Как обозначается переменное напряжение: AC, DC — что это такое?

Содержание

Обозначение постоянного и переменного тока. DC ток — понятие и виды постоянно тока

Содержание

  1. Что такое DC ток и что он значит
  2. Показания вольтметра при подключении измерительных щупов
  3. Какое напряжение DC тока
  4. Пара слов о «полярности» переменного напряжения
  5. Чем отличается DC ток от AC тока
  6. Важность маркировки полярности
  7. Причины непостоянства
  8. Направление постоянного тока и обозначения на электроприборах и схемах
  9. Величина постоянного тока
  10. Плотность тока
  11. Постоянная dc-тока
  12. Изменяющаяся компонента
  13. Различия в постоянном и переменном токе
  14. Особенности DC тока
  15. Что такое АС
  16. Отличие переменного от постоянного
  17. Сравнительная таблица
  18. Постоянный ток
  19. Переменный ток
  20. Чем опасен АС ток для человека
  21. Что опаснее для человека
  22. Происхождение переменного и постоянного тока
  23. Что показывает мультиметр при выборе различных режимов работы?
  24. Можно ли провести свет под железной дорогой?
  25. Пара слов о «полярности» переменного напряжения
  26. Важность маркировки полярности
  27. Что такое АС и ДС?
  28. Почему переменный ток лучше чем постоянный?
  29. Что такое источник питания DC?
  30. Какой ток в сети переменный или постоянный?
  31. Как обозначается переменный и постоянный ток?
  32. Какой ток в розетке 220 вольт?
  33. Что такое переменный ток и чем он отличается от постоянного?
  34. Примечания

Что такое DC ток и что он значит

Постоянным принято называть электрический ток, сила и направление которого не меняются. В электротехнике смешанный вид с преобладающим постоянным компонентом также называется постоянным, если колебания незначительны для предполагаемого эффекта, или если колебания являются результатом колебаний нагрузки. Тогда среднее арифметическое рассматривается как постоянный ток.

Линии электропередач поставляют ток в дома и на предприятия

К сведению! На английском языке его принято обозначать, как Direct Current, или сокращенно DC, что также используется и для постоянного напряжения. Переменный электрический поток переводится, как Alternating Current, что означает AC напряжение.

«Чистый» и «пульсирующий» постоянные токи

Показания вольтметра при подключении измерительных щупов

Давайте рассмотрим эти принципы более наглядно. Во-первых, связь между подключением измерительных щупов со знаком на показаниях вольтметра при измерении постоянного напряжения:

Рисунок 3 – Цвета измерительных щупов служат ориентиром для интерпретации знака (+ или -) показаний измерительного прибора.

Математический знак на дисплее цифрового вольтметра постоянного напряжения имеет значение только в контексте подключения его измерительных проводов. Рассмотрим возможность использования вольтметра постоянного напряжения для определения того, складываются ли два источника постоянного напряжения друг с другом или вычитаются друг из друга, предполагая, что на обоих источниках нет маркировки их полярности.

Использование вольтметра для измерения на первом источнике:

Рисунок 4 – Положительные (+) показания указывают, что черный – это (-), красный – это (+)

Этот результат первого измерения +24 на левом источнике напряжения говорит нам, что черный провод вольтметра действительно подключен к отрицательной клемме источника напряжения № 1, а красный провод вольтметра действительно подключен к положительной клемме. Таким образом, мы узнаем, что источник №1 – это батарея, включенная следующим образом:

Рисунок 5 – Полярность источника 24 В

Измерение другого неизвестного источника напряжения:

Рисунок 6 – Отрицательные (-) показания указывают, что черный – это (+), красный – это (-)

Второе измерение вольтметром показало отрицательные (-) 17 вольт, что говорит нам о том, что черный измерительный щуп на самом деле подключен к положительной клемме источника напряжения № 2, а красный измерительный провод подключен к отрицательной клемме. Таким образом, мы узнаем, что источник №2 – это батарея, включенная в противоположную сторону:

Рисунок 7 – Полярность источника 17 В

Для любого, знакомого с постоянным током, должно быть очевидно, что эти две батареи противодействуют друг другу. Противоположные напряжения, априори, вычитаются друг из друга, поэтому, чтобы получить общее напряжение на обоих батареях, мы вычитаем 17 вольт из 24 вольт и получаем 7 вольт.

Но мы могли бы изобразить два источника в виде невзрачных прямоугольников, помеченных точными значениями напряжений, полученными с помощью вольтметра, и маркировкой полярности, указывающей на положение измерительных щупов вольтметра:

Рисунок 8 – Показания вольтметра, как они отображались на нем

Какое напряжение DC тока

При DC напряжении электроны всегда движутся в одном направлении. Источник напряжения таким образом всегда имеет одинаковую полярность. Однако уровень напряжения не всегда должен быть одинаковым. В качестве классического источника энергии для генерации постоянного напряжения обычная батарейка, в которой уровень напряжения снижается во время разряда.

Движение электронов при постоянном напряжении

Кроме того, большинство источников питания также генерирует постоянное напряжение, хотя на них подается переменное. В случае стабилизированных источников питания, помимо направления потока, большое значение также уделяется и уровню АС напряжения, который может варьироваться в зависимости от напряжения, однако постоянно будет иметь одинаковую полярность.

Обратите внимание! Переменные напряжения, подаваемые сетевыми трансформаторами и генераторами, могут быть преобразованы выпрямителями. Тогда возникает электрическое напряжение, которое варьируется по величине, но не по знаку.

Схемы с постоянным и переменным током

Компонент переменного напряжения может быть уменьшен путем подключения достаточно большого сглаживающего конденсатора параллельно или последовательно сглаживающей катушки так, что останется только небольшая остаточная пульсация. Чем больше емкость конденсатора или индуктивность катушки, тем меньше будет пиковое значение наложенного переменного напряжения.

Пара слов о «полярности» переменного напряжения

Комплексные числа полезны для анализа цепей переменного тока, поскольку они предоставляют удобный метод символьной записи сдвига фаз между параметрами переменного тока, такими как напряжение и ток.

Однако большинству людей нелегко понять эквивалентность абстрактных векторов и реальных параметров схемы. Ранее в данной главе мы видели, как источники переменного напряжения задаются значениями напряжения в комплексной форме (амплитуда и угол фазы), а также обозначением полярности.

Чем отличается DC ток от AC тока

Изначально постоянный ток должен был генерироваться на электростанциях с относительно низким напряжением розетки для потребителя, 110 или 220 В. Однако если при таком варианте подключено сразу несколько потребителей, суммарные значения очень высоки. В таком случае требуются толстые и дорогие кабели для преодоления больших расстояний, чтобы удерживать потери при передаче в определенных пределах. При использовании переменного напряжения генерируемая электроэнергия может транспортироваться на относительно большие расстояния с небольшими потерями. С 1980 г. стало возможным выпрямить трехфазный ток высокого напряжения, а затем преобразовать его обратно.

Главное отличие AC и DC, постоянного и переменного токов состоит в том, что первый изменяется через определенные промежутки времени (с определенной частотой), в частности, он меняет направление по мере своего протекания. В мире самой распространенной является частота 50 Гц.

Обратите внимание! Когда электричество достигает потребителя, тогда в ход идут трансформаторы. Они преобразуют высокое напряжение в более низкое, которое и поступает в дома.

Трансформатор напряжения

Как уже было сказано, DC электричество не меняется с течением времени. И так как электроны движутся лишь в одном направлении, источники характеризуются наличием положительного и отрицательного полюсов. AC более эффективно при использовании многокилометровых линий электропередач. А постоянный ток предпочтителен для небольшой электроники или накопительных элементов, например, солнечных батарей.

Важность маркировки полярности

В соответствии со схемой на рисунке 8 (выше) обозначения полярности (которые указывают на положение измерительного щупа вольтметра) указывают, что источники складываются друг с другом. Источники напряжения складываются друг с другом, чтобы сформировать общее напряжение, поэтому мы добавляем 24 вольта к -17 вольтам, чтобы получить 7 вольт: всё еще правильный ответ.

Если мы позволим маркировке полярности определять наше решение, складывать или вычитать значения напряжения (независимо от того, представляют ли эти маркировки полярности истинную полярность или только положение измерительного провода вольтметра), и включим математические знаки этих значений напряжений в наши расчеты, результат всегда будет правильным.

Причины непостоянства

Экономичный переносной аппарат для измерения артериального давления выполняет свои функции на протяжении нескольких лет без установки новых батареек. Мощность потребления светодиодного освещения зала значительно больше. Такие устройства подключают к стандартной сети 220V через адаптер, который выравнивает напряжение и уменьшает амплитуду до необходимого уровня. Однако даже качественные преобразователи выполняют свои функции с допустимыми погрешностями. Постепенно уменьшается энергетический потенциал электрохимического источника. Отмеченные факторы объясняют действительное непостоянство измеряемых параметров в контрольной цепи.

По классическому определению, DC подразумевает неизменное направление движения заряженных частиц. Это значит, что показанный результат трансформации (б) с полуволнами одной полярности также соответствует заданному условию.

Важно! Постоянный ток – это частный случай однонаправленного тока, когда дополнительно обеспечивается стабилизация параметра с определенной точностью.

Направление постоянного тока и обозначения на электроприборах и схемах

Чтобы упростить расчеты и создание электрических схем, принимают направленность этого параметра по направлению к точке с меньшим потенциалом (от плюса к минусу). В действительности частицы перемещаются именно таким образом только при положительном заряде. В металле направление потока электронов обратное, однако для исключения путаницы применяют обозначенный базовый принцип.

Изоляция положительных выводов (щупов, кабелей) обозначается красным цветом, отрицательных – черным или синим. Если в сопроводительном тексте указано dc напряжение, это значит, что и ток в соответствующей цепи будет постоянный. На чертежах и корпусах изделий применяют условные обозначения в виде параллельных линий (сплошной и прерывистой).

К сведению. Анод (катод) – это выводы электронной лампы или другой детали, которые подключают к положительному (отрицательному) электроду аккумуляторной батареи.

Также можно встретить обозначение a c что это такое, подробно описано в заключительном разделе статьи. Прямая расшифровка сокращения от «alternating current» не всегда корректна. Однако в узком смысле подразумевают синусоиду с переменной полярностью, которая обозначается латинскими буквами «AC», характерным одиночным волнистым символом либо стандартным математическим знаком примерного равенства «≈».

Величина постоянного тока

Определение «сила» не является корректным. Тем не менее, его применяют с учетом общепринятых норм. Вернувшись к сути явления, можно определить силу тока (I) по количеству перемещенных за определенный временной интервал (t) зарядов:

I = Q/t.

По международным стандартам СИ подразумеваются единичные величины: ампер, кулон и секунда. Для работы с большими токами удобнее пользоваться производной (ампер-часом) с повышающим множителем 3 600.

К сведению. Измерения выполняются с помощью универсального мультиметра или специализированного амперметра. Прибор включают непосредственно в цепь либо используют вспомогательный шунт.

Плотность тока

Количество зарядов удобно оценивать с учетом размеров проводника и концентрации энергии в контролируемой области. Для этого пользуются производным параметром, плотностью тока (j). Его значение вычисляют по формуле:

j = I/S, где S – поперечное сечение в мм кв.

По j определяют безопасный диаметр жилы либо соответствующие размеры плавкого предохранителя. В зависимости от целевого назначения предотвращают разрушение материала при нагреве либо используют плановый разрыв токопроводящей цепи при чрезмерных нагрузках.

Постоянная dc-тока

Эту составляющую вычисляют по среднему за определенный временной период значению сигнала. В сложных условиях, при изменении частоты, образуется кривая линия. Если соблюдается периодичность (синусоида, равномерные импульсы), постоянная на графике изображается прямой линией.

Изменяющаяся компонента

Переменная составляющая определяет искажения формы сигнала, при особых условиях – энергетические потери. При значительном уровне такая компонента оказывает влияние на подключенную нагрузку с реактивными характеристиками. Переменный ток ac выполняет полезные функции только при подсоединении потребителей, совместимых с таким источником питания. Однако и в этом случае возникают проблемы, если не ограничить помехи при включении контактора или пусковой скачек напряжения на обмотке электродвигателя.

Различия в постоянном и переменном токе

При сохранении определенной разницы потенциалов поток зараженных частиц перемещается равномерно в одном и том же направлении. Если применить ток ас, отмеченная стабильность нарушается. В этой ситуации придется учитывать изменение рабочих параметров с частотой сигнала. Кроме наличия переходных процессов, усложняются правила вычислений.

Однако только переменное напряжение ac обеспечивает функциональность колебательного контура – базового компонента радиотехнической схемы. Электромагнитные волны распространяются на большое расстояние, что необходимо для передачи/приема информации. Отражение сигналов используется для радиолокации, дистанционных методов измерения и контроля. Переменный ток ac применяют для генерации энергии и вращения роторов двигателей.

В некоторых ситуациях определяющее значение приобретают особенности воспроизведения технологического процесса. Уместный пример – серия современных сварочных аппаратов:

  • если номинальный ток постоянный, проще выполнять рабочие операции, однако придется тщательно контролировать безопасный уровень напряжения в режиме холостого хода;
  • с переменным током сложнее сделать качественный шов, но именно такой вариант специалисты рекомендуют для соединения сваркой деталей из цветных металлов.

Какой выбрать вариант источника питания для создания эффективного функционального устройства? Для правильного ответа проект изучают в комплексе. Кроме схемотехники, оценивают энергетические затраты и целевое назначение.

Особенности DC тока

Время на чтение:

Ежедневно миллиарды людей по всему миру используют электричество, хотя при этом мало кто знает, как и откуда оно поступает. Кроме этого, не все даже знают о том, что существуют две формы: AC, DC — постоянный, переменный токи. С переменным люди сталкиваются чуть чаще в обычной жизни, но и постоянный также играет важную роль.

Что такое АС

Перевод аббревиатуры АС с английского обозначает Alternative Current (переменный ток). Соответственно DC, что читается как Direct Current, обозначает постоянное, текущее в одном направлении, напряжение. Каждый из них используется для питания электроприборов и играет ключевую роль в целостности электрооборудования при неправильном подключении.

Полезно! Электроток не меняющий в течение времени свою величину и направление называется постоянным.

Переменный ток является формой, повсеместно применяемой потребителями для обеспечения работоспособности основного электрооборудования. Преимущественно стандартная форма волн в электроцепей представлена в виде синусоидальной кривой, с положительным полупериодом равным положительному течению напряжения и наоборот.

В отдельных случаях, например, музыкальные усилители, применяют различные формы волн. Они могут быть треугольными, либо прямоугольными. Аудио и радио сигнал транслируемые по проводам, также относятся к переменному току. Этот тип напряжения несёт зашифрованные информационные данные (звуки или изображения). В отдельных случаях передача может осуществляться за счёт модуляции. Такой ток преимущественно чередуется с высокочастотными, что и отличает их от обычной передачи электроэнергии.

Отличие переменного от постоянного

Прежде всего постоянное напряжение должно генерироваться на подстанциях с относительно низким напряжением для предоставления потребителю (220В). Однако, при одновременном подключении нескольких приборов, суммарное значение возрастает. В этой ситуации, для передачи напряжения на большие расстояния, необходимо использовать толстый и дорогостоящий кабель. Только так можно получить возможность транспортировки тока на большие расстояния с минимальными потерями мощности.

В примере с переменным, генерируемое электричество способно преодолевать большое расстояние с наименьшими потерями. С 1980 г. появилась возможность выпрямления трёхфазного электрического тока и его обратное преобразование.

Основным отличием AC напряжения от DC тока заключается в том, что последний показывает сравнительную стабильность. Под этим подразумевается, что он не изменяет частоту направления движения.

Полезно! Наиболее распространённой частотой в мире признаётся 50 Гц.

Из-за того, что движение постоянного тока течёт равномернее, направление протекания электронов осуществляется строго в одном направлении. Причем источник в данной ситуации имеет, как положительный, так и отрицательный полюс. Таким образом, постоянный ток преимущественно используют в высоковольтных линиях (для транспортировки на значительные расстояния). После преобразования в переменный, он передаётся в наши розетки.

Интересно! Перед тем как напряжение достигло пункта назначения (потребителя), оно попадает в трансформатор. Здесь оно преобразуется из высокого в более низкое, с соответствующим пониженным значением частности, приемлемое в использовании для бытовых нужд, и передаётся в квартиру, дом.

Сравнительная таблица

Сравнительный график переменного тока и постоянного тока

Переменный ток Постоянный ток
Количество энергии, которое можно нести Безопасно переносить на большие расстояния по городу и может обеспечить большую мощность. Напряжение постоянного тока не может перемещаться очень далеко, пока оно не начнет терять энергию.
Причина направления потока электронов Вращающийся магнит вдоль провода. Устойчивый магнетизм вдоль провода.
частота Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. Частота постоянного тока равна нулю.
направление Он меняет свое направление, пока течет по кругу. Он течет в одном направлении в цепи.
ток Это величина, изменяющаяся во времени Это ток постоянной величины.
Поток электронов Электроны продолжают переключать направления – вперед и назад. Электроны неуклонно движутся в одном направлении или «вперед».
Получен из Генератор переменного тока и сеть. Ячейка или батарея.
Пассивные параметры Сопротивление. Только сопротивление
Фактор силы Лежит между 0 и 1. это всегда 1.
Типы Синусоидальный, Трапециевидный, Треугольный, Квадратный. Чистый и пульсирующий.


Переменный и постоянный ток. Горизонтальная ось – это время, а вертикальная ось представляет напряжение.

Постоянный ток

Международный символ этого напряжения DC — Direct Current (постоянный ток), а условное обозначение на электросхемах «—» или «=». Величина и полярность этого вида напряжения являются неизменными, а сила тока изменяется только при изменениях нагрузки. Этот вид электрического тока производится аккумуляторами, батарейками и элементами солнечных электростанций.

От сети постоянного тока работают двигатели трамваев, троллейбусов и другого электротранспорта. Эти электродвигатели имеют лучшие тяговые характеристики, чем двигатели переменного тока.

Информация! От постоянного напряжения работает бОльшая часть электронных схем, но они получают питание от сети переменного тока через встроенный или внешний блок питания с выпрямителем.

Переменный ток

Международное обозначение этого напряжения AC — Alternating Current (переменный ток), а условное обозначение на электросхемах «~» или «≈».

Величина и полярность переменного тока в сети всё время меняется. Частота этих изменений составляет 50Гц в Европе и некоторых других странах и 60Гц в США. Большинство бытовых и промышленных электроприборов изготавливаются для питания переменным напряжением.

Практически вся электроэнергия, используемая в быту и промышленности, является переменной. Для передачи на большие расстояния его повышают при помощи трансформаторов, а в конечной точке линии понижают до необходимой величины. Это позволяет уменьшить стоимость ЛЭП и потери. Для того, чтобы исключить колебания напряжения, для особоважных приборов устанавливаются стабилизаторы.

При увеличении напряжения и неизменной передаваемой мощности сила тока и сечение проводов пропорционально уменьшается. Если напряжение не повышать, то для подачи электроэнергии к потребителю необходимо использовать кабеля большого сечения, а передача на большие расстояния окажется невозможной. Вот почему в розетке переменный ток.

В домашней розетке два контакта — фазный и нулевой. В некоторых случаях к ним добавляется заземляющий. Это однофазное напряжение является частью трёхфазной системы. Она включает в себя три одинаковых сети. Напряжение в этих сетях сдвинуто по фазе на 120° друг относительно друга.

Вначале эта система была шестипроводной. В таком виде её изобрёл Никола Тесла. Позже М. О. Доливо-Добровольский усовершенствовал эту схему и предложил передавать трёхфазное напряжение по трём или чётырём проводам (L1, L2, L3, N). Он также показал преимущества трёхфазной системы электроснабжения перед схемами с другим числом фаз.

Чем опасен АС ток для человека

Как уже упоминалось, особенность АС напряжения заключается в равномерном протекании частиц от одного полюса к другому. В сравнении с DC током он считается менее опасным так как в большинстве случаев оказывает на человеческий организм спазматическое воздействие. Спазм проходит сразу после снятия напряжения, что снижает вероятность критических результатов.

Однако отсутствие опасности для организма наблюдается только в случае малого значения постоянного тока. Чем больше его значение, тем возрастает вероятность критических последствий. Например, при контакте с напряжением, превышающем 500 В, ток может оказаться опаснее чем переменный. Однако в быту такие значения отсутствуют и используются в трансформаторах или подстанциях, доступ куда открыт только специально обученным людям.

Важно! Основное отличие воздействия высоковольтного тока на человека заключается в сильном отбрасывающем эффекте (в сравнении с переменным).

Что опаснее для человека

Для человеческого организма большую опасность представляет переменный АС. Под его воздействием происходит резкая фибрилляция сердечных желудочков. Но это не означает, что постоянный ток может считаться безопасным. Люди, попавшие под такое напряжение, получают тяжёлые травмы в результате отброса и механического удара.

Происхождение переменного и постоянного тока

Магнитное поле около провода заставляет электроны течь в одном направлении вдоль провода, потому что они отталкиваются отрицательной стороной магнита и притягиваются к положительной стороне. Так родился источник постоянного тока от батареи, в первую очередь благодаря работе Томаса Эдисона.

Генераторы переменного тока постепенно заменили аккумуляторную систему постоянного тока Edison, потому что переменный ток безопаснее переносить на большие расстояния по городу и может обеспечить большую мощность. Вместо постоянного применения магнетизма вдоль проволоки ученый Никола Тесла использовал вращающийся магнит. Когда магнит был ориентирован в одном направлении, электроны текли к положительному, но когда ориентация магнита была перевернута, электроны также поворачивались.

Что показывает мультиметр при выборе различных режимов работы?

Они располагаются вокруг круглого переключателя, с помощью которого можно устанавливать необходимый режим. На переключателе место контакта обозначено точкой или рельефным треугольничком. Обозначения разделены на сектора. Практически все современные мультиметры имеют подобную разбивку и круглый переключатель.

Сектор OFF. Если установить переключатель в это положение – прибор выключен. Есть и модели, которые автоматически выключаются через некоторое время. Это очень удобно, потому что я например во время работы его забываю выключать, да и не удобно когда меряешь, потом паяешь все время выключать его. Батареи хватает надолго.

2 и 8 – два сектора с обозначением V, этим символом обозначается напряжение в вольтах. Если просто символ V – то измеряется постоянное напряжение, если V, измеряется переменное напряжение. Стоящие рядом цифры показывают диапазон измеряемого напряжения. Причем постоянное измеряется от 200m (милливольт) до 1000 вольт, а переменное от 100 до 750 вольт.

3 и 4 – два сектора для измерения постоянного тока. Красным выделен всего один диапазон для измерения тока до 10 ампер. Остальные диапазоны составляют: от 0 до 200, 2000 микроампер, от 0 до 20, 200 миллиампер. В обычной жизни десяти ампер вполне хватает, при измерении силы тока мультиметр включается в цепь путем подключения щупов в нужное гнездо, специально предназначенное для измерения силы тока. Как-то раз я впервые попробовал измерить силу тока в розетке своим первой простенькой моделью тестера. Пришлось менять щупы на новые — штатные выгорели.

5 (пятый) сектор. Значок похож на Wi-Fi. Установка переключателя в этом положении позволяет проводить звуковую прозвонку цепи например нагревательного элемента.

6 (шестой) сектор – установка переключателя в данное положение проверяет исправность диодов. Проверка диодов — очень востребованная тема среди автомобилистов. Можно самому проверить исправность например диодного моста автомобильного генератора:

7 – символ Ω. Здесь измеряется сопротивление 0 до 200, 2000 Ом, от 0 до 20, 200 или 2000 кОм. Так же очень востребованный режим. В любой электрической схеме больше всего элементов сопротивления. Бывает, что измерением сопротивления быстро находишь неисправность:

Можно ли провести свет под железной дорогой?

Здравствуйте уважаемые пикабушники. Есть у меня вопрос, по поводу дачного участка.

Купили участок в ДНТ. Участок находиться в железнодорожной развилке. Стал вопрос о проведении света на участок. Подключиться можно только по улице за железной дорогой (председатель дает точку подключения только там) Сами понимаете через железную дорогу провода не перекинешь. Но есть туннель под жд дорогой. Можно ли через него провести провода или это не законно? И как вообще быть?

Пара слов о «полярности» переменного напряжения

Комплексные числа полезны для анализа цепей переменного тока, поскольку они предоставляют удобный метод символьной записи сдвига фаз между параметрами переменного тока, такими как напряжение и ток.
Однако большинству людей нелегко понять эквивалентность абстрактных векторов и реальных параметров схемы. Ранее в данной главе мы видели, как источники переменного напряжения задаются значениями напряжения в комплексной форме (амплитуда и угол фазы), а также обозначением полярности.

Поскольку у переменного тока нет параметра «полярности», как у постоянного тока, эти обозначения полярности и их связь с углом фазы могут вводить в заблуждение. Данный раздел написан с целью, прояснить некоторые из этих вопросов.

Напряжение, по своей сути, – относительная величина. Когда мы измеряем напряжение, у нас есть выбор, как подключить вольтметр или другой измерительный прибор к источнику напряжения, поскольку есть две точки, между которыми существует разность потенциалов, и два измерительных щупа у прибора, которые необходимо подключить.

В цепях постоянного тока мы явно обозначаем полярность источников напряжения и падений напряжения, используя символы «+» и «-«, а также используем измерительные щупы с цветовой маркировкой (красный и черный). Если цифровой вольтметр показывает отрицательное постоянное напряжение, мы знаем, что его измерительные щупы подключены «обратно» напряжению (красный провод подключен к «-«, а черный провод – к «+»).

Полярность батарей обозначается специфичными для них символами: короткая линия батареи всегда является отрицательной (-) клеммой, а длинная линия – всегда положительной (+):

Рисунок 1 – Общепринятое обозначение полярности батареи

Хотя было бы математически правильно представить напряжение батареи в виде отрицательного значения с обозначением обратной полярности, но это было бы явно необычно:

Рисунок 2 – Совершенно нестандартное обозначение полярности

Интерпретация таких обозначений могла бы быть проще, если бы обозначения полярности «+» и «-» рассматривались как контрольные точки для измерительных щупов воль означал бы «красный», а «-» означал бы «черный». Вольтметр, подключенный к указанной выше батарее красным щупом к нижней клемме и черным щупом к верхней клемме, действительно будет указывать отрицательное напряжение (-6 вольт).

На самом деле, эта форма обозначения и интерпретации не так уж необычна, как вы могли подумать: она часто встречается в задачах анализа цепей постоянного тока, где знаки полярности «+» и «-» сначала рисуются согласно обоснованному предположению, а затем интерпретируются как правильные или «обратные» в соответствии с математическим знаком рассчитанного значения.

Однако в цепях переменного тока мы не имеем дело с «отрицательными» значениями напряжения. Вместо этого мы описываем, в какой степени одно напряжение совпадает или не совпадает с другим по фазе: т.е. по сдвигу по времени между двумя сигналами. Мы никогда не описываем переменное напряжение как отрицательное по знаку, потому что возможность полярной записи позволяет векторам указывать в противоположных направлениях.

Если одно переменное напряжение прямо противоположно другому переменному напряжению, мы просто говорим, что одно напряжение на 180° не совпадает по фазе с другим.

Тем не менее, напряжение между двумя точками является относительным, и у нас есть выбор, как подключить прибор для измерения напряжения между этими двумя точками. Математический знак показаний вольтметра постоянного напряжения имеет значение только в контексте подключений его измерительных щупов: к какой клемме подключен красный щуп, а к какой клемме подключен черный щуп.

Кроме того, угол фазы переменного напряжения имеет значение только в контексте знания, какая из этих двух точек считаются «опорной». Поэтому, чтобы дать заявленному углу фазы точку отсчета, на схемах часто указываются обозначения полярности «+» и «-» на клеммах переменного напряжения.

Важность маркировки полярности

В соответствии со схемой на рисунке 8 (выше) обозначения полярности (которые указывают на положение измерительного щупа вольтметра) указывают, что источники складываются друг с другом. Источники напряжения складываются друг с другом, чтобы сформировать общее напряжение, поэтому мы добавляем 24 вольта к -17 вольтам, чтобы получить 7 вольт: всё еще правильный ответ.

Если мы позволим маркировке полярности определять наше решение, складывать или вычитать значения напряжения (независимо от того, представляют ли эти маркировки полярности истинную полярность или только положение измерительного провода вольтметра), и включим математические знаки этих значений напряжений в наши расчеты, результат всегда будет правильным.

Опять же, маркировка полярности служит ориентиром для размещения математических знаков значений напряжений в правильном контексте.

То же самое верно и для переменного напряжения, за исключением того, что математический знак заменяется углом фазы. Чтобы связать друг с другом несколько переменных напряжений с разными углами фазы, нам нужна маркировка полярности, чтобы обеспечить систему отсчета для углов фаз этих напряжений.

Возьмем, к примеру, следующую схему:

Рисунок 9 – Угол фазы заменяет знак ±

Маркировка полярности показывает, что эти два источника напряжения складываются друг с другом, поэтому для определения общего напряжения на резисторе мы должны сложить значения напряжения 10 В 0° и 6 В ∠ 45° вместе, чтобы получить 14,861 В 16,59 °.

Однако было бы вполне приемлемо представить 6-вольтовый источник как 6 В 225°, с обратной маркировкой полярности, и при этом получить такое же общее напряжение:

Рисунок 10 – Переключение проводов вольтметра на источнике 6 В изменяет угол фазы на 180°

6 В 45° с минусом слева и плюсом справа – это точно то же самое, что 6 В ∠ 225 ° с плюсом слева и минусом справа: изменение маркировки полярности идеально дополняет добавление 180° к значению угла фазы:

Рисунок 11 – Изменение полярности добавляет 180° к углу фазы

Что такое АС и ДС?

АС, DC – это устоявшиеся термины, буквально означающие: переменный ток, постоянный ток (англ.: alternating current, direct current). … Иногда с аббревиатурой DC связывают постоянную составляющую сигнала, а с AC – переменную.

Почему переменный ток лучше чем постоянный?

Постоянный ток как раз имеет меньшие потери, чем переменный, потому что при его использовании потери мощности обуславливаются падением напряжения только на активном сопротивлении, а при переменном токе на активном и реактивном.

Что такое источник питания DC?

Какой ток в сети переменный или постоянный?

Почти вся производимая электроэнергия является переменной, а постоянная, вырабатываемая генераторами постоянного тока и солнечными электростанциями перед поступлением в сеть преобразовывается в переменный ток, поэтому более, чем в 98% розеток переменный ток.

Как обозначается переменный и постоянный ток?

Постоянный ток: Обозначение (—) или DC (Direct Current = постоянный ток). Переменный ток: Обозначение (~) или AC (Alternating Current = переменный ток).

Какой ток в розетке 220 вольт?

Параметры домашней сети всегда известны: переменный ток, напряжение 220 вольт и частота 50 герц. Они подходят преимущественно для электродвигателей, холодильников и пылесосов, а также ламп накаливания и многих других приборов. Многие потребители работают при постоянном напряжении в 6-12 вольт.

Что такое переменный ток и чем он отличается от постоянного?

Что такое переменный ток и чем он отличается от тока постоянного Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Примечания

Источники

  • https://masterservisnsk.ru/shkola-elektrika/dc-eto-kakoj-tok.html
  • https://amperof.ru/teoriya/dc-tok-ponyatie-vidy.html
  • https://oxotnadzor.ru/chto-takoye-dc-tok-direct-current/
  • https://printeka.ru/prochee/dc-i-ac-napryazhenie-chto-eto.html
  • https://tutsvarka.ru/raznoe/kak-peremennyj-tok-ac-protiv-postoyannogo-toka-dc-chto-nuzhno-znat-2021-2
  • https://ectrl.ru/provodka/dc-tok.html
  • https://oxotnadzor.ru/postoyannyy-tok-peremennyy-tok-angliyskiy/
  • https://EcoSvet-Russia. ru/obuchenie/ac-dc-tok-rasshifrovka.html
  • https://kmd-mk.ru/dc-napryazhenie-chto-oznachaet/

Обозначение постоянного и переменного тока на схемах

Переменный ток может быть однофазным или трехфазным. В первом случае требуется только два проводника: основной и вспомогательный, называемый также обратным. Это основной проводник, по которому течет электрический ток, а обратный проводник, который считается нейтральным проводником.

По своим свойствам электрический ток делится на два основных типа:

  • Постоянный ток. Это обозначается прямой линией (-). Кроме того, используются символы DC – Direct Current, что переводится как постоянный ток.
  • Переменный ток. Известный под собственным названием серпентин (

Отличительной особенностью постоянного тока является его направленность. Он течет только в одном определенном направлении, условно от положительного контакта “+” к отрицательному контакту “-“. От этого свойства происходит название этого постоянного тока, который присутствует в солнечных батареях, всевозможных сухих батареях и аккумуляторах, предназначенных для питания маломощных нагрузок.

Некоторые процессы, такие как дуговая сварка, электролиз алюминия или электрификация железных дорог, требуют постоянного тока высокой силы. Для получения такого тока необходимо выпрямить переменный ток или использовать один из генераторов постоянного тока.

Переменный ток, в отличие от постоянного, может менять свое направление и величину. Существует параметр, называемый мгновенным значением переменного тока, определяемый в определенный момент времени. Частота, с которой меняется направление тока, составляет 50 Гц, что означает, что изменение происходит 50 раз за одну секунду.

Переменный ток может быть однофазным или трехфазным. В первом случае необходимы только два провода: основной и вспомогательный, называемый также обратным. Это основной провод, по которому проходит электрический ток, и обратный провод, который считается нейтральным.

Трехфазное переменное напряжение вырабатывается подходящим генератором переменного тока. Имеется три обмотки, каждая из которых представляет собой своего рода однофазную электрическую цепь. Они сдвинуты по фазе между собой на угол 120 градусов. С помощью этой системы можно одновременно снабжать электроэнергией три независимые сети. Для этого уже требуется около шести проводов – три прямых и три обратных.

При необходимости можно соединить дополнительные проводники вместе, чтобы сформировать общий проводник, называемый нейтральным или нулевым проводом. В этом случае проводники переменного тока обозначаются на схемах символами L1, L2, L3, а нейтральный проводник – буквой N.

По определению действующая сила прямо пропорционально напряжению и обратно пропорционально сопротивлению.

Содержание

Сила тока.

Сила электрического тока это отношение работы, совершенной током, ко времени, в течение которого эта работа была совершена.

Мощность, развиваемая электрическим током в цепи, прямо пропорциональна силе тока и напряжению в цепи. Мощность (электрическая и механическая) измеряется в ваттах (Вт).

Сила тока не является функцией количества электрического тока в цепи, а определяется как произведение напряжения и силы тока.

Этот метод остается лучшим способом передачи электроэнергии в промышленных масштабах на большие расстояния с минимальными потерями.

Обозначение типа тока, пульса, удара

ГОСТ 2.721-74

ИмяНазначение
Постоянный ток, основное обозначение
Примечание. Если невозможно использовать основное обозначение, используется следующее обозначение
2. полярность постоянного тока: a) Положительная
(b) отрицательный
3. м линия постоянного тока с напряжением U, напр:
(a) двухпроводная линия постоянного тока напряжением 110 В
(b) трехпроводная линия постоянного тока с центральным проводником, напряжением 110 В между каждым внешним проводником и напряжением 220 В между внешними проводниками
4. переменный ток, основное обозначение
Примечание. Допускается указывать значение частоты справа от символа переменного тока, например, переменный ток 10 кГц
5. переменный ток, количество фаз m, частота f, например, трехфазный переменный ток, частота 50 Гц
6. переменный ток с числом фаз m, частотой f, напряжением U, например:
(a) переменный ток, число фаз m, частота 50 Гц, напряжение 220 В
(b) переменный ток, трехфазный, четырехпроводная линия (три провода, нейтраль), частота 50 Гц, напряжение 220/380 В
c) Переменный ток, трехфазный, пятипроводная цепь (три фазных провода, нейтральный провод, один провод защитного заземления), 50 Гц, напряжение 220/380 В
(d) переменный ток, трехфазный, четырехпроводная цепь (три фазных проводника, один проводник защитного заземления, который действует как нейтральный проводник), 50 Гц, частота 220/380 В
7) Частоты переменного тока (основное обозначение): a) промышленные
б) аудио
в) ультразвуковые и радиочастоты
г) сверхвысокие частоты
8. постоянный и переменный ток
9. пульсирующий ток
ИмяНазначение
Назначение Однофазная обмотка с двумя выводами 1.
2. однофазная обмотка с двумя выходами 3.
3. две однофазные обмотки, каждая с двумя фазными проводниками
4. три однофазные обмотки, каждая с двумя проводниками
5. м однофазных обмоток, каждая с двумя фазными проводами
6. двухфазные обмотки с раздельными фазами
7. Трехфазная обмотка с раздельными фазами
8 Многофазная обмотка n с числом отдельных фаз m.Примечание. для параграфов. 6-8 Обозначения относятся к разъемным обмоткам, для которых допускаются различные способы внешнего подключения
9. двухфазная трехпроводная обмотка
10. двухфазная четырехпроводная обмотка 11.
11. двухфазная трехфазная обмотка Т-образная муфта (обмотка Скотта)
12. трехфазная обмотка V-типа с двумя фазами в открытом треугольнике
Примечание. Допустимо указать угол, под которым соединены обмотки, например, углы 60 и 120 градусов.
13 Трехфазные обмотки, соединенные в звезду
14) Трехфазные обмотки в соединении звездой с выведенной нейтральной точкой
15. трехфазные обмотки в соединении звездой, с нейтральной точкой на выходе
16 Трехфазные обмотки в соединении треугольником
17 Трехфазная обмотка открытый треугольник
18. трехфазная обмотка, соединенная зигзагообразно
19. трехфазная зигзагообразная обмотка с отключенной нейтралью
20. четырехфазная обмотка, соединенная зигзагом
21. четырехфазная обмотка, подключенная через центральную точку
Шестифазная обмотка соединена звездой
23 Шестифазная обмотка с соединением звездой в центральной точке 24.
24. шестифазная обмотка с соединением двойной звездой
25. шестифазная обмотка, соединенная в виде двух инверсных звезд
26. шестифазная обмотка, соединенная в две инверсные звезды с расстоянием между точками звезды
27. шестифазная обмотка, соединенная в две треугольные решетки
28. шестифазная обмотка, соединенная в виде шестиугольника
29 Шестифазная обмотка, соединенная двойным зиг-загом
30. шестифазная обмотка, соединенная через двойную зигзагообразную промежуточную точку
ИмяНазначение
Прямоугольный импульс: a) положительный
б) отрицательный
2. трапециевидный импульс
3. крутосклонный импульс
4. крутой импульс волнового фронта
5. биполярный импульс
6. Импульс с острым углом: a) положительный
б) отрицательный
7. резкий импульс с экспоненциальным спадом
Логарифмический импульс: a) линейно возрастающий
б) с линейным уменьшением
9) гармонический импульс
10. градуированный импульс
11. высокочастотные импульсы (радиоимпульсы)
12. импульс переменного тока
13. искаженный импульсПримечание. Квалификационные символы представляют собой упрощенное воспроизведение осциллограмм соответствующих импульсов.
ИмяНазначение
1 Аналоговый сигнал
2 Цифровой сигнал
3 Положительная разница в уровнях сигнала
4. Отрицательный уровень дифференциального сигнала
5. высокий уровень сигнала
6. низкий уровень сигнала
ИмяНазначение
1 Амплитудная модуляция
2 Частотная модуляция
3 Фазовая модуляция
4. Импульсная модуляция:
(a) импульсная фазовая модуляция
(b) частотно-импульсная модуляция
(c) импульсная амплитудная модуляция
(d) временной импульс
e) широтно-импульсная модуляция
(f) кодово-импульсный
Примечание. Допускается вместо символа # указывать характеристики соответствующего кода, например: пятиразрядный двоичный код
код три из семи

7 ПЕРЕИЗДАН. Апрель 2020 года.

2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок используется только издание, указанное в ссылочном стандарте, для недатированных ссылок используется последнее издание (включая все поправки).

IEC 60027-1:1992, Буквенные обозначения для электротехники – Часть 1: Общие принципы

Поправка 1 (1997)

Поправка 2 (2005)

IEC 60027-2:2005, Буквенные обозначения, используемые в электротехнике – Часть 2: Телекоммуникации и электроника. Часть 2: Телекоммуникации и электроника)

Заменен на IEC 60027-2:2019.

IEC 60038:2009, стандартные напряжения IEC

IEC 60050-121:1998, Международный электротехнический словарь – Часть 121: Электромагнетизм

Поправка 1 (2002)

IEC 60050-131:2002, Международный электротехнический словарь – Часть 131: Теория цепей.

Поправка 1 (2008)

IEC 60050-141:2004, Международный электротехнический словарь – Часть 141: Многофазные системы и цепи. Часть 141: Многофазные системы и схемы)

IEC 60050-151:2001, Международный электротехнический словарь – Часть 151: Электрическое и магнитное оборудование. Часть 151: Электрическое и магнитное оборудование).

IEC 60050-195:1998, Международный электротехнический словарь – Часть 195: Заземление и защита от поражения электрическим током. Часть 195: Заземление и защита от поражения электрическим током)

Поправка 1 (1998)

IEC 60050-411:1996, Международный электротехнический словарь – Глава 411: Вращающиеся машины

Поправка 1 (2007)

IEC 60050-421:1990, Международный электротехнический словарь – Глава 421: Силовые трансформаторы и реакторы. Глава 421: Силовые трансформаторы и реакторы)

IEC 60050-441:1984, Международный электротехнический словарь – Глава 441: Распределительные устройства, устройства управления и предохранители. Глава 441: Распределительные устройства, устройства управления и предохранители).

Поправка 1 (2000).

IEC 60050-442:1998, Международный электротехнический словарь – Часть 442: Электрооборудование. Глава 442: Электрические принадлежности)

IEC 60050-448:1995, Международный электротехнический словарь – Глава 448: Защита электроэнергетических систем. Глава 448: Защита электроэнергетических систем)

IEC 60050-466:1990, Международный электротехнический словарь – Глава 466: Воздушные линии электропередачи. Глава 466: Накладные контактные линии)

IEC 60050-601:1985, Международный электротехнический словарь – Глава 601: Генерация, передача и распределение электроэнергии – Общие правила. Глава 601: Генерация, передача и распределение электроэнергии. General)

Поправка 1 (1998)

IEC 60050-603:1986, Международный электротехнический словарь – Часть 603: Глава 603: Производство, передача и распределение электроэнергии. Планирование и управление электроэнергетическими системами. Глава 603: Генерация, передача и распределение электроэнергии. Планирование и управление развитием энергосистемы)

Поправка 1 (1998).

IEC 60050-604:1987, Международный электротехнический словарь – Глава 604: Генерация, передача и распределение электрической энергии – Эксплуатация. Глава 604: Генерация, передача и распределение электроэнергии. Операция)

Заменен на IEC 60050-614:2016.

IEC 60050-811:1991, Международный электротехнический словарь – Глава 811: Электрическая тяга

Заменен на IEC 60050-811:2017.

IEC 60909-0:2001, Токи короткого замыкания в трехфазных сетях переменного тока. Токи короткого замыкания в трехфазных сетях переменного тока – Часть 0: Расчет токов. Часть 0. Расчет токов)

Заменен на IEC 60909-0:2016.

IEC/TR 60909-1:2002, Short-circuit currents in a.c. three-phase networks – Part 1: Factors for the calculation of short-circuit currents according to IEC 60909-0).

IEC/TR 60909-2:2008, Short-circuit currents in a.c. three-phase networks – Part 2: Electrical equipment data for calculation of short-circuit currents. Токи короткого замыкания в трехфазных системах переменного тока – Часть 2: Электрооборудование. Данные для расчета тока короткого замыкания)

IEC 60909-3:2003, Токи короткого замыкания в трехфазных системах переменного тока. Системы – Часть 3: Токи при двух отдельных одновременных замыканиях между сетью и землей и токи частичного замыкания на землю. Часть 3: Токи при двух отдельных одновременных однофазных (фаза-земля) коротких замыканиях и токи короткого замыкания ответвления-земля].

Заменен на IEC 60909-3:2009.

IEC 62428:2008, Электроэнергетика – Модальные компоненты в трехфазных системах переменного тока – Величины и преобразования. Модальные компоненты в трехфазных системах переменного тока. Объемы и преобразования)

IEC 80000-6:2008, Объемы и единицы измерения – Часть 6: Электромагнетизм

Важно! Переменная электрическая энергия изменяется в соответствии с гармоническим синусоидальным законом. Его график на координатной оси представляет собой синусоиду, а график константы движения электрона – прямую линию, параллельную оси OX.

Измерительные приборы и электрооборудование

Как маркируется ток на приборах для измерения электрических характеристик? Символы такие же, как и на устройствах, которые их потребляют. При измерении тока или напряжения, прежде чем прикасаться щупом к токоведущим частям электроустановки или оголенным проводам, установите на приборе пределы измерения и вид тока, соответствующий характеристикам измеряемого участка.

Осторожно. Неправильная подготовка прибора к измерению может привести к неисправности прибора, короткому замыканию измеряемого участка линии и поражению оператора электрическим током.

Идентификационные символы, указывающие на полярность, частоту, величину напряжения и другие характеристики, нанесены на корпуса электрооборудования, защитные кожухи и крышки электродвигателей и генераторов.

Здесь 1/wC и wL – емкостная и индуктивная реактивности, а w – угловая частота, она равна 2пФ.

AC, DC – это устоявшиеся термины, которые буквально означают переменный ток, постоянный ток. Этот термин используется как для описания природы тока, так и для обозначения режима работы устройства, работающего с переменным и постоянным током соответственно.

Иногда аббревиатура DC используется для обозначения постоянной составляющей сигнала, а аббревиатура AC – для обозначения переменной составляющей.

Обозначения DC+AC, AC+DC или AC/DC в технической литературе вовсе не являются названием известной рок-группы :), а буквально означают: постоянный и переменный ток.

Обратите внимание, что термин “переменный ток” традиционно относится к направлению тока, а не к его величине. Например, ток, пульсирующий в одном направлении, обычно называют постоянным током (DC), а не переменным током (AC), поскольку ток не меняет направления. Хотя в данном примере, если рассматривать компоненты тока по отдельности, он, конечно, состоит из постоянного (DC) и переменного (AC) компонентов.

Аналогично, эти понятия применимы и к переменному и постоянному напряжению, поскольку, как мы знаем из TEC, не существует напряжения без тока.

Символы постоянного и переменного тока в графических обозначениях следующие ,

которые означают то же самое, что и постоянный и переменный ток.

Если оцифрованная постоянная составляющая сигнала рассчитывается простым усреднением за выбранный интервал времени, то переменная составляющая рассчитывается как среднеквадратичное значение сигнала минус постоянная составляющая за выбранный интервал времени.

Постоянный ток — общие понятия, определение, единица измерения, обозначение, параметры. Параметры постоянного электрического тока

Содержание:

Что такое dc ток

Специфическое название создано из английского словосочетания «Direct Current» (dc – аббревиатура). Это обозначение в буквальном переводе подтверждает главную особенность такого тока – постоянное направление.

Для практического применения подходит постоянное питание либо синусоидальный сигнал. В этих ситуациях несложно стабилизировать параметры источника и рассчитать корректно электрическую схему, силовой агрегат или другое подключаемое оборудование. Периодически повторяющиеся помехи (пульсации) устраняют фильтрацией. Гораздо сложнее обеспечить длительный рабочий процесс, когда ток и напряжение изменяются произвольным образом.

Определение постоянного тока

Созданием разницы потенциалов на концах металлического проводника обеспечивают перемещение свободных электронов. Аналогичные процессы с иными носителями зарядов (ионами, дырками) происходят в газах, электролитах и полупроводниках. Необходимая для процесса энергия вырабатывается химическим способом в аккумуляторах и гальванических элементах. Ее создают преобразованием механической силы в электромагнитное поле с применением генератора. Вне зависимости от природы источника, ток в цепи будет стабильным, если поддерживать определенное dc напряжение.

Причины непостоянства

Экономичный переносной аппарат для измерения артериального давления выполняет свои функции на протяжении нескольких лет без установки новых батареек. Мощность потребления светодиодного освещения зала значительно больше. Такие устройства подключают к стандартной сети 220V через адаптер, который выравнивает напряжение и уменьшает амплитуду до необходимого уровня. Однако даже качественные преобразователи выполняют свои функции с допустимыми погрешностями. Постепенно уменьшается энергетический потенциал электрохимического источника. Отмеченные факторы объясняют действительное непостоянство измеряемых параметров в контрольной цепи.

По классическому определению, DC подразумевает неизменное направление движения заряженных частиц. Это значит, что показанный результат трансформации (б) с полуволнами одной полярности также соответствует заданному условию.

Важно! Постоянный ток – это частный случай однонаправленного тока, когда дополнительно обеспечивается стабилизация параметра с определенной точностью.

Основные характеристики тока

Принято обозначать рассматриваемый параметр через силу. Однако следует понимать, что в действительности речь идет об интенсивности перемещения заряженных частиц в определенном проводящем материале. Величина тока выражается в амперах. Для расчетов применяют формулы, которые могут означать взаимные связи основных электрических параметров и сопротивления цепи.

Направление постоянного тока и обозначения на электроприборах и схемах

Чтобы упростить расчеты и создание электрических схем, принимают направленность этого параметра по направлению к точке с меньшим потенциалом (от плюса к минусу). В действительности частицы перемещаются именно таким образом только при положительном заряде. В металле направление потока электронов обратное, однако для исключения путаницы применяют обозначенный базовый принцип.

Изоляция положительных выводов (щупов, кабелей) обозначается красным цветом, отрицательных – черным или синим. Если в сопроводительном тексте указано dc напряжение, это значит, что и ток в соответствующей цепи будет постоянный. На чертежах и корпусах изделий применяют условные обозначения в виде параллельных линий (сплошной и прерывистой).

Для измерения постоянного тока переключатель мультиметра нужно перевести в соответствующее положение

К сведению. Анод (катод) – это выводы электронной лампы или другой детали, которые подключают к положительному (отрицательному) электроду аккумуляторной батареи.

Также можно встретить обозначение a c что это такое, подробно описано в заключительном разделе статьи. Прямая расшифровка сокращения от «alternating current» не всегда корректна. Однако в узком смысле подразумевают синусоиду с переменной полярностью, которая обозначается латинскими буквами «AC», характерным одиночным волнистым символом либо стандартным математическим знаком примерного равенства «≈».

Величина постоянного тока

Определение «сила» не является корректным. Тем не менее, его применяют с учетом общепринятых норм. Вернувшись к сути явления, можно определить силу тока (I) по количеству перемещенных за определенный временной интервал (t) зарядов:

I = Q/t.

По международным стандартам СИ подразумеваются единичные величины: ампер, кулон и секунда. Для работы с большими токами удобнее пользоваться производной (ампер-часом) с повышающим множителем 3 600.

К сведению. Измерения выполняются с помощью универсального мультиметра или специализированного амперметра. Прибор включают непосредственно в цепь либо используют вспомогательный шунт.

Взаимосвязь параметров электрического тока

Элементарная электроцепь постоянного тока включает в себя источник электроэнергии, отрицательный и положительный контакты которого связаны шунтом или проводником. Движение заряда по проводнику осуществляется под воздействием электрического поля. Однако, этот перенос электронов не приводит к уравниванию потенциалов, т.к. в любой отрезок времени, к первому концу цепи поступает абсолютно такое же количество заряженных частиц какое из него переместилось к противоположному контакту. Таким образом разность потенциалов, которую принято называть напряжением, остается неизменяемой величиной.

Перемещению электрических зарядов в цепи, препятствует внутреннее сопротивление материала проводника. Взаимосвязь параметров электротока была выведена опытным путем Г. Омом. В математическом виде закон Ома можно представить так: I=U/R, где собственно I – сила тока, U – напряжение (разность потенциалов) и R – сопротивление на соответствующем участке цепи.

Собственно, из уравнения видно, что напряжение имеет прямую зависимость от силы тока и сопротивления (U=I х R), а величина силы тока обратно пропорциональна сопротивлению.

Последовательное соединение элементов электрической сети постоянного тока

Параметры электроцепи постоянного тока, в случае последовательного соединения устройств, имеют некоторые особенности. Так, например, сила тока (I) остается постоянной на всех элементах электрической схемы, а вот напряжение (U) является суммой напряжений на каждом участке схемы. Рассмотрим пример электрической цепи с последовательно включенными тремя проводниками с сопротивлением R1, R2 и R3. Согласно закону Ома, напряжение U1 = IxR1, U2 = IxR2, U3 = IxR3. Следовательно, U общ = U1+U2+U3= IxR1+ IxR2= IxR3 = I (R1+R2+R3).

Из уравнения видно, что такой параметр электрической цепи как общее сопротивление (R общ), при последовательном соединении, будет равен сопротивлению каждого отдельно взятого проводника. Последовательное подключение электрических устройств позволяет снизить нагрузку на отдельный элемент, что продлевает срок службы, но при этом теряется мощность.

Параметры электрической цепи. Параллельное соединение элементов

Параллельная цепь характеризуются общими контактами в местах ввода и вывода основного провода. В данной ситуации напряжение на всех элементах цепи остается одинаковым, т.е. U1=U2=U3. А вот для силы тока, будет характерна обратная зависимость от сопротивления каждого участка, т.е. I х=U/Rx. Параллельное соединение электроприборов является наиболее распространенным способом в бытовых условиях.

Параметры цепи при смешанном соединении в электрической цепи

Смешанное подключение проводников представляет собой электрическую цепь, в которой элементы включены комбинировано, т.е. как последовательно, так и параллельно друг другу. Для определения конкретных параметров, в этом случае, вся схема разбивается на самостоятельные участки в соответствии со способом подключения. Индивидуальные параметры рассчитываются для каждого участка отдельно. Необходимо отметить, что параллельно включенные участки, могут состоять из ряда последовательно соединенных элементов.

Понятие мощности электрического тока и ее параметры

Прохождение электротока по цепи, по своей сути, представляет собой работу (А) по перемещению свободного заряда от одного потенциала к другому. Чем больше электронов пересекает плоскость сечения электропроводящего элемента за единицу времени, тем выше мощность электрического тока. Общее количество работы можно определить по формуле – А=U∆q=IU∆t=I2R∆t.

Мощность электротока имеет обратно пропорциональную зависимость от отрезка времени за который была осуществлена работа – Р=A/∆t и прямо зависит от разности потенциалов и силы тока – Р=UxI. В том случае, если на участке цепи не осуществляется механическая работа под воздействием электрического тока, энергия тратится только на нагрев токопроводящего элемента. Общее количество выделяемого тепла, в этом варианте, будет равно работе, которую совершает электрической ток. Определить количество теплоты можно применив формулу Q=I2R∆t. Это соответствие было получено опытным путем Джоулем и Ленцем, а закон назван их именем.

Что такое электричество

Появление электричества – это определенная совокупность явлений, которые обусловлены существованием электрических зарядов со знаком «+» и «-», их взаимодействием между собой и возможностью движения. За счет того, что совокупность зарядов может перемещаться по проводнику, обладать притягивающими и отталкивающими свойствами, было открыто явление магнетизма и электричества. Одним из первых это описал Фалес, а позже в 1600 году английский физик Уильям Гилберт. С течением времени знания об этом явлении только увеличивались и прогрессировали.


Виды тока и их графики относительно времени

С точки зрения физики, электричество – это упорядоченное движение положительно и отрицательно заряженных частиц по материалу проводникового типа под действием электрического поля. В качестве частиц выступают ионы, протоны, нейтроны и электроны.


Направленное движение частиц

Какое отличие между переменным и постоянным током

Ток – это движение заряженных электронов в определенном направлении. Это перемещение необходимо для того, чтобы бытовые и профессиональные электроприборы могли работать с установленной номинальной мощностью. В домашней розетке ток появляется из электростанции, где кинетическая энергия электронов преобразуется в электрическую.

Электроток постоянного характера – электричество, получаемое из аккумулятора телефона или батарейки. Он называется так, потому что направление движения электронов в нем не меняется. На таком принципе основана работа зарядных устройств: они конвертируют переменное электричество сети в постоянное и в таком виде оно накапливается в аккумуляторных батареях.

Переменный ток – электричество в любой домашней электросети. Он называется так из-за того, что направление движения электронов постоянно меняется. Количество изменений направления задается частотой, которая для домашних сетей в СНГ равно 50 Гц. Это значит, что за одну секунду электроток меняет направление движения целых 50 раз. Напряжение же в сети – это максимальный «напор», который заставляет двигаться электроны.

Как обозначается постоянное и переменное напряжение

Постоянное напряжение или ток обозначаются аббревиатурой DC, что означает Direct current. На схемах и электроприборах принято также указывать постоянное напряжение простой ровной линией (—).

Значок переменного напряжения записывается в виде несколько иной аббревиатуры ( – AC. Если расшифровать, то получится «Alternating current». На клеммах электроприборов и распределительных щитков, а также на схемах она может изображаться как волнистая линия (~).

Важно! Если в сеть рассчитана для пропуска и того, и другого видов электроэнергии, она маркируется как «AC/DC» и обозначается на схеме двойной линией (верхняя линия прямая и сплошная, а нижняя прямая и пунктирная).


Альтернативное обозначение видов тока и напряжения на схемах

Какой значок напряжения

Напряжение означает поток электрических заряженных частиц по проводнику определенного сечения и  обычно обозначается как «U». Если напряжение в сети постоянное, то около латинской буквы ставится символ прямой линии или двух линий (верхняя сплошная прямая, а нижняя пунктирная). Для мультиметров и прочих приборов, связанных с измерением напряжения, используют латинскую букву «V», которая обозначает единицу измерения напряжения – Вольт (Volt). Значение линий при этом сохраняется.

Вам это будет интересно  Переход с 380 на 220 вольт

Важно! Многие обыватели полагают, что напряжение обозначается как «E», но это не так. «Е» — это электродинамическая сила (ЭДС) источника питания проводника.


Обозначение вида тока на мультиметре

Таким образом, маркировка проводов, клемм электроприборов и схем имеет совершенно четкий и понятный характер. Она указывает на силу тока и напряжение, с которыми работает та или иная сеть или прибор. Каждый взрослый человек может научиться читать электротехнические схемы буквально за несколько дней, так как для этого достаточно лишь изучить основные маркировки, а также обозначения постоянного и переменного напряжения.

Как обозначаются различные токи

По своим специфическим качествам электрический ток разделяется на два основных типа:

  • Постоянный ток. Обозначается прямой линией (—). Кроме того, используются символы DC – Direct Current, которые переводятся как постоянный ток.
  • Переменный ток. Известен под собственным обозначением в виде змейки (~) и символов АС, означающих Alternating Current.

Отличительной особенностью постоянного тока является его направленность. Он протекает лишь в одном определенном направлении, условно принимаемое от положительного контакта «+» к отрицательному контакту «-». От этого свойства и происходит наименование этого тока DC, который присутствует в солнечных панелях, всех типах сухих батареек и аккумуляторах, предназначенных для питания маломощных потребителей.


В некоторых технологических процессах, таких как дуговая электросварка, электролиз алюминия или электрифицированный железнодорожный транспорт, необходим постоянный ток DC с высоким значением силы. Чтобы его создать, необходимо выпрямить переменный или воспользоваться любым из генераторов постоянного тока.

Переменный ток AC, в отличие от постоянного, способен к изменению своего направления и величины. Существует параметр, известный как мгновенное значение переменного тока, определяемое в конкретный момент времени. Частота, с которой изменяется направление тока, составляет 50 Гц, то есть данная перемена происходит 50 раз в течение одной секунды.

Переменный ток AC может быть однофазным или трехфазным. В первом случае необходимо только два провода: основной и дополнительный, он же обратный. Именно по основному проводнику протекает электрический ток, а обратный считается нулевым проводом.

Читайте также:Что такое фидер

Трехфазное переменное напряжение вырабатывается соответствующим генератором тока AC. В этом процессе участвуют три обмотки, каждая из которых является своеобразной однофазной электрической цепью. Между собой они сдвинуты по фазе под углом 120 градусов. Благодаря данной системе электроэнергией могут быть обеспечены сразу три сети, независимые друг от друга. Для этого понадобится уже порядка шести проводов – трех прямых и трех обратных.

При необходимости дополнительные провода возможно соединить между собой и получить в итоге общий проводник, называемый нулевым или нейтральным. В этом случае проводники переменного тока на схемах обозначаются символами L1, L2, L3, а нулевой провод – буквой N.

Обозначения токов в измерительных приборах

Общепринятое обозначение постоянного и переменного тока нашло свое отражение в различных измерительных приборах, в том числе и на мультиметре. Вся необходимая символика наносится на лицевую панель того или иного устройства. Это позволяет измерить именно тот параметр, который необходим в данный момент.

Например, если на шкале выставлено положение АС, в этом случае можно проводить измерение значения переменного тока. Как правило, такие приборы предназначены для работы в электросетях с обычными напряжениями 220 или 380 вольт. Существуют модели с рабочими режимами в пределах 600 В и выше.

Если же мультиметр выставлен напротив отметки DC, то рабочий режим аппарата станет соответствовать постоянному току. В этом положении замеряется ток на аккумуляторах, батарейках и других источниках питания, вырабатывающих постоянный ток. В данном режиме требуется непременно соблюдать полярность полюсов. Диапазон измерений обычно составляет от нуля до нескольких тысяч вольт, в зависимости от характеристик конкретной модификации устройства.

Обозначение на схемах радиодеталей

Буквенные обозначения элементов на электрических схемах

Обозначения на электрических схемах выключателей, розеток и лампочек

Маркировка диодов и схема обозначений

Обозначение трансформатора на схеме

Какой ток в розетке постоянный или переменный? Обозначение постоянного и переменного тока

Несмотря на внешнюю странность, вопрос далеко не праздный, хотя мы и привыкли больше к тому, что в типовых розетках наших домов переменный ток .

Именно поэтому на вопрос, какой ток в розетке постоянный или переменный не задумываясь, ответим – конечно, переменный! Ну а мы решили разобраться так ли это и заодно в стандартах розеток, обозначениях постоянного и переменного тока, и некоторых попутных вопросах.

Аббревиатуры AC и DC – что они означают?

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.


водоносная башня

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!


водобашня, заполненная водой

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил,  давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Формула напряжения

В физике есть формула, хотя практического применения она не имеет. Официальная формула записывается так.


формула напряжения

где

A – это работа электрического поля по перемещению заряда по участку цепи, Джоули

q – заряд, Кулон

U – напряжение на участке электрической цепи, Вольты

На практике напряжение на участке цепи выводится через закон Ома.


напряжение из закона Ома

где

I – сила тока, Амперы

R – сопротивление, Омы

Осциллограммы постоянного и переменного напряжения

Давайте рассмотрим, как выглядит переменное и постоянное напряжение на экране осциллографа. Как вы знаете, осциллограф показывает изменение напряжения во времени. Если на щуп осциллографа не подавать никакое напряжение, то на осциллограмме мы увидим простую прямую линию на нулевом уровне по оси Y. Ось Y – это значение напряжения, а ось Х – это время.


осциллограмма нулевого напряжения

Давайте подадим постоянное напряжение. Как вы могли заметить, осциллограмма постоянного напряжения  – это также прямая линия, параллельная оси времени. Это говорит нам о том, что с течением времени значение постоянного напряжение не меняется, о чем нам лишний раз доказывает осциллограмма.


осциллограмма постоянного напряжения

А вот так выглядит осциллограмма переменного напряжения. Как вы видите, напряжение со временем меняет свое значение. То оно больше нуля, то оно меньше нуля.


осциллограмма переменного напряжения

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.


Тесла и Эдисон

Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей – война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.


Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

Преобразователь постоянного тока в переменный


Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.

Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.

 

Источники

  • https://amperof.ru/teoriya/dc-tok-ponyatie-vidy.html
  • https://vse-elektrichestvo.ru/elektroprovodka/parametry-postoyannogo-elektricheskogo-toka.html
  • https://rusenergetics.ru/polezno-znat/oboznachenie-postoyannogo-i-peremennogo-toka
  • https://electric-220.ru/news/oboznachenie_postojannogo_i_peremennogo_toka/2018-03-21-1475
  • https://orenburgelectro.ru/drugoe/oboznachenie-peremennogo-i-postoyannogo-toka-sovety-elektrika. html
  • https://www.RusElectronic.com/naprjazhjenije/
  • https://Zaochnik.ru/blog/peremennyj-i-postoyannyj-tok-v-chem-raznica-istoriya-razvitiya-primenenie/
  • http://jelektro.ru/elektricheskie-terminy/postojannyj-peremennyj-tok.html

Предыдущая

ТеорияЧто такое плотность тока?

Следующая

ТеорияЧто такое элемент Пельтье и как его сделать своими руками?

курсов PDH онлайн. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов HVAC; не только экологические курсы или курсы по энергосбережению

 

 

Рассел Бейли, ЧП

Нью-Йорк

«Это укрепило мои текущие знания и научило меня нескольким новым вещам, кроме того

познакомив меня с новыми источниками

информации».

 

Стивен Дедак, ЧП

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они

очень быстро отвечали на вопросы.

Это было на высшем уровне. Буду использовать

снова. Спасибо».

Блэр Хейуорд, P.E.0003 «Веб-сайт прост в использовании. Хорошо организован. Я действительно буду пользоваться вашими услугами снова.

Я передам название вашей компании

другим сотрудникам.»

 

Рой Пфлейдерер, ЧП

Нью-Йорк

«Справочный материал был превосходным, и курс был очень информативным, особенно потому, что я думал, что уже знаком

с деталями Канзас

Авария в City Hyatt.»

Майкл Морган, ЧП

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится, что я могу просмотреть текст перед покупкой. Я обнаружил, что класс

Информативный и полезный

в моей работе. «

Уильям Сенкевич, стр.

Флорида

познавательный. Вы

— лучшие, которые я нашел. «

Рассел Смит, P.E.

Pennsylvania

Я считаю, что подход упрощает для рабочего инженера.

материала». На самом деле

человек изучает больше

от неудач. «

Джон Скондры, P.E.

Пенсильвания

«. Курс был хорошо поставлен вместе, и используется.

Путь обучения. «

Jack Lundberg, P.E.

Висконсин

» Я очень увлекаюсь тем, как вы представляете курсы; т. е. позволяя

Студент. Для рассмотрения курса

Материал перед оплатой и

Получение викторины. «

Arvin Swanger, P.E.

Virgina

«. курсы. Я, конечно, многому научился и

получил огромное удовольствие».0002 «Я очень доволен предлагаемыми курсами, качеством содержания материалов и простотой поиска

онлайн-курсов

Уильям Валериоти, ЧП

Техас

«Этот материал во многом оправдал мои ожидания. Курс был прост для изучения. Фотографии в основном давали хорошее представление о

обсуждаемых темах.»

 

Майкл Райан, ЧП

Пенсильвания

«Именно то, что я искал. Нужен 1 балл по этике, и я нашел его здесь.»

 

 

 

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых кредитов PDH. Это было

информативно, выгодно и экономично.

Я настоятельно рекомендую это

всем инженерам. «

Джеймс Шурелл, P.E.

Ohio

Я ценю вопросы« Реальный мир »и соответствует моей практике. , и

не основаны на каком-то неясном разделе

законов, которые не применяются

к «нормальной практике».0005

Марк Каноник, ЧП

Нью-Йорк

«Большой опыт! Я многому научился, чтобы вернуться к своему медицинскому устройству

организации».

 

 

Иван Харлан, ЧП

Теннесси

«Материал курса имеет хорошее содержание, не слишком математический, с хорошим акцентом на практическое применение технологий».

 

 

Юджин Бойл, ЧП

California

«Это был очень приятный опыт. Тема была интересной и хорошо представленной,

, а онлайн -формат был очень

и простые в

. Благодарность.»

Патрисия Адамс, ЧП

Канзас

«Отличный способ добиться соответствия непрерывному обучению физкультуры в рамках временных ограничений лицензиата».

 

 

Джозеф Фриссора, ЧП

Нью-Джерси

«Должен признаться, я действительно многому научился. Это помогает иметь

обзор текстового материала. предоставлены

фактические случаи».

Жаклин Брукс, ЧП

Флорида

«Общие ошибки ADA в проектировании объектов очень полезны. Проверка

требовало исследования в

Документ , но Ответы были

. Проще говоря.»

Гарольд Катлер, ЧП

Массачусетс

«Это было эффективное использование моего времени. Спасибо за разнообразие выбора

в инженерии дорожного движения, который мне нужен

, чтобы выполнить требования

Сертификация PTOE. «

Джозеф Гилрой, стр. способ заработать CEU для моих требований PG в штате Делавэр. До сих пор все курсы, которые я посещал, были отличными.

Надеюсь увидеть больше 40%

Курсы с дисконтированием ».

Кристина Николас, P.E.

New York

» только что завершены. дополнительные

курсы. Процесс прост, и

намного эффективнее, чем

необходимость путешествовать.0004

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для инженеров-профессионалов

для получения единиц PDH

в любое время. Очень удобно.»

 

Пол Абелла, ЧП

Аризона

«Пока все было отлично! Поскольку я постоянно работаю матерью двоих детей, у меня не так много

времени, чтобы исследовать, куда

получить мои кредиты от. »

 

Кристен Фаррелл, ЧП

Висконсин

2 90 «Это было очень познавательно. Легко для понимания с иллюстрациями

и графиками; определенно облегчает

усвоение всех

теорий.»

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов полупроводников. Мне понравилось проходить курс по телефону

My Wope Pace во время моего Morning

Subway Commute 9000 9000 2 до работы. .»

Клиффорд Гринблатт, ЧП

Мэриленд

«Просто найти интересные курсы, скачать документы и получить

викторина. Я буду Emong Рекомендовать

You To Every PE, нуждающийся в

CE. тем во многих областях техники». 0004

«У меня перепроизводили вещи, которые я забыл. Я также рад получить финансово

на Ваше промо-электронное письмо , которая

на 40%.»

Conrado Casem, P.E.

Теннесси

«Отличный курс по разумной цене. Буду пользоваться вашими услугами в будущем.»

 

 

 

Чарльз Флейшер, П.Е.

Нью-Йорк

«Это был хороший тест, и я фактически проверил, что я прочитал кодексы профессиональной этики

и правила Нью-Мексико

».

 

Брун Гильберт, Ч.П.

Калифорния

«Мне очень понравились занятия. Они стоили времени и усилий.»

 

 

 

Дэвид Рейнольдс, ЧП

Канзас

«Очень доволен качеством тестовых документов. Будет использовать CEDengineerng

, когда потребуется дополнительная сертификация

 

Томас Каппеллин, ЧП

Иллинойс

«У меня истек срок действия курса, но вы все равно выполнили обязательство и поставили

Me, за что я заплатил — много

! » для инженера».0004

Хорошо расположено. «

Глен Шварц, P.E.

Нью -Джерси

Вопросы были подходящими для уроков, а материал урока —

.

для дизайна дерева.»

 

Брайан Адамс, ЧП

Миннесота

0004

 

 

 

Роберт Велнер, ЧП

New York

«У меня был большой опыт работы с прибрежным строительством — проектирование

Building и

High Рекомендую его».

 

Денис Солано, ЧП

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики штата Нью-Джерси были очень

хорошо подготовлено. Мне нравится возможность загрузить учебный материал до

Обзор везде, где бы ни был и

всякий раз, когда ».

Тим Чиддикс, P.E.

Colorado

» Отлично! Сохраняйте широкий выбор тем на выбор».

 

 

 

Уильям Бараттино, ЧП

Вирджиния

«Процесс прямой, никакой чепухи. Хороший опыт.»

 

 

 

Тайрон Бааш, ЧП

Иллинойс

«Вопросы на экзамене были наводящими и демонстрировали понимание

материала. Тщательный

и всеобъемлющий. «

Майкл Тобин, P. E.

Аризона

» Это мой второй курс, и мне понравилось то, что мне предложил курс, что

помогу моя линия

работы. Я обязательно воспользуюсь этим сайтом снова.»

 

 

 

Анджела Уотсон, ЧП

Монтана

«Простота в исполнении. Никакой путаницы при подходе к сдаче теста или записи сертификата.»

 

 

 

Кеннет Пейдж, ЧП

Мэриленд

«Это был отличный источник информации о нагревании воды с помощью солнечной энергии.

 

 

Луан Мане, ЧП

Conneticut

«Мне нравится подход, позволяющий зарегистрироваться и иметь возможность читать материалы в автономном режиме, а затем

вернуться, чтобы пройти тест.»

 

 

Алекс Млсна, ЧП

Индиана

«Я оценил количество информации, предоставленной для класса. Я знаю

Это вся информация, которую я могу

В реальных жизненные ситуации. «

Натали Дриндер, P.E.

South Dakota

курс.»0004

«веб -сайт прост в использовании, вы можете загрузить материал для изучения, затем вернуться

и пройти тест. .»

Майкл Гладд, ЧП

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

 

 

 

Деннис Фундзак, ЧП

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать сертификат PDH

. Спасибо, что сделали этот процесс простым.»

 

Фред Шайбе, ЧП

Висконсин

«Положительный опыт. Быстро нашел курс, который соответствует моим потребностям, и закончил

PDH за один час за

Один час. «

Стив Торкильдсон, P.E.

Южная Каролина

» Мне нравилось загрузить документы для рассмотрения контента

и приготовимости.

наличие для оплаты

материалов.»

Richard Wymelenberg, P.E.0005

«Это хорошее пособие по ЭЭ для инженеров, не являющихся электриками.»

 

 

 

Дуглас Стаффорд, ЧП

Техас

«Всегда есть место для улучшения, но я не могу придумать ничего в вашем

процессе, который нуждается в

улучшении.»

 

Томас Сталкап, ЧП

Арканзас

«Мне очень нравится удобство прохождения онлайн-викторины и немедленного получения сертификата

 

 

Марлен Делани, ЧП

Иллинойс

«Обучающие модули CEDengineering — это очень удобный способ доступа к информации по

многим различным техническим областям

3 за пределами

40003 Специализация одной из них Без

.

Электричество управляет нашей повседневной жизнью. Он имеет ключевое значение для развития промышленности и инфраструктуры. В современном электроснабжении передача электроэнергии немыслима без переменного тока или напряжения. Более того, доступ к электричеству, который мы получаем каждый день, подключая цепь к нашей электрической розетке, является примером

переменного тока . Также можно увидеть референс переменного тока в корпусах разных электроприборов.

Если вы интересуетесь физикой, электричеством и хотите работать с проводами, гайками и болтами, знание Переменный ток обязательно. Эта статья даст вам подробную информацию обо всех основах переменного тока.

Содержание

Что такое переменный ток?

Ан Переменный ток — это форма электрического тока. Его общепринятая аббревиатура — AC. В этом типе электрического тока поток электронов меняет направление и величину через регулярные промежутки времени. Это электроэнергия, которая течет по линии электропередач и доставляется ко всем видам деловых и жилых зданий. Поэтому блок питания у нас дома пример переменного тока. Кроме того, электричество, которое мы получаем для зарядки телефона, работы холодильника или просмотра телевизора, поступает из переменного тока.

Существует множество источников электроэнергии, которые помогают производить переменный ток. Наиболее популярным производителем переменного тока являются электромеханические генераторы. Он генерирует напряжение переменного тока с чередованием полярности, которое со временем меняется с положительного на отрицательное. Кроме того, генератор переменного тока также можно использовать для выработки переменного тока  Обычно мы вырабатываем переменный ток с помощью ветряных турбин, гидро-, дизельного топлива или пара. Источники солнечной энергии также могут генерировать переменный ток. Но некоторые из этих источников генерируют постоянный ток, инвертированный до переменного тока перед подачей в электрическую сеть.

Переменный ток является основной частью Электричества. Чтобы узнать больше о , переменном токе и электричестве, присоединяйтесь к нашему онлайн-курсу электрика сегодня и получите от него все полезные знания.

Форма волны переменного тока

Форма волны переменного тока в большинстве электрических цепей представляет собой синусоиду. Но вы также сможете найти квадратные и треугольные формы волны переменного тока.

Но наиболее распространенной формой волны является синусоида, где напряжение переменного тока постоянно увеличивается в темпе и падает. Сначала напряжение возрастает от нуля до максимального положительного пикового напряжения, затем меняется на противоположное и снова падает до нуля. Затем он продолжает свое путешествие в отрицательном направлении и снижается, пока не достигнет отрицательного пикового напряжения. Опять же, напряжение меняет направление и возрастает до нуля, завершая полный цикл.

Во-первых, скорость, с которой электрические заряды или электрон меняют направление, измеряется количеством полных циклов в секунду. Это известно как частота и измеряется в герцах (Гц). Во-вторых, весь процесс повторяется с частотой от 50 Гц до 60 Гц (цикл в секунду). Следовательно, это две частоты, которые обычно используются в бытовых и промышленных приложениях.

Онлайн-курс электрика

Если вы учитесь на электрика, этот курс даст вам практические навыки и знания, необходимые для начала вашей карьеры.

Зарегистрируйтесь сейчас

Онлайн-курс электрика

Если вы учитесь на электрика, этот курс даст вам практические навыки и знания, необходимые для начала вашей карьеры.

Зарегистрируйтесь сейчас

Передача переменного тока

Вот как переменного тока приходит к нам в нашу повседневную жизнь. Это некоторая основная информация, которая будет держать вас в курсе того, как переменный ток управляет миром.

Во-первых, Европа и большая часть мира используют стандарт 220 вольт примерно и 50 Гц переменного тока в своей электросети. Во-вторых, в США и некоторых других регионах используется стандарт 120 вольт и 60 Гц переменного тока . В-третьих, такие страны, как Япония, используют в своих сетях оба стандарта.

110 — 120 В, 60 Гц

220 — 250 В, 50 Гц

оба

Канада, COLAIAL, CUBA, CUBA, CUBA, CUBA, CUBA, CUBA, CUBA, CUBA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA, CUBAA. , Венесуэла,

Аргентина, Австралия, Австрия, Бахрейн, Бангладеш, Китай, Дания, Египет, Финляндия, Франция, Германия, Индия, Иран, Ирак, Италия, Кения, Кувейт, Малайзия, Непал, Нидерланды, Новая Зеландия, Нигерия, Северная Норвегия, Пакистан, Филиппины, Россия, Южная Корея, Испания, Шри-Ланка, Швеция, Таиланд, ОАЭ, Великобритания

Боливия

Бразилия

Ливия

Саудовская Аравия Кроме того, для промышленного использования стандартное использование переменного тока напряжение составляет 415В.

Самолеты, космические корабли, морские, военные и другие приложения используют переменный ток частотой 400 Гц. Это чувствительные приложения, где необходимо легкое оборудование и более высокая скорость двигателя.

Переменный ток прост в производстве и подходит для распределения электроэнергии. Это связано с тем, что переменный ток можно легко преобразовать с более высокого уровня напряжения на более низкий уровень напряжения. Другими словами, переменное напряжение можно легко повысить или понизить до требуемого уровня напряжения.

Чтобы уменьшить потери энергии при передаче, электроэнергия передается при более высоком напряжении и более низком токе. Кроме того, это позволяет передавать электроэнергию на определенное расстояние по электрическим сетям. Позже мощность снижается непосредственно перед распределением для нормального повседневного использования электроэнергии.

Провод переменного тока

Большинство электросетей рассчитано на переменный ток. Поэтому все генераторы переменного тока, подключенные к энергосистеме, должны быть синхронизированы друг с другом. Оборудование, использующее переменный ток, обычно имеет три типа проводов:

  1. Горячий провод, передающий ток.
  2. Нейтральный провод, создающий обратный путь для тока в горячем проводе. Он также имеет связь с землей.
  3. Третий провод — это провод заземления, который также имеет соединение с землей. Провод имеет соединение с металлической частью оборудования. Это обеспечивает электрическую безопасность и исключает опасность поражения электрическим током.

Однако большинство электронных гаджетов, которыми мы пользуемся, получают переменный ток и преобразуют его в постоянный ток. Это связано с тем, что большинство устройств, таких как смартфоны и ноутбуки, работают от батареи, использующей постоянный ток. Поэтому переменного тока может вывести из строя аккумулятор, а также гаджет.

Как производить переменный ток?

Можно производить переменного тока с помощью устройства Генератор переменного тока. Генератор переменного тока представляет собой особый вид электронного генератора, который производит переменный ток. Более того, генератор состоит из магнита и петли из проволоки. В генераторе переменного тока проволочная петля вращается внутри магнитного поля. Когда петля проводов закручивается, через нее индуцируется ток.

Вращение провода может происходить с помощью любых средств, таких как ветряная турбина, паровая турбина, проточная вода и т. д. Провод вращается и входит в разные магнитные полярности через равные промежутки времени. В результате на проводе чередуются напряжение и ток.

Точнее, когда провод вращается в магнитном поле, сила магнитного поля в проводе меняется, что создает силу. В результате по проводу начинают течь электрические заряды.

Кроме того, сила создает электрический ток в одном направлении провода. Но проволочная петля поворачивается на 180 градусов. В результате сила в проводе меняет направление и создает электрический ток в противоположном направлении вокруг провода. Следовательно, каждый раз, когда петля поворачивается на 180 градусов, сила меняет направление на противоположное. В результате изменяется и текущий поток. Эти 180-градусные изменения направления силы через равные промежутки времени генерируют переменный ток.

Генератор переменного тока или электрический генератор также имеют токосъемные кольца, которые гарантируют, что конец провода всегда подключен к одной и той же стороне электрической цепи. В результате направление тока меняется на каждом полуобороте провода.

Переменный ток и постоянный ток

При повседневном использовании электричества мы обычно используем два вида тока. Мы уже обсуждаем переменный ток, но другой постоянный ток (DC). Чтобы определить постоянный ток, это поток электрического заряда в одном направлении. Батареи, ячейки, выпрямители и генераторы с коммутаторами производят постоянный ток.

Прежде чем перейти к сравнению, нам нужно понять, как оба вида электрического тока вызывают потери. Это поможет нам понять, какой электрический ток необходимо использовать в какой ситуации.

На протяжении десятилетий переменный ток имел определенные преимущества перед постоянным током. Во-первых, передача переменного тока была более эффективной на большие расстояния без слишком больших потерь энергии на сопротивление. Изменение текущего напряжения было затруднено при использовании первой электросети постоянного тока в конце 19 века.век. В результате слишком больших потерь мощности эти сети поддерживали низкое напряжение и высокий ток, и передача была возможна только на короткие расстояния.

Таким образом, система переменного тока вскоре заменила передачу энергии постоянного тока. Энергия переменного тока может передаваться при высоком напряжении и низком токе, и мы можем легко изменить напряжение с помощью трансформатора. Но система постоянного тока также может быстро изменять напряжение. Но современные системы переменного тока могут передавать мощность от генераторов с сотнями и тысячами напряжений. Затем напряжение снижается со 120 вольт до 220 вольт для общего бытового и коммерческого использования.

Однако многие электрические гаджеты предпочитают постоянный ток переменному из соображений безопасности, плавного течения тока и даже напряжения. Но переменный ток в розетках может быть преобразован в постоянный при входе в электронные гаджеты.

Потери мощности для обеих форм электрического тока

Для передачи электроэнергии на очень большие расстояния больше подходит постоянный ток, чем переменный. Зарядный ток очень высок для переменного тока, что приводит к потере I2R.

В теоретической цепи вся мощность, поступающая на входную клемму, достигает критической нагрузки без каких-либо потерь энергии. Он не рассеивается в компоненте проводки, который проходит по пути. Но в реальной цепи всегда есть минимальное сопротивление, при котором теряется некоторое количество энергии. Это происходит как в источниках переменного, так и постоянного тока, что вызывает электрические потери, а рассеяние происходит в виде тепла. Рассчитать потери электроэнергии можно следующим образом.

В соответствии с законом Ома: V = IR, где V = напряжение (В) на компоненте, R — сопротивление (в Омах) компонента, а I — ток в амперах через компонент.

Степенной закон: W = VI, где V и I аналогичны указанным выше, а W = рассеиваемая мощность в ваттах.

Объединив эти два закона, мы можем найти потери W=(IR)I или I2R.

Это известно как потеря меди. Причина объяснения всей этой формулы заключается в том, что эти потери в меди могут быть больше в цепях переменного тока, таких как трансформаторы. Однако больше потерь также происходит из-за наведенного тока, который протекает через сопротивление железного сердечника компонента. Это называется потерями в сердечнике.

Потери в меди в трансформаторах и двигателях можно уменьшить за счет увеличения площади поперечного сечения проводника, улучшения технологии намотки и использования материалов с более высокой электропроводностью.

Эффект близости и скин-эффект вызывают неравномерное распределение тока по проводнику на высоких частотах, увеличивая эффективное сопротивление проводника. Литцендрат может равномерно распределять ток по своему поперечному сечению.

Онлайн-курс электрика

Если вы учитесь на электрика, этот курс даст вам практические навыки и знания, необходимые для начала вашей карьеры.

Зарегистрируйтесь сейчас

Онлайн-курс электрика

Если вы учитесь на электрика, этот курс даст вам практические навыки и знания, необходимые для начала вашей карьеры.

Зарегистрируйтесь сейчас

Различия между переменным током и постоянным током

Оба переменного тока и постоянного тока описывают протекание тока в цепи. Чтобы вспомнить основы обоих токов, в постоянном токе электрический заряд течет в одном направлении. С другой стороны, переменный ток периодически меняет направление. Вот основные различия между переменным и постоянным током.

AC VS DC

1115111515151515151515151515151515151515151515151515151515151515. . .

Чередовый ток (AC)

DIMENT (DC)

Частота постоянного тока равна нулю.

Генератор и двигатель

Для генератора и двигателя коммутатор не требуется.

Нужен коллектор/разрезные кольца, создающие искрение. Угольные щетки необходимо периодически заменять.

Причина различного потока электронов

Вращение магнита вдоль провода.

Устойчивый магнетизм вдоль провода.

Ток

Величина тока изменяется со временем

Ток имеет постоянную величину.

Повышение и понижение

Легкое повышение и понижение с помощью трансформаторов. Пониженное напряжение можно выпрямить до постоянного тока с помощью диодов.

Нельзя повышать и понижать с помощью трансформаторов. Нужны импульсные преобразователи, в которых используются транзисторы.

Безопасность

Менее безопасен, так как с большей вероятностью вызывает фибрилляцию сердца.

Безопаснее, так как контакт с проводом с меньшей вероятностью приведет к фибрилляции сердца.

На основе транзисторов, полевых транзисторов и интегральных схем используют низковольтный постоянный ток.

Трансмиссия

Переменный ток безопасен для передачи на большие расстояния по городу и обеспечивает большую мощность.

Напряжение постоянного тока не может распространяться очень далеко, потому что оно начинает терять энергию

Прерывание автоматическими выключателями

Легко прерывается, когда ток дуги проходит через ноль 100-120 в секунду.

Прерывание затруднено, так как ток дуги не переходит нулевой уровень.

Скин-эффект

При скин-эффекте ток выше снаружи проводника, что приводит к меньшей эффективной площади и большим резистивным потерям.

Отсутствие скин-эффекта, т. е. ток равномерно распределяется по поперечному сечению кабеля.

История переменного тока

К тому времени, когда люди изобрели переменный ток, постоянный ток уже правил миром. Однако переменный ток имеет долгую историю. Так мы объясним историю Переменного тока с момента его массового использования и производства.

Знание источника питания постоянного тока и его истории полезно для лучшего понимания питания переменного тока. Самые ранние источники питания были около 110 В постоянного тока, разработанные Томасом Эдисоном. Эти источники постоянного тока были в основном необходимы для ламп накаливания с угольной нитью, а затем и для ламп с металлической нитью накаливания, которые были распространены в те дни. В 1882 году Эдисон от паровой электростанции подает 110 В постоянного тока потребителям Нью-Йорка. В 1887 году по подземным трубопроводам Эдисон поставлял постоянный ток потребителям в Нью-Йорке со 121 электростанции. Каждая динамо-машина мощностью 100 кВт могла зажечь 1200 ламп накаливания.

Но передача постоянного тока имеет некоторые ограничения. Подавать постоянный ток можно было только на небольшом расстоянии около 1,5 миль от генерирующей станции. Однако обслуживание постоянного тока продолжалось до Нью-Йорка до 2007 года. Но сегодня большая часть метро во всем мире использует постоянный ток.

Westinghouse был тем, кто предложил переменный ток вместо постоянного тока, но Эдисон не согласился с этим и начал пропагандистскую кампанию против переменного тока. Таким образом, Эдисон продолжал работать над постоянным током, а Вестингауз продолжал следовать более легко переносимому переменному току.

Блок питания переменного тока

Хотя постоянный ток Эдисона с более низким напряжением был безопаснее для людей, он имел более высокие резистивные потери на большом расстоянии.

Вестингауз был прав, полагая, что переменный ток более эффективен, чем постоянный, для передачи на большие расстояния. Затем Никола Тесла и AEG в Европе придумали трехфазную генерацию и распределение переменного тока. Хотя Тесла работал на Эдисона три года, они расстались из-за разногласий по оплате.

В 1886 году компания Westinghouse создала паровую электростанцию ​​переменного тока. Впервые генерация, передача и распределение происходили при разных напряжениях (500 В, 3000 В и 100 В соответственно). Наконец, Westinghouse AC в конце концов преобладала над AC из-за неотъемлемых преимуществ AC.

Онлайн-курс электрика

Если вы учитесь на электрика, этот курс даст вам практические навыки и знания, необходимые для начала вашей карьеры.

Зарегистрируйтесь сейчас

Онлайн-курс электрика

Если вы учитесь на электрика, этот курс даст вам практические навыки и знания, необходимые для начала вашей карьеры.

Зарегистрируйтесь сейчас

Заключение

Ну вот.

У тебя есть переменного тока в самой базовой форме. Как электрик или кто-то, кто интересуется повседневной физикой и электричеством, знание переменного тока и того, как он работает, является обязательным. Поэтому мы надеемся, что вы получили базовое представление о переменном токе . А если у вас все еще есть какие-либо сомнения или вопросы, вы можете легко записаться на наш онлайн-курс электрика и узнать все подробно.

9 февраля 2022 г.

топ 9=»wpforms-«]

Что такое переменный ток? (с изображением)

`;

Адам Хилл

Электричество переменного тока (AC) — это тип электричества, наиболее часто используемый в домах и на предприятиях во всем мире. Говорят, что он «переменный», потому что он меняет направление в электрической цепи через равные промежутки времени, обычно много раз в секунду. Переменный ток создается электрическим генератором, определяющим частоту этих колебаний. В Соединенных Штатах переменный ток генерируется с частотой 60 герц, что означает, что ток меняется 60 раз в секунду.

Существует ряд причин, по которым большинство электростанций вырабатывают переменный, а не постоянный или постоянный ток, когда электроны постоянно движутся в одном направлении. Во-первых, большие генераторы естественным образом вырабатывают переменный ток, поэтому преобразование в постоянный ток потребует дополнительного шага и, следовательно, дополнительных затрат. Во-вторых, и, возможно, самое главное, электрические трансформаторы должны иметь переменный ток для работы. Трансформаторы являются важной частью электросети, поскольку они выполняют задачу повышения электрического напряжения для передачи на большие расстояния, а также снижения напряжения до безопасного уровня для использования в домах и на предприятиях.

Трансформаторы — это простые и недорогие устройства, чаще всего встречающиеся на электроподстанциях и устанавливаемые на опорах электропередач рядом с жилыми домами. В одном типе электроподстанции трансформаторы потребляют умеренное напряжение переменного тока, генерируемое электростанцией, и значительно повышают напряжение для передачи на большие расстояния. Высокое напряжение позволяет передавать электричество гораздо эффективнее. Другие подстанции снижают напряжение в конце линии электропередачи, после чего электроэнергия подключается к местной сети. В этот момент напряжение снижается еще больше, непосредственно перед входом в дома и другие здания для использования потребителями.

Переменный ток также имеет то преимущество, что его легко преобразовать в постоянный. Это важно отчасти потому, что многие мелкие бытовые приборы работают только от постоянного тока. Многие принтеры, портативные компьютеры и зарядные устройства, например, используют адаптер переменного тока для преобразования домашнего переменного тока в постоянный. Адаптеры до некоторой степени взаимозаменяемы и обычно входят в комплект поставки прибора производителем. Преобразование постоянного тока в переменный, с другой стороны, является дорогостоящим процессом, что делает переменный ток лучшим выбором в качестве формы электричества по умолчанию.

В некоторых типах цепей переменный ток используется главным образом для передачи информации, а не для передачи электричества. Информационные схемы, такие как те, которые используются в телефонной и радиопередаче, используют различное количество напряжения, тока и частоты для передачи точной информации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *