Как измерить силу тока и напряжение. Какие приборы используются для измерения тока и напряжения. Какие особенности нужно учитывать при измерении постоянного и переменного тока. Как правильно выбрать измерительный прибор.
Общие сведения об измерении тока и напряжения
Измерение силы тока и напряжения — одна из наиболее распространенных задач в электротехнике и электронике. Для ее решения используется широкий спектр измерительных приборов:
- Амперметры (микро-, милли-, килоамперметры) — для измерения силы тока
- Вольтметры (микро-, милли-, киловольтметры) — для измерения напряжения
- Мультиметры — универсальные приборы для измерения тока, напряжения и других электрических величин
- Осциллографы — для визуализации формы сигналов тока и напряжения
- Регистраторы — для долговременной записи изменений тока и напряжения
При выборе средства измерения необходимо учитывать ряд факторов:
- Ожидаемый диапазон измеряемых величин
- Частота переменного тока
- Требуемая точность измерений
- Условия проведения измерений (лабораторные, производственные и т.д.)
- Влияние внешних факторов (температура, электромагнитные поля и др.)
Методы измерения тока и напряжения
Существует два основных метода измерения тока и напряжения:

Прямые измерения
При прямых измерениях прибор непосредственно включается в измерительную цепь:
- Амперметр включается последовательно с нагрузкой для измерения протекающего тока
- Вольтметр подключается параллельно участку цепи для измерения падения напряжения
Косвенные измерения
При косвенных измерениях используются дополнительные преобразователи:
- Шунты — для расширения пределов измерения тока
- Делители напряжения — для расширения пределов измерения напряжения
- Измерительные трансформаторы тока и напряжения — для измерений в цепях высокого напряжения
Особенности измерения постоянного тока и напряжения
При измерении постоянного тока и напряжения необходимо учитывать следующие особенности:
- Влияние внутреннего сопротивления прибора на измеряемую цепь
- Полярность подключения прибора
- Возможные пульсации тока и напряжения
- Дрейф показаний во времени
Наиболее точные измерения постоянных токов и напряжений обеспечивают:
- Компенсаторы (потенциометры) постоянного тока
- Цифровые мультиметры высокого класса точности
- Прецизионные магнитоэлектрические приборы
Измерение переменного тока и напряжения
Измерение переменного тока и напряжения имеет ряд особенностей:

- Необходимость учета частотного диапазона сигнала
- Влияние формы сигнала на показания прибора
- Измерение действующих, амплитудных или средних значений
- Фазовые соотношения в трехфазных цепях
Для измерений переменного тока и напряжения применяются:
- Электромагнитные и электродинамические приборы
- Выпрямительные приборы
- Термоэлектрические приборы
- Электронные вольтметры
- Цифровые мультиметры
Расширение пределов измерения тока и напряжения
Для расширения пределов измерения применяются следующие методы:
Для измерения тока:
- Шунты — резисторы, включаемые параллельно амперметру
- Измерительные трансформаторы тока
Для измерения напряжения:
- Добавочные резисторы, включаемые последовательно с вольтметром
- Делители напряжения
- Измерительные трансформаторы напряжения
Эти методы позволяют существенно расширить диапазон измеряемых величин без изменения конструкции самого измерительного прибора.
Выбор измерительного прибора
При выборе прибора для измерения тока или напряжения необходимо учитывать следующие факторы:

- Диапазон измеряемых величин
- Требуемая точность измерений
- Внутреннее сопротивление прибора
- Частотный диапазон (для переменного тока)
- Влияние на измеряемую цепь
- Условия эксплуатации
Правильный выбор измерительного прибора позволяет обеспечить требуемую точность измерений и избежать ошибок, связанных с влиянием прибора на измеряемую цепь.
Погрешности при измерении тока и напряжения
При измерении тока и напряжения возникают следующие виды погрешностей:
- Инструментальная погрешность, обусловленная несовершенством конструкции прибора
- Методическая погрешность, связанная с влиянием прибора на измеряемую цепь
- Погрешность от нелинейности шкалы аналоговых приборов
- Температурная погрешность
- Погрешность от внешних электромагнитных полей
Для минимизации погрешностей необходимо:
- Правильно выбирать измерительный прибор
- Учитывать влияние прибора на измеряемую цепь
- Соблюдать условия эксплуатации прибора
- Проводить периодическую калибровку средств измерений
Измерение в трехфазных цепях
Измерение токов и напряжений в трехфазных цепях имеет ряд особенностей:

- Необходимость учета схемы соединения (звезда или треугольник)
- Соотношения между линейными и фазными величинами
- Возможность использования схем с двумя приборами для измерения трех величин
Для измерений в трехфазных цепях применяются:
- Специализированные трехфазные приборы
- Комбинации однофазных приборов
- Измерительные трансформаторы тока и напряжения
При измерениях в трехфазных цепях важно правильно выбирать схему подключения приборов и учитывать возможные несимметрии нагрузки.
Современные тенденции в измерении тока и напряжения
В настоящее время наблюдаются следующие тенденции в области измерения тока и напряжения:
- Широкое применение цифровых измерительных приборов
- Использование бесконтактных методов измерения тока (датчики Холла, токовые клещи)
- Интеграция измерительных приборов в системы сбора и обработки данных
- Применение виртуальных измерительных приборов на базе компьютеров
- Развитие методов измерения в широком частотном диапазоне
Эти тенденции позволяют повысить точность измерений, расширить функциональные возможности измерительных приборов и упростить процесс измерения и анализа данных.

Метрология и стандартизация
Поможем написать любую работу на аналогичную тему
Реферат
Метрология и стандартизация
От 250 руб
Контрольная работа
Метрология и стандартизация
От 250 руб
Курсовая работа
Метрология и стандартизация
От 700 руб
Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость
Метроло́гия — наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Предметом метрологии является извлечение количественной информации о свойствах объектов с заданной точностью и достоверностью; нормативная база для этого — метрологические стандарты.
Метрология состоит из трёх основных разделов:
- Теоретическая или фундаментальная — рассматривает общие теоретические проблемы (разработка теории и проблем измерений физических величин, их единиц, методов измерений).
- Прикладная — изучает вопросы практического применения разработок теоретической метрологии. В её ведении находятся все вопросы метрологического обеспечения.
- Законодательная — устанавливает обязательные технические и юридические требования по применению единиц физической величины, методов и средств измерений.
Стандартиза́ция — деятельность по разработке, опубликованию и применению стандартов, по установлению норм, правил и характеристик в целях обеспечения безопасности продукции, работ и услуг для окружающей среды, жизни, здоровья и имущества, технической и информационной совместимости, взаимозаменяемости и качества продукции, работ и услуг в соответствии с уровнем развития науки, техники и технологии, единства измерений, экономии всех видов ресурсов, безопасности хозяйственных объектов с учётом риска возникновения природных и техногенных катастроф и других чрезвычайных ситуаций, обороноспособности и мобилизационной готовности страны.
Стандартизация направлена на достижение оптимальной степени упорядочения в определенной области посредством установления положений для всеобщего и многократного применения в отношении реально существующих или потенциальных задач.
За реализацию норм стандартизации отвечают органы стандартизации, наделенные законным правом руководить разработкой и утверждать нормативные документы и другие правила, придавая им статус стандартов.
В области промышленности стандартизация ведет к снижению себестоимости продукции, поскольку:
- позволяет экономить время и средства за счет применения уже разработанных типовых ситуаций и объектов;
- повышает надежность изделия или результатов расчетов, поскольку применяемые технические решения уже неоднократно проверены на практике;
- упрощает ремонт и обслуживание изделий, так как стандартные узлы и детали — взаимозаменяемые (при условии, что сборка осуществлялась без пригоночных операций).
На нашем сайте предоставлены учебные материалы для студентов, по метрологии и стандартизации. Суммарно около
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.
Расчет стоимостиГарантииОтзывы
Заглавная страница
КАТЕГОРИИ: Археология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрации Техника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ? Влияние общества на человека Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. |
⇐ ПредыдущаяСтр 7 из 10Следующая ⇒ Общие сведения. Токи и напряжения являются наиболее распространенными электрическими величинами, которые приходится измерять. Этим объясняется широкая номенклатура выпускаемых промышленностью средств измерений токов и напряжений. Выбор средства измерений может определятся совокупностью факторов: предполагаемых размером измеряемой величины, родом тока (постоянного и переменного), частотой, требуемой точностью измерения, условиями проведения эксперимента (лабораторные, цеховые, полевые и т. п.), влиянием внешних условий (температуры, магнитного поля, вибраций и т. д.) и др. Определение значений напряжении осуществляют, как правило, прямыми измерениями; токов — кроме прямых измерений, широко используют косвенные измерения, при которых измеряется падение напряжения U на резисторе с известным сопротивлением R , включенном и цепь измеряемого тока . Измерения токов и напряжений всегда сопровождаются погрешностью, обусловленной сопротивлением используемого средства измерений. Включение в исследуемую цепь средства измерений искажает режим этой цепи. Так, например, включение амперметра, имеющего сопротивление RA, в цепь, изображенную на рис. 11.1, приведет к тому, что вместо тока , который протекал в этой цепи до включения амперметра, после включения амперметра пойдет ток . Погрешность тем больше, чем больше сопротивление амперметра. Аналогичная погрешность возникает при измерении напряжений. Например, в цепи, представленной на рис. . Погрешность тем больше, чем меньше сопротивление вольтметра.
Рисунок 11.1 Рисунок 11.2
Косвенным показателем сопротивления средств измерений является мощность, потребляемая средством из цепи, в которой производится измерение. При протекании тока через амперметр с сопротивлением RAмощность, потребляемая амперметром, .Мощность, потребляемая вольтметром, определяется выражением , где U — напряжение, измеряемое вольтметром; — внутреннее сопротивление вольтметра. Следовательно, погрешность от искажения режима цепи при измерении токов и напряжений тем меньше, чем меньше мощность, потребляемая средством измерений из цепи, где производится измерение. Диапазон измеряемых токов и напряжений весьма широк. Например, при биологических исследованиях, космических исследованиях, измерениях в вакууме необходимо измерять постоянные токи, составляющие доли фемтоампер (10-15 А), а в мощных энергетических установках, на предприятиях цветной металлургии, химической промышленности — токи, достигающие сотен килоампер. Для измерений токов и напряжений в таком широком диапазоне значений выпускаются различные средства измерений, обеспечивающие возможность измерений в определенных поддиапазонах. Средства измерений токов и напряжений делают, как правило, многопредельными.
Измерения постоянных токов и напряжений. Наивысшая точность измерений постоянных токов и напряжений определяется точностью государственных первичных эталонов единицы силы постоянного электрического тока и единицы электродвижущей силы. Государственные первичные эталоны обеспечивают воспроизведение соответствующей единицы со средним квадратическим отклонением результата измерений (S0), не превышающим 4×10-6 для силы постоянного тока и 5×10-8 для ЭДС, при неисключенной систематической погрешности ( ), не превышающей, соответственно, 8×10-6 и 1×10-6. Из рабочих средств измерений постоянных токов и напряжений наименьшую погрешность измерений дают компенсаторы постоянного тока.
Компенсаторы используют при точных измерениях постоянных токов, ЭДС и напряжений и для поверки менее точных средств измерений.
Таблица 11.1
Наиболее распространенными средствами измерений постоянных токов и напряжений являются амперметры (микро-, милли-, килоамперметры) и вольтметры (микро-, милли-, киловольтметры), а также универсальные н комбинированные приборы (например, микровольтнаноамперметлы, нановольтамперметры и т. Для измерений весьма малых постоянных токов и напряжений применяют электрометры и фотогальванометрические приборы. В качестве примера можно указать цифровые универсальные микровольтметры-электрометры с диапазоном измерений постоянного тока от 10—17 до 10—13 А и сдиапазоном измерений тока от 10—15 и до 10—7 А. Примером фотогальванометрических приборов является нановольтамперметры,имеющие наименьший диапазон измерений постоянных токов 0,5—0—0,5 нА и постоянных напряжений 50—0—50 нВ. При измерении малых и средних значений постоянных токов и напряжений наибольшее распространение получили цифровые и магнитоэлектрические приборы. Измерения больших постоянных токов осуществляют, как правило, магнитоэлектрическими килоамперметрами с использованием наружных шунтов, а весьма больших токов — с использованием трансформаторов постоянного тока. Измерения переменных токов и напряжений. В основу измерений переменных токов и напряжений положены государственный специальный эталон, воспроизводящий силу тока 0,01 — 10 А в диапазоне частот Гц, и государственный специальный эталон, воспроизводящий напряжение 0,1 — 10 В в диапазоне частот 20—3×107 Гц. Рабочими средствами измерений переменных токов и напряжений являются амперметры (микро-, милли-, килоамперметры), вольтметры (микро-, милли-, киловольтметры), компенсаторы переменного тока, универсальные и комбинированные приборы, а также регистрирующие приборы и электронные осциллографы. Таблица 11.2
Особенностью измерений переменных токов и напряжений является то, что они изменяются по времени.
средневыпрямленное значение т и среднее значение где x( t) — изменяющаяся во времени величина. Таким образом при измерении переменных токов и напряжений могут измеряться их действующие, амплитудные, средневыпрямленные, средние и мгновенные значения. В практике электрических измерений чаще всего приходится измерять синусоидальные переменные токи и напряжения, которые обычно характеризуются действующим значением. Поэтому подавляющее большинство средств измерений переменных токов и напряжений градуируются в действующих значениях для синусоидальной формы кривой тока или напряжения.
Таблица 11.
Измерения действующих значений переменных токов и напряжений осуществляют различными средствами измерений, наиболее распространенные из которых приведены в табл. 11.3 и 11.4. Сравнение этих таблиц с табл. 11.1 и 11.2 показывает, что наименьшие верхние пределы измерений переменных токов и напряжений на несколько порядков больше, чем постоянных. Это объясняется тем, что воздействия внешнего переменного магнитного поля и паразитных резистивно-емкостных связей, отмеченные выше, особенно сильно влияют при измерении переменных величин. Малые переменные токи измеряют цифровыми, электронными и выпрямительными приборами, малые переменные напряжения — электронными вольтметрами. Наиболее широкий диапазон измерений переменных токов при прямом включении средств измерений обеспечивают выпрямительные приборы. Они имеют относительно широкий диапазон и при измерении переменных напряжений. Эти приборы делают, как правило, многопредельными. Следует также учесть, что эти приборы при отключении выпрямителя используются как магнитоэлектрические приборы для измерений постоянных токов и напряжений. Переменные токи свыше килоампера и переменные напряжения свыше киловольта измеряют с помощью наружных измерительных трансформаторов тока или напряжения электромагнитными, выпрямительными и электродинамическими приборами. Измерения высоких переменных напряжений (до 75 кВ) при прямом включении средств измерений позволяют осуществлять электростатические киловольтметры. В наиболее широком частотном диапазоне при измерении переменных токов работают термоэлектрические и электронные приборы, а при измерении переменных напряжений — электронные и электростатические приборы. Термоэлектрические вольтметры имеют ограниченное применение из-за большой мощности, потребляемой ими из цепи измерения, поэтому в табл. 11.4 они не приведены. В наиболее узком частотном диапазоне работают электродинамические и электромагнитные приборы; Верхняя граница их частотного диапазона обычно не превышает единиц килогерц.
Таблица 11. При этом наблюдается и другая закономерность, отмеченная ранее: с увеличением частоты погрешность измерений увеличивается. Например, термоэлектрический миллиамперметр Т15 класса точности 1,0 на пределе измерений 100 мА имеет верхнюю граничную частоту 50 МГц, а на пределе 300 мА — 25 МГц. Этот же прибор допускает возможность измерений тока до 100 мА при частоте до 100 МГц и тока до 300 мА при частоте до 50 МГц с погрешностью не более ±4,0 %. При измерениях действующих значений переменных токов и напряжений, форма кривой которых отличается от синусоидальной, возникает дополнительная погрешность. Эта погрешность минимальна у средств измерений, работающих в широкой полосе частот, при условии, что выходной сигнал этих средств определяется действующим значением входной величины. Наименее чувствительны к изменению формы кривой переменных токов и напряжений термоэлектрические, электростатические и электронные приборы. Наиболее точные измерения действующих значений синусоидальных токов и напряжений можно осуществить электродинамическими приборами, цифровыми приборами и компенсаторами переменного тока. Отметим некоторые особенности измерений токов и напряжений в трехфазных цепях. В общем случае в несимметричных трехфазных цепях число необходимых средств измерений токов и напряжений соответствует числу измеряемых величин, если каждая измеряемая величина измеряется своим прибором. При измерениях в симметричных трехфазных цепях достаточно произвести измерение тока или напряжения только в одной линии (фазе), так как в этом случае все линейные (фазные) токи и напряжения равны между собой. Связь между линейными и фазными токами и напряжениями зависит от схемы включения нагрузки. Известно, что для симметричных трехфазных цепей эта связь определяется соотношениями: и при соединении нагрузки звездой и и при соединении нагрузки треугольником.
Рисунок 11.3
Измерения средневыпрямленных и амплитудных Хтзначений синусоидальных токов и напряжений трудностей не вызывают, так как эти значения однозначно связаны сдействующим значением синусоиды: и . Среднее значение переменного тока или напряжения характеризует постоянную составляющую, содержащуюся в измеряемом токе или напряжении. Для измерений средних значений переменных токов и напряжений обычно применяют магнитоэлектрические приборы. Мгновенные значения переменных токов и напряжений измеряют регистрирующими приборами и электронными осциллографами. Следует иметь в виду, что по мгновенным значениям можно определить и другие значения токов и напряжений (средние, средневыпрямленные, действующие, амплитудный).
⇐ Предыдущая12345678910Следующая ⇒ Читайте также: Техника прыжка в длину с разбега Организация работы процедурного кабинета Области применения синхронных машин Оптимизация по Винеру и Калману |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2021-05-12; просмотров: 64; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia. |
Как измерить напряжение и ток
Как измерить напряжение и ток:?
Напряжение и ток являются важными электрическими величинами. Для измерения нам нужен специальный тип измерителя.. давайте посмотрим, как измерить напряжение и ток в электрической цепи
Измерение напряжения:
Прибор для измерения напряжения называется вольтметром. Если вы хотите измерить напряжение на компоненте, вам следует подключить вольтметр к измеряемым компонентам. Вольтметр обозначен маленьким кружком со стрелкой, указывающей на цифры.
Пример: обратитесь к диаграмме, я хочу измерить напряжение на сопротивлении R, затем мне нужно подключить вольтметр к сопротивлению, точка A и B. Напряжение — это электрический потенциал или свойство электрического давления, поэтому для измерения напряжение на любых компонентах, вы не хотите отключать компоненты от цепи. Полярность клемм вольтметра и полярность измеряемого компонента должны совпадать.
т.е. Рассмотрим схему ниже. Если точка A является плюсовой клеммой, а точка B отрицательной клеммой, это означает, что красная клемма вольтметра (обычно красная считается положительной для вольтметра) должна быть в точке A, а черная клемма (обычно черная считается отрицательной) терминал) должен быть в B. Напряжение будет отображаться на вольтметре после завершения всех мероприятий.
[wp_ad_camp_1]
Примечание 1 Измерение напряжения : Перед измерением напряжения убедитесь в характере напряжения (напряжение переменного или постоянного тока). Нам нужны различные типы вольтметров, чтобы измерять различные типы напряжения…
Примечание 2 Измерение напряжения : Помните об измерении высокого напряжения, для измерения высокого напряжения нам нужно специальное оборудование.
Примечание 3 Измерение напряжения: Соблюдайте меры предосторожности.
Также с помощью вольтметра мы не можем измерить ток, протекающий в цепи.
Измерение тока:
Прибор для измерения тока называется амперметром. Чтобы измерить ток, протекающий в резисторе, катушке индуктивности или любых компонентах, компоненты должны быть отключены, а амперметр должен быть подключен последовательно с этим компонентом. Из-за тока течет имущество (поток шаров). Чтобы измерить ток, вы не хотите заботиться о полярности. Также с помощью амперметра мы не можем измерить напряжение в цепи.
Ключевые точки для измерения тока:
- Амперметр должен подключаться последовательно с нагрузкой (для измерения)
- Учитывая максимальный ток, который может протекать через цепь, можно увеличить диапазон амперметра для лучшего результата.
Пример:
[wp_ad_camp_1]
Рассмотрим приведенную выше схему, просто откройте клемму A и подключите амперметр. Подсоедините клемму А к одной клемме амперметра, а другую к сопротивлению R. Измеренное показание отобразится на дисплее измерителя. Вместо A вы также можете открыть клемму B нагрузки (либо A, либо B), что даст тот же результат.
Примечание: Мультиметр — это устройство, которое используется для измерения переменного напряжения, переменного тока и постоянного напряжения, постоянного тока с помощью одного и того же измерителя, выбрав DC AC.