Как подключить однофазный двигатель: Как подключить однофазный двигатель. Как подключить однофазный двигатель С пусковой обмоткой

Содержание

Электродвигатель с тремя проводами как подключить

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

Содержание

  1. Асинхронный или коллекторный: как отличить
  2. Как устроены коллекторные движки
  3. Асинхронные
  4. Схемы подключения однофазных асинхронных двигателей
  5. С пусковой обмоткой
  6. Конденсаторный
  7. Схема с двумя конденсаторами
  8. Подбор конденсаторов
  9. Изменение направления движения мотора
  10. Схема подключения коллекторного электродвигателя на 220 Вольт
  11. Схемы подключения однофазных асинхронных электродвигателей
  12. Как подключить электродвигатель стиральной машины
  13. Проверка работоспособности
  14. Related Posts
  15. Добавить комментарий Отменить ответ
  16. Принцип действия коллекторного двигателя
  17. Подключение в сеть 220 В коллекторного электродвигателя
  18. Принцип действия однофазного асинхронного электродвигателя
  19. Режимы однофазных двигателей
  20. Подключение трёхфазного двигателя в сеть 220 В
  21. Похожие статьи
  22. Трехфазный
  23. Переключение на нужное напряжение
  24. Увеличение напряжения
  25. Уменьшение напряжения
  26. Однофазный
  27. Включение в работу
  28. Асинхронный или коллекторный: как отличить
  29. Как устроены коллекторные движки
  30. Асинхронные
  31. Схемы подключения однофазных асинхронных двигателей
  32. С пусковой обмоткой
  33. Конденсаторный
  34. Схема с двумя конденсаторами
  35. Подбор конденсаторов
  36. Изменение направления движения мотора

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ).

Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки. например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

В прошлой статье Я рассказывал как подключить и запустить двигатель на 380 Вольт в однофазной электросети 220 В. Сейчас Я расскажу о том, как подключить однофазный электродвигатель от сломавшейся стиральной машины, пылесоса и т. д. Его можно успешно использовать в других целях в домашнем хозяйстве, например для привода точила, полировального станка, газонокосилки и т. п.

Схема подключения коллекторного электродвигателя на 220 Вольт

В электрических дрелях, перфораторах, болгарках и некоторых моделях стиральных машин автоматов используется синхронный коллекторный двигатель. Он успешно запускается и работает в однофазных сетях без лишних пусковых устройств.

Для того, что бы подключить коллекторный электромотор. необходимо соединить между собой перемычкой два конца №2 и №3, один идущий от якоря, а второй от статора. А оставшиеся 2 конца присоединить к электропитанию 220 Вольт.

Помните, что при подключении коллекторного электрического двигателя без блока электроники, он будет работать только на максимальных оборотах, а при запуске будет сильный рывок, большой пусковой ток, искрение на коллекторе.

Может быть мотор и 2 скоростным. тогда со статора будет выходить 3 конец с половины его обмотки. При подключении к нему уменьшится скорость вращения вала, но при этом увеличивается риск нарушения изоляции при запуске мотора.

Для изменения направления вращения необходимо поменять местами концы подключения статора или якоря.

Схемы подключения однофазных асинхронных электродвигателей

Если в однофазных электродвигателях была бы только одна обмотка в статоре, тогда внутри него электромагнитное поле было бы пульсирующим, а не вращающимся. И запуск произошел бы только после раскручивания вала рукой. Поэтому для самостоятельного запуска асинхронных двигателей добавляется вспомогательная обмотка или пусковая, в которой фаза при помощи конденсатора или индуктивности оказывается сдвинутой на 90 градусов. Пусковая обмотка и толкает ротор электродвигателя в момент включения. Основные схемы включения изображены на рисунке.

Первые две схемы рассчитаны на подключение пусковой обмотки на время запуска мотора, но не более 3 секунд по продолжительности. Для этого используется реле или пусковая кнопка, которую необходимо нажать и удерживать пока не запустится мотор.

Пусковая обмотка может подключаться через конденсатор, или в очень редких случаях через сопротивление. В последнем случае обмотка должна быть намотана по бифилярной технологии, т.е сопротивление является частью обмотки. Оно увеличивается в ней за счет длины провода, но при этом индуктивность катушки не меняется.

В третьей самой распространенной схеме конденсатор постоянно включен к сети при работе электродвигателя, а не только на время его запуска.

Что бы определить какие провода идут на каждую из обмоток, сначала вызваниваем их по парам, а затем меряем сопротивление каждой по этой инструкции. У пусковой обмотки сопротивление всегда будет больше (обычно около 30 Ом), чем у рабочей обмотки (чаще всего в районе 10-13 Ом).

Подбирать конденсатор необходимо по потребляемому току мотором, например для I = 1.4 А потребуется конденсатор емкостью 6 мкФ.

Как подключить электродвигатель стиральной машины

В современных стиральных машинах могут стоять либо коллекторные или трехфазные двигатели. Последние можно запустить только при помощи электронного пуск-регулирующего устройства, которое необходимо будет достать со стиральной машины и переделать схему на ручной запуск. Но для этого надо хорошо разбираться в радиотехнике.

Коллекторный двигатель же двигатель от стиральной машины подключить очень просто. Как правило на колодку подключения выходит 6-7 проводов, не считая на заземление корпуса.

Два провода идут с тахометра, которые не будут использоваться. И по паре проводов выходит со статора и якоря (ротора). Так же иногда может выходить еще один конец с половины обмотки.

Вызваниваем пары обмоток и соединяем перемычкой между собой конец роторной с началом статарной обмотки. На начало роторной подключаем один конец электропитания и другой- на конец статарной.

Если необходимо подключение второй скорости. тогда один конец электропитания подключаем к выходу с половины обмотки. У нее будет меньше сопротивление, чем у целой.

Иногда на колодку подключения еще может выходить дополнительно пара контактов от термозащиты.

В старых стиральных машинах советского образца стояли простые асинхронные электродвигатели с пусковой обмоткой. Для их запуска рекомендую использовать соответствующее реле от стиральной машины, которое устанавливается только вертикально по указателю на корпусе. Подключение производится по этой схеме.
А можно запустить и по другой схеме только с рабочим конденсатором, подключенным к пусковой обмотке.

Проверка работоспособности

Для того, что бы проверить правильность собранной схемы необходимо включить электродвигатель и дать ему поработать сначала одну минуту, а затем около 15. Если двигатель горячий, то причинами может быть:

  1. Изношенность, загрязненность или зажатость подшипников.
  2. Большая ёмкость конденсатора. отключите его и запустите двигатель рукой, если он перестанет греться- уменьшите емкость конденсаторов.
  • Произошла ошибка; возможно, лента недоступна. Повторите попытку позже.

Однофазный двигатель может быть коллекторным или с короткозамкнутым ротором. С коллекторным двигателем все достаточно просто: два выходящих из корпуса двигателя проводочка воткнули в розетку — подключение состоялось. С подключением однофазного двигателя с короткозамкнутым ротором придется повозиться. Все дело в определении выводов.

Параллельно рабочей обмотке (РО) в однофазном двигателе подключается пусковая (ПО) для создания хоть какого-то вращающегося магнитного поля.
Однофазный двигатель с четырьмя выводами имеет ПО постоянного подключения. Она действует в паре с основной, не отключаясь, только подключение делается через конденсатор для сдвига фазы (Рис.а). Схема подключения такого однофазного двигателя очень удобна, так как все проводочки легко доступны, их можно с помощью переключателя менять местами для выполнения реверса (Рис.а1). Определяются они без особого труда: вызвонить омметром и найти прозванивающиеся пары.
Например, омметр определил замкнутую цепь первого вывода со вторым, а третьего — с четвертым. Значит, 1 и 2 — одна обмотка, 3 и 4 — другая. Четвертый провод соединяем со вторым (или первый с третьим, все равно) — это общий.
Начало и конец не имеют значения. Далее все подключение по рисунку а или а1.
Немного сложнее разобраться с двигателем с тремя выходящими жилами. В таких случаях ПО подключается кратковременно: двигатель раскрутился, и она отключается, иначе сгорит. Как происходит подобная коммутация?
Для этого придумали пуско-защитное реле. Функция его заключается не только в подключении ПО, но и для создания ее оптимального времени отключения.
Во время запуска через электромагнитную катушку проходит большой ток. В этот момент ее сердечник втягивается и воздействует на контакт, управляющий ПО (Рис, 1 и 2). После запуска ток падает, отпускается сердечник, пусковая цепь разрывается.
При межвитковом замыкании в рабочей обмотке ток постоянно высокий, ПО остается в работе, двигатель задымился. Для защиты вмонтировано тепловое реле с биметаллической пластиной, отключающее Х3 от сети.
Если двигатель в течение короткого времени то включится, то отключится, значит, срабатывает тепловая защита. Причина или в межвитковом замыкании, или в пониженном (повышенном) напряжении сети.
Обратите внимание на странный, на первый взгляд, рисунок 3. Это крышка от пуско-защитного аппарата, на которой указана маркировка подключаемых к нему проводов и обозначена стрелка. С маркировкой все понятно — концы не перепутать при подключении. А вот стрелка указывает на положение релюшки в пространстве. она всегда должна быть обращена вверх. Будучи еще начинающим электриком, я ремонтировал стиральную машину. Перевернул ее вверх дном. Оказалось, всего-то надо ремень заменить. Заменил, попробовал включить — заработала… и задымилась, двигатель сгорел.
Уже спустя некоторое время узнал, что на перевернутой релюшке контакт остается замкнутым, тогда как в нормальном положении под силой тяжести после отключения катушки он отпадает вниз. А у меня как раз в перевернутой машине оказался внизу. Просто надо было для пробного включения перевернуть аппарат, чтобы стрелка вновь показывала наверх.

Как же выполняется подключение однофазного двигателя с неизвестными тремя проводами. Сопротивление ПО (Х1-Х3) в несколько раз больше сопротивления РО (Х2-Х3). Х3 выходит от места соединения ПО и РО (см. Рис. б).
Сначала промаркируем жилы, чтоб не запутаться (те же Х1, Х2 и Х3). Замеряем сопротивление, например, между Х1 и Х2, получилось, скажем, 60 Ом. Замерили Х1-Х3 — 45 Ом. Между Х2 и Х3 — только 15. Все это записали.
Смотрим самое большое (60) — общее всех обмоток. 15 — рабочая о
бмотка, 45 — пусковая. Находим тот проводок, с которым остальные два показывают 15 и 45 Ом. Это будет наш Х3.
Можно открыть крышку двигателя и визуально определить ПО: она намотана более тонким сечением.
Вот, пожалуй, и все!

Добавить комментарий Отменить ответ

Очень часто бывает, что механика в стиральной машине, пылесосе, электродрели полностью выходит из строя, и выгодней будет купить новую бытовую технику, чем починить безнадёжно устаревшие домашние электроприборы.

Из кучи оставшихся от данных устройств запчастей, как правило, самым ценным элементом будет электродвигатель, которому можно найти достойное применение, подключив в сеть 220В.

В подобных электроприборах изредка встречается полноценный трёхфазный двигатель, и скорее всего там окажется однофазный коллекторный или асинхронный электродвигатель, у которого может оказаться изрядный запас прочности и ресурса подшипников для применения в качестве привода насоса, компрессора, вентилятора, точила, мини-станка, овощерезки, газонокосилки и т.д.

В данной статье будет рассказано о том, как подключить однофазный электродвигатель в сеть 220 В, в зависимости от его типа.

Принцип действия коллекторного двигателя

В коллекторном электродвигателе, встречающемся в стиральных машинах и электродрелях, имеются обмотки на статоре и роторе.

Роторные обмотки намотаны в виде рамок и помещаются в специальных пазах, а их переключение происходит при помощи коллекторных выводов и контактов в виде графитовых щёток.

ротор коллекторного двигателя

Устройство ротора выполнено таким образом, чтобы в любой момент времени под напряжением находилась только одна рамка, магнитное поле которой перпендикулярно полю обмотки статора.

Электромагнитное взаимодействие полярных магнитных полюсов стремится повернуть ротор так, чтобы направленность его магнитного поля совпала с полем статора, подобно стрелке компаса.

Но, как только ротор поворачивается на определённый угол, контакты рамки выходят из соприкосновения со щётками, и включаются следующая обмотка, и процесс повторяется, создавая непрерывный момент вращения.

Подключение в сеть 220 В коллекторного электродвигателя

Схема коллекторного электродвигателя устроена таким образом, что направления токов в обмотке статора ротора и рамке ротора всегда совпадают, независимо от фазы переменного напряжения. Из-за совпадения направления токов, возникающие магнитные поля будут всегда перпендикулярными, что и будет вызывать момент вращения вала.

Поэтому очень важно установить перемычку на выводах двигателя, для последовательного соединения статорной и роторной обмоток. Поменяв местами выводы обмоток статора или ротора можно изменить направление вращения вала двигателя.

Для полноты картины нужно проследить путь тока – один из выводов от щётки коллектора подключается в сеть 220 В (допустим фаза, но это не имеет значения). Вывод другой щётки нужно подсоединить к одному выводу статора при помощи перемычки. Оставшийся вывод от статора подключается в сеть 220 В (ноль), замыкая цепь.

Принцип действия однофазного асинхронного электродвигателя

В отличие от коллекторного двигателя, в однофазном асинхронном электродвигателе с короткозамкнутым находящимся в состоянии покоя ротором,

устройство асинхронного двигателя

в котором индуцируются токи, создающие магнитное поле, взаимодействующее с электромагнитным полем катушки, векторы возникающих сил (М, -М) уравновешивают друг друга. Это означает, что при включении в сеть вал мотора вращаться не будет, и для его запуска нужен начальный вращательный момент S.

Можно рукой раскрутить вал и подать напряжение сети, тогда двигатель наберёт обороты. Многие так и делают, запуская точило, но такой способ совершенно неприемлем, если нужно раскрутить вращающиеся ножи овощерезки или газонокосилки.

Поскольку в трёхфазном электродвигателе момент вращения задан конструктивно при помощи расположения обмоток и смещения фаз трёхфазной сети, то в однофазном моторе для запуска применяют дополнительную пусковую обмотку, благодаря которой создаётся вращательный момент смещения ротора.

Схема подключения 1

Смещения фазы тока дополнительной обмотки относительно синусоиды напряжения 220 В создаётся при помощи конденсатора.

Схема подключения 2

Подключение в сеть асинхронного однофазного электродвигателя.
На корпусе однофазного асинхронного электродвигателя должна быть схема подключения, где указываются выводы основной и дополнительной обмотки, а также емкость конденсатора.

Но, если схема где-то затерялась, то нужно определить рабочую и пусковую обмотку, измерив и сравнив сопротивления – у основной оно должно быть меньшим. Для этого нужно взять мультиметр, выставить диапазон для измерения в Омах, и поочерёдно измерить сопротивление между выводами.

Определение пусковой и рабочей обмотки

Поскольку часто данные обмотки имеют общий вывод, то его определяют опытным путём – сумма сопротивлений, измеренных от данного провода обмоток должна соответствовать суммарному сопротивлению подключённых последовательно обмоток. Если конструкция двигателя позволяет, то определить принадлежность выводов можно визуально – у проводов рабочей обмотки поперечное сечение (толщина) больше.

рабочая и пусковая обмотки

Рабочая обмотка подключается к напряжению 220 В напрямую, а пусковая – последовательно с конденсатором. Если обмотки соединены внутри мотора, то такая схема не позволит изменять направление вращения. Если из мотора выходят четыре провода от двух обмоток, то направление вращения будет зависеть выбора выводов для их соединения в общий отвод.

Выбор вращения двигателя

Существуют электродвигатели с идентичными обмотками – их называют двухфазными.

Режимы однофазных двигателей

Поскольку однофазные и двухфазные двигатели для запуска требуют применения конденсатора. то такие электродвигатели называют конденсаторными. Существует несколько режимов работы конденсаторного двигателя:

  • С пусковым конденсатором и дополнительной обмоткой, которые подключаются только на время запуска. Емкость выбирается исходя из 70 мкФ на 1 кВт мощности двигателя;
  • С рабочим конденсатором, емкостью 23-35 мкФ и дополнительной обмоткой, подключённой всё время;
  • С рабочим и пусковым конденсатором, подключаемым параллельно рабочему.

Применяется в случаях с тяжёлым запуском двигателя. Емкость рабочего конденсатора в два-три раза меньше номинала пускового (70 мкФ/1 кВт).

Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. В реальности, подключив электродвигатель, нужно проследить за его работой и нагревом. Если двигатель будет заметно нагреваться в режиме с рабочим конденсатором, то его емкость необходимо уменьшить.

Подбирать конденсаторы нужно с рабочим напряжением не меньше 450 В.

Запуск двигателя с пусковым конденсатором осуществляется вручную с помощью кнопки управления,

или схемы с двумя контакторами, один из которых (пусковой) не имеет самоподхвата и удерживается током замкнутого кнопочного контакта или реле времени. Некоторые конденсаторные электродвигатели имеют центробежный контакт, используемый при запуске, размыкающийся при наборе оборотов.

Подключение трёхфазного двигателя в сеть 220 В

Подобным способом с применением конденсатора подключается трёхфазный двигатель по схеме «звезда» или «треугольник».

Расчёт емкости производится исходя из рабочего напряжения и тока,

или паспортной мощности мотора.

По аналогии с однофазным электродвигателем, в случае тяжёлого запуска трёхфазного двигателя, применяется пусковой конденсатор, емкость которого в два-три раза выше номинала рабочего.

Подключая трехфазный электродвигатель в сеть 220 В при помощи пускового конденсатора, нужно помнить, что при такой схеме подключения мотор не будет работать с полной отдачей и не разовьет максимальную мощность.

Для полноценной работы такого двигателя нужны три фазы, получить которые можно проведя сеть 380 В, или использовать сложную электронную схему, рассчитанную под конкретную мощность, генерирующую смещение фаз при помощи мощных силовых полупроводниковых ключей.

Имея много различных конденсаторов, но не находя нужного значения емкости, можно соединять их параллельно или последовательно.

Комбинируя данные способы подключения, можно приблизиться к требуемому номиналу емкости.

Похожие статьи

Как подключить трехфазный счетчик

Счетчик электрический трехфазный

Ремонт коллекторных электродвигателей

Перемотка статора асинхронного электродвигателя

Защита электродвигателя автоматическим выключателем. Практические расчеты

Так как питающие напряжения у различных потребителей могут различаться друг от друга, возникает необходимость переподключения электрооборудования. Сделать подключение асинхронного двигателя на 220 вольт безопасным для дальнейшей работы оборудования достаточно просто, если следовать предложенной инструкции.

На самом деле это не является невыполнимой задачей. Если сказать коротко, то все, что нам нужно, это правильно подключить обмотки. Существует два основных типа асинхронных двигателей: трехфазные с обмоткой звезда – треугольник, и двигатели с пусковой обмоткой (однофазные). Последние используются, например, в стиральных машинах советской конструкции. Их модель — АВЕ-071-4С. Рассмотрим каждый вариант по очереди.

  • Трехфазный
  • Переключение на нужное напряжение
    • Увеличение напряжения
    • Уменьшение напряжения
    • Включение в работу

    Трехфазный

    Асинхронный двигатель переменного тока имеет очень простую конструкцию по сравнению с другими видами электрических машин. Он довольно надежен, чем и объясняется его популярность. К сети переменного напряжения трехфазные модели включаются звездой или треугольником. Такие электродвигатели также различаются значением рабочего напряжения: 220–380 в, 380–660 в, 127–220 в.

    Как правило, такие электродвигатели применяются на производстве, так как трехфазное напряжение чаще всего используется именно там. И в некоторых случаях бывает, что вместо 380 в есть трехфазное 220. Как их включить в сеть, чтобы не спалить обмотки?

    Переключение на нужное напряжение

    Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?

    Увеличение напряжения

    Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.

    Но что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре нужно найти три конца, которые между собой спаяны. Это и есть соединение звездой. Провода нужно рассоединить и подключить треугольником.

    В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы. Теперь важно не перепутать.

    Подключаем так: начало одной катушки соединяем с концом другой, и так далее.

    Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.

    Уменьшение напряжения

    Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо. А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи.

    Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.

    Возьмем скотч, изоленту, еще что-нибудь из того, что есть, и пометим их. Пригодится сейчас, а может быть, и когда-нибудь в будущем.

    Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.

    В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.

    Наши читатели рекомендуют!

    Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

    Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.

    Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.

    Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.

    Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).

    Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.

    Однофазный

    Теперь поговорим еще об одном виде асинхронных электродвигателей. Это однофазные конденсаторные машины переменного тока. У них две обмотки, из которых, после пуска, работает только одна из них. Такие двигатели имеют свои особенности. Рассмотрим их на примере модели АВЕ-071-4С.

    По-другому они еще называются асинхронными двигателями с расщепленной фазой. У них на статоре намотана еще одна, вспомогательная обмотка, смещенная относительно основной. Пуск производится при помощи фазосдвигающего конденсатора.

    Схема однофазного асинхронного двигателя

    Из схемы видно, что электрические машины АВЕ отличаются от своих трехфазных собратьев, а также от коллекторных однофазных агрегатов.

    Всегда внимательно читайте, что написано на бирке! То, что выведено три провода, абсолютно не значит, что это для подключения на 380 в. Просто спалите хорошую вещь!

    Включение в работу

    Первое, что нужно сделать, это определить, где середина катушек, то есть, место соединения. Если наш асинхронный аппарат в хорошем состоянии, то это сделать будет проще – по цвету проводов. Можно посмотреть на рисунок:

    Если все так выведено, то проблем не будет. Но чаще всего приходится иметь дело с агрегатами, снятыми со стиральной машины неизвестно когда, и неизвестно кем. Здесь, конечно, будет сложнее.

    Стоит попробовать вызвонить концы при помощи омметра. Максимальное сопротивление – это две катушки, соединенные последовательно. Помечаем их. Дальше, смотрим на значения, которые показывает прибор. Пусковая катушка имеет сопротивление больше, чем рабочая.

    Теперь берем конденсатор. Вообще, на разных электрических машинах они разные, но для АВЕ это 6 мкФ, 400 вольт.

    Если точно такого нет, можно взять с близкими параметрами, но с напряжением, не ниже 350 В!

    Давайте обратим внимание: кнопка на рисунке служит для пуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Другими словами, должно быть два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. Иначе спалите аппарат.

    Если нужен реверс, то он делается по такой схеме:

    Если все сделано правильно, тогда будет работать. Правда, есть одна загвоздка. В борно могут быть выведены не все концы. Тогда с реверсом будут сложности. Разве что разбирать и выводить их наружу самостоятельно.

    Вот некоторые моменты, как подсоединять асинхронные электрические машины к сети 220 вольт. Схемы несложные, и при некоторых усилиях вполне возможно все это сделать собственными руками.

    Внимание, только СЕГОДНЯ!

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

    подключение однофазного двигателя

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Электродвигатель 4 провода как подключить

В прошлой статье Я рассказывал как подключить и запустить двигатель на Вольт в однофазной электросети В. Его можно успешно использовать в других целях в домашнем хозяйстве, например для привода точила, полировального станка, газонокосилки и т. В электрических дрелях, перфораторах, болгарках и некоторых моделях стиральных машин автоматов используется синхронный коллекторный двигатель. А оставшиеся 2 конца присоединить к электропитанию Вольт. Помните, что при подключении коллекторного электрического двигателя без блока электроники, он будет работать только на максимальных оборотах, а при запуске будет сильный рывок, большой пусковой ток, искрение на коллекторе. Может быть мотор и 2 скоростным , тогда со статора будет выходить 3 конец с половины его обмотки.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Как подключить однофазный электродвигатель на 220 вольт
  • Схемы подключения электродвигателя к электропитанию
  • Как подключить эл двигатель с 4 проводами?
  • Помогите подключить мотор от советской стиралки. 4 провода.
  • Двигатель на 660 в как подключить
  • Двигатель тип ад 180-4 71с1ухл4 как подключить
  • Как подключить однофазный двигатель

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Подключение однофазного двигателя// как определить рабочую и пусковую обмотки

Как подключить однофазный электродвигатель на 220 вольт


By Raiter , December 16, in Начинающим. Вот такой примитивный вопросик назрел. Есть мотор от старой стиральной машины. Из него выходят 4 провода. Как я понял там 2 обмотки — основная и пусковая. Попробовал определить пары проводов они все одного цвета. Одна пара дала сопротивление в 15 Ом, а 2 других впровода вообще не прозваниваются ни в паре ни по отдельности с другими проводами.

При подключении проводов, которые прозваниваются к В, мотор начинает гудеть и пытается крутить. Есть его вручную розогнать, то работает в обе стороны. Вместе с тем греется — не удалось определить во время роботы, или только пока не раскручен. При подключении в сеть другой пары проводов — никакого эфекта. Пробовал по размному подключать — работает только в 1 случае.

Но понимаю, что это не правильно и нужно как-то подключить правильно скорее всего через пусковое Подскажите, не хочется спалить мотор И сразу второй вопрос. Купил по случаю старый советский точильный станок. С ним таже история. При включении крутится очень медленно, нужно раскручивать рукой. Посмотрел — с мотора выходит 3 провода, но 2 из них между собой соеденены и в сеть идут 2 провода.

На моторе никаких обозначений. Можно ли так работать с этим мотором? Не сгорит ли он? Или нужно по другому подключать?

Мы принимаем формат Sprint-Layout 6! Экспорт в Gerber из Sprint-Layout 6. Ну по первому случаю понятно,сгорела обрыв и т. По второму разъедени провода и прозвони,тогда будет ясно. Так а что тогда делать с первым? Можно его так использовать без пусковой обмотки — розгонять рукой?

Конденсаторы Panasonic. Часть 4. Полимеры — номенклатура. Главной конструктивной особенностью таких конденсаторов является полимерный материал, используемый в качестве проводящего слоя. Полимер обеспечивает конденсаторам высокую электрическую проводимость и пониженное эквивалентное сопротивление ESR.

Номинальная емкость и ESR отличается в данном случае высокой стабильностью во всем рабочем диапазоне температур. А повышенная емкость при низком ESR идеальна для решения задач шумоподавления и ограничения токовых паразитных импульсов в широком частотном диапазоне. Читать статью. STM32G0 — средства противодействия угрозам безопасности. Результатом выполнения требований безопасности всегда является усложнение разрабатываемой системы.

Особенно чувствительными эти расходы стали теперь, в процессе массового внедрения IoT. Обладая мощным набором инструментов информационной безопасности, микроконтроллеры STM32G0 производства STMicroelectronics, объединив в себе невысокую цену, энергоэффективность и расширенный арсенал встроенных аппаратных инструментов, способны обеспечить полную безопасность разрабатываемого устройства. Мало о чем мне говорит.

Тоесть как бы и понял, что нужно через конденсатор запитать, но как конкретно это сделать и как определить кол-во киловатт — не знаю. Не зря же в разделе «Для новичков». Я просто на на него патрон от дрели повесил. Что бы можно было использовать как «настольнюу дрель» А как быстро он сгорит при таком запуске?

До 48 слоев. Быстрое прототипирование плат. Монтаж плат под ключ. А как быстро он сгорит при таком запуске? Ну Вы даете, на стиралках, конденсаторные двигатели ставились, у них обе обмотки рабочие. Точило, скорее всего, трехфазное. Про точило. Если 3 фазы, то использовать так как сейчас подключено можно? Не сгорит? Ато жалко будет. Это не правда. Ставились и с пусковой обмоткой. Был хитрый автомат.

При нажатии включались обе обмотки,при отпускании кнопки пусковая обмотка отключалась. В первом случае нужно разобрать двигатель и найти обрыв. А если обиотка сгоревшая,перемотать. Во втором случае скорее всего одним проводом сделан вывод двух обмоток.

Он идет в сеть. Третий через емкость ко второму. Круглые такие, типа «Волна» Тогда, и движек сфотографировать Вот и я в этом уверен,поэтому и просил Raiter померить что там по сопротивлению-так сказать для полной ясности.

Да не мотор круглый,он то понятно, а сама машинка Ну да. Машина была железной с ручным отжимом при помощи двух валиков Она отправилась на металолом, а двиг решил использовать Такая машинка была обнаружена у бабушки, когда помогали переезжать.

На старых круглых почти все с пусковой обмоткой. У рабочей сопротивление меньше чем у пусковой. У Вас сгорела или рабочая или пусковая. Если пусковая то 2 варианта. А какую емкость нужно? И в каком виде? Просто конденсатор или как на другого вида моторах стиралок, где «черная коробочка»? Таксь с мотором от стиралки розобрался прочитал. Только проблема в том, что пусковая скорее всего обмотка дохлая. Просто конденсатор. В приделах 10 мкф. Коробочка это пускозащмтное реле.

Оно ставится на двигатели с отдельной пусковой обмоткой. Да там нет нечего сложного. Разбери двигатель и найди обрыв. А если сгоревшая переиотай. Зарисуй как уложены обмотки,пересчитай витки,как расключены обмотки,померяй диаметр,выстрогай из дерева оправку. Если я не ошибаюсь когда то мотал такой. Виесто оправки использовал бутылки от шампанского и простые 0.

И вперед,не боясь. Все так когда то начинали. И что двигатель сам будет раскручиваться? Конечно сам. Дерзай не бойся. Только запускать его нужно будет так. Обмотка рабочая включается в сеть а пусковая через кнопку в сеть.

Призапуске нажал кнопку,двигатель запустился,кнопку отпустил. Если нужно крутить в другую сторону,меняешь местами концы любой из обмоток.


Схемы подключения электродвигателя к электропитанию

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя. Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали.

Как подключить асинхронный двигатель на В к трём фазам и к Питающие провода подключаются к клеммной колодке, которая . в которой есть пары дополнительных контактов как раз для этих целей.

Как подключить эл двигатель с 4 проводами?

Насосы и промышленное оборудование. Тут ещё есть шанс не спалить двигатель. Например: — зачем шесть контактов в двигателе? Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию. Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока: 1. Однофазная сеть В, 2. Трехфазная сеть В обычно используется на кораблях , 3. Есть ещё на напряжение В и некоторые другие редкие, но их рассматривать не будем.

Помогите подключить мотор от советской стиралки. 4 провода.

Нередки случаи, когда необходимо подключить электродвигатель к сети вольт — это происходит при попытках приобщить оборудование к своим нуждам, но схема не отвечает техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на вольт. Почему так происходит? Например, в гараже необходимо подключение асинхронного электродвигателя на вольт, который рассчитан на три фазы.

Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания.

Двигатель на 660 в как подключить

By Raiter , December 16, in Начинающим. Вот такой примитивный вопросик назрел. Есть мотор от старой стиральной машины. Из него выходят 4 провода. Как я понял там 2 обмотки — основная и пусковая. Попробовал определить пары проводов они все одного цвета.

Двигатель тип ад 180-4 71с1ухл4 как подключить

Из всех видов электропривода наибольшее распространение получили асинхронные двигатели. Они неприхотливы в обслуживании, нет щеточно-коллекторного узла. Если их не перегружать, не мочить и периодически обслуживать или менять подшипники, то он прослужит почти вечность. Но есть одна проблема — большинство асинхронных двигателей, которые вы можете купить на ближайшей барахолке, трёхфазные, так как предназначены для использования на производстве. Несмотря на тенденцию к переходу на трёхфазное электроснабжение в нашей стране, подавляющее большинство домов до сих пор с однофазным вводом.

Но перед началом эксплуатации самодельной техники нужно разобраться, как подключить электродвигатель от стиральной машины на 4 провода.

Как подключить однофазный двигатель

Стиральная машина-автомат, как и любая другая техника, рано или поздно выходит из строя. Бывает, что ремонт не оправдывает себя, и тогда проще купить новый агрегат. Что же делать со старой домашней помощницей?

Стиральная машина является важным атрибутом любого хозяйства. Однако может произойти поломка, не поддающаяся ремонту. Возможно, в хозяйстве имеется старая стиральная машина-автомат. Многие знают, что ее двигатель можно применить в повседневной жизни, но далеко не каждый может подключить электродвигатель от стиральной машины-автомат.

В прошлой статье Я рассказывал как подключить и запустить двигатель на Вольт в однофазной электросети В. Его можно успешно использовать в других целях в домашнем хозяйстве, например для привода точила, полировального станка, газонокосилки и т.

Как подключить шаговый двигатель с 4, 5, 6 и 8 выводами к драйверу. Станки и мехатроника. Станки с ЧПУ. Фрезерные станки с ЧПУ 6. Колонные бесконсольные станки с ЧПУ 1.

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие.


Подключение однофазного двигателя АИРЕ 80С2

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД — конденсаторный двигатель
  • 25 — мощность 25 (Вт)
  • У4 — климатическое исполнение

Вот его внешний вид.

Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) — провода красного цвета
  • пусковая (В1-В2) — провода синего цвета

В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: .

Итак, приступим.

1. Сечение проводов

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.

Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.

Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).

Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).

Делаем вывод:

первая обмотка — пусковая, вторая — рабочая.

Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).

По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

  • (U1-U2) — рабочая
  • (Z1-Z2) — пусковая

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

  • (С1-С2) — рабочая
  • (В1-В2) — пусковая

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.

Одеваю бирки на провода. Вот что получилось.

Для справки:

Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно!!! Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так!!!

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.

В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Как быть в таком случае?

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.

Вот, что у меня получилось:

  • (1-2) — 301 (Ом)
  • (1-3) — 431 (Ом)
  • (2-3) — 129 (Ом)

Отсюда делаем следующий вывод:

  • (1-2) — пусковая обмотка
  • (2-3) — рабочая обмотка
  • (1-3) — пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки:

при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его .

P.S. На этом все. Если есть вопросы по материалу статьи, то задавайте их в комментариях. Спасибо за внимание.

Иногда встает вопрос о том, как осуществляется подключение однофазного двигателя к питающим устройствам и сетям. Однофазные асинхронные электродвигатели являются самым распространенными, поскольку их устанавливают на подавляющем большинстве различных бытовых приборов и техники (компьютерной и т.д.). Иногда такие двигатели приобретаются и устанавливаются в мастерских, гаражах и пр. для обеспечения проведения каких-либо работ (например, подъем груза).

Однофазные асинхронные электродвигатели устанавливают на подавляющем большинстве различных бытовых приборов и техники.

Работы требуют подключения однофазного электродвигателя, а это довольно сложно для человека, который не разбирается в электротехнике и электроприводе. Сложность связана с тем, что двигатель имеет много выводов, и дилетант испытывает трудности вследствие того, что не знает, какой вывод следует подключить к источнику питания. Поэтому данный материал рассматривает вопросы подключения именно для среднестатистического гражданина, который не имеет никакого представления об электроприводе и не разбирается в электротехнике.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Как использовать частотно-регулируемый привод для однофазного двигателя?

Использование частотно-регулируемого привода для регулирования скорости двигателя имеет много преимуществ. Многие двигатели малой мощности используют однофазное питание. Как использовать частотно-регулируемый привод для управления скоростью однофазных двигателей? ATO предоставит следующие методы.

I. Текущее состояние однофазного двигателя
Механическое оборудование с однофазным питанием обычно использует двигатель переменного тока мощностью менее 1,5 кВт. Кроме того, в большинстве из них используется однофазный пусковой емкостной двигатель, в то время как в другом небольшом количестве оборудования используется однофазный пусковой емкостной двигатель. Когда используется однофазный пусковой емкостной двигатель, при пуске центробежный переключатель замыкается, а затем подключается пусковая емкость. Когда скорость двигателя достигает примерно 75% от номинальной скорости, центробежный переключатель отключается. Пусковой крутящий момент примерно в 2,4 раза превышает номинальный крутящий момент. Импульсный ток примерно в 7 раз превышает номинальный ток. При таком методе импульсный ток большой, механический удар большой, пусковой момент большой и скорость не регулируется. При использовании однофазного емкостного двигателя центробежный переключатель отсутствует. Рабочая емкость подключена на длительный период. Этот двигатель имеет небольшой пусковой момент, который обычно составляет 3/5 от номинального момента. Поэтому он подходит только для нагрузок с мягкими характеристиками, таких как воздуходувка, водяной насос и т.д. Существуют также некоторые другие однофазные емкостные двигатели, для которых увеличение рабочей емкости может увеличить пусковой момент. Однако пусковой ток примерно в 6 раз превышает номинальный ток, и он имеет механический удар. В однофазном емкостном двигателе используется метод регулирования напряжения для изменения коэффициента скольжения двигателя. Он также может осуществлять бесступенчатое регулирование скорости. Однако такой метод имеет плохой эффект. Скорость не может быть стабилизирована. Его характеристика крутящего момента также плоха. Использование частотно-регулируемого привода может обеспечить хорошую производительность однофазного оборудования при бесступенчатом регулировании скорости.

II. Методы с использованием частотно-регулируемого привода для однофазного двигателя

  1. Пусть однофазный двигатель работает как двухфазный двигатель
    Устраните пусковую емкость или рабочую емкость однофазного двигателя и устраните центробежный переключатель, чтобы однофазный двигатель работал как двухфазный двигатель. Основная и вторичная обмотки двигателя управляются регулированием скорости через частотно-регулируемый привод. В однофазном двигателе фаза вторичной обмотки опережает 90°, чем основная обмотка, благодаря чему двигатель образует круглую вращающуюся петлю и имеет отличные характеристики двигателя. ЧРП инвертирует высокое напряжение постоянного тока через восемь силовых устройств. Четыре силовых устройства инвертированы в переменный ток переменной частоты для питания основной обмотки. Остальные четыре силовых устройства инвертированы в фазовый сдвиг на 90° переменного тока для управления вторичной обмоткой. Общая частота управляется схемой предусилителя синхронно (как показано ниже). Такой ЧРП имеет хорошие характеристики. Это может заставить двухфазный двигатель точно вращаться под круглым полем. Пусковой и рабочий крутящий момент двигателя определяются постоянным напряжением основной и вторичной обмотки, и ЧРП может устанавливать эти напряжения. ЧРП позволяет двухфазному двигателю работать в режиме плавного пуска или плавного отключения без удара, что обеспечивает хорошие характеристики пускового момента. Недостатком является то, что стоимость частотно-регулируемого привода высока для принятия восьми силовых устройств.
  2. Использование однофазного частотно-регулируемого привода
    Однофазный двигатель нельзя просто подключить к частотно-регулируемому приводу. Поскольку центробежный переключатель не может осуществлять бесступенчатое регулирование скорости, его необходимо исключить. Пусковая и рабочая емкости не могут поддерживать высокочастотную несущую частотно-регулируемого привода. При высокой частоте емкость легко нагревается или ломается. Рабочая емкость однофазного двигателя рассчитана на то, чтобы вторичная обмотка была смещена на 90° относительно основной обмотки. Такая конфигурация проводится при частоте сети 50 Гц. Емкость емкости связана с частотой сети. Следовательно, рабочая емкость не может обеспечить требование исходного фазового сдвига 90° из-за изменения частоты сети. Мы должны решить вышеуказанные проблемы, чтобы применить однофазный частотно-регулируемый привод в однофазном емкостном двигателе. Применение однофазного частотно-регулируемого привода должно снизить несущую частоту, устранить высокочастотную несущую или гармоническую волну, чтобы уменьшить опасность, вызванную рабочей емкостью. В однофазном емкостном двигателе рабочая емкость не должна использовать электролитический конденсатор. Вместо этого следует использовать высококачественную фиксированную мощность с высокой износостойкостью. Таким образом, можно применить однофазный частотно-регулируемый привод (как показано ниже). Применение однофазного частотно-регулируемого привода имеет низкую стоимость. Однако из-за наличия емкости он принципиально не может достичь глубоких характеристик двухфазного двигателя. Тем не менее, он экономичен и практичен, сочетая в себе его хорошее применение при нормальной легкой нагрузке, он имеет практическую ценность.

В гражданских случаях необходимо использовать однофазное питание. После использования частотно-регулируемого привода двигатель может реализовать бесступенчатую регулировку скорости для повышения производительности. Это не только полезно для качества работы, но и для энергосбережения. Различные ЧРП с однофазным питанием 220 В имеют меньшую стоимость, чем ЧРП с трехфазным питанием 380 В, поэтому они относительно экономичны.
Покупка частотно-регулируемого привода ATO для вашего однофазного двигателя сейчас, однофазный частотно-регулируемый привод мощностью 1 л. с., однофазный частотно-регулируемый привод мощностью 2 л.с., однофазный частотно-регулируемый привод мощностью 5 л.с….

Подключение однофазного двигателя к контактору

» Каталог домашней электропроводки
» Электропроводка в жилых домах: Руководство по электропроводке дома
» Нужна помощь по электрике? Получите быстрый ответ! Спросите электрика

Как подключить однофазный контактор для питания электродвигателя?

Видео по электромонтажу

Как подключить розетку GFCI без заземляющего провода

ПРИМЕЧАНИЕ. Список всех моих полезных видео

Будет отображаться в конце этого видео

Так что продолжайте смотреть, а я помогу вам подключить правильно! Загляните на мой канал на YouTube и подпишитесь!

Как подключить контакторы для управления однофазными двигателями
[ad#block] Вопрос: Как подключить однофазный контактор для питания электродвигателя?

Этот вопрос по электричеству поступил от: Тоби, домовладельца из Варри, штат Айдахо.
Подробнее о Домашняя проводка для Айдахо

Ответ Дэйва:
Спасибо за вопрос по электрике, Тоби.
Электропроводка для управления однофазным двигателем
Tobi, устройство управления двигателем представляет собой просто релейный контактор, который действует как переключатель, который активируется другим источником питания или цепью управления. Цепь управления может управляться вручную или автоматически, когда цепь управления подключена через датчики или другие устройства управления. Однофазный контактор рассчитан в соответствии с напряжением и силой тока электродвигателя, а схема управления разработана для определенного типа устройств, которые будут использоваться для управления однофазным двигателем. Цепь управления обычно имеет более низкое напряжение, чем напряжение двигателя.

Следующие ссылки помогут вам с вашим вопросом по электрике:

Все об электрических реле управления двигателями

Общие сведения об электрических реле

как кондиционеры и другое оборудование с высоким спросом от запуска в то же время.

Вы определили, что ваш проект посвящен электропроводке, поэтому эта информация может оказаться полезной:

Электропроводка

Электропроводка

Проекты электропроводки дома с картинками и схемами.



Вам также может быть полезно:

Видео по электромонтажу #2



Домашняя электропроводка Видео по этой теме и не только

Загляните на мой канал на YouTube и подпишитесь!


Узнайте больше из моего видеокурса по домашней электротехнике:

Базовая электрическая проводка дома на примере

Руководство Дэйва по домашней электропроводке:

» Вы можете избежать дорогостоящих ошибок! «

Вот как это сделать:
Правильно подключите с помощью моей иллюстрированной книги по электромонтажу

Отлично подходит для любого проекта домашней электропроводки.

   

Идеально подходит для домовладельцев, студентов,
Candyman, Handy Women и электрики
Включает в себя:
Проводные выходы GFCI
Домашние электрические цирки
120 Volt и 240 Volt Outlet. — Проводная и 4-проводная электрическая плита
Электропроводка 3-проводной и 4-проводной шнур и розетка сушилки
Поиск и устранение неисправностей и ремонт электропроводки
Способы модернизации электропроводки
Коды NEC для домашней электропроводки
. …и многое другое.


Будьте осторожны и соблюдайте меры безопасности — никогда не работайте с цепями под напряжением!
Проконсультируйтесь с местным строительным отделом о разрешениях и проверках для всех проектов электропроводки.


Однофазные двигатели

Однофазные двигатели

Однофазные электродвигатели вносят основной вклад в обеспечение нашего комфорта и удобства на рынке розничной торговли и в наших домах. Хотя они не так активно используются на промышленных и коммерческих рынках, это не значит, что они вообще не используются… просто не так часто, как в розничной торговле и на жилых рынках. И это в первую очередь связано с тем, что «однофазная мощность» является единственной электрической системой. доступна для 99% жилого рынка, в то время как «Трехфазная мощность» — это система, доступная для большинства коммерческих/промышленных рынков. Таким образом, использование однофазных двигателей требует большего внимания. с доступными источниками питания, чем что-либо еще.

В общем и целом, выбор доступных однофазных двигателей, из которых мы можем сделать выбор, определенно ограничен по сравнению с тем, что доступно на рынке трехфазных двигателей. И это связано с рынок, который необходимо обслуживать, и эффективность трехфазного питания по сравнению с однофазным питанием. В приведенной ниже таблице вы можете сравнить различные типы однофазных двигателей с точки зрения мощности, пусковой момент, пусковой ток, КПД и применение. Это, безусловно, должно дать вам представление о том, почему вы должны использовать определенный тип и какую пользу он вам принесет, когда вы это сделаете.

от
Рабочие характеристики однофазного двигателя
Тип Размер — HP Момент запуска Пусковой ток Приложения Эффективность
Двухфазный 1/20 — 1/2 л. с. Низкий Высокий вентиляторы, воздуходувки, центробежные насосы, стиральные машины, шлифовальные машины, токарные станки, кондиционеры и вентиляторы печей Низкий
Конденсатор Пуск-индукционный запуск от 1/3 до 10 л.с. Высокий Высокий конвейеры, измельчитель, кондиционеры, компрессор Умеренный
Конденсатор Пуск-Конденсатор Работа от 1/3 до 10 л.с. Высокий Высокий конвейеры, кондиционеры, компрессоры, разгрузчики силосов для сельскохозяйственной промышленности Высокий
Постоянный разделительный конденсатор от 1/20 до 3/4 л. с. Низкий Умеренный вентиляторы и воздуходувки в обогревателях и кондиционерах вентиляторы конденсатора Высокий
Затененный столб 1/300 — 1/20 л.с. Очень низкий Низкий небольшие инструменты, фены, игрушки, проигрыватели, маленькие вентиляторы, электрические часы Низкий
Универсальный до 2500 Вт Низкий Умеренный Бытовая техника и электроинструменты. Низкий
Старт отталкивания-Индукционный прогон от 1/2 до 40 л.с. Очень высокий Умеренный Строгальные станки, деревообрабатывающие станки, разгрузчики силосов, холодильные компрессоры Умеренный

Для этих однофазных двигателей доступен ряд опций, которые зависят от фактических потребностей применения. Большинство двигателей доступны в различных типы крепления, варианты корпуса и расположение валов.

Например, варианты корпусов могут включать: ODP (открытая защита от капель), TEAO (полностью закрытый воздуховод), TENV (полностью закрытый, невентилируемый) и TEFC (полностью закрытый вентилятор). Охлажденный). Для типов крепления список включает: крепление на жестком основании, крепление на упругом основании, крепление на упругом кольце (только), крепление на сквозных болтах, крепление на поясе, крепление на пьедестале, и, вероятно, некоторые дополнительные опции, которые не так уж распространены. И вот еще один момент, о котором следует помнить при выборе одного из конкретных типов корпусов; т. е. TEAO (полностью закрытый Воздух закончился). Этот двигатель ПРЕДНАЗНАЧЕН для того, чтобы технологический воздух (воздух, который перемещается) проходил над двигателем и действовал как «охлаждающий» воздух. Если вы поместите этот тип двигателя в применение, когда двигатель находится «вне» воздушного потока, двигатель сгорит, так как ему не хватает охлаждающего воздуха.

Варианты вала также различаются в зависимости от области применения и размера рамы. Например, некоторые двигатели могут иметь основание с пробитыми монтажными отверстиями для рамы 48 и 56. монтаж, но вал двигателя будет 1/2 дюйма с «плоской поверхностью». Также есть двигатели с «двусторонним валом» для установки 2 вентиляторов с короткозамкнутым ротором. В то время как нормальная длина вала составляет двигатель может иметь длину 2-1/2 дюйма или 3 дюйма, некоторые двигатели PSC или другие двигатели могут иметь вал длиной 8 дюймов или более, чтобы соответствовать длине, необходимой для установки вентилятора конденсатора при использовании в уличный тепловой насос. Поэтому убедитесь, что вы ЗНАЕТЕ, какой диаметр вала вам нужен и какой длины он должен быть для вашего применения.

И последнее замечание, направление вращения… Вы должны сделать это правильно! Некоторые конструкции двигателей, в частности PSC, обычно имеют простую сборку типа «вилка и домкрат». которую вы отключаете, поверните ее на 180° и снова вставьте вилку, чтобы изменить направление вращения. Другие имеют дополнительные электрические соединительные контакты на клеммной колодке. подключить входящее питание. В этом типе вам нужно переместить определенный провод из исходного положения на этот другой контакт, чтобы изменить направление. И тогда НАСТОЯЩАЯ проблема…! Моторы которые просто НЕОБРАТИМО. С этими двигателями вы ДОЛЖНЫ знать, в каком направлении вам нужно вращать двигатель при его покупке. Трудно понять направление вращение? Вот определение «ротации», взятое с веб-сайта поддержки продукции Siemens:

В соответствии с DIN EN 60034-8 направление вращения двигателя определяется следующим образом:
  • Направление вращения это направление, если смотреть со стороны привода.
    • Это означает, что нужно смотреть на «приводной» конец вала.

  • Приводной конец — это сторона с продолжением вала.
    • Для машин с двумя концами вала приводной конец:
      • а) конец с большим диаметром вала
        б) конец на противоположной стороне от вентилятора,
          7 7 , если оба конца вала имеют одинаковый диаметр.

  • Вращение по часовой стрелке
    • Поверните вал по часовой стрелке, если смотреть со стороны привода.
    • Направление взгляда от приводного конца к неприводному концу.

  • Вращение против часовой стрелки
    • Поверните вал против часовой стрелки, если смотреть со стороны привода.
    • Направление взгляда от приводного конца к неприводному концу.

Типы однофазных двигателей

Двухфазные

Двигатели с расщепленной фазой имеют пусковой выключатель, но не имеют конденсатора или дополнительного пускового механизма. Их пусковая обмотка просто электрически смещена от рабочей обмотки на количество, достаточное для начала вращения элемента в определенном направлении. Поскольку нет «дополнительной» помощи при пуске, этот двигатель имеет средний или низкий пуск. крутящий момент…. в диапазоне от 100% до 125% крутящего момента при полной нагрузке. Кроме того, пусковой ток будет довольно высоким. Двигатели этого типа используются в приложениях, которые относительно легко запускается, но может увеличивать требования к мощности по мере увеличения скорости вращения.

Типичные области применения: вентиляторы с ременным приводом и некоторые насосы.

Конденсатор Пуск-Индукция Работа

Это настоящая «рабочая лошадка» линейки однофазных двигателей. Эти двигатели включают пусковую обмотку, пусковой переключатель и электролитический конденсатор. Когда двигатель При запросе на запуск конденсатор разряжается в пусковую обмотку, давая ей «выстрел в руку», чтобы она заработала. Тогда, как и в других однофазных двигателях с пусковыми выключателями, при ротор достигает приблизительно от 75% до 80% полной скорости, пусковой переключатель ОТКЛЮЧАЕТСЯ, удаляя конденсатор и пусковую обмотку из цепи и разрешая ГЛАВНУЮ или работающую обмотки для завершения набора скорости до полных рабочих оборотов.

Эти двигатели могут изготавливаться с пусковым моментом от среднего до высокого, в зависимости от номинала конденсатора и конструкции пусковой обмотки. Мотор также будет иметь высокую опрокидывающий момент, который удерживает двигатель «запертым» на рабочей скорости даже при высоких перегрузках. Эти двигатели с УМЕРЕННЫМ пусковым моментом 175% или меньше обычно используются на вентиляторы, воздуходувки и насосы. Двигатели с высоким пусковым моментом…. используемые при нагрузках, требующих крутящего момента полной нагрузки до 300 % и выше для пуска, могут использоваться на компрессорах и промышленное, торговое и сельскохозяйственное оборудование. На сельскохозяйственном рынке такие приложения, как разгрузчики силосов и другие нагрузки, которые трудно запустить, являются естественными для этих устройств.

Конденсаторный пуск-Конденсаторный режим

 

Эти двигатели аналогичны конструкции и применению двигателя с конденсаторным пуском, указанным выше, за исключением того, что они заполнены маслом. РАБОЧИЙ конденсатор в цепи с ОСНОВНОЙ или рабочей обмоткой. Этот конденсатор остается в цепи ВСЕ ВРЕМЯ и помогает улучшить эффективность работы и снизить полное рабочий ток нагрузки. Эти двигатели обычно имеют более высокие однофазные номинальные мощности … выше 2 л.с., при этом сельскохозяйственная промышленность является основным потребителем этих двигателей.

Постоянный разделительный конденсатор

Двигатели этого типа используются во многих случаях, как и двигатели с расщепленными полюсами. Основные отличия заключаются в том, что двигатель PSC имеет гораздо более высокий КПД, ток (на 50% — 60% меньше) и более высокая выходная мощность. Двигатель PSC получил свое название из-за того, что в цепи двигателя вообще есть конденсатор «RUN». раз. Это устройство помогает поддерживать высокий КПД и коэффициент мощности, а также снижает количество потребляемой мощности при той же выходной мощности. Эти двигатели можно использовать для замените ЛЮБОЙ двигатель с экранированными полюсами, за исключением тех, где физический размер PSC не подходит …. например, двигатель часов или небольшой вентилятор охлаждения испарителя. Выходная мощность PSC двигатель будет находиться в диапазоне «долей л.с.», то есть от 1/20 л.с. до максимум 3/4 л.с. Односкоростные или многоскоростные двигатели могут быть спроектированы с максимальной скоростью 1625 об/мин и 1075 об / мин — самая популярная скорость. Несколько скоростей в одном двигателе достигаются либо «отводом» обмотки, либо «дроссельной» катушкой. Пусковой момент на этом двигателе тип также считается НИЗКИМ.

Затененный столб

Эти двигатели имеют низкий пусковой момент, низкий КПД, средневысокий рабочий ток, низкую мощность, отсутствие конденсаторов, пускового выключателя и низкую стоимость. Двигатели этот тип используется в небольших воздуходувках печей с прямым приводом, оконных вентиляторах и других вентиляторах, используемых в жилых районах. Двигатели с экранированными полюсами НЕ ДОЛЖНЫ использоваться для заменяют ДРУГИЕ ТИПЫ однофазных двигателей, в основном из-за низкого крутящего момента и КПД. Двигатели этого типа также используются в небольших бытовых приборах и таких предметах, как вытяжка для ванной комнаты. вентиляторы, двигатели часов и вентиляторы испарителя в холодильниках и морозильных камерах.

Несмотря на низкий КПД и низкий пусковой крутящий момент, из-за присущей им НИЗКОЙ СТОИМОСТИ эти двигатели широко используются в жилых помещениях. Выходная мощность двигатель с экранированными полюсами будет варьироваться от «долей л.с.», т.е. 1/30 л.с., до максимум 1/4 или 1/3 л.с. Скорости обычно бывают 2-полюсными (3000 об/мин), 4-полюсными (1550 об/мин) и 6-полюсными (1050 об/мин). об/мин).

Универсальный двигатель

Универсальный двигатель — это тип электродвигателя, который может работать от сети переменного или постоянного тока и использует электромагнит в качестве статора для создания магнитного поля. это коммутируемый двигатель с последовательным возбуждением, в котором катушки возбуждения статора соединены последовательно с обмотками ротора через коммутатор. Его часто называют серией AC. мотор. Универсальный двигатель очень похож на двигатель постоянного тока по конструкции, но немного изменен, чтобы двигатель мог правильно работать от сети переменного тока. Этот тип электродвигатель может хорошо работать на переменном токе, потому что ток как в катушках возбуждения, так и в якоре (и результирующие магнитные поля) будет чередоваться (обратная полярность) синхронно с подачей. Следовательно, результирующая механическая сила будет возникать в постоянном направлении вращения, независимо от направления приложенного напряжения, но определяется коммутатором и полярностью катушек возбуждения.

Универсальные двигатели имеют высокий пусковой крутящий момент, могут работать на высоких скоростях, легкие и компактные. Они обычно используются в портативных электроинструментах и ​​оборудовании, а также много бытовой техники. Ими также относительно легко управлять, электромеханически с помощью катушек с ответвлениями или электронно. Однако у коммутатора есть щетки, которые изнашиваются, поэтому они гораздо реже используются для оборудования, которое находится в постоянном использовании. Кроме того, отчасти из-за коллектора, универсальные двигатели обычно очень шумные, как акустически и электромагнитно.

Отталкивающий пусковой-индукционный двигатель

Хотя этот двигатель упоминается здесь, мы считаем его скорее «особым» двигателем, и его можно найти более подробно на странице этой темы. Нажмите здесь, чтобы перейти на страницу Special Motor нашего сайта.

Мы надеемся, что вы были немного осведомлены с информацией, предлагаемой для этих типичных однофазных двигателей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *