Как найти мощность зная напряжение и сопротивление: Закон ома | Онлайн калькулятор

Содержание

Как рассчитать мощность электрического тока?

Особенности расчета мощности по току и напряжению

Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.

Что такое мощность и как ее измерить?

Мощность – это мера того, сколько работы можно выполнить за определенный промежуток времени. Работа обычно определяется как поднятие груза против силы тяжести. Чем больше масса, и/или чем выше она поднимается, тем больше работы должно быть выполнено. Мощность – это мера того, насколько быстро выполняется стандартный объем работы.

Для американских автомобилей мощность двигателя оценивается в единицах, называемых «лошадиные силы», которые изначально были придуманы производителями паровых двигателей для количественной оценки работоспособности своих машин с точки зрения самого распространенного в их время источника энергии: лошадей.

Одна лошадиная сила определяется в британских единицах как 550 фут·фунтов работы в секунду. Мощность двигателя автомобиля не будет указывать на высоту холма, на которую он может подняться, или какую массу он может тащить, но она указывает, насколько быстро он может подняться на определенный холм или протащить определенную массу.

Мощность механического двигателя зависит как от скорости двигателя, так и от его крутящего момента на выходном валу. Скорость выходного вала двигателя измеряется в оборотах в минуту или об/мин (RPM). Крутящий момент – это величина вращательной силы, создаваемой двигателем, и обычно измеряется в ньютон-метрах (или в фунт-футах). Ни скорость, ни крутящий момент сами по себе не являются мерой мощности двигателя.

Дизельный тракторный двигатель мощностью 100 лошадиных сил вращает вал относительно медленно, но обеспечивает большой крутящий момент. Двигатель мотоцикла мощностью 100 лошадиных сил вращает вал очень быстро, но обеспечивает относительно небольшой крутящий момент.

Оба будут производить 100 лошадиных сил, но с разной скоростью и разным крутящим моментом. Уравнение для мощности на валу простое:

\[\text{Лошадиная сила} = \frac{2 \pi ST}{33 000}\]

где

  • S – скорость вращения вала в об/мин;
  • T – крутящий момент в фунт-футах.

Обратите внимание на то, что в правой части уравнения есть только две переменных, S и T. Все остальные члены в этой части постоянны: 2, π и 33 000 – константы (они не меняют своего значения). Мощность в лошадиных силах меняется только при изменении скорости и крутящего момента, больше ничего. Мы можем переписать уравнение, чтобы показать эту взаимосвязь:

Лошадинная сила ∝ ST

∝ – означает «пропорциональна»

Поскольку единица «лошадиных сил» не совпадает в точности со скоростью в оборотах в минуту, умноженной на крутящий момент в фунт-футах, мы не можем сказать, что мощность равна ST. Однако они пропорциональны друг другу. По мере изменения математического произведения ST значение мощности изменится в той же пропорции.

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Принцип действия

Когда заряд движется по проводнику, то электромагнитное полевыполняет над ним работу. Данная величина характеризуется напряжением.

Заряды направляются в сторону снижения потенциалов, однако для поддержания указанного процесса необходим некоторый источник энергии. Напряжение по своему показателю соответствует работе поля, которое необходимо для перемещения единичного заряда Кулона на рассматриваемом участке. При перемещении заряда возникают явления, при которых электроэнергия может приходить в другие виды энергии.

Для доставки электроэнергии от электростанции до конечного потребителя необходимо выполнить определенную работу. Для создания требуемого напряжения, то есть возможности выполнения работы электротока по перемещению заряда, применяется трансформатор. Данное устройство производит увеличение показателя напряжения.

Полученный ток под высоким напряжением, иногда достилающим 10 тысяч Вольт, движется по высоковольтным проводам. При достижении места назначения, он попадает на трансформатор, который уменьшает напряжение до промышленных или бытовых показателей. Далее ток направляется на производства, в квартиры и дома.

Единицы измерения мощности тока

Основной единицей измерения мощности тока (как и мощности вообще) в системе СИ является: [P]=Вт=Дж/с.

В СГС: [P]=эрг/с.

1 Вт=107 эрг/( с).

Выражение (4) применяют в системе СИ для того, чтобы дать определение единицы напряжения. Так, единицей напряжения (U) является вольт (В), который равен: 1 В= (1 Вт)/(1 А).

Вольтом называют электрическое напряжение, которое порождает в электроцепи постоянный ток силы 1 А при мощности 1 Вт.

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

Видео о законах электротехники

Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Потеря энергии в переменной цепи обусловлена наличием реактивного сопротивления, которое подразделяют на индуктивное и емкостное. В процессе работы оборудования часть энергии передается формируемым электрическим или магнитным полям.

Это приводит к уменьшению полезной работы, потере электроэнергии и превышению силовых нагрузок устройств.

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет.

Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести

расчет электрических цепей онлайн.

Подбор номинала автоматического выключателя

Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.

При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.

Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.

У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.

Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.

Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.

Преобразование тока

Поскольку электрическая мощность выражается произведением напряжения на силу тока, то из закона сохранения энергии следует: если при передаче одной и той же мощности напряжение повысить, сила тока пропорционально уменьшится, и наоборот.

Преобразованием напряжения переменного тока занимается специальное устройство — трансформатор. В самом простом виде он состоит из двух обмоток, надетых на магнитопровод.

Магнитное поле, возбуждаемое в первичной обмотке, наводит ЭДС во вторичной (закон электромагнитной индукции) и величина ее соотносится с напряжением на выводах первичной обмотки так же, как число витков в обмотках.

Если, к примеру, первичная обмотка содержит 300 витков, и на нее подается переменное напряжение с действующим значением 220 В, то в цепи вторичной обмотки со 150-ю витками возникнет ЭДС в 110 В, то есть в 2 раза меньшая. Поскольку мощность останется практически постоянной (потерями на нагрев и перемагничивание сердечника пренебрегаем), то сила тока в цепи вторичной катушки окажется, наоборот, вдвое выше тока в первичной катушке.

Потому вторичные обмотки понижающих трансформаторов наматывают проводом большего сечения, чем первичные. С повышающим трансформатором все происходит с точностью до наоборот. Снижение силы тока за счет увеличения напряжения применяется при передаче электроэнергии на значительные расстояния.

Сгенерированный электростанцией ток напряжением 10-20 кВ преобразуют находящейся тут же подстанцией, поднимая напряжение до сотен кВ.

В населенных пунктах напряжение снова понижают местными трансформаторными подстанциями, уже до 220 В, и в таком виде электроэнергия поступает в распределительную сеть.

Наибольшей величины этот параметр достигает на ЛЭП «Экибастуз — Кокчетав» — 1,15 МВ (мегавольт). При этом многократно падает сила тока, а поскольку работа тока в проводнике, состоящая в его нагреве, выражается формулой W = I2 * R (R — сопротивление проводника), то и потери значительно сокращаются.

Как работает схема трехфазного электроснабжения

Принцип работы трехфазной схемы электроснабжения заключается в одновременном задействовании четырех питающих кабелей, один из которых нулевой. Ток одинаковой частоты вырабатывается одним генератором и сдвинут по отношению друг к другу по времени на фазовый угол равный 120 градусам.

Как определить максимальную мощность тока

Полезная мощность обладает наибольшим значением в случае, когда нагрузочное сопротивление — R равняется сопротивлению внутри источника — r.

R = r.

Pmax=E2 /4r

Где: E — электродвижущая сила (ЭДС) источника.

Можно рассчитать максимальную токовую нагрузку, которую будет использовать электрическое устройство, исходя из номинальной нагрузки и входного напряжения переменного тока. Номинальная энергонагрузка будет указана в технических характеристиках устройства, руководстве или на маркировке.

Так, например, если номинальное энергопотребление электрического устройства (P) составляет 12 Вт, максимальное потребление тока при различных напряжениях U= 120 В переменной сети будет:

I = 12/120 = 0,100 А или 100 мА

В переменной сети 220 В:

I = 12 / 220= 0,055A или 55 мА

Мощность электрического тока

Для того, чтобы это показать что к чему, мы возьмем две лампы на 12 Вольт, но разной мощности. На блоке питания выставляю также 12 Вольт и собираю все это дело по схеме, которая мелькала в начале статьи

Мой блок питания может выдать в нагрузку 150 Ватт, не парясь. Беру лампочку от мопеда и цепляю ее к блоку питания

Смотрим потребление тока. 0,71 Ампер

Высчитываем сопротивление раскаленной нити лампочки из закона Ома I=U/R, отсюда R=U/I=12/0,71=16,9 Ом.

Беру галогенную лампу от фары авто и также цепляю ее к блоку питания

Смотрим потребление. 4,42 Ампера

Аналогично высчитываем сопротивление нити лампы. R=U/I=12/4,42=2,7 Ом.

А теперь давайте посчитаем, какая лампочка больше всех Ватт “отбирает”  у источника питания. Вспоминаем школьную формулу P=UI. Итак, для маленькой лампочки мощность составит P=12×0,71=8,52 Ватта. А для большой лампочки мощность  будет Р=12х4,42=53 Ватта. Ого! У нас получилось, что лампочка, которая обладала меньшим сопротивлением, на самом деле очень даже прожорливая.

Итак, если кто не помнит, что такое мощность, могу напомнить. Мощность – это отношение какой-то полезной работы к времени, в течение которого эта работа совершалась. Например, надо вскопать яму определенных размеров. Вы с лопатой, а ваш друг – на экскаваторе:

Кто быстрее справится  с задачей за  одинаковый промежуток времени? Разумеется экскаватор. В этом случае, можно сказать, что его мощность намного больше, чем мощность человека с лопатой.

А теперь представьте, что нам надо полностью под ноль сточить эту железяку:

Подумайте вот над таким вопросом… У нас есть в запасе 5 мин и нам надо сточить железяку по-максимому. В каком случае железяка сточится быстрее всего: если прижимать ее к абразивному кругу со всей дури, прижимать слегка, либо прижимать в полсилы? Не забывайте, что у нас абразивный круг подцеплен к валу, который крутит поток воды в трубе. И да, труба у нас небольшого диаметра.

Кто ответил, что если прижимать в полсилы, то оказался прав. Железяка в этом случае сточится быстрее.  Если прижимать ее со всей дури, то можно вообще остановить круг. Еще раз, что у нас такое мощность? Полезная работа, совершаемая за какой-то промежуток времени. А в нашем опыте полезная работа это и есть стачивание железяки по максималке. Также не забывайте и  тот момент, что если мы будем слегка прижимать железяку, то мы будем ее стачивать пол дня. Поэтому, золотая середина  – это давить железяку в полсилы.

Ну вот мы и снова переходим к электронике 😉

Поток воды – сила тока, давление в трубе – напряжение, давление железяки на круг – сопротивление.  И что в результате мы получили? А то, что лампочка с меньшим сопротивлением обладает большей мощностью, чем лампочка с большим сопротивлением. Не трудно догадаться, если просто посмотреть на фото, но вживую эффект лучше

Но обязательно ли то, что чем меньше сопротивление, тем больше мощности выделяется на нагрузке? Конечно же нет. Во всем нужен расчет, как  и в прошлом опыте, где мы стачивали железяку за определенное время.

И еще один фактор, конечно, тоже надо учитывать. Это давление в трубе. Прикиньте, точим-точим мы железяку, и вдруг давление в трубе стало повышаться. Может быть переполнилась башня, или кто-то открыл краник на полную катушку. Что станет с наждаком? Его обороты ускорятся,  так как сила потока воды в трубе увеличится,  а следовательно, мы еще быстрее сточим нашу железку.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Задачи

Решение:

Запишем выражение для мощности:

И для сопротивления:

Теперь выразим из этих двух формул удельное сопротивление проводника:

Сравнив это значения с табличными значениями удельного сопротивления, узнаем, что проводник изготовлен из олова.

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение
. Как мы знаем, ток через конденсатор опережает по фазе напряжение на
:

Для мгновенной мощности получаем:

График зависимости мгновенной мощности от времени.

 Мощность переменного тока через конденсатор.

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний.

Напряжение на конденсаторе и сила тока через него.

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть,
. Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть,
. Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

3. Третья четверть,
. Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть,
. Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

Прибор для измерения

Мощность тока измеряют ваттметром, существует три разновидности таких приборов:

  1. низкочастотные;
  2. радиочастотные;
  3. оптические.

Низкочастотные применяются для измерения W постоянного тока и переменного промышленной частоты (50 Гц), они делятся на две разновидности:

  • однофазные;
  • трехфазные.

Для измерения реактивной мощности применяют другой прибор — варметр.

По принципу действия ваттметры делятся на:

  • аналоговые;
  • цифровые.

Почти все цифровые ваттметры включают в себя варметр, то есть могут измерять W активную и реактивную. Аналоговые приборы (Д8002, Ц301, Д5071 и др.) определяют мощность тока посредством двух катушек: одна подключена последовательно с нагрузкой, другая — параллельно.

Протекающий в катушках ток инициирует возникновение магнитных полей. А те, взаимодействуя друг с другом, создают вращающий момент, воздействующий на стрелку.

Цифровой ваттметр

Величина момента зависит от:

  • силы тока;
  • напряжения;
  • cosϕ (при изменении активной мощности) или sinϕ (реактивной).

Цифровые ваттметры (MI 2010А, ЩВ02, СР3010 и пр.) оснащены парой датчиков включенных:

  • по току — последовательно с нагрузкой;
  • по напряжению — параллельно.

Контроллер по показаниям с датчиков делает вычисления и выводит их на табло.

Похожие темы:

Обычно электрический токсравнивают с течением жид­кости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.

В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В усло­виях свободного падения эта энергия растрачивается беспо­лезно для человека. Если же направить падающий поток во­ды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.

Работа, производимая потоком воды в течение определен­ного промежутка времени, например, в течение одной секун­ды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.

Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше рабо­ты, чем больше разность потенциалов и чем большее количе­ство электричества ежесекундно проходит через поперечное сечение цепи.

Мощность электрического токаэто количество работы, совершаемой за одну секунду времени, или скорость совершения работы.

Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (на­пряжению) и силе тока в цепи.

Для измерения мощности электрического тока принята еди­ница, называемая ватт(Вт).

Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.

Для вычисления мощности постоянного тока в ваттах нуж­но силу тока в амперах умножить на напряжение в вольтах.

Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы

P = I*U. (1)

Воспользуемся этой формулой для решения числового при­мера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА

Определим мощность электрического тока, поглощаемую нитью лампы:

Р= 0,075 А*4 В = 0,3 Вт.

Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.

В этом случае мы воспользуемся знакомым нам соотноше­нием из закона Ома:

U=IR

и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.

Тогда формула (1) примет вид:

P = I*U =I*IR

или

Р = I2*R. (2)

Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:

P= I2*R = (0,5)2*5 =0,25*5 = 1,25 Вт.

Наконец, мощность электрического тока может быть вычислена и в том слу­чае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:

Р = I*U=U2/R (3)

Например, при 2,5 В падения напряжения на реостате сопро­тивлением в 5 Ом поглощаемая реостатом мощность будет равна:

Р = U2/R=(2,5)2/5=1,25 Вт

Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.

Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.

P = A/t

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Теги

МощностьОбучениеРассеиваемая мощностьСхемотехникаЭлектрический токЭлектрическое напряжениеЭлектричество

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Тест по теме

Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 15.

Не понравилось? — Напиши в комментариях, чего не хватает.

Похожие материалы:

Содержание:

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие.

Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это различные понятия, хотя и находящиеся в определенной зависимости между собой.

Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с).

Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Мощность некоторых электрических приборов

При оснащении современной квартиры часто приходится решать задачи по согласованию нагрузок в отдельных линиях. Необходимо правильно встраивать защитный автомат, чтобы предотвратить аварийные ситуации. Начинают с уточнения параметров проводки. Далее проверяют группы подсоединенной бытовой техники. Типичные параметры потребляемой мощности (Вт):

  • персональный компьютер – 170-1 250;
  • ноутбук – 40-280;
  • ЖКИ телевизор – 120-265;
  • утюг – 450-1850;
  • кондиционер – 1 200 – 2 500.

Какой автомат подойдет, определяют с учетом всех значимых факторов. Особое внимание уделяют нагрузкам с высокими значениями реактивной составляющей мощности.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U 2 /R

Также можно выполнить расчет, зная ток и сопротивление:

P=I 2 *R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Пример расчёта полной мощности для электродвигателя

Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.

Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:

Тогда найти активную электрическую мощность можно по формуле:

P=Pна валу/n=160000/0,94=170213 Вт

Теперь можно найти S:

Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

И выделяется на каждом по:

Или через общее сопротивление, тогда:

Все расчёты совпали, значит найденные значения верны.

Как узнать ток зная мощность и напряжение

Особенности расчета мощности по току и напряжению

Чтобы электропроводка и все электрическое оборудование, которое имеется в доме, работало исправно и правильно, необходимо правильно сделать вычисление мощности по току и электронапряжению, поскольку при неправильно подобранных показателях может возникнуть короткое замыкание или возгорание. Как сделать расчёт потребляемой мощности по току и напряжению, как вычисляется сила тока, формула через мощность и напряжение и другое, далее.

Как узнать силу тока, зная мощность и напряжения

Чтобы ответить на вопрос, как определить ток, необходимо поделить электронапряжение на общее число ватт. При этом сделать все необходимые вычисления можно самостоятельно, а можно прибегнуть к специальному онлайн-калькулятору.

Узнать потребление электроэнергии по токовой силе резистора можно умножением первой на сопротивление, выражаемое в Омах. В итоге, получится значение, представленное в вольтах, перемноженных на ом. Получится ампер.

Обратите внимание! Если нет сопротивления, нужно поделить ваттный показатель на токовую энергию, то есть следует поделить ватты на амперы и получится значение электроэнергии в вольтах. Понять мощностное показание через величину электричества с электронапряжением, можно умножив соответствующие показания с устройства.

Формулы для расчета тока в трехфазной сети

Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.

Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).

Как рассчитать ампераж

Ампераж является значением электротока, которое выражена в амперах. Рассчитать ампераж можно так: I=P/U.

Расчет потребляемой мощности

Электромощность является величиной, которая отвечает за факт скорости изменения или передачи электрической энергии. Есть полная и активная мощностная нагрузка, а также активная и реактивная. Полная вычисляется так: S = √ (P2 + Q2), где P является активной частью, а Q реактивной. Для нахождения потребляемого мощностного показателя необходимо знать число электротока, которое потребляется нагрузкой, а также питательное напряжение, которое выдается при помощи источника.

Что касается бытового определения потребляемой электрической энергии, необходимо вычислить общее количество ватт питания электрических приборов и паспортные данные номинальной силы электротока котла. Как правило, все электрические приборы работают с переменным током и напряжением в 220 вольт. Для вычисления тока проще всего воспользоваться амперметром. Зная первый и второй параметры, реально узнать величину потребляемой энергии.

Стоит указать, что измерить мощность через напряжение или сделать расчет мощности по сопротивлению и напряжению возможно не только формулой, но и прибором. Для этого можно воспользоваться мультиметром с токоизмерительными клещами или специализированным измерителем — ваттметром.

Обратите внимание! Оба работают по одному и тому же принципу, указанному в руководстве по их эксплуатации.

Мощность, ток и напряжение — три составляющие расчета проводки в доме. Узнать все необходимые параметры в любой сети просто при помощи формул, представленных выше. От этих значений будет зависеть исправность работы всей домашней электрики и безопасность ее владельца.

Расчет электрических цепей онлайн и основная формула расчета

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Как узнать ток зная мощность и напряжение?

В данном случае формула вычисления выглядит следующим образом:

Расчет силы тока онлайн:

(Не целые числа вводим через точку. Например: 0.5)

Как узнать напряжение зная силу тока?

Для того, чтобы узнать напряжение, зная при этом сопротивление потребителя тока можно воспользоваться формулой:

Расчет напряжения онлайн:

Если же сопротивление неизвестно, но зато известна мощность потребителя, то напряжение вычисляется по формуле:

Определение величины онлайн:

Как рассчитать мощность зная силу тока и напряжения?

Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.

Расчет цепи онлайн:

Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?

Этот вопрос был задан в комментарие в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.

Формула расчета сечения провода и как определяется сечение провода

Довольно много вопросов связано с определением сечения провода при построении электропроводки. Если углубиться в электротехническую теорию, то формула расчета сечения имеет такой вид:

Конечно же, на практике, такой формулой пользуются довольно редко, прибегая к более простой схеме вычислений. Эта схема довольно проста: определяют силу тока, которая будет действовать в цепи, после чего согласно специальной таблице определяют сечение. Более детально по этому поводу можно почитать в материале – «Сечение провода для электропроводки»

Приведем пример. Есть бойлер мощностью 2000 Вт, какое сечение провода должно быть, чтобы подключить его к бытовой электропрводке? Для начала определим силу тока, которая будет действовать в цепи:

Как видим, сила тока получается довольно приличной. Округляем значение до 10 А и обращаемся к таблице:

Таким образом, для нашего бойлера потребуется провод сечением 1,7 мм. Для большей надежности используем провод сечением 2 или 2,5 мм.

Рекомендуем ознакомиться:

Как найти мощность тока — формулы с примерами расчетов

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Формулы для расчётов цепи постоянного тока

Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:

P=UI

Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:

P=U 2 /R

Также можно выполнить расчет, зная ток и сопротивление:

P=I 2 *R

Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.

Для переменного тока

Однако для электрической цепи переменного тока нужно учитывать полную, активную и реактивную, а также коэффициент мощности (соsФ). Подробнее все эти понятия мы рассматривали в этой статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.

Отметим лишь, что чтобы найти полную мощность в однофазной сети по току и напряжению нужно их перемножить:

S=UI

Результат получится в вольт-амперах, чтобы определить активную мощность (ватты), нужно S умножить на коэффициент cosФ. Его можно найти в технической документации на устройство.

P=UIcosФ

Для определения реактивной мощности (вольт-амперы реактивные) вместо cosФ используют sinФ.

Q=UIsinФ

Или выразить из этого выражения:

И отсюда вычислить искомую величину.

Найти мощность в трёхфазной сети также несложно, для определения S (полной) воспользуйтесь формулой расчета по току и фазному напряжению:

А зная Uлинейное:

1,73 или корень из 3 – эта величина используется для расчётов трёхфазных цепей.

Тогда по аналогии чтобы найти P активную:

Определить реактивную мощность можно:

На этом теоретические сведения заканчиваются и мы перейдём к практике.

Пример расчёта полной мощности для электродвигателя

Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.

Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:

Тогда найти активную электрическую мощность можно по формуле:

P=Pна валу/n=160000/0,94=170213 Вт

Теперь можно найти S:

Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.

Расчет для параллельного и последовательного подключения

При расчете схемы электронного устройства часто нужно найти мощность, которая выделяется на отдельном элементе. Тогда нужно определить, какое напряжение падает на нём, если речь идёт о последовательном подключении, или какая сила тока протекает при параллельном включении, рассмотрим конкретные случаи.

Здесь Iобщий равен:

На каждом резисторе R1 и R2, так как их сопротивление одинаково, напряжение падает по:

И выделяется по:

Pна резисторе=UI=6*0,6=3,6 Ватта

Тогда при параллельном подключении в такой схеме:

Сначала ищем I в каждой ветви:

И выделяется на каждом по:

Или через общее сопротивление, тогда:

Все расчёты совпали, значит найденные значения верны.

Заключение

Как вы могли убедиться найти мощность цепи или её участка совсем несложно, неважно речь идёт о постоянке или переменке. Важнее правильно определить общее сопротивление, ток и напряжение. Кстати этих знаний уже достаточно для правильного определения параметров схемы и подбора элементов – на сколько ватт подбирать резисторы, сечения кабелей и трансформаторов. Также будьте внимательны при расчёте S полной при вычислении подкоренного выражения. Стоит добавить лишь то, что при оплате счетов за коммунальные услуги мы оплачиваем за киловатт-часы или кВт/ч, они равняются количеству мощности, потребленной за промежуток времени. Например, если вы подключили 2 киловаттный обогреватель на пол часа, то счётчик намотает 1 кВт/ч, а за час – 2 кВт/ч и так далее по аналогии.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Также читают:

{SOURCE}

Электротехника для чайников |

Видео версия статьи:

Начнем пожалуй с понятия электричества. Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. В качестве частиц могут выступать свободные электроны металла, если ток течет по металлическому проводу, или ионы, если ток течет в газе или жидкости.
Есть ещё ток в полупроводниках, но это отдельная тема для разговора. Как пример можно привести высоковольтный трансформатор из микроволновки – сначала электроны бегут по проводам, затем ионы движутся между проводами, соответственно сначала ток идет через металл, а потом через воздух. Вещество называются проводником или полупроводником, если в нём есть частицы, способные переносить электрический заряд. Если таких частиц нет, то такое вещество называется диэлектриком, оно не проводит электричество. Заряженные частицы несут на себе электрический заряд, который измеряется обозначается q в кулонах.
Единица измерения силы тока называется Ампер и обозначается буковой I, ток величиной в 1 Ампер образуется при прохождении через точку электрической цепи заряда величиной 1 Кулон за 1 секунду, то есть грубо говоря сила тока измеряется в кулонах секунду. И по сути сила тока это количество электричества, протекающего за единицу времени через поперечное сечение проводника. Чем больше заряженных частиц бежит по проводу, тем соответственно больше ток.
Чтобы заставить заряженные частицы перемещаться от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Напряжение измеряется в вольтах и обозначается буквой V или U. Чтобы получить напряжение величиной 1 Вольт нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж. Согласен, немного непонятно.
Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под действием силы тяжести вытекает через трубу. Пусть вода – это электрический заряд, высота водяного столба – это напряжение, а скорость потока воды – это электрический ток. Точнее не скорость потока, а количество вытекающей за секунду воды. Вы понимаете, что чем выше уровень воды, тем больше будет давление внизу А чем выше давление внизу, тем больше воды вытечет через трубу, потому что скорость будет выше.. Аналогично чем выше напряжение, тем больший ток будет течь в цепи.
Зависимость между всеми тремя рассмотренными величинами в цепи постоянного  тока определяет закон ома, который выражается вот такой формулой, и звучит как сила тока в цепи прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению. Чем больше сопротивление, тем меньше ток, и наоборот.
Добавлю ещё пару слов про сопротивление. Его можно измерить, а можно посчитать. Допустим у нас есть проводник, имеющий известную длину и площадь поперечного сечения. Квадратный, круглый, неважно. Разные вещества имеют разное удельное сопротивление, и для нашего воображаемого проводника существует вот такая формула, определяющая зависимость между длиной, площадью поперечного сечения и удельным сопротивлением. Удельное сопротивление веществ можно найти в интернете в виде таблиц. Можно опять же провести аналогию с водой: вода течёт по трубе, пусть труба имеет удельную шершавость. Логично предположить, что чем длиннее и уже труба, тем меньше воды будет по ней протекать за единицу времени. Видите, как всё просто? Формулу даже запоминать не нужно, достаточно представить себе трубу с водой.
Что касается измерения сопротивления, то нужен прибор, омметр. В наше время более популярны универсальные приборы – мультиметры, они измеряют и сопротивление, и ток, и напряжение, и ещё кучу всего. Давайте проведём эксперимент. Я возьму отрезок нихромовой проволоки известной длины и площади сечения, найду удельное сопротивление на сайте где я её купил  и посчитаю сопротивление. Теперь этот же кусочек измерю при помощи прибора. Для такого маленького сопротивления мне придется вычесть сопротивление щупов моего прибора, которое равно 0.8 Ом. Вот так вот!
Шкала мультиметра разбита по размерам измеряемых величин, это сделано для более высокой точности измерения. Если я хочу измерить резистор с номиналом 100 кОм, я ставлю рукоятку на большее ближайшее сопротивление. В моём случае это 200 килоом. Если хочу измерить 1 килоом, то ставлю на 2 ком. Это справедливо для измерения остальных величин. То есть на шкале отложены пределы измерения, в который нужно попасть.
Давайте продолжим развлекаться с мультиметром и попробуем измерить остальные изученные величины. Возьму несколько разных источников постоянного тока. Пусть это будет блок питания на 12 вольт, юсб порт и трансформатор, который в своей молодости сделал мой дед. Напряжение на этих источниках мы можем измерить прямо сейчас, подключив вольтметр параллельно, то есть непосредственно к плюсу и к минусу источников. С напряжением всё понятно, его можно взять и измерить. А вот чтобы измерить силу тока, нужно создать электрическую цепь, по которой будет протекать ток. В электрической цепи обязательно должен быть потребитель, или нагрузка. Давайте подключим потребитель к каждому источнику. Кусочек светодиодной ленты, моторчик и резистор на (160 ом).
Давайте измерим ток, протекающий в цепях. Для этого переключаю мультиметр в режим измерения силы тока и переключаю щуп во вход для тока. Амперметр подключается в цепь последовательно измеряемому объекту. Вот схема, её тоже следует помнить и не путать с подключением вольтметра. Кстати существует такая штуковина как токовые клещи. Они позволяют измерять силу тока в цепи без подключения непосредственно к цепи. То есть не нужно отсоединять провода, просто накидываешь их на провод и они измеряют. Ну ладно, вернёмся к нашему обычному амперметру.
Итак, я измерил все токи. Теперь мы знаем, какой ток потребляется в каждой цепи. Здесь у нас светятся светодиоды, здесь крутится моторчик а здесь…. Так стоять, а че делает резистор? Он не поёт нам песни, не освещает комнату и не вращает никакой механизм. Так на что он тратит целых 90 миллиампер? Так не пойдёт, давайте разбираться. Слышь ты! Ау, он горячий! Так вот куда расходуется энергия! А можно ли как-то посчитать, что здесь за энергия? Оказывается – можно. Закон, описывающий тепловое действие электрического тока был открыт в 19 веке двумя учеными, джеймсом джоулем и эмилием ленцем. Закон назвали закон джоуля ленца. Он выражается вот такой формулой, и численно показывает, сколько джоулей энергии выделяется в проводнике, в котором течёт ток, за единицу времени. Из этого закона можно найти мощность, которая выделяется на этом проводнике, мощность обозначается английской буквой Р и измеряется в ваттах. Я нашёл вот такую очень крутую табличку, которая связывает все изученные нами на этот момент величины.
Таким образом у меня на столе электрическая мощность идёт на освещение, на совершение механической работы и на нагрев окружающего воздуха. Кстати именно на этом принципе работают различные нагреватели, электрочайники, фены, паяльники и прочее. Там везде стоит тоненькая спираль, которая нагревается под действием тока.
Этот момент стоит учитывать при подведении проводов к нагрузке, то есть прокладка проводки к розеткам по квартире тоже входит в это понятие. Если вы возьмете для подведения к розетке слишком тонкий провод и подключите в эту розетку компьютер, чайник и микроволновку, то провод может нагреться вплоть до возникновения пожара. Поэтому есть вот такая табличка, которая связывает площадь поперечного сечения проводов с максимальной мощностью, которая по этим проводам будет идти. Если вздумаете тянуть провода – не забудьте об этом.
Также в рамках этого выпуска хотелось бы напомнить особенности параллельного и последовательного соединения потребителей тока. При последовательном соединении сила тока одинакова на всех потребителях, напряжение разделилось на части, а общее сопротивление потребителей представляет собой сумму всех сопротивлений. При параллельном соединении напряжение на всех потребителях одинаково, сила тока разделилась, а общее сопротивление вычисляется вот по такой формуле.
Из этого вытекает один очень интересный момент, который можно использовать для измерения силы тока. Допустим нужно измерить силу тока в цепи около 2 ампер. Амперметр с этой задачей не справляется, поэтому можно использовать закон ома в чистом виде. Знаем, что сила тока одинакова при последовательном соединении. Возьмём резистор с очень маленьким сопротивлением и вставим его последовательно нагрузке. Измерим на нём напряжение. Теперь, пользуясь законом ома, найдём силу тока. Как видите, она совпадает с расчётом ленты. Здесь главное помнить, что этот добавочный резистор должен быть как можно меньшего сопротивления, чтобы оказывать минимальное влияние на измерения.
Есть ещё один очень важный момент, о котором нужно знать. Все источники имеют максимальный отдаваемый ток, если этот ток превысить – источник может нагреться, выйти из строя, а в худшем случае ещё и загореться. Самый благоприятный исход это когда источник имеет защиту от перегрузки по току, в таком случае он просто отключит ток. Как мы помним из закона ома, чем меньше сопротивление, тем выше ток. То есть если взять в качестве нагрузки кусок провода, то есть замкнуть источник самого на себя, то сила тока в цепи подскочит до огромных значений, это называется короткое замыкание. Если вы помните начало выпуска, то можете провести аналогию с водой. Если подставить нулевое сопротивление в закон ома то мы получим бесконечно большой ток. На практике такое конечно не происходит, потому что источник имеет внутреннее сопротивление, которое подключено последовательно. Этот закон называется закон ома для полной цепи. Таким образом ток короткого замыкания зависит от величины внутреннего сопротивления источника.
Сейчас давайте вернёмся к максимальному току, который может выдать источник. Как я уже говорил, силу тока в цепи определяет нагрузка. Многие писали мне вк и задавали примерно вот такой вопрос, я его слегка утрирую: саня, у меня есть блок питания на 12 вольт и 50 ампер. Если я подключу к нему маленький кусочек светодиодной ленты, она не сгорит? Нет, конечно же она не сгорит. 50 ампер – это максимальный ток, который способен выдать источник. Если ты подключишь к нему кусочек ленты, она возьмёт свои ну допустим 100 миллиампер, и все. Ток в цепи будет равен 100 миллиампер, и никто никуда не будет гореть. Другое дело, если возьмёшь километр светодиодной ленты и подключишь его к этому блоку питания, то ток там будет выше допустимого, и блок питания скорее всего перегреется и выйдет из строя. Запомните, именно потребитель определяет величину тока в цепи. Этот блок может выдать максимум 2 ампера, и когда я закорачиваю его на болтик, с болтиком ничего не происходит. А вот блоку питания это не нравится, он работает в экстремальных условиях. А вот если взять источник, способный выдать десятки ампер, такая ситуация не понравится уже болтику.
Давайте для примера произведём расчёт блока питания, который потребуется для питания известного отрезка светодиодной ленты. Итак, закупили мы у китайцев катушку светодиодной ленты и хотим запитать три метра этой самой ленты. Для начала идём на страницу товара и пытаемся найти, сколько ватт потребляет один метр ленты. Эту информацию я найти не смог, поэтому есть вот такая табличка. Смотрим, что у нас за лента. Диоды 5050, 60 штук на метр. И видим, что мощность составляет 14 ватт на метр. Я хочу 3 метра, значит мощность будет 42 ватта. Блок питания желательно брать с запасом на 30% по мощности, чтобы он не работал в критическом режиме. В итоге получаем 55 ватт. Ближайший подходящий блок питания будет на 60 ватт. Из формулы мощности выражаем силу тока и находим её, зная, что светодиоды работают при напряжении 12 вольт. Выходит, нам нужен блок с током 5 ампер. Заходим, например, на али, находим, покупаем.
Очень важно знать потребляемый ток при изготовлении всяких USB самоделок. Максимальный ток, который можно взять от USB, составляет 500 миллиампер, и его лучше не превышать.
И напоследок коротенько о технике безопасности. Здесь вы можете видеть, до каких значений электричество считается неопасным для жизни человека.

Мощность, работа и тепловое действие

Пример 1

Параллельно с лампой мощностью 100 Вт включили электроплитку мощностью 400 Вт. Напряжение в сети 127 В. Какое напряжение на лампе до и после включения электроплитки, если сопротивление подводящих проводов составляет 3 Ом? Указанные мощности тока лампы и плитки соответствуют напряжению 327 В.

Дано: Р1=100 Вт — мощность лампы, Р2=400 Вт —мощность электроплитки, U=127 В — напряжение в сети, R0=3 Ом — сопротивление подводящих проводов.

Найти: U1` — напряжение на лампе до включения электроплитки; U1« — напряжение на лампе и плитке после включения последней.

Решение. Для решения задачи необходимо вычислить токи в цепи до и после включения плитки. Для этого нужно знать общее сопротивление цепи в том и другом случаях. Зная токи и сопротивление потребителей, найдем искомые величины. Из выражения для мощности найдем сопротивления обоих потребителей:

R1=U2/P1, R2=U2/P2

Запишем общее сопротивление цепи при различной нагрузке и токи в обоих случаях:

Подставляя числовые значения, находим сопротивления цепи:

Вычислим токи:

Так как потребители и провода в обоих случаях соединены последовательно, напряжение 127В распределится пропорционально сопротивлениям потребителей и проводов:

Ответ. В результате параллельного подключения к лампе плитки напряжение на зажимах лампы понизилось от 125 до 116 В.

Пример 2

 В сеть с напряжением 220В последовательно включаются две лампы мощностью 60 и 250 Вт, рассчитанные на напряжение 110В каждая. Как распределится напряжение на лампах? Какова мощность, потребляемая каждой лампой? Сколько тепла выделится за 30 мин горения каждой из ламп?

Дано: U=220 В — напряжение в сети, n=2 — количество ламп, Р1=60 Вт — мощность первой лампы, Р2=250 Вт — мощность второй лампы, U1=U2=110 В—напряжение (номинальное) на лампах, t=1800 с — время.

Найти: U1` — напряжение на первой лампе; U2` — напряжение на второй лампе; P1`и P2` — мощности, потребляемые каждой лампой при их последовательном включении в сеть; Q1`и Q2`— количества выделенного ими тепла.

Решение. Напряжения на последовательно соединенных лампах прямо пропорциональны их сопротивлениям. Поэтому сначала вычислим сопротивления ламп:

так как U1` + U2`=U, то:

По закону Ома найдем ток в лампах:

Подставляя числовые данные, находим сопротивления каждой из ламп и напряжения на них:

Вычислим силу тока в лампах:

Зная ток, протекающий через лампы, их сопротивление и время, вычислим мощности, потребляемые лампами при их последовательном включении, и количества выделившегося в них тепла:

Ответ. Напряжения на лампах соответственно равны: U1`≈177 В, U2`≈43 В; мощности: P1`≈159Вт, P2`≈39Вт; количества тепла: Q1`≈2,9*105 Дж Q2`≈0,7*105 Дж.

Пример 3

Свинцовый предохранитель, включенный в сеть, состоящую из медного провода сечением 5 мм2, плавится, если провод нагревается на 25 К. Каково сечение свинцовой проволоки предохранителя? Начальная температура свинцового предохранителя 293 К.

Дано: S1=5 мм2=5,0*10-6 м2 — площадь поперечного сечения медного провода, р1=1,68*10-8 Ом*м, р2=2,07*10-7 Ом*м — удельные сопротивления соответственно меди и свинца, c1=3,8*102 Дж/(кг*К), с2= 1,2*102 Дж/(кг*К) — удельные теплоемкости соответственно меди и свинца, D1=8,9*103 кг/м3, D2=1,14*104кг/м3 — плотности соответственно меди и свинца, Т1=293 К — начальная температура свинца, TПЛ=600К — температура плавления свинца, λ=2,5*104 Дж/кг — удельная теплота плавления свинца, ∆T=25 К — приращение температуры медного провода.

Найти: S2— площадь поперечного сечения свинцовой проволочки предохранителя.

Решение. Количество тепла Q1, пошедшее на нагревание медного провода, можно выразить в виде:

Q1=c1S1l1D1∆T

Это количество тепла, полученное в результате прохождения электрического тока, равно

Q1=I2R1t=I2tp1l1/S1

Приравнивая правые части написанных выражений для Q1, получим:

I2tp1l1/S1= c1S1l1D1∆T

На основании тех же рассуждений запишем выражение для Q2 — количества тепла, выделенного током в свинцовом проводнике:

Q2=I2R2t=I2tp2l2/S2

Это количество тепла было потрачено на нагревание свинцового проводника до температуры плавления и на его плавление:

Q2=S2l2D2[c2(TПЛ-T1)+λ]

Приравняв правые части, получим:

I2tp2l2/S2= S2l2D2[c2(TПЛ-T1)+λ]

Учитывая, что ток и время протекания процесса в обоих случаях одинаковы, исключим эти величины путем деления Q1 на Q2:

Полученное выражение позволяет определить площадь 52 поперечного сечения свинцовой проволоки:

Подставляя в него числовые данные, находим:

Ответ. Площадь поперечного сечения свинцовой проволоки предохранителя равна 2,5*10-6 м2, или 2,5 мм2.

Закон Ома (страница 3)

Решение:
Падения напряжения на резисторах R1 и R2, а также на резисторах 2R1 и 2R2 пропорциональны их сопротивлениям. Поэтому падение напряжения на резисторе R равно нулю и ток через него не проходит. Через резистор R2 течет ток


18 Один полюс источника тока с э. д. с. ε = 1400 В и внутренним сопротивлением r = 2,2 Ом подключен к центральной алюминиевой жиле кабеля (диаметр жилы D1 = 8мм), другой — к его свинцовой оболочке (наружный диаметр D2 =18 мм, внутренний — d2 = 16 мм). На каком расстоянии l от источника кабель порвался и произошло замыкание жилы с оболочкой, если начальный ток короткого замыкания I=120 А? Удельные сопротивления алюминия и свинца ρ1 =0,03 мкОм·м и ρ2 = 0,2 мкОм·м.

Решение:
Полное сопротивление цепи R= R1 + R2 + r, где сопротивления жилы и оболочки до места замыкания

Ток в цепи I= e/R; отсюда

19 Найти ток I, текущий через резистор с сопротивлением R1 в схеме, параметры которой даны на рис. 107, в первый момент после замыкания ключа, если до этого напряжение на конденсаторе было постоянным.

Решение:
Напряжение на конденсаторе V=ε. Это же напряжение будет в первый момент после замыкания ключа на резисторе R1. Поэтому текущий через него в этот момент ток I=ε/R1.

20 Найти напряжения V1 и V2 на конденсаторах с емкостями С1 и С2 в схеме, параметры которой даны на рис. 108.

Решение:
После включения источника тока с э. д. с. ε конденсаторы зарядятся, и, когда ток прекратится, все их обкладки, соединенные с резистором R, будут иметь одинаковый потенциал. Конденсаторы с емкостями С+С1 и С+С2 включены последовательно с источником тока. Общее напряжение на них V1+V2 =ε, а заряд на них

отсюда

21 Найти заряды q1, q2 и q3 на каждом из конденсаторов в схеме, параметры которой даны на рис. 109.

Решение:
Обкладки конденсатора C1 замкнуты через резисторы R1 и R2. Поэтому заряд на этом конденсаторе q1=0 (после прекращения зарядки конденсаторов С2 и С3). Так как после зарядки конденсаторов токи в схеме не протекают, то напряжения на конденсаторах С2 и С3 равны ε. Следовательно,

22 В цепь, питаемую источником тока с внутренним сопротивлением r = 3 Ом, входят два резистора с одинаковыми сопротивлениями R1 = R2 = 28 Ом, включенные параллельно, и резистор с сопротивлением R3 = 40 Ом (рис.110). Параллельно резистору R3 подключен конденсатор емкости С=5 мкФ, заряд которого q=4,2 Кл. Найти э. д. с. ε источника.

Решение:
Падение напряжения на резисторе R3 будет V=q/C=IR3; отсюда ток, текущий через этот резистор, I=q/CR3. Полное сопротивление цепи и э. д. с. источника тока


23 Два резистора с одинаковыми сопротивлениями R1 =25 Ом и резистор с сопротивлением R2 = 50 Ом подключены к источнику тока по схеме, изображенной на рис. 111. К участку ab подключен конденсатор емкости С = 5 мкФ. Найти э. д. с. ε источника тока, если заряд на конденсаторе q = 0,11 мКл.

Решение:


24 Найти заряд на конденсаторе емкости С в схеме, параметры которой даны на рис. 112.

Решение:
Сопротивление конденсатора постоянному току бесконечно велико. Поэтому после зарядки конденсатора по резистору R3 ток протекать не будет. Не будет и падения напряжения на этом резисторе. Следовательно, точка а и верхняя обкладка конденсатора будут иметь одинаковый потенциал. Потенциал же точки b будет равен потенциалу нижней обкладки конденсатора. Таким образом, напряжение на конденсаторе будет равно падению напряжения на резисторе R2. Ток в цепи

отсюда заряд на конденсаторе

25 Найти напряжение на конденсаторе емкости в схеме, параметры которой даны на рис. 113.

Решение:


26 Источник тока с внутренним сопротивлением r=10м замкнут на резистор с сопротивлением R. Вольтметр, подключенный к зажимам источника, показывает напряжение V1=20 B. Когда параллельно резистору с сопротивлением R присоединен резистор с таким же сопротивлением R, показание вольтметра уменьшается до V2 = 15 B. Найти сопротивление резистора R, если сопротивление вольтметра велико по сравнению с R.

Решение:
Напряжения на зажимах источника тока в первом и во втором случаях V1=I1R и V2=I2R/2. Токи в общей цепи в этих случаях

отсюда


27 К источнику тока с э. д. с. ε = 200 В и внутренним сопротивлением r = 0,5 Ом подключены последовательно два резистора с сопротивлениями R1 = 100Ом и R2 = 500 Ом. К концам резистора R2 подключен вольтметр. Найти сопротивление R вольтметра, если он показывает напряжение V=160 В.

Решение:
Падение напряжения на резисторе R2 (и на вольтметре) V=IRо (рис. 358), где R0 = R2R/(R2 + R)-сопротивление параллельно включенных вольтметра и резистора R2. Ток в общей цепи равен

Решая совместно эти уравнения, получим

Тот же результат можно получить, решая систему уравнений

28 Проволока из нихрома изогнута в виде кольца радиуса а=1 м (рис.114). В центре кольца помещен гальванический элемент с э. д. с. ε = 2 В и внутренним сопротивлением r=1,5 0м. Элемент соединен с точками с и d кольца по диаметру с помощью такой же нихромовой проволоки. Найти разность потенциалов между точками cad. Удельное сопротивление нихрома ρ=1,1мкОм⋅м, площадь сечения проволоки S= 1 мм2.

Решение:
В эквивалентной схеме резисторы R1 соответствуют проволокам, соединяющим элемент с кольцом, а резисторы R2-двум половинам кольца (рис. 359). Полное внешнее сопротивление цепи

Ток в общей цепи

Разность потенциалов между точками с и d


29 К источнику тока с внутренним сопротивлением r = 1 Ом подключены два параллельно соединенных резистора с сопротивлениями R1 = 10 Ом и R2 = 2 Ом. Найти отношение токов, протекающих через резистор R1 до и после обрыва в цепи резистора R2.

Решение:


30 Два резистора с сопротивлениями R1 = R2 = 1 Ом и реостат, имеющий полное сопротивление R3 = 2 Ом, присоединены к источнику тока с внутренним сопротивлением r = 0,5 Ом (рис. 115). К разветвленному участку цепи подключен вольтметр. Когда движок реостата находится на его середине (точка а), вольтметр показывает напряжение Va=13 В. Каково будет показание вольтметра, если движок передвинуть в крайнее правое положение на реостате? Сопротивление вольтметра велико по сравнению с R1 и R2.

Решение:


31 Шесть проводников с одинаковыми сопротивлениями R0 = 2 Ом соединены попарно параллельно. Все три пары соединены последовательно и подключены к источнику тока с внутренним сопротивлением r=1 Ом. При этом по каждому проводнику течет ток I0 = 2,5А. Какой ток будет течь по каждому проводнику, если один из них удалить?

Решение:
Сопротивление каждой пары проводников равно R0/2. Полное внешнее сопротивление цепи до удаления одного из проводников R1=3R0/2. По закону Ома для полной цепи

отсюда э. д. с. источника тока

После удаления одного из проводников полное внешнее сопротивление цепи

Ток в общей цепи

Через проводник, оставшийся без пары, будет идти ток

а через остальные проводники будут идти токи I2/2 = 2 А.

32 Источник тока с э. д. с. ε = 100 В и внутренним сопротивлением r = 0,2 Ом и три резистора с сопротивлениями R1 = 3 Ом, R2 = 2 Ом и R3 = 18,8 Ом включены по схеме, изображенной на рис. 116. Найти токи, текущие через резисторы R1 и R2.

Решение:


33 К источнику тока с э. д. с. e=120 В и внутренним сопротивлением r=10 Ом подключены два параллельных провода с сопротивлениями R1 =20 Ом. Свободные концы проводов и их середины соединены друг с другом через две лампы с сопротивлениями R2 = 200 Ом. Найти ток, текущий через источник тока.

Решение:
Верхняя лампа и провода, идущие к ней, начиная от места присоединения нижней лампы (рис. 360), образуют последовательную цепочку с сопротивлением R3=R1+R2. Эта цепочка соединена параллельно с нижней лампой и вместе с ней образует сопротивление

Полное внешнее сопротивление цепи

Через источник тока течет ток


34 При замыкании источника тока на резистор с сопротивлением R1=5 Ом в цепи идет ток I1 = 5 А, а при замыкании на резистор с сопротивлением R2 = 2 Ом идет ток I2 = 8 А. Найти внутреннее сопротивление r и э. д. с. источника тока ε.

Решение:
Если ε и r — э. д. с. и внутреннее сопротивление источника тока, то

Из этих уравнений имеем


35 При замыкании источника тока на резистор с сопротивлением R1 = 14 Ом напряжение на зажимах источника V1 = 28 В, а при замыкании на резистор с сопротивлением R2 = 29 Ом напряжение на зажимах V2 = 29 В. Найти внутреннее сопротивление r источника.

Решение:


36 Амперметр с сопротивлением R1 = 2 Ом, подключенный к источнику тока, показывает ток I1 = 5 А. Вольтметр с сопротивлением R2 = 150 Ом, подключенный к такому же источнику тока, показывает напряжение V=12B. Найти ток короткого замыкания Iк источника.

Решение:
При подключении к источнику тока амперметра через него течет I1=ε/(R1+r), где ε — э. д. с. батареи, а r — ее внутреннее сопротивление; при подключении к источнику тока вольтметра через него течет ток I2=ε/(R2+r), и вольтметр показывает напряжение

отсюда

Ток короткого замыкания (при равном нулю внешнем сопротивлении)

37 Два параллельно соединенных резистора с сопротивлениями R1=40 Ом и R2 = 10 Ом подключены к источнику тока с э. д. с. ε=10 В. Ток в цепи I=1 А. Найти внутреннее сопротивление источника и ток короткого замыкания.

Решение:


38 Аккумулятор с э. д. с. ε = 25 В и внутренним сопротивлением r = 1 Ом заряжается от сети с напряжением V=40 В через сопротивление R = 5 Ом. Найти напряжение Vа на зажимах аккумулятора.

Решение:
При зарядке аккумулятор включается навстречу источнику тока. Во время зарядки ток внутри аккумулятора течет от положительного полюса к отрицательному. Напряжение сети V=ε+I(R+r), где I-ток зарядки; отсюда I=(V-ε)/(R+r). Напряжение на зажимах аккумулятора

100 ballov.kz образовательный портал для подготовки к ЕНТ и КТА

В 2021 году казахстанские школьники будут сдавать по-новому Единое национальное тестирование. Помимо того, что главный школьный экзамен будет проходить электронно, выпускникам предоставят возможность испытать свою удачу дважды. Корреспондент zakon.kz побеседовал с вице-министром образования и науки Мирасом Дауленовым и узнал, к чему готовиться будущим абитуриентам.

— О переводе ЕНТ на электронный формат говорилось не раз. И вот, с 2021 года тестирование начнут проводить по-новому. Мирас Мухтарович, расскажите, как это будет?

— По содержанию все остается по-прежнему, но меняется формат. Если раньше школьник садился за парту и ему выдавали бумажный вариант книжки и лист ответа, то теперь тест будут сдавать за компьютером в электронном формате. У каждого выпускника будет свое место, огороженное оргстеклом.

Зарегистрироваться можно будет электронно на сайте Национального центра тестирования. Но, удобство в том, что школьник сам сможет выбрать дату, время и место сдачи тестирования.

Кроме того, в этом году ЕНТ для претендующих на грант будет длиться три месяца, и в течение 100 дней сдать его можно будет два раза.

— Расскажите поподробнее?

— В марте пройдет тестирование для желающих поступить на платной основе, а для претендующих на грант мы ввели новые правила. Школьник, чтобы поступить на грант, по желанию может сдать ЕНТ два раза в апреле, мае или в июне, а наилучший результат отправить на конкурс. Но есть ограничение — два раза в один день сдавать тест нельзя. К примеру, если ты сдал ЕНТ в апреле, то потом повторно можно пересдать его через несколько дней или в мае, июне. Мы рекомендуем все-таки брать небольшой перерыв, чтобы еще лучше подготовиться. Но в любом случае это выбор школьника.

— Система оценивания останется прежней?

— Количество предметов остается прежним — три обязательных предмета и два на выбор. Если в бумажном формате закрашенный вариант ответа уже нельзя было исправить, то в электронном формате школьник сможет вернуться к вопросу и поменять ответ, но до того, как завершил тест.

Самое главное — результаты теста можно будет получить сразу же после нажатия кнопки «завершить тестирование». Раньше уходило очень много времени на проверку ответов, дети и родители переживали, ждали вечера, чтобы узнать результат. Сейчас мы все автоматизировали и набранное количество баллов будет выведено на экран сразу же после завершения тестирования.
Максимальное количество баллов остается прежним — 140.

— А апелляция?

— Если сдающий не будет согласен с какими-то вопросами, посчитает их некорректными, то он сразу же на месте сможет подать заявку на апелляцию. Не нужно будет ждать следующего дня, идти в центр тестирования, вуз или школу, все это будет электронно.

— С учетом того, что школьникам не придется вручную закрашивать листы ответов, будет ли изменено время сдачи тестирования?

— Мы решили оставить прежнее время — 240 минут. Но теперь, как вы отметили, школьникам не нужно будет тратить час на то, чтобы правильно закрасить лист ответов, они спокойно смогут использовать это время на решение задач.

— Не секрет, что в некоторых селах и отдаленных населенных пунктах не хватает компьютеров. Как сельские школьники будут сдавать ЕНТ по новому формату?

— Задача в том, чтобы правильно выбрать время и дату тестирования. Центры тестирования есть во всех регионах, в Нур-Султане, Алматы и Шымкенте их несколько. Школьники, проживающие в отдаленных населенных пунктах, как и раньше смогут приехать в город, где есть эти центры, и сдать тестирование.

— На сколько процентов будет обновлена база вопросов?

— База вопросов ежегодно обновляется как минимум на 30%. В этом году мы добавили контекстные задания, то что школьники всегда просили. Мы уделили большое внимание истории Казахстана и всемирной истории — исключили практически все даты. Для нас главное не зазубривание дат, а понимание значения исторических событий. Но по каждому предмету будут контекстные вопросы.

— По вашему мнению система справится с возможными хакерскими атаками, взломами?

— Информационная безопасность — это первостепенный и приоритетный вопрос. Центральный аппарат всей системы находится в Нур-Султане. Связь с региональными центрами сдачи ЕНТ проводится по закрытому VPN-каналу. Коды правильных ответов только в Национальном центре тестирования.

Кроме того, дополнительно через ГТС КНБ (Государственная техническая служба) все тесты проходят проверку на предмет возможного вмешательства. Здесь все не просто, это специальные защищенные каналы связи.

— А что с санитарными требованиями? Нужно ли будет школьникам сдавать ПЦР-тест перед ЕНТ?

— ПЦР-тест сдавать не нужно будет. Требование по маскам будет. При необходимости Центр национального тестирования будет выдавать маски школьникам во время сдачи ЕНТ. И, конечно же, будем измерять температуру. Социальная дистанция будет соблюдаться в каждой аудитории.

— Сколько человек будет сидеть в одной аудитории?

— Участники ЕНТ не за семь дней будут сдавать тестирование, как это было раньше, а в течение трех месяцев. Поэтому по заполняемости аудитории вопросов не будет.

— Будут ли ужесточены требования по дисциплине, запрещенным предметам?

— Мы уделяем большое внимание академической честности. На входе в центры тестирования, как и в предыдущие годы, будут стоять металлоискатели. Перечень запрещенных предметов остается прежним — телефоны, шпаргалки и прочее. Но, помимо фронтальной камеры, которая будет транслировать происходящее в аудитории, над каждым столом будет установлена еще одна камера. Она же будет использоваться в качестве идентификации школьника — как Face ID. Сел, зарегистрировался и приступил к заданиям. Мы применеям систему прокторинга.

Понятно, что каждое движение абитуриента нам будет видно. Если во время сдачи ЕНТ обнаружим, что сдающий использовал телефон или шпаргалку, то тестирование автоматически будет прекращено, система отключится.

— А наблюдатели будут присутствовать во время сдачи тестирования?

— Когда в бумажном формате проводили ЕНТ, мы привлекали очень много дежурных. В одной аудитории было по 3-4 человека. При электронной сдаче такого не будет, максимум один наблюдатель, потому что все будет видно по камерам.

— По вашим наблюдениям школьники стали меньше использовать запрещенные предметы, к примеру, пользоваться телефонами?

— Практика показывает, что школьники стали ответственнее относиться к ЕНТ. Если в 2019 году на 120 тыс. школьников мы изъяли 120 тыс. запрещенных предметов, по сути у каждого сдающего был телефон. То в прошлом году мы на 120 тыс. школьников обнаружили всего 2,5 тыс. телефонов, и у всех были аннулированы результаты.

Напомню, что в 2020 году мы также начали использовать систему искусственного интеллекта. Это анализ видеозаписей, который проводится после тестирования. Так, в прошлом году 100 абитуриентов лишились грантов за то, что во время сдачи ЕНТ использовали запрещенные предметы.

— Сколько средств выделено на проведение ЕНТ в этом году?

Если раньше на ЕНТ требовалось 1,5 млрд тенге из-за распечатки книжек и листов ответов, то сейчас расходы значительно сокращены за счет перехода на электронный формат. Они будут, но несущественные.

— Все-таки почему именно в 2021 году было принято решение проводить ЕНТ в электронном формате. Это как-то связано с пандемией?

— Это не связано с пандемией. Просто нужно переходить на качественно новый уровень. Мы апробировали данный формат на педагогах школ, вы знаете, что они сдают квалификационный тест, на магистрантах, так почему бы не использовать этот же формат при сдаче ЕНТ. Тем более, что это удобно, и для школьников теперь будет много плюсов.

Электроэнергетика и энергия | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Рассчитайте мощность, рассеиваемую резистором, и мощность, подаваемую источником питания.
  • Рассчитайте стоимость электроэнергии при различных обстоятельствах.

Мощность в электрических цепях

У многих людей власть ассоциируется с электричеством. Зная, что мощность — это коэффициент использования или преобразования энергии, каково выражение для электроэнергии ? На ум могут прийти линии электропередач.Мы также думаем о лампочках с точки зрения их номинальной мощности в ваттах. Сравним лампочку на 25 Вт с лампой на 60 Вт. (См. Рис. 1 (а).) Поскольку оба работают от одного и того же напряжения, лампа мощностью 60 Вт должна потреблять больше тока, чтобы иметь большую номинальную мощность. Таким образом, сопротивление лампы на 60 Вт должно быть ниже, чем у лампы на 25 Вт. Если мы увеличиваем напряжение, мы также увеличиваем мощность. Например, когда лампочка мощностью 25 Вт, рассчитанная на работу от 120 В, подключена к 240 В, она на короткое время очень ярко светится, а затем перегорает.Как именно напряжение, ток и сопротивление связаны с электроэнергией?

Рис. 1. (a) Какая из этих лампочек, лампа мощностью 25 Вт (вверху слева) или лампа мощностью 60 Вт (вверху справа), имеет более высокое сопротивление? Что потребляет больше тока? Что потребляет больше всего энергии? Можно ли по цвету сказать, что нить накаливания мощностью 25 Вт круче? Является ли более яркая лампочка другого цвета, и если да, то почему? (кредиты: Dickbauch, Wikimedia Commons; Грег Вестфолл, Flickr) (б) Этот компактный люминесцентный светильник (CFL) излучает такую ​​же интенсивность света, как и лампа мощностью 60 Вт, но с входной мощностью от 1/4 до 1/10.(кредит: dbgg1979, Flickr)

Электрическая энергия зависит как от напряжения, так и от перемещаемого заряда. Проще всего это выражается как PE = qV , где q — это перемещенный заряд, а V, — напряжение (или, точнее, разность потенциалов, через которую проходит заряд). Мощность — это скорость перемещения энергии, поэтому электрическая мощность равна

.

[латекс] P = \ frac {PE} {t} = \ frac {qV} {t} \\ [/ latex].

Учитывая, что ток равен I = q / t (обратите внимание, что Δ t = t здесь), выражение для мощности становится

P = IV

Электрическая мощность ( P ) — это просто произведение тока на напряжение.Мощность имеет знакомые единицы ватт. Поскольку единицей СИ для потенциальной энергии (PE) является джоуль, мощность измеряется в джоулях в секунду или ваттах. Таким образом, 1 A ⋅V = 1 Вт. Например, в автомобилях часто есть одна или несколько дополнительных розеток, с помощью которых можно заряжать сотовый телефон или другие электронные устройства. {2} R \\ [/ latex].

Обратите внимание, что первое уравнение всегда верно, тогда как два других можно использовать только для резисторов. В простой схеме с одним источником напряжения и одним резистором мощность, подаваемая источником напряжения, и мощность, рассеиваемая резистором, идентичны. (В более сложных схемах P может быть мощностью, рассеиваемой одним устройством, а не полной мощностью в цепи.) Из трех различных выражений для электрической мощности можно получить различное понимание. Например, P = В 2 / R означает, что чем ниже сопротивление, подключенное к данному источнику напряжения, тем больше передаваемая мощность.Кроме того, поскольку напряжение возведено в квадрат в P = В 2 / R , эффект от приложения более высокого напряжения, возможно, больше, чем ожидалось. Таким образом, когда напряжение увеличивается вдвое до лампочки мощностью 25 Вт, ее мощность увеличивается почти в четыре раза до примерно 100 Вт, что приводит к ее перегоранию. Если бы сопротивление лампы оставалось постоянным, ее мощность была бы ровно 100 Вт, но при более высокой температуре ее сопротивление также будет выше.

Пример 1. Расчет рассеиваемой мощности и тока: горячая и холодная энергия

(a) Рассмотрим примеры, приведенные в Законе Ома: сопротивление и простые цепи и сопротивление и удельное сопротивление.Затем найдите мощность, рассеиваемую фарой автомобиля в этих примерах, как в горячую, так и в холодную погоду. б) Какой ток он потребляет в холодном состоянии?

Стратегия для (а)

Для горячей фары нам известны напряжение и ток, поэтому мы можем использовать P = IV , чтобы найти мощность. Для холодной фары нам известны напряжение и сопротивление, поэтому мы можем использовать P = V 2 / R , чтобы найти мощность.

Решение для (a)

Вводя известные значения тока и напряжения для горячей фары, получаем

P = IV = (2.{2}} {0,350 \ text {} \ Omega} = 411 \ text {W} \\ [/ latex].

Обсуждение для (а)

30 Вт, рассеиваемые горячей фарой, являются типичными. Но 411 Вт в холодную погоду на удивление выше. Начальная мощность быстро уменьшается по мере увеличения температуры лампы и увеличения ее сопротивления.

Стратегия и решение для (b)

Ток при холодной лампочке можно найти несколькими способами. Переставляем одно из уравнений мощности, P = I 2 R , и вводим известные значения, получая

[латекс] I = \ sqrt {\ frac {P} {R}} = \ sqrt {\ frac {411 \ text {W}} {{0.350} \ text {} \ Omega}} = 34,3 \ text {A} \\ [/ latex].

Обсуждение для (б)

Холодный ток значительно выше, чем установившееся значение 2,50 А, но ток будет быстро снижаться до этого значения по мере увеличения температуры лампы. Большинство предохранителей и автоматических выключателей (используемых для ограничения тока в цепи) спроектированы так, чтобы выдерживать очень высокие токи на короткое время при включении устройства. В некоторых случаях, например, с электродвигателями, ток остается высоким в течение нескольких секунд, что требует использования специальных плавких предохранителей с замедленным срабатыванием.

Чем больше электроприборов вы используете и чем дольше они остаются включенными, тем выше ваш счет за электроэнергию. Этот знакомый факт основан на соотношении энергии и мощности. Вы платите за использованную энергию. Поскольку P = E / t , мы видим, что

E = Pt

— это энергия, используемая устройством, использующим мощность P в течение интервала времени t . Например, чем больше горело лампочек, тем больше использовалось P ; чем дольше они включены, тем больше т .Единицей измерения энергии в счетах за электричество является киловатт-час (кВт ⋅ ч), что соответствует соотношению E = Pt . Стоимость эксплуатации электроприборов легко оценить, если у вас есть некоторое представление об их потребляемой мощности в ваттах или киловаттах, времени их работы в часах и стоимости киловатт-часа для вашей электросети. Киловатт-часы, как и все другие специализированные единицы энергии, такие как пищевые калории, можно преобразовать в джоули. Вы можете доказать себе, что 1 кВт ⋅ ч = 3.6 × 10 6 Дж.

Потребляемую электрическую энергию ( E ) можно уменьшить либо за счет сокращения времени использования, либо за счет снижения энергопотребления этого прибора или приспособления. Это не только снизит стоимость, но и снизит воздействие на окружающую среду. Улучшение освещения — один из самых быстрых способов снизить потребление электроэнергии в доме или на работе. Около 20% энергии в доме расходуется на освещение, в то время как для коммерческих предприятий эта цифра приближается к 40%.Флуоресцентные лампы примерно в четыре раза эффективнее ламп накаливания — это верно как для длинных ламп, так и для компактных люминесцентных ламп (КЛЛ). (См. Рис. 1 (b).) Таким образом, лампу накаливания мощностью 60 Вт можно заменить на КЛЛ мощностью 15 Вт, которая имеет такую ​​же яркость и цвет. КЛЛ имеют изогнутую трубку внутри шара или спиралевидную трубку, все они подключены к стандартному привинчиваемому основанию, которое подходит для стандартных розеток лампы накаливания. (В последние годы были решены исходные проблемы с цветом, мерцанием, формой и высокими начальными вложениями в КЛЛ.) Теплопередача от этих КЛЛ меньше, и они служат до 10 раз дольше. В следующем примере рассматривается важность инвестиций в такие лампы. Новые белые светодиодные фонари (которые представляют собой группы небольших светодиодных лампочек) еще более эффективны (в два раза больше, чем у КЛЛ) и служат в 5 раз дольше, чем КЛЛ. Однако их стоимость по-прежнему высока.

Установление соединений: энергия, мощность и время

Отношение E = Pt может оказаться полезным во многих различных контекстах.Энергия, которую ваше тело использует во время упражнений, зависит, например, от уровня мощности и продолжительности вашей активности. Степень нагрева от источника питания зависит от уровня мощности и времени ее применения. Даже доза облучения рентгеновского изображения зависит от мощности и времени воздействия.

Пример 2. Расчет рентабельности компактных люминесцентных ламп (КЛЛ)

Если стоимость электроэнергии в вашем районе составляет 12 центов за кВтч, какова общая стоимость (капитальные плюс эксплуатация) использования лампы накаливания мощностью 60 Вт в течение 1000 часов (срок службы этой лампы), если стоимость лампы составляет 25 центов? (б) Если мы заменим эту лампочку компактной люминесцентной лампой, которая дает такой же световой поток, но составляет четверть мощности и стоит 1 доллар.50, но длится в 10 раз дольше (10 000 часов), какова будет общая стоимость?

Стратегия

Чтобы найти эксплуатационные расходы, мы сначала находим используемую энергию в киловатт-часах, а затем умножаем ее на стоимость киловатт-часа.

Решение для (a)

Энергия, используемая в киловатт-часах, определяется путем ввода мощности и времени в выражение для энергии:

E = Pt = (60 Вт) (1000 ч) = 60,000 Вт ⋅ ч

В киловатт-часах это

E = 60.0 кВт ⋅ ч.

Сейчас стоимость электроэнергии

Стоимость

= (60,0 кВт ч) (0,12 долл. США / кВт час) = 7,20 долл. США.

Общая стоимость составит 7,20 доллара за 1000 часов (около полугода при 5 часах в день).

Решение для (b)

Поскольку CFL использует только 15 Вт, а не 60 Вт, стоимость электроэнергии составит 7,20 доллара США / 4 = 1,80 доллара США. КЛЛ прослужит в 10 раз дольше, чем лампа накаливания, так что инвестиционные затраты составят 1/10 стоимости лампы за этот период использования, или 0.1 (1,50 доллара США) = 0,15 доллара США. Таким образом, общая стоимость 1000 часов составит 1,95 доллара США.

Обсуждение

Следовательно, использование КЛЛ намного дешевле, даже если начальные вложения выше. Повышенная стоимость рабочей силы, которую бизнес должен включать в себя для более частой замены ламп накаливания, здесь не учитывается.

Подключение: Эксперимент на вынос — Инвентаризация использования электроэнергии

1) Составьте список номинальной мощности для ряда приборов в вашем доме или комнате.Объясните, почему что-то вроде тостера имеет более высокий рейтинг, чем цифровые часы. Оцените энергию, потребляемую этими приборами в среднем за день (оценивая время их использования). Некоторые приборы могут указывать только рабочий ток. Если бытовое напряжение составляет 120 В, тогда используйте P = IV . 2) Проверьте общую мощность, используемую в туалетах на этаже или в здании вашей школы. (Возможно, вам придется предположить, что используемые длинные люминесцентные лампы рассчитаны на 32 Вт.) Предположим, что здание было закрыто все выходные, и что эти огни были оставлены включенными с 6 часов вечера.{2} R \\ [/ латекс].

  • Энергия, используемая устройством с мощностью P за время t , составляет E = Pt .

Концептуальные вопросы

1. Почему лампы накаливания тускнеют в конце своей жизни, особенно незадолго до того, как их нити оборвутся?

Мощность, рассеиваемая на резисторе, определяется как P = V 2 / R , что означает, что мощность уменьшается при увеличении сопротивления. Тем не менее, эта мощность также определяется соотношением P = I 2 R , что означает, что мощность увеличивается при увеличении сопротивления.Объясните, почему здесь нет противоречия.

Задачи и упражнения

1. Какова мощность разряда молнии 1,00 × 10 2 МВ при токе 2,00 × 10 4 A ?

2. Какая мощность подается на стартер большого грузовика, который потребляет 250 А тока от аккумуляторной батареи 24,0 В?

3. Заряд в 4,00 Кл проходит через солнечные элементы карманного калькулятора за 4,00 часа. Какова выходная мощность, если выходное напряжение вычислителя равно 3.00 В? (См. Рисунок 2.)

Рис. 2. Полоса солнечных элементов прямо над клавишами этого калькулятора преобразует свет в электричество для удовлетворения своих потребностей в энергии. (Источник: Эван-Амос, Wikimedia Commons)

4. Сколько ватт проходит через фонарик с 6,00 × 10 2 за 0,500 ч использования, если его напряжение составляет 3,00 В?

5. Найдите мощность, рассеиваемую в каждом из этих удлинителей: (a) удлинительный шнур с сопротивлением 0,0600 Ом, через который 5.00 А течет; (б) более дешевый шнур с более тонким проводом и сопротивлением 0,300 Ом.

6. Убедитесь, что единицами измерения вольт-ампер являются ватты, как следует из уравнения P = IV .

7. Покажите, что единицы 1V 2 / Ω = 1W, как следует из уравнения P = V 2 / R .

8. Покажите, что единицы 1 A 2 Ω = 1 Вт, как следует из уравнения P = I 2 R .

9. Проверьте эквивалент единиц энергии: 1 кВт ч = 3,60 × 10 6 Дж.

10. Электроны в рентгеновской трубке ускоряются до 1,00 × 10 2 кВ и направляются к цели для получения рентгеновских лучей. Вычислите мощность электронного луча в этой трубке, если она имеет ток 15,0 мА.

11. Электрический водонагреватель потребляет 5,00 кВт за 2,00 часа в сутки. Какова стоимость его эксплуатации в течение одного года, если электроэнергия стоит 12,0 центов / кВт · ч? См. Рисунок 3.

Рисунок 3. Водонагреватель электрический по запросу. Тепло в воду подается только при необходимости. (кредит: aviddavid, Flickr)

12. Сколько электроэнергии необходимо для тостера с тостером мощностью 1200 Вт (время приготовления = 1 минута)? Сколько это стоит при 9,0 цента / кВт · ч?

13. Какова будет максимальная стоимость КЛЛ, если общая стоимость (капиталовложения плюс эксплуатация) будет одинаковой как для КЛЛ, так и для ламп накаливания мощностью 60 Вт? Предположим, что стоимость лампы накаливания составляет 25 центов, а электричество стоит 10 центов / кВтч.Рассчитайте стоимость 1000 часов, как в примере с КЛЛ по рентабельности.

14. Некоторые модели старых автомобилей имеют электрическую систему напряжением 6,00 В. а) Каково сопротивление горячему свету у фары мощностью 30,0 Вт в такой машине? б) Какой ток течет через него?

15. Щелочные батареи имеют то преимущество, что они выдают постоянное напряжение почти до конца своего срока службы. Как долго щелочная батарея с номиналом 1,00 А · ч и 1,58 В будет поддерживать горение лампы фонарика мощностью 1,00 Вт?

16.Прижигатель, используемый для остановки кровотечения в хирургии, выдает 2,00 мА при 15,0 кВ. а) Какова его выходная мощность? б) Какое сопротивление пути?

17. В среднем телевизор работает 6 часов в день. Оцените ежегодные затраты на электроэнергию для работы 100 миллионов телевизоров, предполагая, что их потребляемая мощность составляет в среднем 150 Вт, а стоимость электроэнергии составляет в среднем 12,0 центов / кВт · ч.

18. Старая лампочка потребляет всего 50,0 Вт, а не 60,0 Вт из-за истончения ее нити за счет испарения.Во сколько раз уменьшается его диаметр при условии равномерного утонения по длине? Не обращайте внимания на любые эффекты, вызванные перепадами температур.

Медная проволока калибра 19. 00 имеет диаметр 9,266 мм. Вычислите потери мощности в километре такого провода, когда он пропускает 1,00 × 10 2 A.

Холодные испарители пропускают ток через воду, испаряя ее при небольшом повышении температуры. Одно такое домашнее устройство рассчитано на 3,50 А и использует 120 В переменного тока с эффективностью 95,0%.а) Какова скорость испарения в граммах в минуту? (b) Сколько воды нужно налить в испаритель за 8 часов работы в ночное время? (См. Рисунок 4.)

Рис. 4. Этот холодный испаритель пропускает ток непосредственно через воду, испаряя ее напрямую с относительно небольшим повышением температуры.

21. Integrated Concepts (a) Какая энергия рассеивается разрядом молнии с током 20 000 А, напряжением 1,00 × 10 2 МВ и длиной 1.00 мс? (б) Какую массу древесного сока можно было бы поднять с 18ºC до точки кипения, а затем испарить за счет этой энергии, если предположить, что сок имеет такие же тепловые характеристики, как вода?

22. Integrated Concepts Какой ток должен вырабатывать подогреватель бутылочек на 12,0 В, чтобы нагреть 75,0 г стекла, 250 г детской смеси и 3,00 × 10 2 алюминия от 20 ° C до 90º за 5,00 мин?

23. Integrated Concepts Сколько времени требуется хирургическому прижигателю, чтобы поднять температуру на 1.00 г ткани от 37º до 100, а затем закипятите 0,500 г воды, если она выдает 2,00 мА при 15,0 кВ? Не обращайте внимания на передачу тепла в окружающую среду.

24. Integrated Concepts Гидроэлектрические генераторы (см. Рисунок 5) на плотине Гувера вырабатывают максимальный ток 8,00 × 10 3 A при 250 кВ. а) Какова выходная мощность? (b) Вода, питающая генераторы, входит и покидает систему с низкой скоростью (таким образом, ее кинетическая энергия не изменяется), но теряет 160 м в высоте.Сколько кубических метров в секунду необходимо при КПД 85,0%?

Рисунок 5. Гидроэлектрические генераторы на плотине Гувера. (кредит: Джон Салливан)

25. Integrated Concepts (a) Исходя из 95,0% эффективности преобразования электроэнергии двигателем, какой ток должны обеспечивать аккумуляторные батареи на 12,0 В 750-килограммового электромобиля: отдых до 25,0 м / с за 1,00 мин? (b) Подняться на холм высотой 2,00 × 10 2 м за 2,00 мин при постоянной 25.Скорость 0 м / с при приложении силы 5,00 × 10 2 Н для преодоления сопротивления воздуха и трения? (c) Двигаться с постоянной скоростью 25,0 м / с, прилагая силу 5,00 × 10 2 Н для преодоления сопротивления воздуха и трения? См. Рисунок 6.

Рис. 6. Электромобиль REVAi заряжается на одной из улиц Лондона. (кредит: Фрэнк Хебберт)

26. Integrated Concepts Пригородный легкорельсовый поезд потребляет 630 А постоянного тока напряжением 650 В при ускорении.а) Какова его мощность в киловаттах? (b) Сколько времени нужно, чтобы достичь скорости 20,0 м / с, начиная с состояния покоя, если его загруженная масса составляет 5,30 × 10 4 кг, при условии эффективности 95,0% и постоянной мощности? (c) Найдите его среднее ускорение. (г) Обсудите, как ускорение, которое вы обнаружили для легкорельсового поезда, сравнивается с тем, что может быть типичным для автомобиля.

27. Integrated Concepts (a) Линия электропередачи из алюминия имеет сопротивление 0,0580 Ом / км. Какова его масса на километр? б) Какова масса на километр медной линии с таким же сопротивлением? Более низкое сопротивление сократит время нагрева.Обсудите практические ограничения ускорения нагрева за счет снижения сопротивления.

28. Integrated Concepts (a) Погружной нагреватель, работающий на 120 В, может повысить температуру 1,00 × 10 2 -граммовых алюминиевых стаканов, содержащих 350 г воды, с 20 ° C до 95 ° C за 2,00 мин. Найдите его сопротивление, предполагая, что оно постоянно в процессе. (b) Более низкое сопротивление сократит время нагрева. Обсудите практические ограничения ускорения нагрева за счет снижения сопротивления.

29. Integrated Concepts (a) Какова стоимость нагрева гидромассажной ванны, содержащей 1500 кг воды, от 10 ° C до 40 ° C, исходя из эффективности 75,0% с учетом передачи тепла в окружающую среду? Стоимость электроэнергии 9 центов / кВт kWч. (b) Какой ток потреблял электрический нагреватель переменного тока 220 В, если на это потребовалось 4 часа?

30 . Необоснованные результаты (a) Какой ток необходим для передачи мощности 1,00 × 10 2 МВт при 480 В? (b) Какая мощность рассеивается линиями передачи, если они имеют коэффициент 1.00 — сопротивление Ом? (c) Что неразумного в этом результате? (d) Какие предположения необоснованны или какие посылки несовместимы?

31. Необоснованные результаты (a) Какой ток необходим для передачи 1,00 × 10 2 МВт мощности при 10,0 кВ? (b) Найдите сопротивление 1,00 км провода, которое вызовет потерю мощности 0,0100%. (c) Каков диаметр медного провода длиной 1,00 км, имеющего такое сопротивление? (г) Что необоснованного в этих результатах? (e) Какие предположения необоснованны или какие посылки несовместимы?

32.Создайте свою задачу Рассмотрим электрический погружной нагреватель, используемый для нагрева чашки воды для приготовления чая. Постройте задачу, в которой вы рассчитываете необходимое сопротивление нагревателя, чтобы он увеличивал температуру воды и чашки за разумный промежуток времени. Также рассчитайте стоимость электроэнергии, используемой в вашем технологическом процессе. Среди факторов, которые необходимо учитывать, — используемое напряжение, задействованные массы и теплоемкость, тепловые потери и время, в течение которого происходит нагрев.Ваш инструктор может пожелать, чтобы вы рассмотрели тепловой предохранительный выключатель (возможно, биметаллический), который остановит процесс до достижения опасной температуры в погружном блоке.

Глоссарий

электрическая мощность:
— скорость, с которой электрическая энергия подается источником или рассеивается устройством; это произведение тока на напряжение

Избранные решения проблем и упражнения

1. 2,00 × 10 12 Вт

5.{6} \ text {J} \\ [/ latex]

11. 438 $ / год

13. $ 6.25

15. 1.58 ч

17. 3,94 миллиарда долларов в год

19. 25,5 Вт

21. (а) 2,00 × 10 9 Дж (б) 769 кг

23. 45.0 с

25. (а) 343 A (б) 2,17 × 10 3 A (в) 1,10 × 10 3 A

27. (а) 1,23 × 10 3 кг (б) 2,64 × 10 3 кг

29. (a) 2,08 × 10 5 A
(b) 4,33 × 10 4 МВт
(c) Линии передачи рассеивают больше мощности, чем они должны передавать.
(d) Напряжение 480 В неоправданно низкое для напряжения передачи. В линиях передачи на большие расстояния поддерживается гораздо более высокое напряжение (часто сотни киловольт), чтобы уменьшить потери мощности.

Как рассчитать падение напряжения и потерю мощности в проводах

Вы должны рассматривать провод как еще один последовательно включенный резистор. Вместо этого сопротивление \ $ \ text {R} _ {\ text {load}} \ $ подключено к источнику питания с напряжением \ $ \ text {V} \ $ …

Вы должны увидеть это так: сопротивление \ $ \ text {R} _ {\ text {load}} \ $, подключенное к через два провода с сопротивлением \ $ \ text {R} _ {\ text {wire}} \ $ на блок питания с напряжением \ $ \ text {V} \ $:

Теперь мы можем использовать \ $ \ text {V} = \ text {I} \ cdot {} \ text {R} \ $, где \ $ \ text {V} \ $ означает напряжение, \ $ \ text {I} \ $ для тока и \ $ \ text {R} \ $ для сопротивления.

Пример

Предположим, что напряжение, приложенное к цепи, равно \ $ 5 \ text {V} \ $. \ $ \ text {R} _ {\ text {load}} \ $ равно \ $ 250 \ Omega \ $, а сопротивление \ $ \ text {R} _ {\ text {wire}} \ $ равно \ $ 2.5 \ Omega \ $ (если вы не знаете сопротивление провода, см. ниже в разделе «Расчет сопротивления провода»). Сначала мы вычисляем ток в цепи, используя \ $ \ text {I} = \ dfrac {\ text {V}} {\ text {R}} \ $: \ $ \ text {I} = \ dfrac {5 } {250 + 2 \ cdot2.5} = \ dfrac {5} {255} = 0,01961 \ text {A} = 19.61 \ text {mA} \

$

Теперь мы хотим узнать, какое падение напряжения на одном куске провода используется \ $ \ text {V} = \ text {I} \ cdot {} \ text {R} \ $: \ $ \ text {V} = 0,01961 \ cdot2.5 = 0,049025 В = 49,025 \ text {мВ} \

долл. США

Таким же образом мы можем рассчитать напряжение в \ $ \ text {R} _ {\ text {load}} \ $: \ $ \ text {V} = 0.01961 \ cdot250 = 4.9025 \ text {V} \ $

Предвидение потери напряжения

Что, если нам действительно нужно напряжение \ $ 5 \ text {V} \ $ over \ $ \ text {R} _ {\ text {load}} \ $? Нам нужно будет изменить напряжение \ $ \ text {V} \ $ от источника питания, чтобы напряжение выше \ $ \ text {R} _ {\ text {load}} \ $ стало \ $ 5 \ text {V } \ $.

Сначала мы вычисляем ток через \ $ \ text {R} _ {\ text {load}} \ $: \ $ \ text {I} _ {\ text {load}} = \ dfrac {\ text {V} _ {\ text {load}}} {\ text {R} _ {\ text {load}}} = \ dfrac {5} {250} = 0,02 \ text {A} = 20 \ text {mA} \

долларов США

Поскольку мы говорим о последовательном сопротивлении, ток во всей цепи одинаков. Следовательно, ток, который должен дать источник питания, \ $ \ text {I} \ $, равен \ $ \ text {I} _ {\ text {load}} \ $. Нам уже известно полное сопротивление цепи: \ $ \ text {R} = 250 + 2 \ cdot2.5 = 255 \ Омега \ $. Теперь мы можем рассчитать необходимое напряжение питания, используя \ $ \ text {V} = \ text {I} \ cdot {} \ text {R} \ $: \ $ \ text {V} = 0.02 \ cdot255 = 5.1 \ text { V} \ $


Что, если мы хотим знать, сколько мощности теряется в проводах? Обычно мы используем \ $ \ text {P} = \ text {V} \ cdot {} \ text {I} \ $, где \ $ \ text {P} \ $ означает мощность, \ $ \ text {V} \ $ для напряжения и \ $ \ text {I} \ $ для тока.

Итак, единственное, что нам нужно сделать, это ввести правильные значения в формулу.

Пример

Мы снова используем блок питания \ $ 5 \ text {V} \ $ с \ $ 250 \ Omega \ $ \ $ \ text {R} _ {\ text {load}} \ $ и двумя проводами \ $ 2.5 \ Omega \ $ за штуку. Падение напряжения на одном куске провода, как вычислено выше, составляет \ $ 0,049025 \ text {V} \ $. Ток в цепи был \ $ 0.01961 \ text {A} \ $.

Теперь мы можем рассчитать потери мощности в одном проводе: \ $ \ text {P} _ {\ text {wire}} = 0,049025 \ cdot0.01961 = 0,00096138 \ text {W} = 0,96138 \ text {mW} \ $


Во многих случаях нам известна длина провода \ $ l \ $ и AWG (американский калибр проводов) провода, но не сопротивление. Однако рассчитать сопротивление легко.

В Википедии есть список доступных здесь спецификаций AWG, который включает сопротивление на метр в Ом на километр или в миллиОм на метр. У них также есть это за килофуты или футы.

Мы можем вычислить сопротивление провода \ $ \ text {R} _ {\ text {wire}} \ $, умножив длину провода на сопротивление на метр.

Пример

У нас есть \ $ 500 \ text {m} \ $ провода 20AWG. Какое будет общее сопротивление?

\ $ \ text {R} _ {\ text {wire}} = 0.5 \ text {km} \ cdot 33.31 \ Omega / \ text {km} = 16.655 \ Omega \ $

2.2.4 Закон Ома и почему мы заботимся о сопротивлении

2.2.4 Закон Ома и почему мы заботимся о сопротивлении

Устройство, известное нам как тостер, на удивление простое. Он состоит в основном из провода, по которому пропускается ток. Проволока нагревается, поджаривая хлеб. Это оно!

а почему нагревается провод? Ответ в том, что провод имеет некоторое сопротивление. Когда ток проходит через материал с некоторым сопротивлением, материал нагревается.Это тепло в первую очередь является рассеянием некоторой части электроэнергии, проходящей через материал. Это рассеяние мощности в виде тепла называется «потерями» в электросети.

Сопротивление материала, через который проходит ток, помогает определить потери, но это не единственный фактор. Напряжение, при котором энергия проходит через материал, также имеет значение, как и величина тока.

Это соотношение четко резюмируется в законе Ома, который гласит, что напряжение равно произведению тока и сопротивления, или V = I × R.Закон Ома используется для определения величины напряжения, необходимого для перемещения заданного количества тока (I) через некоторый материал с заданным сопротивлением (R).

Между тем, вспомните наше определение мощности: P = I × V. По сути, это количество мощности, передаваемой в цепи, подобной той, что была в нашем последнем упражнении.

Мы можем включить закон Ома в наше определение мощности, чтобы получить:

P = I × V = I × (I × R) = I2 × R

Это уравнение описывает количество мощности, рассеиваемой в цепи.Он также описывает количество потерь. Таким образом, закон Ома говорит нам, что потери будут увеличиваться пропорционально квадрату тока. Таким образом, если мы сохраним постоянное напряжение и удвоим ток, потери увеличатся в четыре раза.

Чтобы понять важность этого, предположим, что мы пропускаем 1000 ампер тока через цепь с падением напряжения 100 В. Итак, у нас есть мощность 100 кВт. Потери в цепи будут пропорциональны I2 × R, или 10002 × R в этом случае.

Но, если бы нам нужно было 100 кВт мощности, мы могли бы сделать это по-другому, пропустив через цепь 100 А при напряжении 1000 В.Сопротивление в цепи не изменится, но потери в цепи теперь будут пропорциональны 100 2 × R.

Таким образом, увеличивая напряжение (и уменьшая ток) в 10 раз, мы уменьшили наши потери в 100 раз. Это объясняет причину того, что у нас есть сеть переменного тока вместо сети постоянного тока. Помните, что в технологии питания постоянного тока Эдисона напряжение в источнике должно быть близко к напряжению в точке потребления.Но с помощью технологии переменного тока, разработанной Tesla и Westinghouse, мощность могла генерироваться и передаваться при очень высоких напряжениях, а затем снижаться до более низких напряжений в точке потребления. Это имело два больших преимущества: во-первых, можно было существенно снизить потери при передаче, а во-вторых, для домов и предприятий было намного безопаснее использовать электроэнергию низкого напряжения, а не высокого напряжения.

Закон Ома

с калькулятором

Закон Ома

Есть 2 основные формулы, которые помогут вам понять взаимосвязь между током, напряжением, сопротивлением и мощностью.Если у вас есть какие-либо два параметра, вы можете рассчитать два других параметра.

ЗАКОН ОМА
БАЗОВЫЕ ФОРМУЛЫ P = I * E E = I * R
НАЙТИ НАПРЯЖЕНИЕ E = P / I E = I * R E = SQR (P * R)
НАЙТИ ТЕКУЩИЙ I = P / E I = E / R I = SQR (P / R)
НАЙТИ МОЩНОСТЬ P = I * E P = E 2 P = I 2
НАЙТИ СОПРОТИВЛЕНИЕ R = E 2 R = E / I R = P / I 2
P = мощность в ваттах
E = электродвижущая сила в вольтах
I = электрический ток в амперах
R = электрическое сопротивление в омах
SQR = квадратный корень

Примечание:
В большинстве случаев я использую букву «E» для обозначения напряжения, но иногда вы увидите, что для обозначения напряжения используется буква «V».Пусть это вас не смущает.

Краткий курс повышения квалификации

Изменение сопротивления:
На следующей диаграмме вы можете видеть, что единственная разница между диаграммами слева и диаграммами справа — это сопротивление в каждой «системе». Сопротивление в кране соответствует величине открытия клапана. В проводе сопротивление равно размеру отверстия * в отрезке провода. Вы можете видеть, что напряжение / давление одинаковы как для левого, так и для правого примеров.Что вы должны отметить на этой диаграмме, так это … При прочих равных, если есть увеличение сопротивления, ток будет уменьшаться. Вы можете видеть, что ток в крайнем правом проводе составляет половину тока в крайнем левом проводе. Это потому, что крайний правый провод имеет половину площади, через которую проходят электроны.

* Обратите внимание, что размер «отверстия» аналогичен сопротивлению. В реальном куске провода нет физических ограничений.

По формуле:
I = E / R
Вы можете видеть, что ток обратно пропорционален сопротивлению в цепи.

Больше сопротивления = меньше тока

А для тех, кто более графичен …


Изменение напряжения:
На следующей диаграмме вы можете видеть, что сопротивление во всех системах одинаково. На этот раз мы изменили напряжение / давление. Вы можете видеть, что повышенное напряжение вызывает увеличение тока, даже если сопротивление в левой и правой системах одинаково.

С помощью формулы:
I = E / R
Вы можете видеть, что ток прямо пропорционален напряжению, приложенному к сопротивлению.

Больше напряжения = больше тока
Что ж, теперь, когда это до смерти объяснили, перейдем к математике!

Математический пример:
В следующем примере мы знаем, что у нас есть 12 вольт, приложенных к резистору 10 Ом. Если вы хотите узнать, сколько мощности рассеивается на резисторе 10 Ом, используйте формулу:


P = E 2 / R
P = 12 2 /10
P = 144/10.
P = 14,4 Вт
Рассеиваемая мощность на резисторе 14.4 Вт.

Если вы хотите узнать, какой ток протекает через резистор, вы должны использовать формулу:


I = E / R
I = 12/10
I = 1,2 ампера
Ток через резистор 1,2 ампера.


Если вам нужно больше примеров, страница с резисторами приносит больше удовольствия, чем бочка с обезьянами.


Если вы хотите попробовать несколько самостоятельно, приведенные ниже калькуляторы позволят вам проверить свои математические данные.

Найти: рассеиваемая мощность и ток в зависимости от сопротивления и приложенного напряжения.


Важное примечание о демонстрациях Flash / графике на этом сайте … Власти посчитали, что Flash-контент на веб-страницах слишком опасен для использования обычным пользователем Интернета, и вскоре вся его поддержка будет исключен (большая часть доступа к Flash была прекращена 1-1-2021). Это означает, что ни один современный браузер по умолчанию не отображает ни одну из этих демонстраций. На данный момент исправление заключается в загрузке расширения Ruffle для вашего браузера. Веб-сайт Ruffle. Напишите мне, пожалуйста, (babin_perry @ yahoo.com), чтобы сообщить мне, подходит ли вам Ruffle и какой браузер вы используете.

Альтернативой Ruffle является другой браузер Maxthon 4.9.5.1000. Для получения дополнительных сведений о проблеме с Flash и Maxthon (стандартном и переносном) щелкните ЗДЕСЬ.

Георг Симон Ом:
Георг Симон Ом был немецким физиком, который жил с 1789 по 1854 год. Он обнаружил взаимосвязь между напряжением, током и сопротивлением в проводнике с постоянной температурой (постоянная температура важна, потому что сопротивление изменяется с температурой, а закон Ома не действует). не занимаюсь изменением температуры / сопротивления).Он обнаружил, что при постоянном сопротивлении напряжение и ток прямо пропорциональны (как мы показали на графике выше). Это соотношение может быть выражено как V = IR, где V — напряжение, приложенное к сопротивлению, I — ток, протекающий через сопротивление, а R — сопротивление в омах.

Джеймс Ватт:
Джеймс Ватт был шотландским изобретателем, который жил с 1736 по 1819 год. Единица измерения мощности, ватт, была названа в его честь.

Джеймс Прескотт Джоуль:
Джеймс Прескотт Джоуль был английским физиком, который жил с 1818 по 1889 год.Он обнаружил взаимосвязь между мощностью, рассеиваемой в резисторе, и током, протекающим через резистор. Это соотношение может быть представлено формулой P = I ² R, где P — рассеиваемая мощность в ваттах, I — ток в амперах, R — сопротивление в омах. Ому обычно приписывают формулы, которые выражают взаимосвязь между мощностью, током, сопротивлением и напряжением, но, вероятно, следует отдать должное Джоулям.

«Джоуль» как единица измерения:
«Джоуль» представляет собой количество энергии, используемое, когда 1 ватт рассеивается в течение 1 секунды (или 1 ватт-секунды).

Мощность и энергия

  • Изучив этот раздел, вы сможете:
  • Выполнять расчеты мощности, напряжения, тока и сопротивления.
  • • с использованием соответствующих единиц и подразделов.
  • Различайте мощность и энергию в электрических цепях.

Мощность резисторов

Когда через резистор протекает ток, электрическая энергия преобразуется в ТЕПЛОВУЮ энергию.Тепло, генерируемое в компонентах цепи, каждый из которых обладает хотя бы некоторым сопротивлением, рассеивается в воздухе вокруг компонентов. Скорость рассеивания тепла называется МОЩНОСТЬЮ, обозначается буквой P и измеряется в ваттах (Вт).

Количество рассеиваемой мощности может быть вычислено с использованием любых двух величин, используемых в расчетах по закону Ома. Помните, как и в любой формуле, в формуле должны использоваться ОСНОВНЫЕ КОЛИЧЕСТВА, то есть ВОЛЬТЫ, ОМЫ и АМПЕРЫ (не милли, мег и т. Д.).

Чтобы найти мощность P, используя V и I

Чтобы найти мощность P, используя V и R

Чтобы найти мощность P, используя I и R

Перед тем, как начать, подумайте об этих нескольких советах, они облегчат решение, если внимательно следовать им.

1. Разработайте ответы с помощью карандаша и бумаги; в противном случае легко запутаться на полпути и получить неправильный ответ.

2.Конечно, ответ — это не просто число, это будет определенное количество ватт (или несколько или несколько единиц ватт). Не забудьте указать правильную единицу измерения (например, Вт или мВт и т. Д.), А также число, иначе ответ не имеет смысла.

3. Преобразуйте все вспомогательные единицы, такие как мВ или кОм, в ватты, указав их в соответствующей формуле. Ошибка здесь даст действительно глупые ответы, в тысячи раз слишком большие или слишком маленькие.

4. Хотя структура этих формул мощности кажется очень похожей на формулы закона Ома, есть небольшое различие — они содержат некоторые элементы в квадрате (I 2 и V 2 ).Будьте очень осторожны при использовании трюка с треугольником для транспонирования этих формул. Если вам нужно связать мощность с сопротивлением, то I или V необходимо возвести в квадрат (умножить на себя). Однако вы можете построить треугольник, который соответствует любой из формул для получения R, как показано ниже.

Не забудьте загрузить нашу брошюру «Подсказки по математике», в которой показано, как использовать калькулятор с показателями степени и инженерной нотацией, чтобы работать с этими частями и каждый раз получать правильный ответ.

У вас нет научного калькулятора? Буклет «Подсказки по математике» объясняет, что вам нужно (и что вам не нужно, чтобы не тратить деньги без надобности). Если вы не хотите покупать научный калькулятор, вы всегда можете получить его бесплатно в сети. Пользователи ПК могут попробовать Calc98 на сайте www.calculator.org/download.html. Какой бы калькулятор вы ни выбрали, прочтите инструкции, чтобы ознакомиться с методами работы, которые вам следует использовать, поскольку они варьируются от калькулятора к калькулятору.

Важно помнить о влиянии рассеивания мощности в компонентах: чем больше мощность, тем больше тепла должно рассеиваться компонентом. Обычно это означает, что компоненты, рассеивающие большое количество энергии, нагреваются, а также они будут значительно больше по размеру, чем типы с низким энергопотреблением. Если компоненту требуется рассеивать больше энергии, чем он предназначен, он не сможет достаточно быстро избавиться от выделяемого тепла. Его температура повысится, и перегрев может вызвать полный выход из строя компонента и, возможно, повреждение других компонентов и самой печатной платы (PCB).В качестве меры предосторожности резисторы большой мощности часто устанавливают вне печатной платы с использованием более длинных выводных проводов, заключенных в керамические гильзы. Резисторы с проволочной обмоткой большой мощности могут даже быть заключены в металлический радиатор и прикреплены болтами к большой металлической поверхности, такой как корпус оборудования, чтобы избавиться от нежелательного тепла. Примеры резисторов большой мощности показаны на странице конструкции резистора.

Компоненты, такие как резисторы, имеют определенную номинальную мощность, указанную производителем (в ваттах или милливаттах).Этот рейтинг (параметр) необходимо проверять при замене компонента, чтобы не произошло завышения рейтинга. Это важный фактор безопасности при обслуживании электронного оборудования.

TIP

Тепло, выделяемое резисторами большой мощности, является основной причиной преждевременного выхода из строя многих цепей. Либо сам резистор выходит из строя из-за «разомкнутой цепи», особенно в резисторах с проволочной обмоткой. В резисторах из углеродного состава длительный перегрев может привести к изменению значения. Это может увеличиваться в типах с высоким сопротивлением или более опасно уменьшаться (позволяя увеличить ток) в типах с низким сопротивлением.Увеличение тока, вызванное этим уменьшением сопротивления, только ускоряет процесс, и в конечном итоге резистор (а иногда и другие связанные компоненты) сгорает!

Энергия в резисторах

Если определенное количество мощности рассеивается в течение заданного времени, то рассеивается ЭНЕРГИЯ. Энергия (мощность x время) измеряется в Джоулях, и, включив время (t) в формулы мощности, можно рассчитать энергию, рассеиваемую компонентом или схемой.

Рассеиваемая энергия = Pt или VIt или V 2 t / R или даже I 2 Rt Джоули

Обратите внимание, что в формулах для энергии такие величины, как мощность, время, сопротивление, ток и напряжение, должны быть преобразованы в их основные единицы, например.грамм. Ватты, секунды, Ом, Амперы, Вольт и т. Д. Никаких дополнительных единиц или нескольких единиц! Как описано в буклете «Советы по математике».

Все вышеперечисленные единицы являются частью интегрированной системы международно стандартизированных единиц; Система S.I. (Système International d´Unités). Эта система устанавливает основные единицы для любых электрических, механических и физических свойств и их отношения друг к другу. Он также включает стандартную форму кратных и долей кратных, описанную в буклете «Подсказки по математике».

Законы Ома и Ватта | SpazzTech

Что такое закон Ома и закон Ватта ?:

Закон Ома определяет одно из самых фундаментальных соотношений в электронике. Это соотношение между напряжением, током и сопротивлением. Закон Ватта определяет еще одно из самых фундаментальных соотношений в электронике. Это соотношение между мощностью и величинами, определенное законом Ома.Мы не сможем углубиться в электронику, пока эти концепции не будут поняты.

Вольт:

Единицей измерения параметра напряжения является вольт. Символ, который используется для обозначения вольт, — это буква «V». В зависимости от ситуации используются как верхний, так и нижний регистры. Символом параметра напряжения также является буква «V». Если бы электрическая цепь представляла собой садовый шланг, напряжение было бы аналогично давлению в шланге.Единица V равна количеству энергии в джоулях, необходимой для перемещения одного кулона электронов между двумя точками. Напряжение иногда называют «потенциалом», потому что оно способно перемещать эти электроны.

Ампер или Ампер:

Единицей измерения параметра тока является ампер. Ампер часто сокращают до ампер. Символ, используемый для обозначения усилителя, — это буква «А». В зависимости от ситуации используются как верхний, так и нижний регистр.Символ, используемый для представления параметра тока, — это буква «I». Если бы электрическая цепь представляла собой садовый шланг, ток был бы подобен скорости потока воды в шланге. Единица A равна количеству кулонов, проходящих через контур за одну секунду.

Ом:

Единицей измерения параметра сопротивления является ом. Для обозначения сопротивления используется символ Ω. Символ, используемый для обозначения параметра сопротивления, — это буква «R».Если бы электрическая цепь была садовым шлангом, сопротивление было бы любым клапаном или другим ограничением в шланге. Единица Ω равна сопротивлению, которое существует, когда 1 А протекает между двумя точками с напряжением 1 В между этими двумя точками. Это составляет основу форм закона Ома, приведенных в следующем разделе.

Формы закона Ома:

Мощность:

Единицей измерения мощности в электронике чаще всего является ватт.Символ, используемый для обозначения ватта, — это заглавная буква «W». По сути, мощность — это скорость выполнения работы. Фактически, один ватт равен одному джоулю в секунду. Из определений, данных для вольт и ампер, приведенных выше, мы можем сказать, что один ватт также равен одному вольту, умноженному на один ампер, потому что вольт — это мера джоулей на кулон, а ампер — мера кулонов в секунду. Кулоны сокращаются, и у нас остаются джоули в секунду.

Формы закона Ватта:

Объединенная взаимосвязь закона Ома и закона Ватта Настенная диаграмма:

Объединив закон Ома и закон Ватта, нам нужно знать только две величины, чтобы определить две другие.Эти величины представляют собой напряжение (В) в вольтах, ток (I) в амперах, сопротивление (R) в омах и мощность (P) в ваттах. Все отношения между этими количествами приведены в таблице ниже.

© Copyright 2014-2017 SpazzTech LLC. Все права защищены

Мощность и энергия | Электрические схемы

Начнем с расчета эквивалентного сопротивления резисторов.{2}} {\ text {9,8}} \\ & = \ текст {3,67} \ текст {Ω} \ end {выровнять *}

Теперь мы можем найти неизвестное сопротивление, сначала вычислив эквивалентное параллельное сопротивление:

\ begin {align *} \ frac {1} {R_ {p}} & = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} \\ & = \ frac {1} {1} + \ frac {1} {5} + \ frac {1} {3} \\ & = \ frac {23} {15} \\ R_ {p} & = \ text {0,65} \ text {Ω} \ end {выровнять *} \ begin {align *} R_ {s} & = R_ {4} + R_ {p} \\ R_ {4} & = R_ {s} — R_ {p} \\ & = \ text {3,67} — \ text {0,65} \\ & = \ текст {3,02} \ текст {Ω} \ end {выровнять *}

Теперь мы можем рассчитать общий ток:

\ begin {align *} I & = \ frac {V} {R} \\ & = \ frac {6} {\ text {3,67}} \\ & = \ текст {1,63} \ текст {А} \ end {выровнять *}

Это ток в последовательном резисторе и во всем параллельном соединении.{2} (\ text {3,02}) \\ & = \ текст {0,89} \ текст {W} \ end {выровнять *}

Затем мы находим напряжение на этих резисторах и используем его, чтобы найти напряжение на параллельной комбинации:

\ begin {align *} V & = IR \\ & = (\ текст {1,63}) (\ текст {3,02}) \\ & = \ текст {4,92} \ текст {V} \ end {выровнять *} \ begin {align *} V_ {T} & = V_ {1} + V_ {p} \\ V_ {p} & = V_ {T} — V_ {1} \\ & = \ text {6} — \ text {4,92} \\ & = \ текст {1,08} \ текст {V} \ end {выровнять *}

Это напряжение на каждом из параллельных резисторов.{2}} {\ text {3}} \\ & = \ текст {3,5} \ текст {W} \ end {выровнять *} .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *