Как подключается конденсатор к электродвигателю: Как подключить конденсатор к электродвигателю | Полезные статьи

Содержание

отличия от рабочего и подключение электродвигателей

Асинхронный трехфазный двигатель можно подключить без особого ущерба к обычной однофазной электрической сети через конденсаторы. С их помощью обеспечивается запуск и достижение нужных режимов функционирования при такой системе питания. Различают рабочий и пусковой конденсаторы.

Отличия между ними

Они заключаются в их предназначении, ёмкости, способе присоединения, а также в условиях работы. Первое различие заключается в том, что рабочий (первый) конденсатор служит для сдвига фаз. В результате между обмотками появляется вращающееся магнитное поле, необходимое для приведения в движение мотора, находящегося без механической нагрузки. Такой электродвигатель стоит, например, в точильном станке.

Пусковой (второй) обеспечивает повышение стартового момента мотора, находящегося под механической нагрузкой, благодаря чему он более легко выходит на нужный режим. Ресурсов одного рабочего может не хватить, из-за чего ротор двигателя просто не начнёт вращаться. Применение оправдано вместе со станками, подъёмными механизмами, насосами и подобными тяжёлыми приспособлениями. А также можно использовать с более мощным трехфазным мотором, если рабочего не хватает для его надёжного запуска.

Ёмкость обоих конденсаторов также будет отличаться. Она прямо пропорциональна мощности электродвигателя и обратно — напряжению сети. В зависимости от схемы соединения обмоток вводится поправочный коэффициент. Ёмкость пускового может быть в два раза больше, чем у рабочего.

Способы присоединения

Первый конденсатор в самом распространённом случае подключается в разрыв одной из обмоток асинхронного электродвигателя, которая также часто называется «вспомогательной». Другая присоединяется напрямую к электрической сети, а третья остаётся незадействованной. Тип этой схемы носит название «звезда». Есть также подключение в «треугольник». Оно различается и по способу соединения, и по сложности.

Второй ёмкостный элемент, в отличие от рабочего, присоединяется параллельно последнему через кнопку или центробежный выключатель. В первом случае управление осуществляется человеком, а во втором — самим приводом. Оба этих коммутатора кратковременно замыкают эту цепь на момент запуска электрического мотора, а после того, как он выйдет на рабочий режим — размыкают.

Условия работы

Они различаются для каждого из конденсаторов. Поскольку первый из них постоянно присоединён к обмотке мотора, эта цепь образует собой элементарный колебательный контур. Из-за этого в определённые моменты на её выводах образуется напряжение, превышающее входящее в два с половиной — три раза. Это обстоятельство стоит учитывать при подборе, необходимо ориентироваться на детали, рассчитанные на 500—600 вольт.

Пусковые конденсаторы для электродвигателей — 220 В работают в других, менее жёстких условиях, в отличие от рабочих. Прикладываемое к этому ёмкостному элементу напряжение превышает основное примерно в 1,15 раза. Он присоединяется к цепям время от времени, что также положительно сказывается на условиях его работы, и значительно продлевает срок службы.

Наиболее часто применяются отечественные бумажные или маслонаполненные конденсаторы марок МБГО или МБГЧ. Их преимущество — это стойкость к высоким напряжениям переменного тока. Но есть и недостаток — большой размер. В качестве альтернативного решения допускается использование оксидных конденсаторов. Они подключаются не напрямую, а через диоды, по определённым схемам.

Обычные электролитические конденсаторы, применяемые в различных приборах, и рассчитанные на немалые рабочие напряжения, подойдут для асинхронных двигателей только в роли пусковых. Связано это с тем, что через них проходит большая реактивная мощность ввиду малого сопротивления обмоток. Подключение ёмкостных элементов с нарушениями или отклонениями от схемы приведёт к повреждению или закипанию электролита, способному причинить вред мотору и персоналу.

Таким образом, можно вывести из этого несколько советов, как отличить пусковой конденсатор от рабочего:

  • Первый из них играет вспомогательную роль. Он подключается параллельно рабочему на время запуска мотора — в течение нескольких секунд, чтобы облегчить старт.
  • Второй из них присоединён постоянно, обеспечивая необходимый сдвиг фаз, в результате которого трехфазный двигатель может работать от однофазной сети.

Если перепутать конденсаторы, то возникнут серьёзные проблемы. Ёмкость рабочего также не должна быть слишком большой, иначе мотор будет греться, а рост мощности и крутящего момента от этого повысится незначительно.

1. Подключение асинхронного двигателя в однофазную сеть

Применение конденсаторов в асинхронных двигателях
 

 

рабочий

пусковой

применение

В схемах асинхронных электродвигателей

В схемах асинхронных электродвигателей

тип подключения

Последовательно со вспомогательной обмоткой электродвигателя

Параллельно рабочему конденсатору

в качестве

Является фазосмещающим элементом

Является фазосмещающим элементом

назначение

Позволяет получить круговое вращающееся магнитное поле, необходимое для работы электродвигателя

Позволяет получить магнитное поле, необходимое для повышения пускового момента электродвигателя

время включения

В процессе работы электродвигателя

В момент пуска электродвигателя

Существуют две основные области применения конденсаторов для асинхронных электродвигателей.
 

1) Трёхфазный асинхронный электродвигатель, включаемый через конденсатор в однофазную сеть

В случае,  когда трехфазный электродвигатель необходимо подключить к однофазной сети, существует два возможных варианта подключения:

«звезда» или «треугольник», причем наиболее предпочтительным во многих случаях является вариант «треугольник».

Приблизительный расчет для данного типа соединения производится по следующей формуле:

 

 

                             Сраб.=k*Iф/Uсети

где:

k – коэффициент, зависящий от соединения обмоток.

 

Для схемы соединения «Звезда» - k=2800

Для схемы соединения «Треугольник» - k=4800

– номинальный фазный ток электродвигателя, А.

Uсети – напряжение однофазной сети, В.

 

Для определения пусковой емкости Сп.  исходят из пускового момента. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется.

Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением Сп.=(2.5-3) Ср.

Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети.

 

Схема подключения
 

 

Рис 1.   Схема включения в однофазную сеть     трехфазного асинхронного двигателя с  обмотками статора, соединенными по схеме «звезда» (а) или «треугольник» (б):

  • B1 Переключатель направления
  • вращения  (реверс)
  • В2 — Выключатель пусковой емкости;
  • Ср — рабочий конденсатор;
  • Cп — пусковой конденсатор;
  • АД — асинхронный электродвигатель.

 

2) Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают. Это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске.


Схема подключения
 

 

Рис 2. Схема (а) и векторная диаграмма  конденсаторного асинхронного двигателя:

  • U, UБ, UC — напряжения;
  • IA, IБ — токи;
  • А и Б — обмотки статора;
  • В — центробежный выключатель
  • для отключения С1 после разгона двигателя;
  • C1 и C2 — конденсаторы.

 

 

Конденсаторный асинхронный электродвигатель по пусковым и рабочим характеристикам близок к трехфазному асинхронному двигателю. 

 

Подключение электродвигателя к сети 220В

Электродвигатель – это агрегат, который при нормальных условиях эксплуатации (отсутствие перегрузок на валу, короткого замыкания питающей сети, перекоса фаз) способен работать вечно. Поэтому в руки домашних мастеров нередко попадают вполне работоспособные экземпляры от давно выкинутых на свалку бытовых или промышленных приборов, станков. Их дальнейшее использование позволяет создавать средства малой домашней механизации без дополнительных затрат. Наибольшее число вопросов при этом вызывает подключение трехфазного электродвигателя к бытовой сети 220 вольт. В этой статье рассмотрено несколько способов решения проблемы.

Запуск однофазного «асинхронника»

Знание того, как устроен и работает однофазный двигатель, поможет вам правильно подключить к бытовой сети промышленный трехфазный.

На его статоре устраивают две обмотки, расположенные в пространстве так, что они смещены по окружности друг относительно друга на угол 90 градусов. Однако одного их физического позиционирования для создания вращающегося магнитного поля недостаточно. Поэтому производят электрический сдвиг фаз тока, проходящего по ним. Это делают одним из двух способов:

  1. Введением в цепь одной из обмоток активного сопротивления, смещающего ток в ней на 30 градусов назад. Такие двигатели обозначаются термином «с расщепленной фазой».
  2. Последовательным включением в цепь одной обмотки так называемого бумажного конденсатора, сдвиг фазы в котором 90 градусов вперед. Наиболее часто применяемая конструкция.

Переменный ток вызывает в обмотке статора пульсирующее магнитное поле, которое взаимодействует с короткозамкнутым ротором и приводит его в состояние шаткого равновесия. Поэтому заставить вращаться ротор можно, приложив к нему определенное усилие, даже не имея сдвига фаз тока. На практике это свойство используется следующим образом: одна из обмоток делается с меньшим числом витков. Она подключается на время пуска, а потом обесточивается. Преимуществом способа является то, что из-за отсутствия перекоса фаз двигатель меньше греется. Недостатком – меньший вращающий момент на валу и необходимость включения в схему элементов автоматики. Например, теплового реле.

Если электродвигатель мощный – более киловатта, или большое усилие на валу возникает сразу после пуска, то конденсаторную батарею разбивают на две секции. В момент набора оборотов они работают обе, а после выхода на номинальные значения одна из них отключается. Это позволяет избежать сильного перекоса фаз и перегрева электрической машины. Схема подключения однофазного электродвигателя с двумя конденсаторами – пусковым и рабочим – приведена на рисунке ниже.

Адаптация трехфазной машины

Подключение двигателя 380 вольт к однофазной сети производится путем изменения способа коммутации выводов обмоток в клеммной коробке и не затрагивает его конструкции. Это делается двумя способами:

  1. С сохранением электрической связи обмоток по схеме «звезда» или «треугольник». Используется наиболее часто.
  2. Созданием двух независимых обмоток: пусковой и рабочей.

Обмотки асинхронного трехфазного двигателя расположены на статоре под физическим углом в 120 градусов. Если две из них объединить, то третья окажется почти перпендикулярной им – отклонение 30 градусов. Поэтому остается лишь правильно подобрать номинал и подключить конденсатор.

Большинство промышленных электродвигателей имеют возможность перехода с 380 В на 220 В и даже 127 В (устаревшие варианты). Для этого производится изменение способа соединения обмоток: со «звезды» на «треугольник». Поскольку в последнем случае обмотки запитаны напряжением 220 вольт, потеря мощности при подключении к однофазной сети составит 30 процентов. Если конструкция такова, что общая точка обмоток находится где-то в глубине статора (только три болта в клеммной коробке), то придется смириться с потерей половины мощности.

Схемы подключения трехфазного двигателя по принципу «звезда» и «треугольник» к бытовой сети 220 вольт приведена ниже.

Технология коммутации обмоток такая: выводы в клеммной коробке соединяются тремя параллельными перемычками (схема «треугольник»). К любым двум парам питающее напряжение подводится напрямую, а к третьей – через конденсатор, который из-за своих габаритов обычно устанавливается отдельно, снаружи.

Создание независимой пусковой обмотки выгодно тем, что мотор будет меньше греться. Для этого надо определить начало и конец каждой катушки. Обычно в клеммной коробке они соответствуют болтам, обозначенным литерами С1 – С4, С2 – С5, С3 – С6. Если вы не уверены, что это именно так, то используйте для прозвонки универсальный тестер в режиме звуковой сигнализации. Любые две катушки соединяются последовательно. Они становятся рабочей обмоткой. К ним питающее напряжение подводится напрямую. В цепь пусковой включается конденсаторная батарея, а также ручной или автоматический коммутатор.

Подбор конденсатора

Переделка схемы питания трехфазной электрической машины не принесет плодов, если неправильно подобрать емкости конденсатора.

Если на шильдике мотора читаются все характеристики, то можно все сделать по науке.

Сраб = 2800 x Iном / Uсети . Эта формула верна для способа подключения «звезда».

Сраб = 4800 x Iном / Uсети . Если обмотки соединены «треугольником». Результат в мкФ.

Номинальный ток (Iном) вычисляется по формуле: Iном = P2/1,73·U·cosφ·η.

P2 – указанная мощность в киловаттах; cosφ – коэффициент мощности, но фактически он является выражением угла отставания ротора от вращающегося поля статора; η – коэффициент полезного действия.

Когда табличка утеряна или нечитаемая, то емкость рабочего конденсатора определяется умножением мощности двигателя на 66: Сраб = Р х 66. Если сомневаетесь – взвесьте мотор. Каждые 10 килограмм – это один киловатт (в современном силуминовом корпусе).

Пусковая емкость должна быть в два с половиной или даже три раза больше рабочей.

Конденсатор должен быть «бумажным», для работы в сети переменного тока. Если на его корпусе есть знаки + и –, то – это электролитическая модель, при включении в бытовую сеть она может эффектно взорваться.

Способы реверсирования

Для изменения направления вращения трехфазных асинхронных двигателей, включенных в бытовую сеть 220 вольт 50 Герц, применяется тот же принцип, что и у не подвергшихся переделке. При соединении обмоток звездой или треугольником надо изменить одну точку подключения конденсатора, а у независимой пусковой обмотки меняются местами обе точки соединения ее выводов.

Несмотря на то, что изменение типа питания трехфазного асинхронного двигателя не является процессом противоречащим законам электротехники и не нарушает правил электробезопасности, его нельзя считать вполне нормальным и общепринятым. Если есть возможность, лучше пользоваться техникой, элементы конструкции которой соответствуют друг другу и не являются результатом «танцев с бубном».

Пусковой конденсатор для электродвигателя – Electrointer

Пусковой конденсатор – устройство, необходимое для стабильной работы электродвигателя. Он начинает работать непосредственно в момент старта электромотора, так как именно в это время на двигатель действует наибольшая нагрузка. Как только двигатель выходит на рабочую частоту, пусковой конденсатор отключается и больше не используется до следующего запуска. Он отвечает только за запуск двигателя под нагрузкой, также он обеспечивает сдвиг фаз меж пусковой и рабочей обмоткой.

Конструкция и назначение пускового конденсатора

Конденсатор представляет собой устройство, способное накапливать электрический заряд: он состоит из двух проводящих пластик, расположенных на небольшом отдалении друг от друга и разделенных диэлектрическим материалов. Все конденсаторы обладают несколькими характерными особенностями:

  • Специальный материал выполняет функции диэлектрика. Для конденсаторов пускового типа эту роль часто играет оксидная пленка, которая наносится на электрод.
  • Полярные накопители отличаются небольшими габаритными размерами, которые сочетаются с внушительной емкостью.
  • Неполярные конденсаторы больше по размеру, однако их можно устанавливать в цепь, не учитывая полярность.

Пусковой конденсатор двигателя выполняет несколько функций: он повышает показатели магнитного потока и пусковой момент, в результате работоспособность электромотора улучшается. Если этого элемента нет в системе, срок эксплуатации двигателя значительно сокращается, в его работе намного раньше возникнут различные неполадки.

Схема подключения двигателя с пусковым конденсатором

Пусковой конденсатор для электродвигателя играет важную защитную роль, поэтому он является обязательным компонентом схемы. При сборке цепи питания необходимо учитывать несколько обязательных моментов:

  • В цепи присутствует рабочий конденсатор, он используется в течение всего времени работы электродвигателя.
  • Перед рабочим конденсатором предусматривается разветвление, идущее на выключатель. Он отвечает запуск электродвигателя.
  • Пусковой конденсатор подключается к цепи после конденсатора. При подаче сигнала он успевает начать работать в течение нескольких секунд, в то время как ротор начинает набирать обороты.
  • Электрическая цепь от обоих конденсаторов идет к электромотору.

Таким образом пусковой и рабочий конденсатор подключаются к цепи параллельно, но первый работает только несколько секунд до выхода двигателя на рабочий уровень показателей, а второй – в течение всего времени эксплуатации двигателя.

Помощь при выборе пусковых конденсаторов

АО «Электроинтер» поможет подобрать и купить пусковой конденсатор подходящей емкости. Сотрудники компании предоставят подробную информацию по работе электрической цепи и помогут определиться с выбором оборудования. Получите необходимые консультации специалистов, чтобы обеспечить стабильную работу двигателя и защитить его от износа.


Как подобрать конденсатор для трехфазного двигателя

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование. Иногда возникает необходимость в использовании нестандартных устройств, например как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени.

Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.

В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:

  • к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети – напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

Подключение трехфазного электродвигателя в однофазную сеть

Достаточно часто у домашнего мастера возникает необходимость подключения трехфазного электродвигателя в однофазную сеть, например для привода циркулярной пилы, электронаждака и т.д.

Несмотря на то, что трёхфазные двигатели рассчитаны для работы в сетях 380В их можно подключить при помощи фазоздвигающего конденсатора в однофазную сеть. Однако следует знать, что наибольшую мощность( около 75% ) можно получить от двигателя обмотки которого соединены по схеме треугольник.

На практике для нормальной работы электродвигателя необходимо использовать два кондесатора, один из которых отключается после пуска и разгона.

На схеме это выглядит следующим образом.

На схеме представлены трехфазный асинхронный электродвигатель с обмотками соединенными по схеме треугольник, С1-конденцатор для запуска электродвигателя, С2-рабочий конденсатор электродвигателя, SA1- выключатель пускового конденсатора электродвигателя, AD-асинхронный электродвигатель.

Ёмкость рабочего конденсатора рассчитывается по формуле:

Сраб = 4800*(I /U)мкФ - для двигателя с обмотками соединенными по схеме «звезда»

Сраб = 4800*(I /U)мкФ - для двигателя с обмотками соединенными по схеме «треугольник»

Если вы знаете номинальную мощность двигателя, можно воспользоваться формулой:

Сраб = 66*Рном, мкФ, в которой Рном номинальная мощность двигателя.

Если упростить формулу, то можно сказать, что для работы трехфазного асинхронного двигателя в однофазной сети емкость конденсатора должна составлять 7 мкФ на каждые 0,1 кВт мощности. То есть, при мощности двигателя 1,1кВт емкость конденсатора составляет 77мкФ. Необходимую емкость можно набрать несколькими конденсаторами, соединенными параллельно. Ёмкость пускового конденсатора должна быть в 2-3 раза выше емкости рабочего конденсатора. Конденсаторы следует подбирать с рабочим напряжением превышающим сетевое в 1,5 раза марок: МБГО,МБГЧ,МБМ.

Материалы, близкие по теме:

Подключение электродвигателя 380 вольт на 220 вольт

Домашнее хозяйство часто нуждается в средствах механизации. Самодельный станок, насос для воды, оборудование для малого бизнеса… да мало ли для чего может понадобиться хороший электродвигатель! Однако проблема в том, что промышленные электродвигатели рассчитаны на работу в трехфазной сети (380 В).

В то время как в жилых домах и квартирах сеть однофазная, или 220 В. Но решение есть! Давайте рассмотрим, как заставить работать промышленный двигатель от бытовой сети.

Содержание статьи

Отличия однофазного двигателя от трехфазного

В трехфазном двигателе вращение ротора вызывает магнитное поле, которое наводится в статоре переменным напряжением каждой из трех фаз относительно друг друга. Это обеспечивает эффективность работы двигателя. Частота вращения двигателя остается одинаковой при однофазном и трехфазном подключении, а вот мощность при однофазном значительно уменьшается.

В этом случае мы получим от двигателя не больше 70% от номинальной мощности. Чтобы достичь максимально возможного результата, обмотки двигателя необходимо соединить «треугольником». Если подключение выполнено «звездой», то максимальная мощность (даже теоретически) составит не более 50% от номинальной. Чтобы уточнить методику соединения обмоток (если вы затрудняетесь отличить «звезду» от «треугольника»), рекомендуется просмотреть дополнительную информацию.

Так как в трехфазном двигателе имеется три выхода, на два из них подключается нулевой и фазный провода, а третий соединяется через конденсатор. При этом направление вращения будет зависеть от того, как будет подключен конденсатор — к нулевому или фазовому выводам.

Схемы подключения трехфазных двигателей на 220 вольт

Если двигатель маломощный (менее 1,5 кВт), и подключение происходит без нагрузки, то для успешной работы достаточно просто подключить к схеме конденсатор. Например, один вывод припаять к входу нулевого провода, а другой — к свободному концу обмотки, или третьему выводу треугольника. Если направление вращения не устраивает, то нужно просто прикрепить второй вывод конденсатора к входу фазного провода.

          

Для запуска нагруженного или мощного двигателя необходим более мощный «толчок», который может обеспечить дополнительный (пусковой) конденсатор. Он впаивается в схему параллельно основному, однако работает не постоянно, а только несколько секунд, на время старта двигателя. Обычно его подключают через кнопку или двухпозиционный тумблер. Для запуска требуется нажать кнопку (включить тумблер) на то время, пока двигатель запустится и наберет обороты. Затем кнопку отпускают, разрывая сеть и отключая емкость.

Двигатель можно заставить работать в прямом и реверсивном режимах. Для этого в схеме подключения добавляется тумблер, который в одном положении подключает конденсатор к нулевому, а в другом — к фазовому проводу. В реверсивной схеме, если двигатель медленно запускается или не стартует вообще, также может быть добавлен пусковой конденсатор. Он точно так же подключается параллельно основному и включается кнопкой «Пуск».

Часто можно услышать вопрос, а можно ли в принципе запустить трехфазный двигатель без конденсатора? К сожалению, этого сделать нельзя. Так можно запустить только мотор, изначально предназначенный для работы с однофазной сетью 220 В.

Подбор емкости конденсатора

Рабочее напряжение конденсатора должно быть не меньше 300 В. Лучше всего для схемы подходят конденсаторы марок БГТ, МБЧГ, МБПГ и МБГО. Все данные (тип, Uраб, емкость) указаны на корпусе.

Для расчета необходимой емкости следует воспользоваться формулой:

  • для подключения «треугольником» С = (I/U)x4800;
  • для подключения «звездой» С = (I/U)x2800.

Где С — емкость конденсатора в микрофарадах (мкФ), I — номинальный ток в обмотках (по паспорту), U — напряжение питания (220 В), а цифры — коэффициенты для разных типов подключения обмотки.

Что касается пусковых конденсаторов, то их емкость необходимо подбирать путем эксперимента. Обычно она составляет 2-3 от рабочего номинала.

Приведем пример расчета

Соединение — треугольник. Потребляемый номинальный паспортный ток — 3 А. Подставляя значения в формулу, получаем С=(3/220)х4800 = 65 мкФ. В этом случае емкость пускового конденсатора нужно выбирать в пределах 130-180 мкФ. Однако конденсаторов на 65 мкФ в продаже не бывает, поэтому собираем набор из 6 шт. по 10 мкФ и добавляем еще один — 5 мкФ.

Нужно учитывать, что при расчете использовались данные на номинальную мощность. Если двигатель будет работать с недогрузом, он будет перегреваться. В этом случае необходимо уменьшить емкость конденсаторов, чтобы снизить ток в обмотке. Но со снижением емкости уменьшится и мощность, которую может развить двигатель.

Поэтому при подключении рекомендуется действовать методом подбора. Начинать с минимально необходимой емкости, а затем постепенно увеличивать ее до получения оптимальных показателей.

Дополнительные замечания и предостережения:
  • Следует помнить, что двигатель, переделанный с 380 на 220 В, при работе без нагрузки может просто сгореть.
  • Двигатели мощнее 3 кВт не рекомендуется подключать к стандартной проводке жилого дома. Из-за высокой потребляемой мощности он будет выбивать пробки и автоматы, а если поставить более мощные автоматы, то может просто расплавиться изоляция на проводах. Это может привести к пожару или поражению током.
  • Даже после отключения конденсаторы долго сохраняют напряжение на выводах. Поэтому при монтаже они должны быть ограждены, чтобы не допустить случайного касания. Перед работой с конденсаторами обязательно проводите их «контрольную» разрядку.

 

Понравилась статья? Поделиться с друзьями:

Что делает конденсатор?

Для электродвигателя переменного тока с постоянным разделением конденсаторов (также известного как электродвигатели переменного тока с конденсаторным пуском и запуском) для правильной работы требуется конденсатор. Выпейте чашечку кофе, и мы объясним, почему.

Простой эксперимент ...

Чтобы показать, насколько важен конденсатор, мы можем начать с простого эксперимента. Используйте однофазный двигатель переменного тока с постоянным разделенным конденсатором и подключите его подводящие провода непосредственно к однофазному источнику питания (без конденсатора).Скорее всего, двигатель не будет работать с нагрузкой, если вал не будет вращаться под действием внешней силы (это намного проще с двигателем с выключенным круглым валом). Это потому, что нам нужны как минимум две фазы для создания вращающегося магнитного поля в статоре. Здесь и вступает в силу конденсатор.

Что делает конденсатор?

Первоначально называемый «конденсатором», конденсатор представляет собой пассивный электронный компонент, который содержит как минимум два проводника (пластины), разделенные изолятором (диэлектриком).Проводники могут быть тонкими пленками из металла, алюминиевой фольги или дисков. Изолятор может быть стеклянным, керамическим, полиэтиленовым, воздушным или бумажным. При подключении к источнику напряжения конденсатор сохраняет электрический заряд в виде электростатического поля между своими проводниками.
По сравнению с батареей, батарея использует химические вещества для хранения электрического заряда и медленно разряжает его через цепь. На это могут уйти годы. Конденсатор выделяет свою энергию гораздо быстрее - за секунды или меньше.Типичный пример применения - вспышка вашей камеры.

ВНИМАНИЕ: Поскольку конденсатор сохраняет электрический заряд, никогда не прикасайтесь к контактам конденсатора. Если по какой-то причине это необходимо, убедитесь, что электрический заряд полностью разряжен.

Для чего нужен конденсатор для двигателей?

Конденсатор предназначен для создания многофазного источника питания от однофазного источника питания.При многофазном питании двигатель может:

1. Установите направление вращения.
2. Обеспечьте пусковой момент двигателя и увеличивайте крутящий момент во время работы.

Все двигатели переменного тока компании

Oriental Motor представляют собой двигатели с постоянным разделением конденсаторов (конденсаторный пуск и работа). Эти двигатели содержат основную обмотку и вторичную вспомогательную обмотку. Конденсатор включен последовательно со вспомогательной обмоткой, и это приводит к тому, что ток во вспомогательной обмотке отстает по фазе с током в основной обмотке на 90 электрических градусов (четверть всего цикла).Теперь мы создали многофазный блок питания от однофазного блока питания.

Без конденсатора С конденсатором

Какой конденсатор используется в двигателе Oriental Motor?

В

Oriental Motor используются конденсаторы с электродами для осаждения из паровой фазы, признанные UL. В конденсаторах этого типа в качестве элемента используется металлизированная бумага или пластиковая пленка. Этот конденсатор также известен как «самовосстанавливающийся (SH) конденсатор».Хотя в большинстве предыдущих конденсаторов использовались бумажные элементы, в последние годы пластиковый пленочный конденсатор стал широко распространенным благодаря своей компактной конструкции.

Номинальное время проводимости

Номинальное время проводимости - это минимальный расчетный срок службы конденсатора при работе при номинальной нагрузке, номинальном напряжении, номинальной температуре и номинальной частоте. Стандартный срок службы - 40 000 часов. Конденсатор, который ломается в конце срока службы, может задымиться или загореться. Мы рекомендуем заменять конденсатор по истечении расчетного времени проводимости, чтобы избежать потенциальных проблем.

Конденсатор безопасности

Некоторые конденсаторы оснащены функцией безопасности, которая позволяет безопасно и полностью удалить конденсатор из цепей для предотвращения дыма и / или возгорания в случае пробоя диэлектрика. В продукции Oriental Motor используются конденсаторы с признанными UL функциями безопасности, которые прошли проверку на ток короткого замыкания UL 810 по стандарту UL 810.

Как оцениваются конденсаторы и почему это важно?

Конденсаторы

имеют номинальную емкость, рабочее напряжение, допуск, ток утечки, рабочую температуру и эквивалентное последовательное сопротивление...так далее. Для согласования двигателя двумя наиболее важными характеристиками являются емкость и рабочее напряжение. Номинальное напряжение обычно примерно в два раза превышает значение номинального входного напряжения двигателя в вольтах (на самом деле есть формула для определения емкости двигателя, но мы сохраним ее на потом). Для наших компактных двигателей переменного тока единицей измерения емкости является «микрофарада» или мкФ. Эти характеристики указаны как на этикетке двигателя, так и на этикетке конденсатора.

Этикетка двигателя с рекомендованным конденсатором Этикетка конденсатора

Использование конденсатора с другой емкостью может увеличить вибрацию двигателя, тепловыделение, потребление энергии, изменение крутящего момента и нестабильную работу.Если емкость слишком велика, крутящий момент двигателя увеличится, но может возникнуть перегрев и чрезмерная вибрация. Если емкость слишком мала, крутящий момент упадет. Использование конденсатора, напряжение которого превышает номинальное, может привести к повреждению, а конденсатор может задымиться или воспламениться.

Нужен ли мне правильный конденсатор для двигателей переменного тока Oriental Motor?

Нет. Каждый однофазный двигатель переменного тока Oriental Motor включает в себя специальный конденсатор, размер которого рассчитан на работу двигателя с максимальной эффективностью и производительностью.Подбор конденсаторов не требуется.

Что произойдет, если я использую другой конденсатор?

Чтобы двигатель работал с максимальной эффективностью, всегда используйте специальный конденсатор, поставляемый с двигателем. Выделенный конденсатор создает электрический фазовый сдвиг на 90 от вспомогательной (конденсаторной) фазы к основной фазе. Использование неподходящего конденсатора может сместить его с 90 градусов, и в результате неэффективность может привести к перегреву двигателя с непостоянными характеристиками крутящего момента или скорости.

Размер специального конденсатора рассчитан таким образом, чтобы двигатель создавал идеальную кривую крутящего момента / скорости. Обратите внимание на «Номинальная скорость» и «Номинальный крутящий момент». В этой рабочей точке (где эти две точки пересекаются на кривой) достигается наибольшая эффективность. Каждый двигатель рассчитан на номинальную нагрузку. Вот почему увеличение номинала - не лучший способ подобрать двигатели переменного тока.

Разница в емкости конденсатора повлияет как на номинальную скорость, так и на номинальный крутящий момент, поскольку рабочая точка смещается от максимальной эффективности.Если вы используете два одинаковых двигателя с совершенно разными конденсаторами, вы получите совершенно разные результаты.

При потере максимальной эффективности увеличивается тепловыделение двигателя. Избыточный нагрев может привести к ухудшению качества смазки подшипников и сокращению срока службы двигателя. Однако полезно знать, что если температура обмотки достигает 130 ° F, цепь тепловой защиты внутри двигателя срабатывает и отключает двигатель до тех пор, пока он не остынет.

Как подключить конденсатор?

Для 3-проводного двигателя переменного тока подключите красный и белый провода к противоположным клеммам конденсатора.Подключите черный провод к стороне N (нейтраль) источника питания. Для однонаправленной работы просто подключите L (под напряжением) сторону источника питания к клеммной коробке либо к красному проводнику (по часовой стрелке), либо к белому проводу (против часовой стрелки), чтобы начать вращение. УКАЗАНИЕ: 2 ближайших терминала соединены внутри. Для двунаправленной работы используйте однополюсный двухпозиционный переключатель (SPDT) между проводом под напряжением и клеммами конденсатора для переключения направления.

Однако для переключения направления асинхронного двигателя необходимо дождаться полной остановки двигателя.Для реверсивных двигателей направление может быть переключено мгновенно.

Теперь, когда вы знаете важность конденсаторов, не упускайте их. В этом случае используйте этикетку двигателя, чтобы определить подходящий конденсатор. Следите за новостями, чтобы получить больше советов по устранению неполадок.

Как конденсатор работает в цепи двигателя переменного тока 120 В?

Пытаться запустить однофазный двигатель только с одной обмоткой - все равно что пытаться запустить велосипед только с одной педалью.Все в порядке, если у вас все получится, но пытаться получить правильное направление старта и начинать с верхней или нижней мертвой точки неудобно.

смоделировать эту схему - Схема создана с помощью CircuitLab

Асинхронный двигатель с квадратным ротором, поскольку в редакторе схем нет инструмента круга.

Однофазный асинхронный двигатель аналогичен. Чтобы решить эту проблему, к двигателю добавляется вспомогательная, обычно более слабая, обмотка, которая смещена от основной обмотки, скажем, на 30 °.Конденсатор включен последовательно с этой катушкой, и он вызывает сдвиг фазы тока во вспомогательной обмотке относительно фазы основной обмотки. В результате магнитное поле в одной обмотке ведет к другой, и это сообщает ротору вращающую силу, достаточную для:

  • получить его, чтобы начать.
  • старт в правильном направлении.

Некоторые двигатели оснащены центробежным переключателем, который отключает вспомогательную обмотку, когда двигатель превышает определенную скорость, поскольку она больше не требуется.Это экономит немного энергии и снижает нагрев двигателя.

Что такое ток конденсатора

Но не могли бы вы прояснить мне эту часть? Когда крышка полностью заряжается, когда 120v пересекает ноль, что происходит с накопленным отрицательным зарядка на насыщенной крышке пластины? Пульсирует ли он вверх по потоку от предыдущий поток напряжения или он просто там сидит? - Скотт

Обычно мы узнаем о конденсаторах в цепях постоянного тока, где легко визуализировать заряд конденсатора, а затем его разрядку, а напряжение конденсатора следует кривой заряда / разряда RC.Обычно в этих сценариях подаваемое напряжение не меняется выше и ниже нуля вольт. Такой образ мышления не очень помогает нам при анализе цепей переменного тока.

Снова рассмотрим пусковую обмотку. Для простоты мы проигнорируем индуктивность обеих обмоток и будем рассматривать их как резисторы. Используя нашу простую модель:

  • Ток в главной обмотке будет соответствовать напряжению L-N и будет синфазным с ним.
  • Нам нужен фазовый сдвиг тока в ветви L2-C1 для генерации вращения.

Ток конденсатора определяется правилом \ $ I = \ frac {dQ} {dt} \ $, где Q - заряд. Это просто говорит нам о том, что ток будет наибольшим, когда скорость движения заряда наибольшая. Заряд конденсатора определяется как \ $ Q = C \ cdot V \ $, и объединяя их, мы получаем \ $ I = C \ frac {dV} {dt} \ $. Все, что мы здесь говорим, это то, что ток конденсатора пропорционален скорости изменения напряжения .

смоделировать эту схему

Упрощение : Мы снова игнорируем индуктивность и рассматриваем обмотки как резисторы с низким сопротивлением (относительно импеданса конденсатора).

При 270 ° напряжение (красный) максимально отрицательное. Конденсатор заряжен полностью отрицательно, и, поскольку напряжение перестало падать (становиться отрицательным), ток упал до нуля (синяя кривая находится на нуле).

С 270 ° до 0 ° напряжение будет увеличиваться. Скорость изменения будет становиться все быстрее и быстрее по мере приближения к нулю. По этой причине ток будет увеличиваться от нуля до максимального тока при 0 °.

При 0 ° конденсатор полностью разряжен, но скорость изменения напряжения самая высокая (самая крутая на кривой).Это зарядит конденсатор, и, поскольку скорость заряда - ток - пропорциональна скорости изменения напряжения, ток здесь достигает максимума.

Для следующего от 0 ° до 90 ° скорость изменения напряжения уменьшается, и ток уменьшается до нуля.

Тот же рисунок повторяется, но в противоположных направлениях на следующие 180 °.


Примечания:

  • При таком расположении формы сигналов напряжения и тока всегда синусоидальны.Нет внезапных зарядов / разрядов или скачков напряжения или тока.
  • Единственная «бесконечная пауза» - это когда напряжение или ток меняют направление. Это не более чем пауза, чем когда поршень двигателя достигает максимума хода. Скорость = 0 на мгновение, но в этот момент ускорение самое высокое (если я правильно думаю).
  • То, что приходит на провод под напряжением / под напряжением на этой ноге, должно выходить на нейтраль на этой ноге.
  • C1, и коммутатор может работать с любой стороны от L2.

Почему двигатель переменного тока не замедляется при параллельном подключении к конденсатору?

В первом приближении двигатель не имеет отношения к конденсатору, а конденсатор не имеет отношения к двигателю.

Причина, по которой это правда, заключается в том, что линия переменного тока предназначена для источника напряжения переменного тока (и на самом деле вы нарисовали буквально ) - до момента, когда вы что-то сломаете, вы можете сначала В порядке приближения учитывайте, что напряжение на клеммах линии одинаково независимо от того, что вы подключаете.

Конечно, хотя это абсолютно верно для того, что вы нарисовали, в некоторой степени это не совсем верно для реального оборудования, подключенного к реальной линии переменного тока с ненулевым импедансом источника.

Во-первых, емкость будет представлять собой проводимость при переменном токе, то есть она будет загружать линию в течение части цикла и, таким образом (при условии конечного сопротивления проводки), одновременно уменьшит напряжение и немного сдвинет фазу. Но двигатель будет видеть только другую фазу - которая его не волнует, вообще и немного более низкое напряжение, которое, если асинхронный двигатель не критически нагружен, он тоже не особо заботится о скорости, поскольку скорость отсутствует при значительной нагрузке. скольжение определяется частотой линии.

Практическая причина, по которой кто-то на самом деле построил эту схему, не имеет ничего общего с регулированием скорости , а скорее с желанием сбалансировать индуктивное реактивное сопротивление двигателя с локальной емкостью, чтобы нагрузка на сеть переменного тока была более близкой к резистивный. Хотя ни индуктивное, ни емкостное реактивное сопротивление не потребляют реальную мощность, циклическая мощность переменного тока, входящая и выходящая из них, должна проходить через реальное сопротивление распределительной проводки, где она рассеивает реальную мощность в виде тепла, поэтому промышленным потребителям выставляется надбавка за реактивные нагрузки. и может оказаться желательным локально компенсировать реактивное сопротивление.

Итак, если вам нужна модель, в которой что-то действительно происходит, вам нужно вставить резистор между узлом двигатель / конденсатор и источником переменного тока, чтобы смоделировать потери в линии.

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме "звезда", обычно без внешнего подключения к нейтральной точке, или по схеме "треугольник".Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Британская энциклопедия, Inc.

Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора.На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на чертеже ток в фазе a является максимально положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу.В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения положительный. Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены друг с другом на каждом конце, в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке показана диаграмма токов ротора для мгновенного t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Британская энциклопедия, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле в присутствии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Полный ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электрической мощности. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже полевой скорости (часто называемой синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f - частота в герцах (циклов в секунду), а p - количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, передаваемый от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц - 1800 и 1200 оборотов в минуту.

Зачем двигателю переменного тока для запуска нужен конденсатор?

, Джон ПапевскиОбновлено 16 марта 2018 г.

Электродвигатели подразделяются на несколько основных типов: постоянного тока (DC), однофазного переменного тока (AC) и многофазного переменного тока. Каждый из этих типов имеет множество дизайнов. Двигатели переменного тока, используемые в посудомоечной машине, пылесосе и стиральной машине, работают от однофазного переменного тока. Хотя однофазные двигатели переменного тока работают эффективно, их невозможно запустить без посторонней помощи.Конденсатор добавляет временную дополнительную фазу для запуска двигателя.

Магнитное отталкивание

Большинство электродвигателей переменного или постоянного тока используют силы противоположных магнитных полей для вращения ротора. Для этого у двигателя есть набор магнитных полей на роторе и набор вокруг него. Когда ротор вращается, магнитные поля переключаются, как магнитные полюса (север с севером, юг с югом), обращенные друг к другу. Поскольку одинаковые полюса отталкиваются друг от друга, это заставляет ротор продолжать вращаться.Силы магнитного отталкивания сохраняются на протяжении всего вращения ротора на 360 градусов.

Асинхронные двигатели

Для работы самого простого двигателя переменного тока требуется трехфазное электричество. Многофазный двигатель использует три перекрывающихся цикла тока, называемых фазами, для управления магнитными силами в двигателе. Каждая из трех отдельных фаз подключается к набору магнитных катушек, разнесенных на 120 градусов. Хотя это нормально для коммерческих и промышленных помещений, электрический ток, поступающий в ваш дом, имеет только одну или две фазы.Однофазный двигатель требует дополнительных деталей для правильной работы.

Проблема с одной фазой

Катушки двигателя, приводимые в действие одной фазой переменного тока, все чередуются одновременно, меняя местами северный и южный полюса в унисон. Это создает проблему, называемую нулевым пусковым моментом. Хотя он может запускать двигатель, который уже вращается, у него нет «толчка», чтобы заставить двигатель повернуться с полной остановки. Вы можете запустить его, вращая вручную, но кто захочет запускать пылесос вручную?

Пусковой конденсатор и переключатель

Конденсатор, подключенный к отдельной катушке двигателя, создает переменный электрический ток, опережающий основную фазу на 90 градусов.Это происходит потому, что ток через конденсатор опережает напряжение на 90 градусов. Во время пуска двигателя переключатель подключает к двигателю конденсатор и специальную пусковую катушку. Когда двигатель достигает своей рабочей скорости, выключатель отключает конденсатор. Если конденсатор остается подключенным к двигателю, это снижает его эффективность.

Конденсаторы Run-Start

Другая, немного более дорогая конструкция использует два конденсатора, один большего номинала для запуска двигателя и меньшего для поддержания его работы.В этой конструкции также используется переключатель для управления запуском двигателя. Для более крупных однофазных двигателей это помогает повысить мощность.

Конденсаторный двигатель - обзор

Испытания конденсаторов двигателя

Помимо содержания конденсаторов в чистоте, они практически не требуют профилактического обслуживания. Не допускать попадания пыли, грязи, жира, масла. или любые металлические частицы, собирающиеся между выводами. Это может привести к пробою изоляции между выводами и возникновению дуги. Содержите корпуса в чистоте, чтобы тепло, выделяемое конденсаторами, могло передаваться в окружающий воздух.Большинство конденсаторов двигателей имеют срок службы около 60 000 часов при непрерывной работе при номинальном напряжении и температурах не выше 70 ° C.

Конденсаторы необходимо время от времени наблюдать и проверять в рамках программы планового технического обслуживания. Помните, что конденсатор может сохранять свой заряд даже после отключения питания от цепи. Перед работой с конденсаторами обязательно разряжайте конденсаторы заземляющим стержнем.

Обратите внимание на работу двигателя. Если двигатель набирает обороты, развивает нормальный крутящий момент и работает на скорости, конденсатор, вероятно, в порядке.В противном случае указывается дальнейшая проверка состояния конденсатора.

Осмотрите конденсатор на предмет вздутия корпуса или утечки электролита. Если существует какая-либо из этих проблем, замените конденсатор.

Проверьте конденсатор на короткое замыкание с помощью омметра. Перед подключением измерителя убедитесь, что конденсатор разряжен. Конденсатор может хранить достаточно энергии, чтобы разрушить счетчик.

Установите омметр на максимальное значение. Подключите провода к конденсатору. На обычном конденсаторе измеритель будет отклоняться вверх по шкале и быстро вернется к очень большому оммическому значению.Если конденсатор показывает ноль Ом или очень низкое значение сопротивления, это плохо. Замени это. Полномасштабное показание стандартного омметра соответствует 0 Ом (рисунок 10-49).

РИСУНОК 10-49. Проверка конденсатора на короткое замыкание и обрыв с помощью омметра.

Если конденсатор не может отклоняться вверх по шкале, когда омметр установлен на высокий множитель, вероятно, конденсатор открыт. Замени это. С очень маленькими конденсаторами [пикофарады (пФ)] вы можете не получить прогиб. Это нормально. Однако все конденсаторы, используемые с двигателями, намного больше.Если вы повторите тест из-за того, что не наблюдаете за измерителем внимательно, обязательно разрядите конденсатор. Он будет заряжаться до потенциала напряжения батареи счетчика.

Ни один из этих тестов не является абсолютным из-за низкого напряжения, подаваемого омметром. Короткий тест может показать, что конденсатор исправен, но при подаче сетевого напряжения переменного тока происходит большая утечка тока. Кроме того, тест омметром не скажет вам, изменилось ли значение конденсатора.

На рынке имеются коммерческие тестеры конденсаторов. Эти тестеры позволяют проводить испытания конденсатора номинальным напряжением при измерении его утечки по току.Кроме того, в этих приборах используется конденсаторная мостовая схема, которая позволяет определять значение конденсатора в фарадах. Когда этот тип устройства станет доступен, научитесь его использовать. В большинстве случаев у вас не будет средства проверки конденсаторов, поэтому необходим другой метод.

Настройте схему, как показано на Рисунке 10-50. Рекомендуется установить предохранитель в цепи в случае, если максимальное сопротивление в цепи отсутствует, когда она находится под напряжением, и конденсатор находится в закороченном состоянии.

РИСУНОК 10-50. Схема проверки конденсаторов.

Во время проверки отключите конденсатор от цепи двигателя. Большинство производителей двигателей используют коричневые изолированные проводники для подключения конденсатора к цепи. Один из коричневых проводов может иметь индикаторный цвет по всей длине. Перед подачей питания установите реостат так, чтобы в цепи было максимальное сопротивление.

Если ток, протекающий через конденсатор, и напряжение на нем известны, значение емкости в микрофарадах можно рассчитать по формуле

C = IK / V

K - константа, равная

K = 1 / (2πF × 10−6) = 10000006.28 × 60

Для 60 герц K равно 2650. Эта константа выводится из формулы емкостного реактивного сопротивления. Значение K будет меняться с изменением частоты.

Предполагая 120 В переменного тока на конденсаторе и ток 2 ампера, как показано на рисунке 10-50, значение конденсатора будет равно

C = (2 A × 2650) / 120 В = 44,16 мкФ

Большинство конденсаторов двигателя имеют допуск 20%. Если экспериментальное значение конденсатора в фарадах не находится в пределах 20% от его номинального значения, замените конденсатор.Допустимый диапазон емкости конденсатора в этом примере составляет плюс-минус 9 мкФ или от 36 до 54 мкФ.

Энергия в конденсаторе> Лаборатория поддержки лекций по физике и астрономии> USC Dana and David Dornsife College of Letters, Arts and Sciences

C.4 (1) - Driving a Motor


Энергия, накопленная в конденсаторе, используется для приведения в действие небольшого двигателя, который вращает пропеллер. Схема состоит из восьми параллельно включенных конденсаторов с эквивалентной емкостью 30 000 микрофарад, соединенных последовательно с пятью последовательно включенными резисторами номиналом
Ом и сопротивлением 500 Ом.Постоянная времени для контура 75 секунды . Аппарат подключен к источнику высокого напряжения, установленному на 250 вольт . он установлен на доске размером 25 см, x 25 см, .

Верх


C.4 (2) - Выгрузка с помощью металлического стержня

Конденсатор (100 мкФ, 3000 В постоянного тока) заряжается за несколько минут. Конденсатор подключен к источнику питания.После зарядки выключите питание и мультиметр (будьте осторожны при отключении мультиметра). Затем конденсатор замыкается большой металлической перемычкой с изолированной ручкой, вызывая сильную искру.

Нажмите здесь, чтобы посмотреть видео этой демонстрации.

Верх


C.4 (3a) - Wire Exploder (старый)


Большой конденсатор (240 микрофарад, 5000 В) используется в качестве опорной стойки для устройства, которое неожиданно показывает энергию, запасенную в конденсаторе.Листы толстого оргстекла помещаются поверх него и вокруг установки, состоящей из: электромагнитного переключателя, небольшого измерителя, резисторов и стойки, которая надежно удерживает очень тонкий металлический провод, как показано на рисунке. Рядом с ним установлен блок питания и длинный проводной выключатель. Конденсатор заряжается в течение 5-10 минут при 2000 В постоянного тока через резистор R = 1,8 x 106 Ом (или пока счетчик не покажет не менее 15-20 минут). Выключите источник питания. Возьмите выключатель и отойдите от аппарата.Закройте и откройте дистанционный переключатель. Когда цепь замкнута, конденсатор разряжается через тонкую проволоку, измельчая его. Это вызывает сильный взрыв, большую искру и даже немного дыма. Постоянная времени для этой схемы составляет 432 секунды. После зарядки в течение 5 минут на конденсаторе накоплено около 0,24 кулона, а общая энергия, выделяемая в момент взрыва, составляет около 173 Дж. Это очень громко и очень удивительно. Имейте в виду, что конденсатор все еще может быть заряжен, поскольку взрыв провода обычно не разряжает его полностью.Разрядник с длинными ручками используется для полного разряда конденсатора, за которым следуют другие более мелкие взрывы и искры.

Верх

C.4 (3b) - Wire Exploder (новый)

Эта обновленная демонстрация состоит из: большого конденсатора (240 мкФ; 5 кВ), электромагнитного переключателя, небольшого измерителя и стойки, которая прочно удерживает очень тонкий металлический провод, если смотреть через экран из оргстекла.Рядом с ним установлен блок питания и длинный проводной выключатель.

Конденсатор заряжается напрямую до 3 кВ постоянного тока в течение примерно 15 минут. После этого заряд, накопленный на конденсаторе, составляет около 0,24 кулонов, а общая энергия, выделяемая при коротком замыкании, составляет около 173 Дж. Когда цепь замкнута, конденсатор разряжается через тонкий провод, превращая его в пыль. Это вызывает громкий взрыв и большие искры. Имейте в виду, что конденсатор все еще может быть заряжен, поскольку взрыв провода обычно не разряжает его полностью.Разрядник с длинными ручками используется для полного разряда конденсатора.

Можно использовать два типа проволоки:

  • Медный магнитный провод
  • Никель-хромовая проволока неизолированная

Щелкните здесь, чтобы увидеть видео о новой демонстрации Wire Exploder в действии.

Верх

C.4 (4) - Ультраконденсатор

Эта демонстрация состоит из одного конденсатора 16 В / 58 Ф по сравнению с одним ультраконденсатором 16 В / 210000 мкФ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *