуть больше глубины проектной закладки.
  2. Погружают зонд в землю строго вертикально на глубину проектной закладки.
  3. Оставшийся над поверхностью земли конец используют для замера сопротивления растекания (Rr).
  4. Определяют УСГ по формуле p = Rr * Ψ.

Желательно выполнить процедуру несколько раз в различных точках рабочей площадки. Альтернативные замеры помогают достичь точных результатов измерений сопротивления грунта.

Вариант #2: многослойный грунт

Для такой ситуации замер УСГ выполняют методом ступенчатого зондирования. То есть контрольный зонд погружается до рабочей глубины ступенями и в положении каждой ступени выполняются измерения удельного сопротивления.  Вычисления среднего УСГ производятся с помощью формул для каждого отдельного измерения.

Многослойный грунт. При таких условиях приходится вычислять сопротивление каждого отдельно взятого слоя. Расчёты по многослойным грунтам требуют больше работы

Затем, исходя из климатических особенностей местности, находят значения для сезонных изменений. Таким способом (достаточно сложным) получают расчётные значения УСГ верхних слоёв. Нижележащие слои рассматриваются как не подверженные сезонным изменениям и потому расчёт для них ограничивается несколько упрощённым измерением и вычислением.

Требования к исполнению работ

Работы подобного плана, конечно же, выполняются квалифицированным персоналом, представляющим специализированные организации. Так, за эксплуатацию силовых щитков в жилых домах, как правило, отвечают коммунальные службы. Производить какие-либо измерения в этих точках разрешается только через обращение к этим службам.

Электрические цепи относятся к опасным системам. Несмотря на то, что коммуникации бытового сектора рассчитаны под напряжение менее 1000В, это напряжение смертельно для человека. Требуется соблюдать все необходимые меры безопасности при обращении с электрическим оборудованием. Обывателю зачастую такие меры попросту неведомы.

С особенностями сооружения заземления для ванны в городской квартире ознакомит , содержащая правила и руководство по проведению работы.

Выводы и полезное видео по теме

Выполнение измерений на практике с помощью прибора:

Исполнение работ, связанных с проверкой сопротивления заземления, требуется обязательно, независимо от сложности электрической схемы и категории объекта, где устанавливается или установлено и эксплуатируется электрооборудование. Многие специализированные организации готовы предоставлять такие услуги.

Оставляйте, пожалуйста, комментарии в расположенном ниже блоке. Не исключено, что вы знаете простой и эффективный способ измерения сопротивления контуров заземления, не приведенный в статье. Задавайте вопросы, делитесь полезной информацией и фото по теме.

Контур заземления: устройство, нормы пуэ, как проверить и измерить сопротивление мультиметром

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление.

Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома.

По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно).

В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть.

Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой.

К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина.

Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно.

Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины.

Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Типовая схема включения прибора

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

Видео по теме

Источник: https://ProFazu.ru/provodka/bezopasnost-provodka/kak-proverit-zazemlenie.html

Как замерить сопротивление заземления мультиметром

То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.

Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?

Что такое заземление?

Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.

Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).

Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.

  • Перед использованием необходимо проверить контур на заземляющее сопротивление.
  • О том, что такое заземление – на следующем видео:

В чём суть работы заземления?

Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

А теперь смотрите, в чём заключается принцип действия защитного заземления.

Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом.

Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением.

То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.

Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

Проверка заземления розеток

Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?

Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку.

У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена.

Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.

Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:

  • В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
  • На приборе установите режим измерения напряжения.

  • Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
  • Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.

Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:

  • патрон;
  • лампочка;
  • провода;
  • концевики.

Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться.

Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее.

Слабое свечение станет свидетельством плохого состояния контура.

Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.

Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.

  1. В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.
  2. Наглядно этот способ показан на видео:
  3. О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:
  • бьётся током стиральная машина или водонагревательный бойлер;
  • слышится шум в колонках, когда работает музыкальный центр.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416.

Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем.

Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Некоторые основные параметры и правила

Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

Для источников с однофазным напряжением Для источников с трёхфазным напряжением Величина сопротивления заземления
127 В 220 В 8 Ом
220 В 380 В 4 Ом
380 В 660 В 2 Ом

Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

Источник: https://YaElectrik.ru/elektroprovodka/kak-zamerit-soprotivlenie-zazemleniya-multimetrom

Измерение металлосвязи: методика, нормы, периодичность проверки

Наличие защитного заземления – одно из основных требований электробезопасности. Надежность заземляющих элементов контролируют специалисты электролаборатории, проводя измерение металлосвязи.

Согласно действующим нормам и правилам, такая проверка обязательна, если на объекте производился ремонт электрического оборудования, переоснащение или монтажные работы.

Что скрывается под термином «металосвязь» и зачем проводятся ее измерения, мы подробно расскажем в этой публикации.

Под данным термином принято понимать связь (электрическую цепь), образованную электроустановкой и заземлителем. Основное требование к металлосвязи – непрерывность цепи заземления. Нарушение этого условия грозит образованием высокой разности потенциалов в цепях электроустановки, что представляет угрозу для жизни и может повлечь за собой выход из строя оборудования.

Надежный  контакт заземлителя и объекта заземления обеспечивает низкую величину переходного сопротивления

Со временем может наблюдаться рост переходных сопротивлений в цепи заземления, что приводит к образованию дефектов металлосвязи, давайте разберемся с природой этого явления.

Чем вызван рост переходного сопротивления?

Под переходными контактами подразумеваются соприкасающиеся металлические элементы. Добиться их идеальной полировки невозможно, все равно на поверхности будут присутствовать бугорки и вмятины микроскопического размера.

Площадь контактируемых поверхностей изменяется от воздействия различных внешних факторов (температура, сила прижатия, загрязнение поверхности и т.д.), что ведет к увеличению переходного сопротивления.

На представленных ниже фотографиях медного контакта, сделанных при помощи электронного микроскопа, видно образование на поверхности пленки из оксида меди.

Поверхность медного контакта, увеличенная микроскопом

Такая оксидная пленка обладает диэлектрическими свойствами, они хоть и не велики, но этого может оказаться достаточно, чтобы нарушить металлосвязь.

В результате соединение будет нагреваться и рано или поздно приведет к отгоранию контакта, что незамедлительно отразится на качестве металлосвязи.

Не менее распространенная причина – человеческий фактор, именно поэтому после монтажных работ требуется проводить измерение металлосвязи.

Принимая во внимание вышеизложенную информацию, можно указать следующие причины для проверки металлосвязи:

  1. Контроль непрерывности цепи заземления. Он включает в себя как электроизмерения, так и осмотр защитных проводников и других элементов заземления, на предмет их целостности.
  2. Измерение сопротивления переходных контактов (производится между электроустановкой и заземлителем), а также общих параметров цепи.
  3. Проверяется разность потенциалов между корпусом заземленной электроустановки и заземлителем. Проверка осуществляется в рабочем режиме и выключенном состоянии.

Как видим, основная цель проверки – осуществление измерений параметров заземляющих цепей, поскольку именно они характеризуют качество металлосвязи, а соответственно, и электробезопасность установки.

В соответствии с требованиями ПУЭ металлические элементы электроустановок подлежат заземлению. Замеры металлосвязи производятся между главной заземляющей шиной и элементом, подлежащим проверке. По нормам сопротивление контактов в одном переходе должно быть 0,01 Ом ± 20%.

Если измерительный прибор подтверждает наличие качественного соединения, выполняется проверка следующего узла. Когда между заземлителем и заземленной электроустановкой несколько переходов, то их суммарное сопротивление не должно выходить за пределы 0,05 Ом.

Измерение сопротивления переходных контактов

Если сопротивление превышает допустимые нормы, следует проверить состояние контактов, зачистить их, соединить и произвести повторные измерения.

Большинством электролабораторий замеры металлосвязи проводятся по следующему алгоритму:

  1. Осуществляется визуальный осмотр контактов заземляющих проводников. Эффективны при поисках «плохого» контакта специальные приборы – тепловизоры, они быстро позволяют обнаружить проблемное соединение.
  2. Сварочные соединения проверяются на прочность путем применения механической нагрузки.
  3. Все заземленные элементы конструкции тестируются на наличие металлосвязи.
  4. Проверка наличия электрического тока на заземленных элементах.
  5. Полученные результаты фиксируются в специальном протоколе.

Приведенная методика измерений доказала свою эффективность.

Нормы и правила

Согласно нормам ПУЭ заземляющие проводники, а также используемые для выравнивания потенциалов, необходимо надежно соединять, чтобы обеспечить наличие непрерывности цепи заземления.

При этом для стальных проводников предписывается сварочное соединение, другие способы контакта допускаются только в том случае, если имеется защита от разрушающего воздействия воздушной среды.

При использовании болтовых соединений, должны быть приняты соответствующие меры, не позволяющие ослабевать контактному соединению.

Все соединения цепи заземлителя и заземленного устройства должны быть расположены таким образом, чтобы к ним имелся свободный доступ, поскольку должен производиться осмотр, с целью проверки непрерывности электрического соединения. Исключение их этого правила – герметизированные контакты.

В Правилах также указано, что для контакта с заземляющими устройствами могут выполняться болтовыми или сварочными соединениями. Если устройства электроустановок подвержены сильной вибрации или их часто перемещают на другое место, то применяются гибкий защитный провод.

Более детальную информацию о нормах и правилах, можно получить в ПУЭ (р. 1.7.).

Периодичность

Согласно норм ПТЭЭП и ПУЭ, испытания металлосвязи проводится по графику, определенному техническим отделом объекта. Как правило, в этом случае руководствуются табл. 37 п. 3.1 ПТЭЭП, где установлена следующая периодичность измерения металлосвязи:

  • В помещениях и объектах, относящихся к повышенной категории опасности, замеры переходных сопротивлений в заземляющих цепях должны проводиться ежегодно, при других обстоятельствах — не реже одного раза на протяжении трех лет.
  • Для лифтового и подъемного оборудования – 1 год.
  • Стационарным электроплитам – 1 год.

Как правило, проверка металлосвязи производится совместно с другими видами электроизмерений (сопротивления изоляции, проверка целостности электропроводки и т.д.).

Помимо этого, обязательные измерения металлосвязи проводятся в следующих случаях:

  1. Если производился ремонт или переоснащение электрооборудования.
  2. При испытаниях новых электроустановок.
  3. После проведения монтажных работ.

Приборы для измерения

Учитывая, что измерения металлосвязи проводятся на уровне сотых Ома, то обычные измерительные приборы, например, мультиметры, для этой цели не подходят. Когда проводят замеры сопротивления заземления, используют более точные приборы, достаточно чувствительные, чтобы измерять сопротивления малого уровня.

Прибор для измерения заземления Metrel MI3123

Большинство таких устройств оснащены дополнительными функциями, например, представленный на рисунке прибор Metrel MI3123 может также измерять электропроводимость грунта и тока утечки.

Фиксация результатов в протоколе измерения

Все результаты измерений заносятся в специальный протокол испытаний. Данные фиксируются в таблице, с указанием наименования каждого осмотренного соединения. В отчете также приводится информация о количестве осмотренных узлов, их местоположении и отображается максимальное значение общего сопротивления контактов защитной цепи.

Если в процессе испытаний обнаружено отсутствие металлосвязи, информация об этом обязательно фиксируется в документе и одновременно в приложении к протоколу (дефектной ведомости).

Кратко о профилактике.

Регулярно проводить замеры металлозаземления, не значит отказаться от профилактики. Чтобы обеспечить непрерывность защитных цепей необходимо регулярно проверять, в каком состоянии находятся контактные соединения, и при необходимости подтягивать их. Не менее важно очищать контакты пыли, окисной пленки и грязи.

При обнаружении наличия электрического напряжения на одном из элементов конструкции, необходимо позаботится о ее качественном заземлении. В противном случае возрастает риск возникновения нештатной ситуации.

Не стоит экономить на проверке качества устройства защитного заземления, поскольку потери могут стать более затратными, чем оплата вызова электролаборатории.

Важно ознакомиться и прочитать:

Источник: https://www.asutpp.ru/kak-vypolnjaetsja-proverka-metallosvjazi.html

Как измерить сопротивление контура заземления – обзор методик

Измерение сопротивления заземления нужно выполнять, чтобы удостовериться, что оно совпадает с требованием ПУЭ (правила устройства электроустановок) гл. 1.8., а также ПТЭЭП пр. 3,3.1.

Замеры, которые проводятся в электроустановке с глухозаземленной нейтралью (напряжение которых составляет ниже 1000В) должны соответствовать следующим нормам.

Неважно, зимой или летом, значение не должно превышать отметку 8, 4 и 2 Ом при напряжении 220, 380, 660 В (для источников с трехфазным током) соответственно, или 127, 220 и 380 В для источников с однофазным током.

 Для электроустановок, где используется изолированная нейтраль (напряжение ниже 1000В) сопротивление заземляющего контура должно соответствовать п 1.7.104 ПУЭ и рассчитывается по формуле Rз * Iз Обзор методик

Метод амперметра-вольтметра

Для проведения измерительных работ необходимо искусственно собрать электрическую цепь, в которой ток течет через испытуемый заземлитель и токовый электрод (его еще называют вспомогательным).

Также в этой схеме задействуется потенциальный электрод, назначение которого – замер падения напряжения во время протекания электрического тока по заземлителю.

Потенциальный электрод нужно расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне с нулевым потенциалом.

Чтобы измерить сопротивление методом амперметра-вольтметра необходимо воспользоваться законом Ома. Итак, по формуле R=U/I находим сопротивление контура заземления.

Такой метод хорошо подходит для измерений в частном доме. Чтобы получить нужный измерительный ток можно воспользоваться сварочным трансформатором.

Также подойдут и другие виды трансформаторов, вторичная обмотка которых электрически не связана с первичной.

Использование специальных приборов

Сразу отметим, что даже для измерений в домашних условиях многофункциональный мультиметр не сильно подойдет. Чтобы измерить сопротивление контура заземления своими руками используются аналоговые приборы:

  • МС-08;
  • М-416;
  • ИСЗ-2016;
  • Ф4103-М1.

Рассмотрим, как измерить сопротивление прибором М-416. Сначала нужно убедиться, что у прибора есть питание. Проверим наличие батареек. Если их нет, нужно взять 3 элемента питания напряжением 1,5 В. В итоге получим 4,5 В. Готовый к использованию прибор нужно поставить на ровную горизонтальную поверхность.

Далее калибруем прибор. Ставим его в положение «контроль» и, удерживая красную кнопку, выставляем стрелку на значении «ноль». Для измерения будем пользоваться трехзажимной схемой. Вспомогательный электрод и стержень зонда забиваем не менее чем на полметра в грунт. Подсоединяем к ним провода прибора по схеме.

Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:

Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей.

Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей.

Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

Безэлектродный способ

Этот метод является наиболее современным и позволяет измерять сопротивление контура, не прибегая к размыканию заземляющих стержней и установке дополнительных заземляющих электродов. В связи с этим условием, метод имеет ряд дополнительных преимуществ:

  • возможность производить замеры в полевых условиях, в тех местах, где невозможно применить другие методы измерения сопротивления;
  • экономия времени и средств для выполнения работ.

Безэлектродный метод может применяться, если используются двое измерительных токовых клещей. Например, это могут быть современные тестеры типа Fluke 163. Клещи располагают вокруг заземляющего электрода или соединительного кабеля. Клещами при этом измеряется индуцируемое напряжение. Его амплитуда фиксируется вторыми клещами.

Тестер автоматически определяет сопротивление контура заземления для данного соединения.

Периодичность измерений

Проводить визуальный осмотр, измерения, а также при необходимости частичное раскапывание грунта нужно согласно графику, который установлен на предприятии, но не реже чем один раз в 12 лет.

Получается, что, когда производить замеры заземления – решать вам.

Если вы живете в частном доме, то вся ответственность лежит на вас, но не рекомендуется пренебрегать проверкой и замерами сопротивления, так как от этого напрямую зависит ваша безопасность, при пользовании электрооборудованием.

При проведении работ необходимо понимать, что в сухую летнюю погоду можно добиться наиболее реальных результатов измерений, так как грунт сухой и приборы дадут наиболее правдивые значения сопротивлений заземления.

 Напротив, если замеры будут проведены осенью либо весной в сырую, влажную погоду, то результаты будут несколько искажены, так как мокрый грунт сильно влияет на растекаемость тока, что, в свою очередь, дает большую проводимость.

Если вы хотите, чтобы измерения защитного и рабочего заземления проводили специалисты, то необходимо обратиться в специальную электротехническую лабораторию.

По окончании работы вам будет выдан протокол измерения сопротивления заземления.

В нем отображается место проведения работ, назначение заземлителя, сезонный поправочный коэффициент, а также на каком расстоянии друг от друга находятся электроды. Образец протокола предоставлен ниже:

Напоследок рекомендуем просмотреть видео, в котором показывается как измеряют сопротивление заземления опоры ВЛ:

Вот мы и рассмотрели существующие методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете соответствующими навыками рекомендуем воспользоваться услугами специалистов, которые все сделают быстро и качественно!

Также рекомендуем прочитать:

Источник: https://samelectrik.ru/kak-izmerit-soprotivlenie-kontura-zazemleniya.html

Как проверить контур заземления

:

Заземление представляет собой соединение электрических приборов с землей. С его помощью обеспечивается защита от поражающего действия тока при неисправностях или повреждениях электрооборудования.

Для заземлителя используются обыкновенные металлические стержни или специальные комплексы, включающие в свой состав сложные элементы. Перед вводом в эксплуатацию всей системы, происходит проверка контура заземления, где в первую очередь замеряется его сопротивление.

Таким образом, удается выяснить способность заземляющего контура выполнять свою основную защитную функцию.

Для чего измеряется сопротивление

Проведение замеров позволяет определить величину сопротивления контура, которая не должны быть выше установленных норм. В случае необходимости, сопротивление снижается за счет увеличения площади контакта или общей проводимости среды. С этой целью увеличивается количество стержней, повышается содержание соли в земле.

Необходимо помнить, что с помощью простого заземления возможно только снижение напряжения фазы, попадающей на корпус прибора.

Чтобы повысить надежность защиты, заземление нередко устанавливается вместе с устройством защитного отключения.

Проектирование и подбор заземляющего устройства осуществляется в индивидуальном порядке в каждом конкретном случае. На его конструкцию оказывает влияние влажность, тип и состав почвы, а также другие факторы.

Как измерить сопротивление контура заземления

Сопротивление контура измеряется сразу же, как только жилой объект введен в эксплуатацию. В дальнейшем, подобные замеры выполняются 1 раз в год. Для измерений применяются специальные приборы, быстро и точно определяющие  удельное сопротивление стержней и других металлических элементов, грунтов, в которых они установлены.

Замеры проводятся в несколько этапов:

  • Вначале заземление замыкается с искусственной цепью электрического тока, в которой замеряется падение напряжения.
  • Возле испытуемого стержня размещается электрод вспомогательного назначения, соединяемый с тем же источником электрического напряжения.
  • Затем, с помощью измерительного зонда, в зоне нулевого потенциала, выполняются замеры падения напряжения на первом стержне. Этот метод получил наибольшее распространение.

Проведение замеров лучше всего выполнять в зимнее или летнее время. В заземляющих устройствах сопротивление может отличаться в каждом отдельном случае. Например, в частных домах его значение доходит до 30 Ом. Сами замеры выполняются с помощью 2-х, 3-х или четырехполюсной методики.

Правила замера сопротивления контура заземления:

  • Для размещения потенциального зонда, замеряющего сопротивление, используется контрольный участок, расположенный между токовым вспомогательным зондом и заземлителем.
  • Длина контрольного участка должна быть выше размеров полосового электрода или глубины заземляющего стержня примерно в 5 раз.
  • Если сопротивление измеряется в целом комплексе заземляющей системы, то расстояние контрольного участка можно вычислить по максимальной длине диагонали, проходящей между отдельными заземляющими устройствами.

Иногда проводятся дополнительные замеры, особенно в многочисленных подземных коммуникациях. В этих случаях выполняется несколько измерительных операций, во время которых изменяются направления и расстояния лучей между зондами. Реальное значение принимается по самому худшему результату.

Существуют допустимые нормы сопротивления заземляющих устройств, которые не должны превышаться, независимо от времени года. Все максимально допустимые значения отражены в таблицах или приложениях ПУЭ.

Замер сопротивление изоляции

Для измерения изоляции применяется мегомметр. Он включает в себя несколько составных частей: генератор непрерывного тока с ручным приводом, добавочные сопротивления и магнитоэлектрический логометр.

Перед началом измерительных работ необходимо убедиться, что объект замеров обесточен и не находится под напряжением. С изоляции удаляется пыль и грязь, после чего выполняется заземление объекта примерно на 2-3 минуты.

Таким образом, снимаются остаточные заряды. К оборудованию или электрической цепи подключение мегомметра осуществляется раздельными проводами.

Их изоляция обладает большим сопротивлением, как правило, не меньше чем 100 мегаом.

Сопротивление изоляции замеряется, когда приборная стрелка принимает устойчивое положение. Окончательные результаты замеров сопротивления определяются по показаниям стрелки измерительного прибора. На этом проверка контура заземления считается завершенной. После этого, объект испытаний необходимо разрядить.

Источник: https://electric-220.ru/news/proverka_kontura_zazemlenija/2016-04-04-953

Какая периодичность проверки контура заземления?

Этот материал подготовлен специалистами компании «ЭлектроАС». Нужен электромонтаж или электроизмерения? Звоните нам!

Евгений
Сроки проверки заземляющих устройств?
Ответ:
В соответствии с ПТЭЭП, периодичность проверки состояния заземляющих устройств (контура заземления) определяется графиком планово-профилактических работ (ППР), который утверждается техническим руководителем Потребителя. На основании п. 2.7.9. ПТЭЭП, визуальный осмотр видимых частей заземляющих устройств должен проводится не реже 1 раза в 6 месяцев. Осмотр с выборочным вскрытием грунта должен проводится не реже одного раза в 12 лет.

Периодичность измерения сопротивления заземляющего устройства проводят в соответствии с приложением 3, п. 26. «Заземляющие устройства», а именно:
1) Заземляющее устройство опор воздушных линий электропередачи напряжением до 1000 В — не реже 1 раза в 6 лет, и для ВЛ выше 1000 В — не реже 1 раза в 12 лет.

2) Заземляющее устройство электроустановок в соответствии с графиком планово-профилактических работ (ППР), но не реже 1 раза в 12 лет.

ПТЭЭП
2.7.8

Для определения технического состояния заземляющего устройства должны проводиться визуальные осмотры видимой части, осмотры заземляющего устройства с выборочным вскрытием грунта, измерение параметров заземляющего устройства в соответствии с нормами испытания электрооборудования (Приложение 3).

2.7.9
Визуальные осмотры видимой части заземляющего устройства должны производиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником им уполномоченным.
При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов.

Результаты осмотров должны заноситься в паспорт заземляющего устройства.

2.7.10
Осмотры с выборочным вскрытием грунта в местах наиболее подверженных коррозии, а также вблизи мест заземления нейтралей силовых трансформаторов, присоединений разрядников и ограничителей перенапряжений должны производиться в соответствии с графиком планово-профилактических работ (далее — ППР), но не реже одного раза в 12 лет.

Величина участка заземляющего устройства, подвергающегося выборочному вскрытию грунта (кроме ВЛ в населенной местности — см. п.2.7.11), определяется решением технического руководителя Потребителя.

2.7.11
Выборочное вскрытие грунта осуществляется на всех заземляющих устройствах электроустановок Потребителя; для ВЛ в населенной местности вскрытие производится выборочно у 2% опор, имеющих заземляющие устройства.

Источник: http://elektroas.ru/kakaya-periodichnost-proverki-kontura-zazemleniya

Цифровой мегаомметр Fluke 1625 II 4325162

Технические характеристики
Общие сведения
Дисплей: ЖК, 1999-разрядный Дисплей со специальными символами, высота символа — 25 мм, флуоресцентная подсветка
Пользовательский интерфейс Мгновенное измерение одним нажатием кнопок TURN (Поворот) и START (Запуск). Единственными действующими элементами являются поворотный переключатель и кнопка START (Запуск)
Прочный, водо- и пыленепроницаемый Инструмент предназначен для тяжелых рабочих условий (резиновая защитная крышка, IP56)
Память Объем внутренней памяти позволяет хранить до 1500 записей, доступных через разъем USB.
Диапазон температур
Рабочая температура от -10 °C до +50 °C (от 14 °F до 122 °F)
Температура хранения от -30 °C до 60 °C (от -22 °F до 140 °F)
Температурный коэффициент ± 0,1 % показаний/°C <18 °C >28 °C
Основная погрешность Относится к стандартному диапазону температур и гарантируется в течение одного года
Операционная ошибка Зависит от диапазона рабочих температур и обеспечивается гарантией на 1 год
Климатический класс C1 (IEC 654-1), от -5 °C до +45 °C (от 23° до +115° F), от 5 % до 95 % отн. влажн.
Класс защиты IP56 для футляра, IP40 для крышки батарейного отсека согласно EN60529
Безопасность Защита обеспечивается двойной и/или усиленной изоляцией. Максимум 50 В на землю. IEC61010-1: степень загрязнения 2
EMC (Невосприимчивость к излучениям) IEC61326-1: Портативное устройство
Система качества Разработан и изготовлен согласно требованиям стандарта DIN ISO 9001
Наружное напряжение V наруж, макс = 24 В (пост.ток, перем.ток < 400 Гц), для более высоких значений измерение затруднено
Подавление V наруж > 120 дБ (162⁄3, 50, 60, 400 Гц)
Время измерения Обычно 6 секунд
Макс. перегрузка 250 В среднеквадратичное значение (имеет отношение к неправильному обращению)
Дополнительное питание 6 щелочных батарей 1,5 В (тип: AA LR6)
Ресурс батареи Стандартно > 3 000 измерений
Размеры (ШxВxГ) 250 мм x 133 мм x 187 мм (9,75 дюймов x 5,25 дюймов x 7,35 дюймов)
Вес 1,1 кг (2,43 фунта) включая батареи
7,6 кг (16,8 фунтов) включая аксессуары и батареи в футляре для переноски
RA 3-полюсное измерение сопротивления заземления (IEC 1557-5)
Положение переключателя R A 3-полюсное
Разрешение от 0,001 Ом до 10 Ом
Диапазон измерения от 0,020 Ом до 19,99 кОм
Погрешность ± (2 % от показаний прибора + 3 знака)
Операционная ошибка ± (5 % от показаний прибора + 3 знака)
Принцип измерения: измерение силы тока и напряжения
Измерение напряжения Vm = 48 В переменного тока
Ток короткого замыкания > 50 мА
Измерение частоты 128 Гц
Сопротивление щупа (R S) Макс 100 кОм
Сопротивление вспомогательного заземления (R H) Макс 100 кОм
Дополнительная погрешность от R H и RS R H[кОм]•••R S[кОм]/R A[Ом]•••0,2 %
Мониторинг R S и R H с индикатором ошибки.
Автоматический выбор диапазона.
Измерение не выполняется, если проходящий через токовые клещи ток обладает слишком низкой силой.
R A 4-полюсное измерение сопротивления заземления (IEC 1557-5)
Положение переключателя R A 4-полюсное
Разрешение от 0,001 Ом до 10 Ом
Диапазон измерения от 0,020 Ом до 19,99 кОм
Погрешность ± (2 % от показаний прибора + 3 знака)
Операционная ошибка ± (5 % от показаний прибора + 3 знака)
Принцип измерения: измерение силы тока и напряжения
Измерение напряжения Vm = 48 В переменного тока
Ток короткого замыкания > 50 мА
Измерение частоты 128 Гц
Сопротивление щупа (R S +R ES) Макс 100 кОм
Сопротивление вспомогательного заземления (R H) Макс 100 кОм
Дополнительная погрешность от R H и RS R H[кОм]•••R S[кОм]/R A[Ом]•••0,2 %
Мониторинг R S и R H с индикатором ошибки.
Автоматический выбор диапазона.
RA 3-полюсное выборочное измерение сопротивления заземления при помощи токовых клещей (R A при помощи клещей )
Положение переключателя R A 3-полюсное при помощи клещей
Разрешение от 0,001 Ом до 10 Ом
Диапазон измерения от 0,020 Ом до 19,99 кОм
Погрешность ± (7 % от показаний прибора + 3 знака)
Операционная ошибка ± (10 % от показаний прибора + 5 знаков)

Принцип измерения: измерение силы тока/напряжения (с помощью наружных токовых клещей)

Измерение напряжения Vm = 48 В переменного тока
Ток короткого замыкания > 50 мА
Измерение частоты 128 Гц
Сопротивление щупа (R S) Макс 100 кОм
Сопротивление вспомогательного заземления (R H) Макс 100 кОм
Мониторинг R S и R H с индикатором ошибки.
Автоматический выбор диапазона.
Измерение не выполняется, если проходящий через токовые клещи ток обладает слишком низкой силой.
RA 4-полюсное выборочное измерение сопротивления заземления при помощи токовых клещей (R A при помощи клещей )
Положение переключателя R A 4-полюсное при помощи клещей
Разрешение от 0,001 Ом до 10 Ом
Диапазон измерения от 0,020 Ом до 19,99 кОм
Погрешность ± (7 % от показаний прибора + 3 знака)
Операционная ошибка ± (10 % от показаний прибора + 5 знаков)
Принцип измерения: измерение силы тока/напряжения (с помощью наружных токовых клещей)
Измерение напряжения Vm = 48 В переменного тока
Ток короткого замыкания > 50 мА
Измерение частоты 128 Гц
Сопротивление щупа (R S) Макс 100 кОм
Сопротивление вспомогательного заземления (R H) Макс 100 кОм
Мониторинг R S и R H с индикатором ошибки.
Автоматический выбор диапазона.
Измерение не выполняется, если проходящий через токовые клещи ток обладает слишком низкой силой.
Безэлектродное измерение контура заземления (2 зажима )
Положение переключателя R A 4-полюсное при помощи 2 зажимов
Разрешение от 0,001 Ом до 10 Ом
Диапазон измерения от 0,020 Ом до 19,99 кОм
Погрешность ± (7 % от показаний прибора + 3 знака)
Операционная ошибка ± (10 % от показаний прибора + 5 знаков)
Принцип измерения: Безэлектродное измерение сопротивления в замкнутых контурах при помощи двух трансформаторов тока
Измерение напряжения Vm = 48 В переменного тока
Измерение частоты 128 Гц
Шумовой ток (I EXT) Макс. I EXT = 10 А (перем. ток) (R A < 20 Ом)
Макс. I EXT = 2 А (перем. ток) (R A > 20 Ом)
Автоматический выбор диапазона.
Данные относительно безэлектродного измерения контура заземления можно считать достоверными, только если измерения осуществлялись рекомендуемыми токовыми клещами на минимальном заданном расстоянии.

Электрическое испытательное оборудование | электростанция для подключения

Доктор Ахмед Эль-Рашид - Управление продуктами

Эффективное заземление необходимо для безопасной работы любой электрической системы, и единственный способ гарантировать, что заземляющие устройства работают и остаются таковыми, - это тщательно и регулярно проверять их.

Подавляющее большинство систем распределения электроэнергии спроектировано таким образом, что в случае нарушения изоляции или аналогичного повреждения возникающий ток повреждения отводится на землю.Это предотвращает рост открытых проводящих частей до опасного потенциала, позволяя току короткого замыкания течь достаточно долго и на достаточно высоком уровне, чтобы защитные устройства сработали и изолировали замыкание. Из этого описания ясно, что надежное и эффективное заземление необходимо для безопасной работы систем, и что если система заземления выйдет из строя или станет неэффективной, в лучшем случае безопасность будет поставлена ​​под угрозу, а в худшем - может возникнуть значительный риск. жизнь и собственность.

Существенной функцией каждой системы заземления является обеспечение надежного соединения с низким сопротивлением с основной частью земли с использованием одного или нескольких заземляющих электродов, которые обычно имеют форму стержней или матов. Все системы заземления предназначены для достижения этой цели с учетом требований приложения, таких как уровень предполагаемого тока замыкания на землю, с которым они могут работать. Тем не менее, эффективность земных систем зависит от множества трудноуправляемых переменных, таких как тип почвы и содержание влаги, что всегда важно проверять характеристики новых систем путем тщательных испытаний во время ввода в эксплуатацию.

И требование к испытаниям не заканчивается пусконаладочными испытаниями, так как многие факторы могут со временем ухудшить характеристики систем заземления. Например, может измениться влажность почвы. В хорошем проекте должны быть учтены сезонные колебания, но другие изменения, такие как изменение уровня местного грунтовых вод, сделать сложнее. Электроды и соединения с ними также могут быть затронуты коррозией, и ни в коем случае не известно, что системы заземления получают физическое повреждение либо случайно, как это могло произойти во время работ в соседнем здании, либо преднамеренно в виде кражи и вандализма.

Все это указывает на то, что нельзя быть уверенным в том, что система заземления, даже если ее первоначальные характеристики были полностью удовлетворительными, со временем сохранит удовлетворительные характеристики. Опять же, единственный способ быть уверенным - это проверить его, и, учитывая жизненно важную роль безопасности систем заземления, регулярные рутинные испытания следует рассматривать как существенные, а не как необязательные.

Настоятельно рекомендуется проводить испытания в форме комплексного структурированного обследования заземления, состоящего из семи основных этапов.Первый из них - это тщательный визуальный осмотр заземляющей установки. При этом следует искать любые признаки повреждения, сломанные, порезанные или отсоединенные иным образом заземляющие проводники, а также признаки коррозии не только самих электродов, но и соединений между электродами и заземляющими проводниками. Перед тем, как приступить к последующим этапам тестирования, необходимо устранить все неисправности, но всегда следует помнить, что отсоединившийся заземляющий провод может быть под напряжением, и очень важно проверить это перед тем, как прикасаться к нему или обращаться с ним.

Второй этап - измерение токов утечки в заземляющих проводах. В идеале в этих проводниках не должно быть тока, но фильтры и аналогичные устройства, используемые в современном электронном оборудовании, часто создают небольшой ток утечки даже при правильной работе. Однако большее беспокойство вызывает электрическое оборудование, в котором возникает неисправность, которая позволяет ему продолжать работать без проблем, но, тем не менее, приводит к протеканию тока на землю. Такое оборудование может продолжать использоваться в течение длительного времени, при этом оператор не знает о проблеме, но совершенно очевидно, что перед проведением дальнейших испытаний системы заземления очень важно обнаружить такой ток утечки, и наиболее удобный способ сделать это, как правило, - использовать токоизмерительные клещи, способные измерять токи в миллиамперном диапазоне.Если в заземляющем проводе обнаруживается значительный ток, необходимо отследить источник и устранить проблему, прежде чем продолжить тестирование.

Заключительное подготовительное испытание - электрическая проверка целостности заземляющих проводов для подтверждения оценки целостности, выполненной во время визуального осмотра системы. Целью этого испытания является обнаружение и обнаружение соединений с высоким сопротивлением, которые являются типичным результатом коррозии в открытых системах проводов. Важно иметь в виду, что в этом контексте «высокое сопротивление» означает что-нибудь от сотни микроом или около того и выше.Значения сопротивления этого порядка нельзя измерить с помощью обычного мультиметра, поэтому для этого теста необходимо использовать омметр с низким сопротивлением (также известный как микроомметр).

После завершения визуального осмотра системы заземления, подтверждения отсутствия утечки и проверки целостности проводов, необходимо - для полного освидетельствования заземления - отсоединить заземляющие электроды. Ни при каких обстоятельствах нельзя нарушать заземляющие соединения до тех пор, пока последствия для безопасности не будут полностью оценены и не будут предприняты соответствующие шаги для минимизации рисков.Обычно это включает обесточивание и блокировку оборудования, которое должно быть отключено от земли, но также важно учитывать потенциальные опасности наведенных напряжений, которые могут присутствовать в незаземленном оборудовании, даже когда оно не находится под напряжением.

Кроме того, стоит отметить, что существуют методы измерения сопротивления заземления без отключения заземляющих электродов. К ним относятся, например, ART (метод прикрепленного стержня) и бесстоечное тестирование с помощью зажимных тестеров.Эти методы полезны, но все они имеют ограничения и повсеместно признано, что тестирование методом падения потенциала, которое обязательно включает отключение проверяемого электрода или электродов, дает наиболее точные и надежные результаты. Поэтому для окончательных исследований сопротивления заземления следует использовать метод проверки падения потенциала.

Рисунок 1

Это испытание проводится с помощью набора для проверки сопротивления заземления, который состоит из двух цепей, как показано на Рисунке 1 выше.Первая цепь включает в себя источник напряжения и амперметр, и она выводится на токовые клеммы прибора. Вторая цепь включает только вольтметр и выведена на клеммы напряжения прибора. Один из токовых зажимов и один из зажимов напряжения подключены к тестируемому электроду. Другой токовый вывод подключается к временному заземлению, который вставляется в землю на значительном расстоянии от электрода (всплеск тока), в то время как другой терминал напряжения подключается к другому временному всплеску заземления (всплеск напряжения).

Скачок напряжения вставляется в почву на разных расстояниях по прямой линии между испытуемым электродом и всплеском тока, и на каждом расстоянии регистрируется показание напряжения. Поскольку ток также известен, можно использовать закон Ома для вычисления значения сопротивления для каждого места скачка напряжения. Если сопротивления нанесены в зависимости от расстояния, кривая должна показать почти ровную область (см. Рисунок 2 ниже). Значение сопротивления в этой области - это сопротивление заземляющего электрода.

Рисунок 2

Процедура обязательно более сложная для систем с несколькими электродами или с заземляющими сетками, но полезную информацию, охватывающую эти ситуации, и более подробное объяснение испытаний заземления можно найти в публикации «Getting Down to Earth», которая доступна в качестве бесплатного скачать с сайта Megger.

В рамках комплексного обследования заземления также важно провести испытания для определения потенциалов прикосновения и ступенчатого потенциала, потенциал прикосновения - это разность потенциалов, которую может испытать человек, стоя на поверхности земли и коснувшись заземленного проводящего объекта во время неисправность производила электрический ток на землю.Шаговый потенциал - это разность потенциалов, которую может испытать человек между ногами относительно земли, в которой существует ток короткого замыкания.

Потенциал прикосновения определяется путем первого измерения сопротивления заземления рассматриваемого объекта с использованием методов, аналогичных тем, которые используются для измерения сопротивления заземляющего электрода. Когда это сопротивление известно, наряду с максимальным ожидаемым током короткого замыкания, можно использовать закон Ома для расчета наихудшего потенциала прикосновения с разумным запасом точности.Потенциал шага оценивается аналогичным образом, но при измерении сопротивления заземления скачки напряжения врезаются в землю на расстоянии около 1 метра друг от друга, так как это приблизительная длина шага среднего человека.

Изложенные до сих пор процедуры предоставляют бесценные данные о состоянии и характеристиках системы заземления, но часто также полезно знать о свойствах почвы, в которой расположена система заземления. Часть этой информации получается путем осмотра и исследования почвы для определения ее типа, но также важно проводить измерения удельного сопротивления земли.Обратите внимание, что эти измерения относятся только к собственному удельному сопротивлению почвы, тогда как измерения сопротивления заземления, обсуждавшиеся ранее, относятся к сопротивлению конкретного заземляющего электрода (или электродов).

Проверка удельного сопротивления заземления обычно может выполняться с использованием того же прибора, что и для проверки сопротивления заземления, с одной оговоркой: прибор должен быть четырехконтактного типа с выводами напряжения и тока на отдельные клеммы. Три клеммных прибора не подходят для измерения удельного сопротивления земли.

Удельное сопротивление Земли обычно измеряется методом Веннера, который включает использование четырех временных стержней земли. Однако не требуется перемещать штыри в рамках процедуры испытания - их расположение и расстояние определяются глубиной, на которой требуется определить удельное сопротивление земли.

Заземление является фундаментальным требованием для безопасности электроустановок, но слишком часто эффективности систем заземления уделяется мало внимания, особенно после проверки первоначальных характеристик.Это опасно и ненужно. Как мы видели, характеристики земных систем можно надежно оценить с помощью принятого структурированного, поэтапного подхода, и, хотя можно утверждать, что задействованные процедуры отнимают много времени и, в определенной степени, разрушительны, безусловно, это маленькая цена, которую нужно заплатить за защиту человеческой жизни?

Наиболее распространенные методы измерения сопротивления заземляющего электрода

Сопротивление заземляющего электрода

Когда система заземляющих электродов спроектирована и установлена, обычно необходимо измерить и подтвердить сопротивление заземления между электродом и « настоящая Земля ».Наиболее часто используемый метод измерения сопротивления заземляющего электрода - это трехточечный метод измерения, показанный на рисунке 1.

Наиболее распространенные методы измерения сопротивления заземляющего электрода

Этот метод основан на четырехточечном методе. , который используется для измерения удельного сопротивления грунта.

Трехточечный метод, называемый методом «падения потенциала» , включает в себя заземляющий электрод, который необходимо измерить, и два других электрически независимых испытательных электрода, обычно обозначенных P (потенциал) и C (ток).Эти испытательные электроды могут быть более низкого «качества» (более высокое сопротивление заземления), но должны быть электрически независимыми от измеряемого электрода.

Рисунок 1 - Трехточечный метод измерения сопротивления заземления

Переменный ток (I) пропускается через внешний электрод C, а напряжение измеряется с помощью внутреннего электрода P в некоторой промежуточной точке между ними.

Сопротивление земли рассчитывается просто по закону Ома: Rg = V / I.

Другие более сложные методы, такие как метод уклона или четырехполюсный метод, были разработаны для решения конкретных проблем, связанных с этой более простой процедурой, в основном для измерения сопротивления больших систем заземления или в местах, где есть место для размещения тестовые электроды ограничены.

Независимо от используемого метода измерения следует помнить, что измерение сопротивления заземления - это столько же искусство, сколько и наука , и на измерения сопротивления могут влиять многие параметры, некоторые из которых может быть трудно определить количественно. . Таким образом, лучше взять несколько отдельных показаний и усреднить их, чем полагаться на результаты одного измерения.

При выполнении измерения цель состоит в том, чтобы расположить вспомогательный испытательный электрод C достаточно далеко от тестируемого заземляющего электрода, чтобы вспомогательный испытательный электрод P находился за пределами эффективных областей сопротивления как системы заземления, так и другого испытательного электрода. (см. рисунок 2).

Рисунок 2 - Области сопротивления и изменение измеренного сопротивления в зависимости от положения электрода напряжения
  • Если токовый испытательный электрод, C, находится слишком близко к , области сопротивления будут перекрываться, и будет резкое изменение измеренного сопротивления, так как электрод проверки напряжения перемещается.
  • Если токовый испытательный электрод расположен правильно , где-то между ним и системой заземления будет `` плоская '' (или почти такая) область сопротивления, и изменения в положении испытательного электрода напряжения должны приводить только к очень незначительные изменения в цифре сопротивления.

Прибор подключается к тестируемой системе заземления с помощью короткого испытательного кабеля, и выполняется измерение.

На точность измерения может влиять близость других металлических предметов, находящихся под землей, к вспомогательным испытательным электродам . Такие объекты, как заборы и строительные конструкции, заглубленные металлические трубы или даже другие системы заземления, могут мешать измерениям и вносить ошибки.

Часто трудно судить, просто на основании визуального осмотра участка, подходящего места для испытательных столбов , поэтому всегда рекомендуется выполнять более одного измерения, чтобы гарантировать точность теста .


Метод падения потенциала

Это один из наиболее распространенных методов, используемых для измерения сопротивления заземления, и он лучше всего подходит для небольших систем , которые не покрывают большую площадь . Он прост в исполнении и требует минимальных вычислений для получения результата.

Измерение сопротивления заземления методом падения потенциала (фото: eblogbd.com)

Этот метод обычно не подходит для больших заземляющих установок , так как расстояние между стойками, необходимое для точного измерения, может быть чрезмерным, что требует использования очень длинные измерительные провода (см. Таблицу 1).

Обычно внешний испытательный электрод или токовый испытательный стержень вбивается в землю на расстоянии 30-50 метров от системы заземления (хотя это расстояние будет зависеть от размера тестируемой системы - см. Таблицу 1) и Затем внутренний электрод или стержень для проверки напряжения вбивается в землю на полпути между электродом заземления и стержнем для проверки тока и по прямой линии между ними.

Таблица 1 - Изменение расстояния между электродами тока и напряжения при максимальных размерах системы заземления, в метрах

9012
Максимальный размер в системе заземления
Расстояние от «электрического центра»
системы заземления до испытательного стержня напряжения
Минимальное расстояние от
«электрического центра» системы заземления
до действующей испытательной стойки
1 15 30
2 20 40
5 30
10 43 85
20 60 120
50 100 200
100 100 потенциального метода включает проверку, чтобы убедиться, что испытательных электродов действительно расположены далеко достаточно далеко, чтобы получить правильное значение .Желательно провести эту проверку, так как это действительно единственный способ гарантировать правильный результат.

Чтобы проверить значение сопротивления, необходимо провести два дополнительных измерения:

  1. Первое с испытательным электродом напряжения (P) отодвинуло 10% первоначального расстояния между электродом и землей от исходного напряжения. исходное положение и
  2. Второй с ним переместился на 10% ближе, чем его исходное положение, как показано на рисунке 3.
Рисунок 3 - Проверка достоверности измерения сопротивления

Если эти два дополнительных измерения согласуются с исходным измерением в пределах требуемого уровня точности, то испытательные стержни были правильно расположены и значение сопротивления постоянному току может быть получено с помощью усреднение трех результатов.

Однако, , если есть существенные расхождения между любыми из этих результатов , то вполне вероятно, что ставки были размещены неправильно, либо из-за того, что они были слишком близко к тестируемой системе земли, слишком близко друг к другу или слишком близко другие структуры, мешающие получению результатов.

Столбы следует переставить на большем расстоянии или в другом направлении и повторить три измерения. Этот процесс следует повторять до получения удовлетворительного результата.


Метод 62%

Метод падения потенциала можно слегка адаптировать для использования с системами заземления среднего размера. Эту адаптацию часто называют методом 62%, , поскольку он включает размещение внутреннего испытательного стержня на 62% расстояния между заземляющим электродом и внешним стержнем (напомним, что в методе падения потенциала эта цифра была 50%).

Все остальные требования к размещению тестовых столбов - они должны быть на прямой линии и располагаться вдали от других построек - остаются в силе.

При использовании этого метода также рекомендуется повторить измерения с внутренним испытательным стержнем, перемещенным на ± 10% расстояния между заземляющим электродом и внутренним испытательным стержнем, как и раньше.

Основным недостатком этого метода является то, что теория, на которой он основан, основывается на предположении, что подстилающая почва однородна, что на практике случается редко.Таким образом, следует соблюдать осторожность при его использовании и всегда проводить исследование удельного сопротивления почвы.

В качестве альтернативы следует использовать один из других методов.


Другие методы испытаний

Существует множество других методов измерения сопротивления заземления. Многие из этих методов были разработаны в попытке уменьшить необходимость чрезмерного расстояния между электродами при измерении больших систем заземления или требование знания электрического центра системы.

Ниже кратко описаны три таких метода. Конкретные подробности здесь не приводятся, вместо этого читатель отсылается к соответствующему техническому документу, в котором эти системы описаны подробно.

  1. Метод наклона
  2. Метод звезда-треугольник
  3. Метод четырех потенциалов (метод Веннера)

(a) Метод наклона

Этот метод подходит для использования с большими системами заземления, такими как земли подстанции. Он включает в себя выполнение ряда измерений сопротивления в различных системах заземления для определения напряжения разнесения электродов с последующим построением кривой изменения сопротивления между землей и током.

Используя этот метод, можно рассчитать теоретическое оптимальное расположение электрода напряжения и, таким образом, по кривой сопротивления вычислить истинное сопротивление.

Из-за дополнительных усилий по измерениям и расчетам эту систему можно использовать только с очень большими или сложными системами заземления.

Возможные местоположения датчиков для использования метода наклона (рисунок предоставлен Whitham D. Reeve)

Для получения полной информации об этом методе обратитесь к статье 62975, написанной доктором G.F. Tagg, взято из материалов тома 117 IEE, № 11, ноябрь 1970 г.

NETA WORLD TechTips «Метод наклона» Джеффа Джоветта AVO International:

Загрузить статью


(b) Звезда-дельта Метод

Этот метод хорошо подходит для использования с большими системами в населенных пунктах или на каменистой местности, где может быть трудно найти подходящие места для испытательных электродов, особенно на больших расстояниях по прямой линии.

Используются три испытательных электрода, установленных в углах равностороннего треугольника с системой заземления в середине , и проводятся измерения общего сопротивления между соседними электродами, а также между каждым электродом и системой заземления.

Используя эти результаты, выполняется ряд вычислений и может быть получен результат для сопротивления системы заземления. Этот метод, разработанный W. Hymers, подробно описан в журнале Electrical Review, январь 1975 г.

NETA WORLD TechTips 'Наземные испытания в сложных установках' Джеффри Р. Джоветт (Megger):

Скачать статью


(c) Четырехпотенциальный метод (метод Веннера)

Этот метод помогает преодолеть некоторые из проблемы, связанные с требованием знать электрический центр испытываемых систем заземления .

Этот метод аналогичен стандартному методу падения потенциала, , за исключением того, что выполняется ряд измерений с электродом напряжения в разных положениях и используется набор уравнений для расчета теоретического сопротивления системы.

Основным недостатком метода четырех потенциалов является то, что, как и в случае метода падения потенциала, может потребоваться чрезмерное расстояние между электродами, если измеряемая система заземления имеет большие размеры.

NETA WORLD TechTips «Тестирование сопротивления заземления: метод четырех потенциалов» Джеффри Р. Джоветт (Megger):

Загрузить документ

Справочная информация // Методы заземления от Lightning & Surge Technologies

Измерители сопротивления заземления | Instrumart

Измерители сопротивления заземления - это класс приборов, предназначенных для проверки сопротивления почвы прохождению электрического тока.Как правило, сопротивление заземления проверяется для определения адекватности заземления электрической системы. Хотя почва обычно плохо проводит электричество, если путь прохождения тока достаточно велик, сопротивление может быть довольно низким, обеспечивая путь для токи короткого замыкания. Это незаменимый компонент безопасной, правильно функционирующей электрической системы.

Как правило, чем ниже сопротивление заземления, тем безопаснее электрическая система. Регулирующие органы устанавливают максимально допустимое сопротивление заземления.Национальный электротехнический кодекс требует, чтобы электрические системы должны иметь сопротивление заземления не более 25 Ом. Управление по охране труда и технике безопасности на шахтах требует, чтобы сопротивление заземления составляло 4 Ом или лучше. Электроэнергетические компании проектируют свои системы заземления таким образом, чтобы поддерживайте сопротивление на больших станциях ниже нескольких десятых ома.

Хотя обилие земли обычно обеспечивает подходящий путь для токов короткого замыкания, ограничивающим фактором в системах заземления является то, насколько хорошо заземляющие электроды контактируют с землей.В Сопротивление поверхности раздела грунт / заземляющий стержень, а также сопротивление заземляющих проводов и соединений необходимо измерять с помощью измерителя сопротивления заземления.

Зачем измерять удельное сопротивление земли?

Зная удельное сопротивление почвы, понимая его влияние и имея возможность «читать» результаты, измерения удельного сопротивления почвы могут предоставить важную информацию по ряду различных Приложения.

Поскольку состав грунта влияет на его удельное сопротивление, измерения сопротивления грунта можно использовать для удобного проведения геофизических исследований под поверхностью.Это позволяет идентифицировать руду местоположения, глубины до коренных пород и других геологических явлений.

Удельное сопротивление почвы также оказывает прямое влияние на степень и скорость коррозии подземных трубопроводов для воды, нефти, газа, бензина и т. Д. Снижение удельного сопротивления обычно связано с к увеличению коррозионной активности. Измерители сопротивления заземления могут помочь выявить эту проблему, а также помочь определить, где необходима катодная защита.

Однако в первую очередь измерители сопротивления заземления используются для проектирования и проверки заземляющих электродов.Правильно установленные заземляющие электроды обеспечивают путь для токов короткого замыкания, вызывая их важные элементы для повышения безопасности, предотвращения повреждений оборудования и минимизации времени простоя. При проектировании системы заземления измерения сопротивления заземления полезны для определения области минимального удельного сопротивления почвы, чтобы обеспечить наиболее экономичную установку заземления.

Системы заземления

«Земля» определяется как проводник, который соединяет электрическую цепь или оборудование с землей.Соединение используется для установления и поддержания максимально возможного потенциала заземлить цепь или подключенное к ней оборудование. Как правило, система заземления состоит из заземляющего проводника, соединительного соединителя, его заземляющего электрода (ов) и земли, контактирующей с электрод.

Есть веские причины, по которым необходимо заземление электрической системы. В первую очередь, заземление обеспечивает безопасный путь для непредвиденного электрического тока, вызванного неисправностями в электрической системе.Путем предоставления пути тока короткого замыкания с низким сопротивлением, заземления способны максимально быстро рассеивать ток - до получения травм персонала или повреждения оборудования.

Есть много типов электрических неисправностей, вызванных многими проблемами. Многие неисправности непродолжительны, часто вызваны ударами молнии или кратковременным контактом, например, с деревом или животным. касаясь провода. Ухудшение изоляции проводов, повреждение грызунами, сломанные изоляторы и неправильная проводка могут вызвать кратковременные или постоянные неисправности.

Поскольку электрические системы становятся все более сложными, а электрические приборы становятся все более чувствительными, хорошее заземление становится как никогда важным для предотвращения дорогостоящих повреждений и простоев. из-за перебоев в работе и неработающей защиты от перенапряжения из-за плохого заземления.

Заземляющие стержни и их соединения подвержены опасностям окружающей среды, таким как высокое содержание влаги, высокое содержание солей и высокие температуры в почве, все из которых могут вызвать гниение система со временем, потенциально снижая ее эффективность.Системы заземления следует проверять один раз в год в рамках графика профилактического обслуживания.

Измерение сопротивления заземления

Измерители сопротивления заземления - довольно простые инструменты. Как и большинство инструментов, они доступны во множестве диапазонов и различных значений точности, предлагая при этом ряд опций для настройки инструмент к приложению.

Измерители сопротивления заземления обычно доступны в двух стилях. Более традиционный стиль включает в себя колья, которые вставляются в землю с расположением кольев, определяемым тип проводимого испытания на сопротивление.Когда колья прикреплены к устройству с помощью проводов, через один из столбов пропускается ток. Когда ток достигает другой ставки (ей), он измеряется. и сравнивается с генерируемым напряжением, при этом прибор вычисляет и отображает сопротивление системы.

Для более простых измерений сопротивления заземления были разработаны накладные измерители сопротивления заземления, которые позволяют точечно измерять компоненты системы заземления без необходимости настройки. колышки или отсоединение заземляющего стержня.

Факторы, влияющие на удельное сопротивление почвы

Удельное сопротивление окружающей почвы является ключевым компонентом, определяющим, каким будет сопротивление заземляющего электрода и на какую глубину он должен быть установлен, чтобы получить низкое сопротивление заземления. Удельное сопротивление почвы широко варьируется от места к месту из-за различий в составе почвы и факторах окружающей среды.

Удельное сопротивление почвы во многом определяется количеством содержащейся в ней влаги, минералов и растворенных солей.Чем больше их концентрация, тем ниже удельное сопротивление почвы. Наоборот, сухие почвы с небольшим количеством растворимых солей и минералов обладают высоким удельным сопротивлением. Удельное сопротивление почвы с содержанием влаги 10% по весу будет в пять раз ниже, чем у почвы с содержанием влаги 2,5%. Температура почвы также помогает определить ее удельное сопротивление, при этом более высокие температуры приводят к более низкому удельному сопротивлению. Удельное сопротивление почвы при комнатной температуре будет в четыре раза больше. ниже, чем на 32 градуса.

Поскольку влажность и температура оказывают такое прямое влияние на удельное сопротивление почвы, само собой разумеется, что сопротивление системы заземления будет варьироваться, возможно, значительно, от сезона к сезону. время года. Поскольку и температура, и влажность становятся более стабильными на больших расстояниях от поверхности земли, их влияние на удельное сопротивление может быть уменьшено путем установки заземления. электроды глубоко в землю. Наилучшие результаты достигаются, если заземляющий стержень достигает уровня грунтовых вод.

Методы измерения удельного сопротивления почвы

В зависимости от того, какой аспект системы заземления измеряется, и имеющегося оборудования, в распоряжении техника имеется несколько методов измерения.Каждый различается несколько по сложности, точности и применимости результатов.

Двухточечный метод: Двухточечный метод просто заключается в измерении сопротивления между двумя точками. Два колья помещают в землю, через один проходит ток и измеряют. другим. Разница преобразуется в показания сопротивления. Двухточечные тесты обычно используются в городских условиях, где правильное размещение вспомогательного электрода может быть затруднено из-за препятствия.Измерения производятся относительно хорошего местного заземляющего проводника.

4-точечный метод: В большинстве случаев метод 4-точечного тестирования является наиболее точным методом измерения удельного сопротивления почвы. Как следует из названия, 4-балльный метод предполагает размещение четырех тестов. колья в земле, в линию и на равном расстоянии. Между внешними электродами пропускается известный ток от генератора постоянного тока. Падение потенциала (функция сопротивления) равно затем измеряется на двух внутренних электродах.

Измерение удельного сопротивления по 4 точкам следует проводить до фактической установки системы заземления. Этот тест сообщает инженеру, где находится наиболее проводящий грунт и на какой глубине это происходит.

Метод падения потенциала (3 точки): Для метода падения потенциала заземляющий электрод отключается от электрической системы и подключается к тестеру. Два Тестовые стержни вставляются в землю линейно на равном расстоянии от заземляющего электрода.Генерируется и применяется известный ток, и измеряется результирующее сопротивление. В внутренний кол затем перемещается в любую сторону с приращениями с измерениями, сопровождающими каждое перемещение. Когда эти дополнительные измерения согласуются с исходным измерением, расстояния между тремя точками считается правильно расположенными, и удельное сопротивление может быть определено путем усреднения результатов. Метод падения потенциала лучше всего подходит для существующих наземных систем, которые не покрыть большую площадь.

62% Метод: Метод 62% представляет собой разновидность метода падения потенциала и подходит для областей, которые считаются слишком большими для измерений падения потенциала. В то время как с Метод падения потенциала: стойки размещаются равномерно и регулируются, чтобы найти оптимальное положение, при использовании метода 62% внутренняя стойка размещается на 62% расстояния между заземляющими электродами. и внешний кол. При приложении напряжения разность потенциалов между стойками преобразуется в показания сопротивления.

Метод выборочного тестирования / с зажимом: Измерители сопротивления заземления с зажимом позволяют проводить испытания без отключения заземления, что делает их очень удобными для проверки соединения и общие сопротивления соединений систем заземления. Это позволит проверить целостность отдельных заземлений и определить, что потенциал заземления является равномерным по всей заземляющей поверхности. система.

Что следует учитывать при покупке измерителя сопротивления заземления:

  • Какой тип теста лучше всего подходит для вашего приложения?
  • Какие аксессуары (электроды, колья) потребуются?
  • Требуется память или связь?
  • Какой диапазон измерения желателен?
  • Требуются ли утверждения агентств или экологические рейтинги?

Если у вас есть какие-либо вопросы относительно измерителей сопротивления заземления, не стесняйтесь обращаться к одному из наших инженеров, отправив нам электронное письмо по адресу sales @ instrumart.com или по телефону 1-800-884-4967.

Почему заземление, зачем тестировать? | Fluke

Плохое заземление способствует ненужному простою, но отсутствие хорошего заземления опасно и увеличивает риск отказа оборудования.

Без эффективной системы заземления вы можете подвергнуться риску поражения электрическим током, не говоря уже об ошибках приборов, проблемах гармонических искажений, проблемах с коэффициентом мощности и множестве возможных периодически возникающих дилемм. Если токи короткого замыкания не имеют пути к земле через правильно спроектированную и обслуживаемую систему заземления, они обнаружат непредусмотренные пути, которые могут затронуть людей.Эти организации предоставляют рекомендации и / или разрабатывают стандарты заземления для обеспечения безопасности.

OSHA (Управление по охране труда) »
NFPA (Национальная ассоциация противопожарной защиты)»
ANSI / ISA (Американский национальный институт стандартов и приборное общество Америки) »
TIA (Ассоциация индустрии телекоммуникаций)»
IEC (Международная электротехническая комиссия) »
CENELEC (Европейский комитет по стандартизации в области электротехники)»
IEEE (Институт инженеров по электротехнике и электронике) »

Хорошее заземление - это больше, чем мера безопасности, оно также предотвращает повреждение промышленных установок и оборудования.Хорошая система заземления повысит надежность оборудования и снизит вероятность повреждения из-за молнии или токов короткого замыкания. Ежегодно на рабочих местах теряются миллиарды долларов из-за электрических пожаров. Это не учитывает связанные с этим судебные издержки и потерю личной и корпоративной производительности.

Зачем тестировать наземные системы?

Со временем коррозионные почвы с высоким содержанием влаги, высоким содержанием соли и высокими температурами могут разрушить заземляющие стержни и их соединения.Несмотря на низкие значения сопротивления заземления при первоначальной установке, эти значения могут увеличиться, если заземляющие стержни разъедены.

Тестеры заземления, такие как измеритель сопротивления заземления Fluke 1623-2 GEO и тестер заземления Fluke 1625-2 GEO, являются незаменимыми инструментами для поиска и устранения неисправностей, помогающими поддерживать время безотказной работы. С неприятными, периодически возникающими электрическими проблемами проблема может быть связана с плохим заземлением или плохим качеством электроэнергии.

Все заземления и заземляющие соединения должны проверяться не реже одного раза в год в рамках вашего обычного плана профилактического обслуживания.Во время этих плановых проверок следует исследовать увеличение сопротивления на 20%. После обнаружения проблема должна быть исправлена ​​путем замены или добавления заземляющих стержней в систему заземления.

Что такое земля и для чего она нужна?

NEC, Национальный электротехнический кодекс, статья 100 определяет заземление как «соединенное (соединяющееся) с землей или с проводящим телом, которое расширяет заземление». Когда мы говорим о заземлении, это две разные темы.

  1. Заземление: намеренное соединение проводника цепи, обычно нейтрального, с заземляющим электродом, помещенным в землю.
  2. Заземление оборудования: обеспечивает правильное заземление рабочего оборудования внутри здания.

Эти две системы заземления необходимо держать отдельно, за исключением соединения между двумя системами. Это предотвращает разность потенциалов напряжения из-за возможного пробоя при ударах молнии. Цель заземления, помимо защиты людей, растений и оборудования, состоит в том, чтобы обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, ​​статических разрядов, сигналов EMI и RFI и помех.

Что такое хорошее значение сопротивления заземления?

Существует большая путаница относительно того, что является хорошим заземлением и каким должно быть значение сопротивления заземления. В идеале заземление должно иметь нулевое сопротивление.

Не существует единого стандартного порога сопротивления заземления, признанного всеми агентствами. Однако NFPA и IEEE рекомендуют значение сопротивления заземления 5,0 Ом или меньше.

Согласно NEC, убедитесь, что полное сопротивление системы относительно земли меньше 25 Ом, указанного в NEC 250.56. В помещениях с чувствительным оборудованием оно должно быть 5,0 Ом или меньше.

В телекоммуникационной отрасли часто используется номинальное сопротивление 5,0 Ом или меньше для заземления и соединения. Целью сопротивления заземления является достижение минимально возможного значения сопротивления заземления, которое имеет смысл с экономической и физической точек зрения.

Обратитесь к специалисту

Статьи по теме

Ответы на часто задаваемые вопросы

Набор для проверки сопротивления заземления с проводами и аксессуарами.Фотография: AEMC

.

В системах распределения электроэнергии провод защитного заземления является важной частью системы защитного заземления. Для целей измерения Земля служит в некоторой степени постоянным эталоном потенциала, относительно которого могут быть измерены другие потенциалы.

Знание того, как правильно проверить систему электрического заземления, необходимо для обеспечения того, чтобы она имела соответствующую пропускную способность по току, чтобы служить адекватным опорным уровнем нулевого напряжения.

В этой статье мы рассмотрим часто задаваемые вопросы техников-испытателей и стажеров, связанные с методами проверки сопротивления заземления.


1. В чем разница между двухточечным, трехточечным и четырехточечным тестом сопротивления заземления?

Наземные испытания названы по количеству точек, контактирующих с почвой. Обычно используемые термины относятся к мертвой земле, падению потенциала и испытаниям по методу Веннера.

  1. Мертвая земля (двухточечная): В методе мертвой земли контакт осуществляется только в двух точках: тестируемом заземляющем электроде и удобном опорном заземлении, таком как система водопровода или металлический столбик ограждения.
  2. Падение потенциала (трехточечное): В методе падения потенциала контакт устанавливается на тестируемом заземляющем электроде, в то время как датчики тока и потенциала контактируют с почвой на заданных расстояниях в процедуре испытания.
  3. Метод Веннера (четырехточечный): При использовании метода Веннера заземляющий электрод не используется, а вместо этого можно измерить независимые электрические свойства почвы с помощью четырехзондового устройства и общепризнанной стандартной процедуры.Этот тест также известен как сопротивление почвы.

Связано: 4 Важные методы проверки сопротивления заземления


2. Как часто следует проверять системы заземления?

Погодные условия и времена года имеют наибольшее влияние на наземные системы. Большинство стандартов рекомендуют проводить тестирование с нечетными интервалами в 5, 7 или 9 месяцев. Использование нечетных интервалов обеспечивает выявление худших сезонов.


3. Какое значение сопротивления заземления считается приемлемым?

Целью тестирования сопротивления заземления является достижение минимально возможного значения сопротивления заземления.Наиболее широко применяемая спецификация заземления содержится в Национальном электротехническом кодексе, который определяет, что жилые заземления должны иметь сопротивление 25 Ом или меньше.

В некоторых спецификациях может требоваться более низкое сопротивление, например, указанное инженером, клиентом или производителем оборудования. NFPA и IEEE рекомендуют значение сопротивления заземления не более 5 Ом. Для компьютеров, генерирующих станций и оборудования управления технологическим процессом может потребоваться всего 1 или 2 Ом.


4. Как дождь влияет на испытание сопротивления заземления?

Повышенная влажность от дождя растворяет соли в почве и способствует дополнительной проводимости, что приводит к снижению сопротивления.Если перед тестом прошел сильный дождь и электрод едва соответствует требованиям, велика вероятность, что он не пройдет, когда почва высохнет.


5. Насколько глубоко мне следует загнать пробники?

Распространено заблуждение, что установка пробников на большую глубину улучшит показания сопротивления заземления. Тестовые зонды должны иметь минимальный контакт с почвой, что можно получить, наблюдая за дисплеем тестового набора.

При использовании наборов сопротивления заземлению с высоким допуском сопротивления может даже не потребоваться проникновение в поверхность, чтобы соответствовать пороговому допуску.Часто бывает достаточно просто положить зонды на плоскую поверхность и полить поверхность.


6. Влияет ли полив зонда заземления для улучшения контакта на результат моего теста?

Полив щупа для проверки сопротивления заземления - это специальное средство улучшения контакта, подобное шлифованию электрода перед его подключением к цепи. Этот метод не должен влиять на ваше окончательное чтение, если между электродами достаточно расстояния при поливе.


7.Можно ли выполнить испытание на сопротивление заземления на бетоне или щебне?

Поскольку бетон достаточно хорошо проводит ток, есть вероятность, что вам нужно только положить зонды на поверхность и намочить область, чтобы установить контакт. Макадам, с другой стороны, ведет себя не так хорошо, как бетон из-за содержания смолы, но может быть достигнут достаточный контакт.

Если у вас возникают проблемы с получением показаний сопротивления заземления с помощью датчиков, поставляемых с вашим испытательным комплектом, попробуйте использовать коврик для заземления, сделанный из гибкой металлизированной токопроводящей площадки, такой как кусок листового металла.


8. Что я могу сделать, если у меня недостаточно места для выхода моих тестовых проводов?

Если недостаточно места, чтобы протянуть ваши выводы для падения потенциального тестирования, вам придется попробовать другой метод, обратитесь к процедурам тестирования, описанным в стандарте IEEE № 81. Наиболее часто используемой процедурой, используемой в этой ситуации, будет звездочка -Дельта метод.

Метод звезда-треугольник представляет собой адаптацию метода двух точек. Измерительные щупы располагаются в виде довольно близкого треугольника вокруг испытуемой земли, и между двумя различными точками (например, от щупа к земле и от щупа к щупу) проводится серия измерений.Затем значения обрабатываются по серии специально разработанных уравнений, чтобы получить показание сопротивления заземления.


9. Могу ли я проверить заземленные стержни в песчаной или каменистой почве?

Можно протестировать заземляющие стержни, вбитые в песчаную или каменистую почву, хотя это труднее проверить, потому что влага, которая способствует электрической проводимости, быстро уходит. Каменистые почвы особенно имеют плохую общую консистенцию и меньший контакт с поверхностью электродов из-за больших пространств между каждым элементом.Во многих случаях могут потребоваться более длинные и более прочные зонды, чтобы обеспечить хороший контакт с почвой.


10. Можно ли использовать тестер изоляции (мегомметр) или мультиметр для проверки сопротивления заземления?

№ Тестеры сопротивления изоляции предназначены для измерения высоких уровней сопротивления и могут выдавать высокое напряжение. Тестеры заземления предназначены для измерения низкого сопротивления и ограничены низким напряжением для безопасности оператора.

Связано: Испытательное оборудование 101: Основы электрических испытаний

С помощью мультиметра можно измерить сопротивление почвы между заземляющим электродом и произвольной контрольной точкой (напр.система водопровода), но в реальной ситуации токи замыкания на землю могут иметь более высокое сопротивление.

Измерения, выполненные с помощью мультиметра постоянного тока или тестера изоляции, подвержены искажениям из-за электрических шумов в почве. Наборы для испытания сопротивления заземления специально разработаны для обеспечения недостаточных условий испытаний.


Список литературы

Комментарии

Войдите или зарегистрируйтесь, чтобы комментировать.

7 CFR § 1755.406 - Измерение сопротивления заземления экрана или брони. | CFR | Закон США

§ 1755.406 Измерение сопротивления заземления щита или брони.

(a) Измерения сопротивления заземления экрана или брони должны проводиться на законченных отрезках медного кабеля и проводов, а также на волоконно-оптических кабелях.

(b) Метод измерения.

(1) Измерение сопротивления заземления экрана или брони должно производиться между медным кабелем и экраном провода и землей, а также между броней оптоволоконного кабеля и землей, соответственно.Измерения должны проводиться либо на кабелях, либо на длинах проводов перед сращиванием и до того, как будут выполнены какие-либо заземляющие соединения с кабелем, экранами проводов или броней. По желанию, измерение может проводиться на длинах кабеля и провода после сращивания, но все заземляющие соединения должны быть удалены с тестируемой секции.

(2) Метод измерения с использованием комплекта для испытания сопротивления изоляции или мегомметра мостового постоянного тока должен быть таким, как показано на рисунке 18, следующим образом:

(c) Испытательное оборудование.

(1) Измерения сопротивления заземления экрана или брони могут быть выполнены с использованием набора для проверки сопротивления изоляции, мегаомметра мостового типа постоянного тока или имеющегося в продаже прибора для определения места повреждения.

(2) Комплект для испытания сопротивления изоляции должен иметь выходное напряжение не более 500 вольт постоянного тока и может работать вручную или работать от батареи.

(3) Мегаомметр мостового типа постоянного тока, который может питаться переменным током, должен иметь шкалы и множители, позволяющие точно считывать значения сопротивления от 50 000 Ом до 10 МОм.Напряжение, подаваемое на экран или броню во время испытания, не должно быть меньше «250 вольт постоянного тока» и не должно превышать «1000 вольт постоянного тока» при использовании прибора с регулируемыми уровнями испытательного напряжения.

(4) Вместо вышеуказанного оборудования можно использовать имеющиеся в продаже локаторы повреждений, если устройства способны обнаруживать повреждения, имеющие значения сопротивления от 50 000 Ом до 10 МОм. Работа устройств и метод поиска неисправностей должны соответствовать инструкциям производителя.

(d) Применимые результаты.

(1) Для всех новых медных кабелей и проводов и всех новых волоконно-оптических кабелей уровни сопротивления заземления экрана или брони обычно превышают 1 МОм-милю (1,6 МОм-км) при 68 ° F (20 ° C). Значение 100 000 Ом-миль (161 000 Ом-км) при 68 ° F (20 ° C) должно быть минимальным приемлемым значением сопротивления заземления экрана или брони.

(2) Сопротивление заземления экрана или брони обратно пропорционально длине и температуре. Кроме того, другими факторами, которые могут повлиять на показания, могут быть почвенные условия, неисправное испытательное оборудование и неправильные процедуры испытаний.

(3) Для метода испытания сопротивления и мегаомметра мостового типа постоянного тока значение Ом-миля (Ом-км) для сопротивления заземления экрана или брони должно быть вычислено путем умножения фактического показания шкалы в Ом на испытательной установке на длину. в милях (км) тестируемого кабеля или провода.

(4)

(i) Сопротивление заземления экрана или брони объектива можно определить путем деления 100 000 на длину в милях (161 000 на длину в км) испытуемого кабеля или провода.Полученное значение является минимально допустимым показанием шкалы измерителя в омах. Примеры пунктов (d) (3) и (d) (4) этого раздела следующие:

Уравнение 1. Испытательный комплект: показание шкалы * длина = сопротивление-длина

75000 Ом * 3 мили = 225000 Ом-миля

(75000 Ом * 4,9 км = 367000 Ом-км)

Уравнение 2. 100 000 Ом-миля ÷ длина = минимально допустимое показание шкалы счетчика.

100000 Ом-миля ÷ 3 мили = 33 333 Ом

(161000 Ом-км ÷ 4.9 км = 32 857 Ом)

(ii) Поскольку 33 333 Ом (32 857 Ом) является минимально допустимым показанием шкалы измерителя, а показание шкалы измерителя составляет 75 000 Ом, считается, что кабель соответствует требованиям 100 000 Ом-миль (161 000 Ом-км).

(5) Из-за различий между различными материалами оболочки, используемыми при производстве кабеля или провода, а также из-за различных условий почвы, нецелесообразно предоставлять простые факторы для прогнозирования величины изменения сопротивления экрана или брони от сопротивления заземления из-за температуры.Однако отклонения могут быть значительными при значительных отклонениях температуры от окружающей температуры 68 ° F (20 ° C).

(e) Запись данных. Данные должны быть скорректированы с учетом требований к длине в ом-миля (ом-км) и температуре 68 ° F (20 ° C) и должны быть записаны в форме, указанной в применимом строительном контракте.

(f) Возможные причины несоответствия.

(1) Если результаты измерений сопротивления ниже требуемых 100000 Ом-миль (161000 Ом-км) при 68 ° F (20 ° C), температура оболочки, условия почвы, испытательное оборудование и метод должны быть проверены перед кабелем. или провод считается неисправным.Если температура составляет приблизительно 68 ° F (20 ° C) и условия почвы приемлемы, а показание меньше 100 000 Ом-миль (161 000 Ом-км), проверьте калибровку оборудования; а также метод испытаний. Если было обнаружено, что оборудование не откалибровано, откалибруйте оборудование заново и повторно измерьте кабель или провод. Если температура была 86 ° F (30 ° C) или выше, кабель или провод должны быть повторно измерены в то время, когда температура составляет примерно 68 ° F (20 ° C). Если испытание проводилось в необычно влажной почве, кабель или провод следует повторно испытать после того, как почва достигнет нормальных условий.Если после выполнения вышеуказанных шагов достигается значение сопротивления 100 000 Ом-миль (161 000 Ом-км) или больше, кабель или провод считается приемлемым.

(2) Если значение сопротивления кабеля или провода все еще ниже требуемого 100000 Ом-миль (161000 Ом-км) после выполнения шагов, перечисленных в параграфе (f) (1) этого раздела, неисправность должны быть изолированы путем измерения сопротивления заземления экрана или брони на отдельных участках кабеля или провода.

(3) После устранения неисправности или неисправностей оболочка кабеля или провода должна быть отремонтирована в соответствии с § 1755.200, Стандарт RUS на сращивание медных и оптоволоконных кабелей, или вся секция кабеля или провода может быть заменена по запросу заемщик.

Измерители сопротивления заземления MEGGER • ATEquip

Тестеры сопротивления заземления MEGGER впервые применили испытание сопротивления заземления

Компания MEGGER, основанная в конце 1800-х годов, занимается разработкой и производством контрольно-измерительных приборов, которые выполняют электрические измерения для профилактического обслуживания и поиска неисправностей.Тестеры сопротивления заземления MEGGER были впервые разработаны и представлены в начале и середине 1900-х годов и являются лидерами в области технологий и инноваций на сегодняшний день. Тестеры сопротивления заземления MEGGER предназначены для удобного измерения электропроводности земли. Megger предлагает более десятка технических вариантов и решений для удовлетворения ваших требований.

Тестеры сопротивления заземления MEGGER для измерения проводимости земли

Свойства электропроводности Земли находят практическое применение в повседневных применениях на промышленных предприятиях и в коммунальных предприятиях по всему миру.На самом деле, земля является относительно плохим проводником электричества по сравнению с обычными металлическими проводниками, такими как медь и алюминий. Однако, если площадь пути для прохождения тока достаточно велика, сопротивление может быть довольно низким, и земля может быть хорошим проводником. Изобилие и доступность земли делают ее незаменимым компонентом правильно функционирующей электрической системы. Определение эффективности «заземляющих» сетей и соединений, которые используются с электрическими системами для защиты персонала и оборудования, является фундаментальным приложением.Измерения удельного сопротивления земли наиболее полезны для определения наилучшего местоположения и глубины для электродов с низким сопротивлением для нейтральных соединений.

Семейство испытательных приборов Megger DET предлагает уникальное решение для измерения сопротивления заземляющего электрода (стержня) и удельного сопротивления почвы. В семействе есть три цифровых варианта, которые поддерживают 2-, 3- и 4-точечное тестирование (только DET4TD), и одна аналоговая версия, обеспечивающая 2- и 3-точечные измерения.

DET3TC может использовать дополнительные токовые клещи (ICLAMP) для измерения сопротивления электрода (стержня) без отключения, не затрагивая систему заземления установки (технология присоединенного стержня, ART).DET3TC вместе с токовыми клещами также может измерять ток проводника.

Варианты серии DET имеют следующие особенности:

Характеристика DET3TA DET3TC DET3TD DET4TD
Автоматическая проверка пиков C ~ ДА ДА ДА
Автоматическая проверка пиковой нагрузки ~ ДА ДА ДА
Ручная проверка пиковых импульсов ДА
Автоматический контроль шума ~ ДА ДА ДА
Ручная проверка шума ДА ~ ~ ~
Подавление шума (пик-пик 40 В) ДА ДА ДА ДА
2-проводной тест ДА ДА ДА ДА
3-проводной тест ДА ДА ДА ДА
4-проводный тест ~ ~ ~ ДА
Тест без отключения (ART) ~ ДА ~ ~
Вольтметр (измерение напряжения шума заземления) ДА ДА ДА ДА

Megger DET2 / 2

Цифровой измеритель сопротивления заземления Megger DET2 / 2 измеряет сопротивление заземляющего электрода и удельное сопротивление почвы, чтобы повысить безопасность и производительность электрических систем.Устройство измеряет в цифровом виде и имеет вручную выбранные тестовый ток, тестовую частоту и фильтрацию, чтобы его можно было использовать в шумной среде. В измерителе используется четырехконтактный метод, чтобы исключить сопротивление цепи тока для более точных измерений. Megger_DET2-2 Лист данных
Меггер DET3TC

Новое семейство инструментов для наземных испытаний от Megger предлагает уникальное решение для ваших потребностей в наземных испытаниях.Полный комплект прибора, измерительные провода, стержни, батареи и сертификат калибровки поставляются в прочном полипропиленовом футляре для переноски - все, что вам нужно для начала тестирования, в одном наборе, который включает комплект для стержней и проводов Megger_DET3-Series_DataSheet
Megger DET3TD

Новое семейство инструментов для наземных испытаний от Megger предлагает уникальное решение для ваших потребностей в наземных испытаниях.Полный комплект прибора, измерительные провода, стержни, батареи и сертификат калибровки поставляются в прочном полипропиленовом кейсе для переноски - все, что вам нужно для начала тестирования, в одном наборе. Тест на 2-3 полюса, диапазон до 2000 Ом Megger_DET3-Datasheet
Megger DET4TR2

Кат. № 1000-324 Полный комплект включает батареи, стойки, сертификат калибровки и измерительные провода, содержащиеся в прочном полипропиленовом футляре для переноски, который является всем, что вам нужно в одной упаковке для начала испытаний.Клеммные адаптеры (опционально) доступны для подключения большого количества различных измерительных проводов. 2-3-4 Pole Test, ART, бесконтактный зажим, диапазон до 100000 Ом, NiMH Megger_DET4TD2_DET4TR2-Datasheet
DET4TC2 + CL KIT

Кат. # 1000-365 Четырехконтактный тестер сопротивления заземления Megger DET4TC2 с зажимами измеряет сопротивление заземления, удельное сопротивление грунта и напряжение заземления для оценки безопасности и целостности электрических систем.Тестер предлагает на выбор 2-, 3- или 4-полюсное тестирование сопротивления заземления. Он может проводить измерения с использованием метода прикрепленных стержней (ART), который проверяет заземление на месте без необходимости отключения подключения к электросети. DET4TC2, Stakeless, Cal-Cert Megger_DET4TC2-KIT_Datasheet
DET4TCR2 + CL KIT

Кат. # 1000-366 Четырехконтактный тестер сопротивления заземления Megger DET4TCR2 с зажимами измеряет сопротивление заземления, удельное сопротивление грунта и напряжение заземления для оценки безопасности и целостности электрических систем.Тестер предлагает на выбор 2-, 3- или 4-полюсное тестирование сопротивления заземления. Он может проводить измерения с использованием метода прикрепленных стержней (ART), который проверяет заземление на месте без необходимости отключения подключения к электросети. DET4TCR2, Зажимы Megger_DET4TC2-CL_KIT_Datasheet
Меггер 1000-345

Кат. # 1000-345 Новые DET4TC и DET4TCR также обеспечивают возможность бесконтактного тестирования. Этот метод позволяет оператору использовать прибор как тестер заземления в приложениях, где этот метод является жизнеспособным, а также может работать как тестер падения потенциала. 2-3-4 Pole Test, Rod and Stakeless, Cal- Cert, ART, DET4TC и DET4TCR, испытание на 2-3-4 полюса, ART, бесконтактное крепление, диапазон до 100000 Ом, сухой элемент MEGGER_DET4TC-DET4TCR Лист данных
Меггер DET4TCR2

Кат.# 1000-346 Четырехконтактный тестер сопротивления заземления Megger DET4TCR2 измеряет сопротивление заземления, удельное сопротивление грунта и напряжение заземления для оценки безопасности и целостности электрических систем. Тестер предлагает на выбор 2-, 3- или 4-полюсное тестирование сопротивления заземления. Он может выполнять измерения с использованием метода присоединенного стержня (ART), который проверяет заземление на месте без отключения подключения к электросети., 2-3-4 Pole Test, NiMH, ART, Range to 200,000 Ω Megger_DET4TC2-DET4TCr2 Datasheet
Megger DET4TD2

Кат.# 1000-347 Новое семейство инструментов для наземных испытаний от Megger предлагает уникальное решение для ваших задач по испытаниям заземляющих стержней. Полный набор инструментов, измерительных проводов, стержней и батарей поставляется в прочном полипропиленовом кейсе для переноски - все, что вам нужно для начала тестирования, в одном комплекте. 2-3-4 Pole Test, ART, бесконтактный зажим, диапазон до 20000 Ом. , Сухая камера Megger_DET4TD2_DET4TR2-Лист данных
Megger DET14C

Кат.# 1000-761 Megger DET14C представляет собой новое поколение тестеров сопротивления заземления. Этот прибор индуцирует испытательный ток в системах заземления и измеряет сопротивление заземления в установках с несколькими заземлениями без необходимости отключения заземления Эллиптическая форма зажима до 1500 Ом Хранение данных / вызов данных Megger_DET14C_DET24C Datasheet
Megger DET24C

Кат. # 1000-762 1000-762 - это усовершенствованный зажим сопротивления заземления на тестере, который устанавливает более высокие стандарты в отношении характеристик, производительности, доступа, простоты эксплуатации и безопасности.Благодаря плоским концам, устройство предотвращает накопление грязи, обеспечивая целостность ваших измерений и повышенную надежность по сравнению с другими зажимами на тестерах с блокирующими зубьями Эллиптическая форма зажима, до 1500 Ом Хранение данных / вызов / загрузка через USB Megger_DET14C_DET24C Datasheet
Megger 6320-245 КОМПЛЕКТ
Кат. # 6320-245 Профессиональный комплект для проверки заземления для тестеров DET3 и DET4, кабельные барабаны 2 шт. По 30 м, барабаны для кабеля 2 шт. По 50 м, 4 шипа, лента 50 м, футляр для переноски, Megger_6320-245 KIT Datasheet

Основы тестирования заземления

Megger Модель Описание Прейскурантная цена Цена продажи Электронное предложение со скидкой
Меггер DET2 / 2 Megger DET2 / 2 6410-593 Тестирование методом падения потенциала и наклона, диапазон до 19.99?, 4-контактный 5 495,00 долл. США $ 5214,00 e-QUOTE
Цена со скидкой
Меггер DET3TC Megger DET3TC 45438EL Испытание на 2-3 полюса, испытания ART, диапазон до 2000? 965,00 $ $ 915,00 e-QUOTE
Цена со скидкой
Megger DET3TD Megger DET3TD 45440EL Испытание на 2-3 полюса, диапазон до 2000? 865,00 $ 820,00 $ e-QUOTE
Цена со скидкой
Megger DET4TR2 Megger DET4TR2 1000-324 Испытание на 2-3-4 полюса, ART, бесконтактный зажим, диапазон до 100000 °, NiMH 1,675 долл. США.00 $ 1589,00 e-QUOTE
Цена со скидкой
Megger DET4TC2 + CL KIT DET4TC2 + CL KIT 1000-365 DET4TC2, бесконтактный, Cal-Cert 2 605,00 $ $ 2472,00 e-QUOTE
Цена со скидкой
Megger DET4TCR2 + CL KIT 1000-366 DET4TCR2, Зажимы 2 915,00 $ $ 2766,00 e-QUOTE
Цена со скидкой
Megger DET4TC2 + КОМПЛЕКТ Megger DET4TC2 + KIT 1000-404 DET4TC2, зажимы I и V, комплект EG C / N 6320-245, 4 комплекта проводов от 10 до 49 футов., Сухая камера 3 285,00 долл. США 3117,00 $ e-QUOTE
Цена со скидкой
Megger DET4TCR2-KIT Megger DET4TCR2-KIT
1000-405 DET4TCR2, I & V Clamps, EG Kit C / N 6320-245, 4 комплекта проводов от 10 до 49 футов, зарядное устройство NiMH +
$ 3 520,00 3340,00 $ e-QUOTE
Цена со скидкой
Меггер 1000-345 Megger 1000-345 2-3-4 Pole Test, Rod and Stakeless, Cal-Cert, ART, DET4TC and DET4TC & DET4TCR 1765 долларов.00 $ 1675,00 e-QUOTE
Цена со скидкой
Меггер DET4TC2 Megger DET4TC2 Испытание на 2-3-4 полюса, ART, бесконтактное крепление, диапазон до 100000 °, сухой элемент, $ 1765,00 $ 1675,00 e-QUOTE
Цена со скидкой
Меггер DET4TCR2 Megger DET4TCR2 1000-346 Испытание на 2-3-4 полюса, NiMH, ART, диапазон до 200000? $ 2 015,00 $ 1912,00 e-QUOTE
Цена со скидкой
Megger DET4TD2 Megger DET4TD2 1000-347 Испытание на 2-3-4 полюса, ART, бесконтактный зажим, диапазон до 20000 °, сухой элемент 1395 долларов.00 1323,00 $ e-QUOTE
Цена со скидкой
Megger DET4TR2 Megger DET4TR2 1000-324 Проверка полюсов 2-3-4, NiMH, диапазон до 20000 °, $ 1 675,00 $ 1589,00 e-QUOTE
Цена со скидкой
Megger DET14C Megger DET14C 1000-761 Эллиптическая форма зажима, до 1500? Хранение данных / вызов $ 1 525,00 $ 1447,00 e-QUOTE
Цена со скидкой
Megger DET24C Megger DET24C 1000-762 Зажим эллиптической формы, до 1500? Хранение данных / вызов / загрузка USB 1 730 долл. США.00 $ 1641,00 e-QUOTE
Цена со скидкой
Megger 6320-245 Megger 6320-245 НАБОР для тестеров DET3 и DET4, кабельные барабаны 2 шт. По 30 м, барабаны для кабеля 2 шт. По 50 м, шипы с 4 шнеками, лента 50 м, чемодан для переноски 825,00 $ 782,00 $ e-QUOTE
Цена со скидкой
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *