Как делают транзисторы: Как разрабатываются и производятся процессоры: изготовление чипа / Хабр

Как разрабатываются и производятся процессоры: изготовление чипа / Хабр

Это третья статья из серии о проектировании ЦП. В первой статье мы рассмотрели архитектуру компьютера и объяснили его работу на высоком уровне. Во второй статье говорилось о проектировании и реализации некоторых компонентов чипа. В третьей части мы узнаем, как архитектурные проекты и электрические схемы становятся физическими чипами.

Как превратить кучу песка в современный процессор? Давайте разберёмся.

Часть 1: Основы архитектуры компьютеров (архитектуры наборов команд, кэширование, конвейеры, hyperthreading)
Часть 2: Процесс проектирования ЦП (электрические схемы, транзисторы, логические элементы, синхронизация)
Часть 3: Компонование и физическое производство чипа (VLSI и изготовление кремния)
Часть 4: Современные тенденции и важные будущие направления в архитектуре компьютеров (море ускорителей, трёхмерное интегрирование, FPGA, Near Memory Computing)

Как говорилось ранее, процессоры и вся другая цифровая логика составлены из транзисторов.

Транзистор — это переключатель с электрическим управлением, который может включаться и отключаться подачей или отключением напряжения на затворе. Мы сказали, что существует два вида транзисторов: nMOS-устройства пропускают ток, когда затвор включён, а pMOS-устройства пропускают ток при выключенном затворе. Базовая структура процессора — это транзисторы, созданные из кремния. Кремний — это полупроводник, потому что он занимает промежуточное положение — не проводит ток полностью, но и не является изолятором.

Чтобы превратить кремниевую пластину в практическую электрическую схему добавлением транзисторов, производственные инженеры используют процесс под названием «легирование«. Легирование — это процесс добавления в базовый субстрат кремния тщательно выбранных примесей для изменения его проводимости. Цель заключается в том, чтобы изменить поведение электронов так, чтобы мы могли ими управлять. Существует два вида транзисторов, а значит, и два основных вида легирования.



Процесс изготовления пластины до размещения чипов в корпусе.

Если мы добавим точно контролируемое количество элементов-доноров электронов, например, мышьяка, сурьмы или фосфора, то можем создать область n-типа. Поскольку область пластины, на которую нанесены эти элементы, теперь имеет избыток электронов, она становится отрицательно заряженной. Отсюда взялось название типа (n — negative) и буква «n» в nMOS. Добавляя на кремний такие элементы-акцепторы электронов, как бор, индий или галлий, мы можем создавать область p-типа, заряженную положительно. Отсюда взялась буква «p» в p-типе и pMOS (p — positive). Конкретные процессы добавления этих примесей к кремнию называются ионной имплантацией

и диффузией; их мы в статье рассматривать не будем.

Теперь, когда мы можем управлять электропроводимостью отдельных частей кремниевой пластины, можно скомбинировать свойства нескольких областей для создания транзисторов. Транзисторы, используемые в интегральных схемах и называющиеся MOSFET (Metal Oxide Semiconductor Field Effect Transistors, МОП-структуры, структуры «металл-оксид-проводник»), имеют четыре соединения. Контролируемый нами ток течёт между истоком (Source) и стоком (Drain). В n-канальном устройстве ток обычно входит в сток и выходит из истока, а в p-канальном устройстве он обычно течёт из истока и выходит из стока. Затвор (Gate) — это переключатель, используемый для включения и отключения транзистора. Наконец, у устройства есть тело транзистора (Body), которое не относится к процессору, поэтому мы не будем его рассматривать.

Физическая структура инвертора в кремнии. Области разных цветов имеют разные свойства проводимости. Заметьте, как разные кремниевые компоненты соответствуют схеме справа

Технические подробности работы транзисторов и взаимодействия отдельных областей — это содержание целого курса колледжа, поэтому мы коснёмся только основ. Хорошая аналогия их работы — это разводной мост над рекой. Автомобили — электроны в транзисторе — хотят перетечь с одной стороны реки на другую, это исток и сток транзистора. Возьмём для примера nMOS-устройство: когда затвор не заряжен, разводной мост поднят и электроны не могут течь по каналу. Когда мы опускаем мост, то образуем дорогу над рекой и автомобили могут свободно перемещаться. То же самое происходит в транзисторе. Зарядка затвора образует канал между истоком и стоком, позволяющий току течь.

Для точного контроля над расположением на кремнии разных областей p и n производители, например Intel и TSMC используют процесс под названием

фотолитография. Это чрезвычайно сложный многоэтапный процесс и компании тратят миллиарды долларов на его усовершенствование для того, чтобы создавать более мелкие, быстрые и энергоэффективные транзисторы. Представьте сверхточный принтер, который можно использовать для рисования на кремнии паттернов для каждой области.

Процесс изготовления транзисторов на чипе начинается с чистой кремниевой пластины (подложки). Она нагревается в печи для создания на поверхности пластины тонкого слоя диоксида кремния. Затем на диоксид кремния наносится светочувствительный фоторезистивный полимер. Освещая полимер светом определённых частот, мы можем обнажать полимер в тех областях, где хотим выполнять легирование. Это этап литографии, и он схож с тем, как принтеры наносят чернила на определённые области страницы, только в меньшем масштабе.

Пластина протравливается плавиковой кислотой для растворения диоксида кремния в местах, где был удалён полимер. Затем фоторезист убирается, оставляя только находящийся под ним оксидный слой. Теперь на пластину можно нанести легирующие ионы, которые имплантируются только в местах, где отсутствует оксид.

Этот процесс маскирования, формирования и легирования повторяется десятки раз для медленного построения каждого уровня элементов в полупроводнике. После завершения базового уровня кремния поверх можно создать металлические соединения, соединяющие разные транзисторы. Чуть позже мы подробнее поговорим об этих соединениях и слоях металлизации.

Разумеется, производители чипов не выполняют процесс создания транзисторов под одному. При проектировании нового чипа они генерируют маски для каждого этапа процесса изготовления. Эти маски содержат местоположения каждого элемента миллиардов транзисторов чипа. Несколько чипов группируются вместе и изготавливаются совместно на одном кристалле.

После изготовления пластины она разрезается на отдельные кристаллы, которые помещаются
в корпуса. Каждая пластина может содержать сотни или даже больше чипов. Обычно чем более мощный производится чип, тем больше будет кристалл, и тем меньше чипов производитель может получить с каждой пластины.

Можно подумать, что нам просто стоит производить огромные супермощные чипы с сотнями ядер, но это невозможно. В настоящее время самым серьёзным фактором, мешающим создавать всё более крупные чипы, являются дефекты в процессе производства. Современные чипы содержат миллиарды транзисторов и если хотя бы одна часть одного транзистора сломана, то может быть выброшен весь чип. При увеличении размера процессоров вероятность неисправности чипа повышается.

Продуктивность процессов изготовления своих чипов компании тщательно скрывают, но её можно примерно оценить в 70-90%. Компании обычно изготавливают чипы с запасом, потому что знают, что некоторые части не будут работать. Например, Intel может спроектировать 8-ядерный чип, но продавать его только как 6-ядерный, потому что рассчитывает, что одно или два ядра могут быть сломаны. Чипы с необычно низким количеством дефектов обычно откладываются для продажи по более высокой цене. Этот процесс называется binning.

Один из самых серьёзных маркетинговых параметров, связанных с изготовлением чипов — это размер элементов. Например, Intel осваивает 10-нанометровый процесс, AMD использует для некоторых GPU 7-нанометровый, а TSMC начала работу над 5-нанометровым процессом.

Но что означают все эти числа? Традиционно размером элемента называется минимальное расстояние между стоком и истоком транзистора. В процессе развития технологий мы научились уменьшать транзисторы, чтобы на одном чипе их помещалось всё больше. При уменьшении транзисторов они также становятся всё быстрее и быстрее.

Глядя на эти числа, важно помнить, что некоторые компании могут основывать размер техпроцесса не на стандартном расстоянии, а на других величинах. Это значит, что процессы с разным размером у различных компаний могут на самом деле приводить к созданию транзисторов одинакового размера. С другой стороны, не все транзисторы в отдельном техпроцессе имеют одинаковый размер. Проектировщики могут решить ради компромиссов сделать некоторые транзисторы крупнее других. Мелкий транзистор будет быстрее, потому на зарядку и разрядку его затвора требуется меньше времени. Однако мелкие транзисторы могут управлять только очень малым количеством выходов. Если какой-то кусок логики будет управлять чем-то, требующим много мощности, например, контактом вывода, то его придётся сделать намного больше.

Такие транзисторы вывода могут быть на порядки величин больше, чем транзисторы внутренней логики.

Снимок кристалла современного процессора AMD Zen. Эта конструкция состоит из нескольких миллиардов транзисторов.

Однако проектирование и изготовление транзисторов — это только половина чипа. Нам необходимы проводники, чтобы соединить всё согласно схеме. Эти соединения создаются при помощи слоёв металлизации поверх транзисторов. Представьте многоуровневую дорожную развязку с въездами, выездами и кучей пересекающихся дорог. Именно это и происходит внутри чипа, только в гораздо меньшем масштабе. У разных процессоров разное количество металлических связующих слоёв над транзисторами. Транзисторы уменьшаются, и для маршрутизации всех сигналов требуется всё больше слоёв металлизации. Сообщается, что в будущем 5-нанометровом техпроцессе TMSC будет использоваться 15 слоёв. Представьте 15-уровневую вертикальную автомобильную развязку — это даст вам представление о том, насколько сложна маршрутизация внутри чипа.

На показанном ниже изображении с микроскопа показана решётка, образованная семью слоями металлизации. Каждый слой плоский и при поднимании вверх слои становятся больше, чтобы способствовать снижению сопротивления. Между слоями есть крошечные металлические цилиндрики, называемые перемычками, которые используются для перехода на более высокий уровень. Обычно каждый слой меняет направление относительно слоя под ним, чтобы снизить нежелательные ёмкостные сопротивления. Нечётные слои металлизации могут использоваться для создания горизонтальных соединений, а чётные — для вертикальных соединений.

Можно понять, что управление всеми этими сигналами и слоями металлизации очень быстро становится невероятно сложным. Чтобы способствовать решению этой проблемы, применяются компьютерные программы, автоматически располагающие и соединяющие транзисторы. В зависимости от сложности конструкции программы даже могут транслировать функции высокоуровневого кода на C вниз до физических расположений каждого проводника и транзистора. Обычно разработчики чипов позволяют компьютерам генерировать основную часть конструкции автоматически, а затем изучают и вручную оптимизируют отдельные критически важные части.

Когда компании хотят создать новый чип, они начинают процесс проектирования со стандартных ячеек, предоставляемых компанией-изготовителем чипов. Например, Intel или TSMC предоставляют проектировщикам такие базовые части, как логические элементы или ячейки памяти. Проектировщики могут комбинировать эти стандартные ячейки в любой чип, который хотят произвести. Затем они отправляют на фабрику — место, где необработанный кремний превращается в рабочие чипы — электрические схемы транзисторов чипа и слоёв металлизации. Эти схемы превращаются в маски, которые используются в описанном выше процессе изготовления. Далее мы посмотрим, как может выглядеть процесс проектирования чрезвычайно простого чипа.

Первой мы видим схему инвертора, который является стандартной ячейкой. Заштрихованный зелёный прямоугольник наверху — это pMOS-транзистор, а прозрачный зелёный прямоугольник внизу — nMOS-транзистор. Вертикальный красный проводник — это поликремниевый затвор, синие области — это металлизация 1, а сиреневые области — металлизация 2. Вход A входит слева, а выход Y выходит справа. Соединения питания и заземления выполнены сверху и снизу на металлизации 2.

Скомбинировав несколько логических элементов, мы получили простой 1-битный арифметический модуль. Эта конструкция может складывать, вычитать и выполнять логические операции с двумя 1-битными входами. Идущие вверх заштрихованные синие проводники это слои металлизации 3. Немного более крупные квадраты на концах проводников — это перемычки, соединяющие два слоя.

Наконец, объединив вместе множество ячеек и примерно 2 000 транзисторов, мы получили простой 4-битный процессор с 8 байтами ОЗУ на четырёх слоях металлизации. Увидев, насколько он сложен, можно только представлять, как трудно проектировать 64-битный процессор с мегабайтами кэша, несколькими ядрами и 20 с лишним этапами конвейера. Учитывая то, что у современных высокопроизводительных ЦП есть до 5-10 миллиардов транзисторов и дюжина слоёв металлизации, не будет преувеличением сказать, что они буквально в миллионы раз сложнее нашего примера.

Это даёт нам понять, почему новый процессор является таким дорогостоящим куском технологий и почему AMD и Intel так долго выпускают новые продукты. Для того, чтобы новый чип прошёл путь от чертёжной доски до рынка, обычно требуется 3-5 лет. Это значит, что самые быстрые современные чипы созданы на технологиях, которым уже несколько лет, и что мы ещё много лет не увидим чипов с современным уровнем технологий изготовления.

В четвёртой и последней статье серии мы вернёмся к физической сфере и рассмотрим современные тенденции в отрасли. Что разрабатывают исследователи, чтобы сделать следующее поколении компьютеров ещё быстрее?

травление и осаждение. Разбор / Хабр

Современное производство процессоров иначе как произведением технологического искусства назвать просто язык не поворачивается.  Когда начинаешь разбираться с тем какое количество в нем тонкостей и элегантных технологических решений, то просто взрывается мозг. Сегодня мы вам расскажем о двух важнейших этапах при производстве процессоров, а также объясним что общего между созданием процессоров и ковровыми бомбардировками, зачем нужно греть материалы сфокусированным лучом электронов и как получают металлический пар из самого тугоплавкого металла в мире.

Начнем, как обычно у нас принято, с основ. Как мы уже не раз говорили: транзистор — основа всех процессоров. Но сам по себе одиночный транзистор мало что может. В современных чипах их миллиарды!

Кроме того, все эти транзисторы надо друг с другом связать в правильной последовательности, то есть фактически проложить провода от одного транзистора к другому.

Только вдумайтесь, вам надо в правильной последовательности связать друг с другом миллиард крошечных транзисторов. К каждому транзистору надо подвести по три провода — сток, исток и затвор. Плюс ко всему сам транзистор — это сложный сендвич, в котором в правильной последовательности расположены полупроводники различных типов, изоляторы и металлические контакты.

Давайте просто представим, забыв о том, что транзисторы в тысячи раз меньше толщины человеческого волоса, что вы весь из себя такой Флэш и умеете делать, скажем 100 транзисторов в секунду! Знаете сколько времени у вас уйдет на создание одного чипа М1 от Apple? Пять лет! На создание всего лишь одного чипа! Для одного MacBook! Этот метод явно не подходит, надо думать что-то другое.

Тут то и приходит на помощь наша святая троица, а именно процессы Фотолитографии, Травления и Осаждения! Эти три типа процессов являются базой для создания всех современных процессоров. Да и не только процессоров: эти же процессы являются основой при создании экранов, будь то OLED или LCD, матриц фотокамер, различных модемов, датчиков и например МЕМСов.

Об одном из процесов мы уже вам рассказывали в нашем материале про Экстремальную Ультрафиолетовую литографию.

Литография позволяет нам получить нужный трехмерный рисунок на поверхности чипа.

Создание транзистора

Давайте представим, что создание транзистора — это как постройка дома. Вам необходимо сначала разметить землю, понять, где у вас будут коммуникации, где фундамент — это и есть литография.

Затем вы вызываете трактор, который приезжает и выкапывает для вас ровненькую траншею именно той геометрии, которую вы разметили — это и есть травление, то есть процесс удаления материала из только определенных областей. Чем глубже трактор копает — тем глубже получится траншея, так же и с травлением.

Ну и наконец-то заливка бетоном вашего фундамента — это осаждение. Получение в конце концов именно того фундамента, который изначально был нанесен с помощью литографии.

Комбинацией этих процессов и создается наш дом, мы размечаем участок, травим и осаждаем где надо и наш дом растет слой за слоем, так же и с транзисторами. В результате получаем сложную слоистую структуру из разных материалов. Только таких домов надо строить сотни миллиардов одновременно!

Травление

Давайте перейдем к травлению.  Как мы можем убрать какой-то материал? Ведь трактором траншею в несколько нанометров не вырыть.

В целом, есть два вида травления — сухое и мокрое. При использовании мокрого травления наш материал помещается в специальную ванну или поливается сверху определенным раствором. Этот раствор химически реагирует и растворяет тот материал, который мы хотим убрать, это и удаляет материал с поверхности. Но у такого метода есть минусы, которые при создании маленьких транзисторов очень важны — жидкость затекает во все места, ведь это жидкость и травление происходит равномерно во все стороны, а не вертикально вниз, как мы хотим. Это называется подтрав под маску! Здесь маска закрывает на нашем чипе те участки, которые мы не хотим удалять, то есть травить!

Поэтому при производстве часто используют сухое травление. Для этого надо создать плазму! Как и в Экстремальной УФ-литографии нам нужно прибегнуть к помощи четвертого агрегатного состояния вещества! Только если там плазма нужна была для создания света с определенной длинной волны, то здесь она нужна совсем для другого.

Видите ли, плазма это не просто светящийся газ — она полна разных частиц, атомов, электронов, а также различных положительных и отрицательных ионов. Вот в этих ионах и кроется ключевая особенность. Ведь ионы мало того, что имеют какой-то заряд, так еще и очень реактивны, а это нам и нужно! Сейчас объясним…

Поскольку ионы имеют какой-то заряд, то мы можем их направить в нужное нам место, просто приложив к нужному нам месту противоположный заряд. То есть представим что наши ионы обладают положительным зарядом, мы к нашему чипу прикладываем отрицательное напряжение и ионы летят в него. Более того мы можем регулировать с какой силой ионы бьют по поверхности нашего будущего чипа! Подаем больше напряжения — ионы летят быстрее.

Это и есть та самая ковровая бомбардировка, ведь ионы наши относительно тяжелые и если подать достаточное напряжение, то они врезаются в поверхность материала как бомбы в землю, и просто разносят всю его поверхность! Это процесс, кстати, так и называется — ионная бомбардировка поверхности.

Это физическая составляющая процесса плазмохимического травления материала. Но есть и вторая — химическая.

Как я уже говорил, наши ионы очень активны и если правильно подобрать газ, из которого сделана наша плазма, то ионы будут химически реагировать с материалом чипа и просто образовывать новые соединения, которые будут просто улетать!

Например, при травлении Кремния или Нитрида Галлия, про которые мы вам недавно рассказывали, применяют плазму из гексафторида серы, в смеси с аргоном, или кислородом!

При этом, как и в случае с жидким травлением, те участки, которые мы хотим сохранить, мы можем покрыть специальной маской, которая останется нетронутой в процессе сухого травления, а открытые участки просто улетят!

Вот так путем игры с разными параметрами в процессе травления можно получать идеально гладкие, вертикальные отверстия абсолютно любой формы и глубины.

И более того травление можно осуществлять одновременно по всей поверхности огромной пластины кремния!

Осаждение

С траншеями для нашего дома, ой то есть транзистора, мы разобрались.  Теперь надо в них залить наш фундамент, сделать стены и проложить коммуникации.

Для этого надо осадить различные материалы — это могут быть как металлы, например, медь для контактов транзистора или диэлектрики для изоляции в тех местах, где нам надо.

Ну или например нам надо осадить другой тип полупроводника на чип, как нам это нужно делать, например, в новых LTPO экранах, где используются транзисторы на основе поликристаллического кремния и соседний транзистор на основе оксида индия цинка и галлия!

В принципе, методов осаждения целая куча! Мы же расскажем вам о двух основных и начнем с самого взрывного.

Представьте, что вам надо нанести куда-то очень тонкий слой Вольфрама. Просто отрезать и приклеить точно не получится — я напоминаю что мы тут говорим контактах в несколько единиц нанометров. Как это сделать?

И тут, вы удивитесь, но принцип несильно отличается от того, когда вы наливаете холодное пиво в бокал в теплый летний день. Ведь на холодном бокале тут же начинают образовываться капельки воды: эти капельки — конденсат пара из воздуха. Вот с Вольфрамом надо сделать точно так же.

Но только тут есть одна проблема — если для того, чтобы образовался водяной пар нужно 100 градусов, то у вольфрама температура парообразования составляет почти 6000 градусов! Пока его так разогреешь, все вокруг уже расплавится. Как же его испарить вообще?

Для этого надо прибегнуть к так называемым электронно-лучевым технологиям, а по факту используют сфокусированный в одну точку луч электронов с очень большими энергиями!

А источником такого луча зачастую тоже является вольфрамовая нить, прям как в старых лампах накаливания, только тут она сильно толще. На эту нить подается ток, и она начинает во все стороны испускать электроны. Часть из них ускоряют до нескольких тысяч вольт и фокусируют в единую точку на поверхности того материала, который мы хотим испарить, в данном случае на Вольфраме.

Думали ли вы, что с помощью лампочки Ильича можно делать процессоры для современных iPhone?

Так вот эта точка может разогреваться до безумных температур! Таких высоких, что даже Вольфрам, который является самым тугоплавким металлом в мире, превращается в пар. Фактически локально формируется маленькую лужа Вольфрама и часть этой лужи и испаряют.

Этот пар летит и конденсируется на любой холодной поверхности, в частности на нашем чипе, где он осаждается, формируя необходимые нам контакты для наших транзисторов!

Но это опять же физические процесс, а есть и химические, когда, как в случае с травлением, на поверхности нашего материала, в нужных местах происходят специальные химические реакции.

Хорошим примером такого процесса является так называемое химическое осаждение из газовой фазы. Она активно применяется не только для производства процессоров, но и для создания органических светодиодов для гибких OLED-экранов!

Кстати, CVD — Chemical Vapor Deposition (химическое осаждение пара) — это один из методов выращивания искусственного алмаза, которые потом применяют, например, для алмазных резаков!

При чем самое крутое, что все эти процессы, как осаждения, так и травления, можно проводить для нескольких пластин одновременно, на каждой из которых сотни, а то и тысячи процессоров! Если бы не эта возможность, то каждый процессор стоил бы просто баснословных денег!

Выводы

Конечно, здесь мы перечислили только самые базовые процессы, но даже они дают понимание о том, какие невероятные технологические решения стоят за производством того, чем мы пользуемся каждый день.

А ведь есть и другие потрясающие процессы на современных производствах. Например, атомно-слоевое осаждение, которое позволяет получить идеальные пленки с возможностью контроля толщины до одного атома, или процессы ионной имплантации.

Стоит также сказать, что для процессов, о которых мы сегодня вам рассказали, надо зачастую сначала  создавать очень глубокий вакуум в установках, иногда даже больше, чем в космосе, однако это тема для отдельного материала! В общем, вы поняли — нам есть что вам рассказать интересного! Мы готовим вам целую серию материалов.

Кстати, автор сценария этого ролика Глеб Янкевич со своими коллегами тоже занимается травлением. Если интересно, почитать их последнюю статью о травлении карбида кремния в Nature Scientific Reports.

Как втиснуть миллиарды транзисторов в компьютерный чип

Закон Мура живет

На протяжении десятилетий количество крошечных транзисторов, вставленных в микросхемы интегральных схем, удваивалось каждые два года. Это явление, которое стало известно как закон Мура, означало более быстрые и мощные компьютеры. Но в последние годы прогресс замедлился, а некоторые говорят, остановился по законам физики. Критики говорят, что увеличение количества схем на кремниевых чипах достигло своего предела, и вычисления остановятся на нынешнем уровне, пока не будет найден альтернативный подход.

Мукеш Кхаре не согласен. Кхаре, отвечающий за все исследования в области полупроводников в IBM, считает, что проблемы физики можно преодолеть. Он видит многообещающее будущее в добавлении большего количества транзисторов, мельчайших вычислительных машин.

Стоит ли нам беспокоиться? Абсолютно, говорит Кхаре. По мере того, как электронные устройства становятся все меньше и все более распространенными, «размещение большего количества транзисторов на микросхеме — это способ, которым мы можем продолжать приносить больше ценности, больше функциональности, меньше затрат и меньшего энергопотребления», — объясняет он. И они также имеют решающее значение для больших компьютерных систем. «С системной точки зрения мы продолжаем помещать в чип все больше и больше транзисторов, чтобы иметь все более и более сложные функции, интегрировать их для повышения производительности наших систем и снижения энергопотребления».

Насколько малы 7 нм?

Новые материалы, конструкции и инновации

Так что насчет законов физики? Что ж, на пути к все меньшим чипам простое уменьшение размера транзисторов не является решением. По мере того, как они становятся меньше, их становится намного труднее отпечатывать на чипах. И сам их масштаб и близость могут влиять на электрические свойства. Например, между ними легче «просачиваться» сигналы.

«Теперь речь идет о внедрении новых материалов, новых структур, новых инноваций», — говорит Кхаре. «Речь идет об инновациях, а не о масштабировании. На физическом уровне мы по-прежнему хотим сделать вещи меньше, но то, как мы это делаем, требует совсем других концепций и идей на более фундаментальном уровне и уровне материалов… Раньше это было больше [о] геометрии».

При таком подходе команда Кхаре в партнерстве с GLOBALFOUNDRIES и Samsung в Колледже нанотехнологий Политехнического института SUNY (SUNY Poly CNSE) добилась этого. В июле 2015 года они представили первые в полупроводниковой промышленности тестовые чипы с нормой 7 нм (нанометры) с функционирующими транзисторами. Этот прорыв может привести к размещению более 20 миллиардов транзисторов на чипе размером с ноготь. Это примерно в 10 раз больше, чем в современных чипах.

Если рассматривать это глубже, учтите, что в большинстве используемых сегодня чипов используется технология 22 нм или 14 нм. Таким образом, новые транзисторы как минимум вдвое меньше нынешних. И мы говорим о действительно маленьком — в 100 000 раз меньше, чем ширина человеческого волоса, и примерно в два с половиной раза больше окружности нити вашей ДНК.

 

В конце концов, важна скорость, с которой работают эти структуры.

Да он маленький.

Но работает ли это?

Выход за пределы лабораторного прорыва в области 7 нм не обошлось без проблем, признает Харе. «Один из фронтов — это возможность построить эти структуры, выгравировать их и сделать физически жизнеспособными», — говорит он. «Другая часть — это электрический аспект. Могут ли работать эти транзисторы? Они должны иметь возможность включаться и выключаться и иметь надлежащую производительность транзистора. В конце концов, важна скорость, с которой они работают. Можем ли мы увеличить их скорость не только за счет физической геометрии, что важно, но и за счет изменения материалов, которые мы используем, или за счет изменения химии, которую мы используем для покрытия и травления этих пленок?»

Чтобы ответить на эти вопросы, исследовательская группа разработала несколько новых процессов и методов. В производстве транзисторы «печатаются» на кремниевой пластине с помощью сложного процесса, называемого литографией. Для производства 7-нм чипа команда использовала новый тип литографии в производственном процессе, Extreme Ultraviolet или EUV, который обеспечивает огромные улучшения по сравнению с сегодняшней основной оптической литографией. И заменили стандартный кремний на кремний-германий в каналах на микросхемах, проводящих электричество.

 

Все дело в внедрении новых материалов, новых структур, новых инноваций.

Обучение через изготовление

Кхаре во многом обязан уникальному партнерству и возможностям CNSE. Он называет это «сбывшейся мечтой». Исследовательский центр в Олбани, штат Нью-Йорк, имеет не только круглосуточную лабораторию, но и, благодаря партнерам по инструментам, возможности полноценной «фабрики», исследовательского центра с производственными возможностями. Это важно, потому что новые чипы должны быть не только небольшими и эффективными, но и экономически выгодными. Если их производство стоит слишком дорого, они не будут успешными.

«Мы можем масштабировать до реальных инструментов, поэтому мы можем быть уверены, что у нас есть нужные свойства, которые будут правильно масштабироваться», — говорит Кхаре. «Мы можем продемонстрировать возможности и структуру на реалистичных потрясающих инструментах». Конечно, это значительно увеличивает уверенность в том, что чипы могут производиться достаточно экономично, чтобы быть коммерчески успешными.

Но сотрудничество распространяется не только на инструменты, но и на все области передовых логических технологий. «Исследования IBM возглавляют эти усилия, и мы работаем рука об руку с другими нашими партнерами, в частности с GLOBALFOUNDARIES и Samsung. Это то, что человек не может сделать в одиночку. Мы должны сделать это вместе».

Следующий шаг: исследование 5-нм чипов

Работа далека от завершения, говорит Кхаре, признавая: «Семь нанометров все еще имеют серьезные проблемы. Но ведутся исследования, чтобы сделать еще меньшие чипы. На самом деле у нас много работы за пределами 7 нм. Этот поезд продолжает идти».

«В прошлом было много предсказаний конца полупроводниковой технологии, — продолжает он. «Но с объемом инвестиций и количеством инженеров, работающих над этой технологией, всегда есть выход; всегда есть путь, который могут найти все эти блестящие умы и миллиарды долларов инвестиций. Мы уже работаем над технологией 5 нм. Для этого потребуется много-много дополнительных инноваций как в материалах, так и в конструкции. Технология станет сложнее. Это потребует все новых и новых элементов и новых знаний».

И что еще? Он предвидит такие возможности, как изготовление транзисторов в трех измерениях, наложение схем друг на друга и изменение игры с помощью устройств на основе углерода. Команда также изучает возможности повышения ценности небольших микросхем, таких как MRAM или магнитная память, новые способы межсоединений и связывания фотоники.

«Я не думаю, что эта индустрия подходит к концу, — говорит Кхаре. «Я думаю, вопрос в том, сколько времени потребуется, чтобы вывести новые чипы на рынок и по какой цене. Вот в чем вопрос.»

Узнайте больше о передовых технологиях

Как делают микроскопические транзисторы на микросхемах?

Микрочипы изготавливаются с использованием самых разнообразных технологических операций. В основном, каждый шаг состоит из двух основных компонентов: маскирование областей, над которыми нужно работать, и последующее выполнение какой-либо операции с этими областями. Шаг маскирования может быть выполнен несколькими различными методами. Наиболее распространена фотолитография. В этом процессе пластина покрывается очень тонким слоем светочувствительного химического вещества. Затем этот слой экспонируется в виде очень сложного узора, который проецируется на маску коротковолновым светом. Набор используемых масок определяет дизайн чипа, они являются конечным продуктом процесса проектирования чипа. Размер элемента, который можно проецировать на фоторезистивное покрытие пластины, определяется длиной волны используемого света. После экспонирования фоторезиста его проявляют, чтобы обнажить основную поверхность. Открытые области могут быть обработаны другими процессами, например. травление, ионная имплантация и т. д. Если фотолитография не имеет достаточного разрешения, то есть другой метод, использующий сфокусированные электронные лучи для того же самого. Преимущество заключается в том, что маски не требуются, поскольку геометрия просто запрограммирована в машине, однако это происходит намного медленнее, поскольку луч (или несколько лучей) должен отслеживать каждый отдельный элемент.

Сами транзисторы состоят из нескольких слоев. Большинство чипов в наши дни являются CMOS, поэтому я кратко опишу, как собрать MOSFET-транзистор. Этот метод называется методом «самовыравнивающегося затвора», поскольку затвор укладывается перед истоком и стоком, так что любое смещение затвора будет компенсировано. Первым делом необходимо заложить колодцы, в которых размещены транзисторы. Лунки преобразуют кремний в нужный тип для создания транзистора (вам необходимо построить N-канальный MOSFET на кремнии P-типа и P-канальный MOSFET на кремнии N-типа). Это делается путем нанесения слоя фоторезиста, а затем с помощью ионной имплантации для принудительного проникновения ионов в пластину в открытых областях. Затем оксид затвора выращивается поверх пластины.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *