Как правильно пользоваться мегаомметром: Как пользоваться мегаомметром — назначение и приемы работы с видео прибором

Содержание

Как пользоваться мегаомметром » сайт для электриков

Содержание

Устройство и принцип работы

Вопрос о том, как прозвонить кабель мегаомметром, встает в связи с невозможностью корректно измерять этот показатель посредством обычного мультиметра. Последний не дает возможности оценить наличие повреждений у кабельного изоляционного слоя и нарушений его целостности: даже в случае достаточно большого номинального напряжения ток утечки слишком мал, чтобы измеряться мультиметром.

Мегаомметр дает возможность определять сопротивление изоляционного материала, разделяющего кабельные жилы, обмотки электродвигателя, иные конструкции в электроинструментах.

Важно! Данные приборы выпускаются в разных вариантах исполнения. Чтобы выбрать, какой измеритель приобрести, стоит опираться на особенности их функционирования, а также учитывать сметы и расценки

Электромеханический мегаомметр

Это самая ранняя конфигурация данного прибора. Она включает в себя генератор тока, работающий от вращения ручки, сопротивления, амперметр со шкалой, а также клеммы, к которым при определении нужных параметров подсоединяются проводки: заземление, линия и экран. Аппарат можно описать как обладающий простой конструкцией и не зависящий от внешних источников тока. Есть и ряд минусов: высокая погрешность шкалы, необходимость поддержания неподвижности корпуса прибора для получения максимально точных измерений.

Электронный мегаомметр

В таких приборах испытательное напряжение формирует электросхема, замер реализуется посредством измерителя аналогового типа. Таким образом, можно проверять сопротивление без необходимости крутить ручку. Он также позволяет замерить показатель абсорбции, описывающий содержание влаги в изоляционном материале.

Микропроцессорные мегаомметры

Основными плюсами таких приборов являются компактное исполнение и наличие цифрового табло. Это позволяет совместить разные функции (оценку сопротивления заземления, фазно-нулевой петли и иные) в одном корпусе, что избавляет от необходимости носить с собой много устройств.

Инструкция по эксплуатации

Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к. замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ. Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.

Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми. Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях. При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.

Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.

Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.

Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.

Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой). Итак, порядок действий следующий:

Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты. Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ. Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках

Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи.

Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений

Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы. Производим замер каждой линии между фазой и N, фазой и PE, N и PE. Результаты вносим в протокол измерений. В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.

По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой. Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий. Чтобы вам было более понятна информация, ниже мы предоставили видео, в которых наглядно демонстрируется порядок измерений при работе с определенными моделями приборов.

ИНСТРУКЦИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ ПРИ РАБОТЕ С МЕГОММЕТРОМ.

По многочисленным просьбам наших покупателей мы разработали и публикуем «Инструкцию по технике безопасности при работе с мегомметром.» Мы считаем что такая инструкция, или подобная этой, должна быть на каждом предприятии которые в своей работе используют мегомметр.

1.Общие требования безопасности.

1.1. Все работы, которые производятся с использованием мегомметра на действующих электроустановках, должны выполняться по наряду илираспоряжению, оформленным письменно.1.2 Для проведения работ по измерению сопротивления изоляции мегомметром в действующихэлектроустановках выше 1000 В должны производиться как минимум двумяработниками: один с группой IV, другой с группой III.Измерение сопротивленияизоляции мегомметром в электроустановках до 1000 В и в недействующих электроустановкахразрешается выполнять одному работнику с группой III.

1.3. Проводники, служащие для подключения мегомметра к токоведущим частям должны бытьсертифицированы и иметь соответствующую изоляцию и изолирующие держатели, обеспечивающиебезопасность производства измерений.

1.4.При измерениях сопротивления изоляции мегомметр необходимо устанавливать на твердой изолированной подставке.1.5 Работник, проводящий измерения мегомметром, должен знать инструкцию по техникебезопасности и инструкцию по эксплуатации прибора.

1.6.Запрещается производить измерений мегомметром :1.6.1. если на одной из цепей двухцепных линий напряжением выше 1000 В, если вторая цепь находится под напряжением;

1.6.2. на одноцепной линии, если она идет параллельно с работающей линией напряжением выше 1000 В; 1.6.3. во время грозы или при её приближении.

2.Требования безопасности перед началом работ.

2.1. Отключить подачу напряжения и убедиться вотсутствии напряжения на токоведущих частях, на которых будут проводитьсяизмерения мегомметром. Повесить навыключатели соответствующие таблички

2.2.Если есть необходимость, то снять с токоведущих частей заряд, путем предварительногоих заземления.

2.3.Поключить мегомметр к токоведущим частям с помощью соединительных проводов с изолирующимидержателями. В электроустановках выше 1000 В, кроме того, необходимопользоваться диэлектрическими перчатками или ковриками.

2.4 Перед началом проведения измерений убедиться в отсутствии людей, работающих на тойчасти электроустановки, к которой присоединен мегомметр, а так же запретитьнаходящимся вблизи лицам прикасаться к токоведущим частям, при необходимости,выставить охрану.

3.Требования безопасности во время проведения измерений мегомметром.

3.1.При работе с мегомметром необходимо соблюдать инструкцию по эксплуатации мегомметраи строго следить за последовательностью действий при проведении измерений.

3.2.Запрещается прикасаться к зажимам мегомметра и токоведущим частям, к которым онприсоединен.

3.3. Запрещается использование не сертифицированных проводников и зажимов, используемых припроведении измерений мегомметром

3.4.После проведения измерений мегомметром необходимо снять с токоведущих частейостаточный заряд путем их кратковременного заземления. Работник, производящийзаземление токоведущих частей, должен пользоваться диэлектрическими перчатками,защитными очками и стоять на изолирующем основании.

При вводе кабеля в эксплуатацию, во время и после ремонтных работ, при проблемах с проводкой — во всех этих случаях требуется проверить состояние изоляции кабеля. Обычный мультиметр может только показать наличие проблемы. А конкретный ее масштаб выяснить можно только при помощи специального прибора — мультиметра. Относится этот прибор к разряду профессиональных, но современные устройства могут иметь несколько функций (измерение других параметров электросетей). Так что некоторые владельцы домов, дач, гаражей предпочитают иметь свой. Как проводить измерения, как пользоваться мегаомметром и поговорим дальше.

Как подключить мегаомметр?

Для каждой модели приборов данного назначения определена величина выходного напряжения, поэтому чтобы эффективно испытать изоляцию или измерить ее сопротивление требуется правильно подобрать мегаомметр.

Watch this video on YouTube

Для проверки изоляции кабеля мегаомметром создают так называемый экстремальный случай, при котором на испытуемый участок подают напряжение выше номинального, но в допустимых нормах, прописанных в технической документации.

Например: генератор мегаомметра может выдавать:

  • 100V;
  • 250V;
  • 500V;
  • 700V;
  • 1000V;
  • 2500V.

Соответственно подача напряжения должна быть на порядок большей.

Длительность процесса измерения обычно не превышает 30 секунд или минуты, это необходимо для более точного выявления дефектов, а также исключения их последующего появления при перепадах напряжения в сети.

Основа технологического процесса измерения сопротивления это: подготовка к процессу, его выполнение и финальный этап.  Каждый из них включает определенный перечень манипуляций необходимых для достижения поставленной цели без ущерба для окружающих и в первую очередь для себя.

При подготовке к работе следует организовать свои действия, изучить схему электрической установки, чтобы исключить возможную поломку, а также обеспечить свою безопасность.

Начиная работу, следует прежде проверить прибор на исправность. Для этого выводы соединяют с измерительными проводами. Затем их концы соединяют друг с другом пытаясь закоротить. После подачи напряжения замеряют показания измерений (они должны быть равны нулю). Следующий этап предусматривает повторный замер. В случае отсутствия неисправностей показание должно отличаться от предыдущего.

Затем подсоединяют переносное заземление к контуру земли, проверяют и обеспечивают отсутствие напряжение на участке, устанавливают переносное заземление, собирают схему измерения прибора, снимают переносное напряжение, снимают остаточный заряд, отключают соединительный провод, снимают переносное напряжение.

Финальный этап предусматривает восстановление разобранных цепочек, снятие шунтов и закороток, а также подготовку схемы к рабочему режиму. Документируют полученные результаты измерений сопротивления изоляционного слоя в акте поверки изоляции.

Где используется

Изоляция, подобно любому материалу, со временем и в связи с погодными условиями портится и изнашивается. Чтобы своевременно обнаружить изоляционный дефект, применяется мегаомметр. Он нужен, чтобы измерять изоляционное сопротивление силового кабеля, электроразъема, трансформаторной межобмотки, электромашины. Также он необходим, чтобы измерять поверхностные и объемные диэлектрики. Достоинство прибора в полной автономности, независимости от источников питания и автоматическом вычислении абсорбционного и резисторного процесса.

Применение в условиях промышленности как основная сфера

Сопротивление изоляции: как правильно измерить

Перед измерением сопротивления нужно внимательно изучить схему электроустановки, подготовить средства защиты и сам прибор в исправном состоянии. Проверяемый участок должен быть заранее выведен из работы.

Проверка исправности мегаомметра происходит следующим образом. Выводы измерительных проводов закорачиваются между собой. После этого к ним от генератора подается напряжение. В случае исправности прибора результаты измерений закороченной цепи равны нулю. Далее концы проводов разъединяются, отводятся в стороны, после чего делается повторный замер. В норме на шкале отображается символ бесконечности, показывающий сопротивление изоляции в воздушном промежутке между измерительными концами.

Непосредственное измерение сопротивления изоляции выполняется в строго определенной последовательности. Прежде всего, переносное заземление нужно подсоединить к контуру. Напряжение на проверяемом участке должно отсутствовать. Далее собирается схема измерения прибора, а переносное заземление снимается.

На схему подается калиброванное напряжение до того момента, пока не выровняется емкостный заряд. Далее фиксируется отсчет, после чего напряжение снимается. Чтобы снять остаточный заряд, накладывается переносное заземление. По окончании замеров соединительный провод отключается от схемы, а заземление снимается.

Для замера сопротивления изоляции мегаомметром используется наибольший предел МΩ. Если данной величины недостаточно, необходимо воспользоваться более точным диапазоном. Все дальнейшие цепочки измерений должны выполняться в такой же последовательности. Некоторые конструкции мегаомметров могут работать в прерывистом режиме. В этом случае на протяжении одной минуты выдается напряжение, после чего в течение двух минут выдерживается пауза.

При наличии в измерительных приборах стрелочного индикатора, для всех замеров используется горизонтальная ориентация корпуса. Нарушение этого требования приводит к дополнительным погрешностям. Современные цифровые мегаомметры могут работать в любом положении.

Измерение сопротивления изоляции мегаомметром

Как пользоваться мультиметром пошаговая инструкция

Как пользоваться вольтметром

Как пользоваться мультиметром

Замер сопротивления изоляции электропроводки

Как пользоваться мегомметром

Устройство и принцип действия

Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т. д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

Примерная схема магаомметра

Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

Измерения мегаомметром

Приступая к проверке изоляции кабеля мегаомметром, нужно определить, к какому типу относится обследуемый провод. Описание последовательности работ для разных типов кабелей имеет схожий вид, но для каждой группы существуют определенные нюансы.

Измерение высоковольтных линий

Сюда относятся провода с напряжением более тысячи вольт. Согласно нормам, изоляция таких изделий должна иметь сопротивление, превышающее 1000 МОм. Прибор, которым производят замеры, должен быть рассчитанным на 2500 В (аналогично и для низковольтных кабелей).

Испытание низковольтных кабелей

Для таких кабелей показатель должен быть не ниже 0,5 МОм. Сначала прибор ставят между жилами фаз, затем – между фазами и нулем, после этого (если у провода пять жил) – между фазами и заземлением, в самом конце – между заземлительной и нулевой жилами (последнюю перед этим надо отсоединить от шины).

Испытание контрольных кабельных систем

Здесь используются приборы на 500-2500 В. Итоговый результат должен быть больше 1 МОм. Вывод прибора ставят на одну жилу, оставшиеся соединяются и помещаются на землю. Второй вывод кладется на какую-либо жилу, не подлежащую измерению в данный момент. Произведя измерения, жилку кладут к другим и начинают тестировать следующую.

Подготовка к работе

Перед тем, как проверить сопротивление любого кабеля, необходимо обязательно убедиться в том, что на нем нет напряжения. Для высоковольтных линий применяется индикатор высокого напряжения, для низковольтных – защитные средства для манипуляций в электрических установках. Также необходимо вывесить предупреждающие плакаты.

Другие позиции

Кроме силовых и контрольных линий мегаомметром можно измерять и другие, работающие от электрического тока. К примеру:

  • Машины постоянного тока, а точнее, их обмотки и бандажи со всеми присоединенными к ним кабелями и проводами. При этом настройка мегомметра производится: при номинале напряжения до 500 В устанавливается предел 500 вольт, при номинале выше 500 на предел 1000 вольт. Сопротивление изолирующего слоя не должно быть ниже 0,5 МОм.
  • Варочные бытовые электрические плиты проверяются испытательным прибором при 1000 вольт. Норма – 1 МОм.
  • Проверка электрооборудования лифтов и различных подъемных кранов также производится мегомметром, который выставляется на 1000 В. 0,5 МОм – это норма сопротивления.

Измерение сопротивления изоляции кабеля мегаомметром

Порядок действий следующий (. КАБЕЛЬ ОБЕСТОЧЕН. ):

  1. Один конец мегаомметра на время проведения испытания подключен к заземлению (это может быть заземленная шина, заземляющий болт или переносное заземление)
  2. Если есть оболочка, экран, броня – их следует также заземлять на время измерения сопротивления изоляции и высоковольтного испытания
  3. На испытуемую жилу кабеля вешаем заземление (этим мы снимаем возможный остаточный заряд на кабеле)
  4. Вешаем на испытуемую жилу второй конец мегаомметра, по которому будет подаваться напряжение 2500В
  5. Снимаем с испытуемой жилы провод заземления
  6. Подаем прибором на испытуемую жилу напряжение 2500В в течение 60 секунд. Записываем значение сопротивления изоляции на 15-ой и 60-ой секундах испытания (в случае электронного прибора с памятью значения можно не записывать)
  7. На испытанную жилу кабеля вешаем заземление, для того, чтобы разрядить кабель. Чем длиннее кабель, тем дольше надо держать провод заземления на жиле.
  8. Снимаем второй конец мегаомметра с испытанной жилы, далее переходим на другую жилу кабеля и идем от пункта 2). Затем аналогично и для третьей жилы. В конце отключаем прибор от электроустановки

Если у нас трехжильных кабель, то мы должны получить значения сопротивлений изоляции фаза-ноль и фаза-фаза. Итого 6 измерений. В реальности делают не три измерения, а одно – объединяют три жилы и подают напряжение от мегаомметра к ним. В случае, если значение сопротивления изоляции удовлетворяет, то всё хорошо. В случае, если Rx неудовлетворительно, то производится измерение каждой жилы по-отдельности.

Фиксируют показания на 15 и 60-ой секундах для определения коэффициента абсорбции (Ka). Этот коэффициент численно равен отношению значений сопротивления R60/R15. Показывает степень увлажненности. Также существует понятие коэффициента поляризации или индекса поляризации (PI) – он равен отношению R600/R60 и характеризует степень старения изоляции. В нормах определены следующие значения:

Предельное значение говорит о том, что кабель непригоден к эксплуатации. Индекс поляризации замеряется на кабелях с бумажной пропитанной изоляцией вместе с Ka. У кабелей с пластмассовой, ПВХ, изоляцией из сшитого полиэтилена индекс поляризации определять нет необходимости.

Сейчас существуют различные цифровые и электронные мегаомметры. В цифровых сразу можно увидеть после измерения значения коэффициента абсорбции, R60, R15, отдельные приборы позволяют измерять и PI. Кроме того у моделей sonel можно нажать кнопку старт, затем другой кнопкой ее зафиксировать и не держать минуту палец на кнопке. Работают приборы от аккумуляторов. Это упрощает жизнь.

В стрелочных приборах в основе источника постоянного напряжения (а испытания мегаомметром – это испытания постоянным напряжением) лежит или генератор, или кнопка (модели ЭСО).

Тут уже придется либо крутить ручку прибора со скоростью 2 об/c, либо искать розетку. А кроме этого еще надо производить отсчет по секундомеру и записывать результаты. Трудности вызывают и шкалы отдельных приборов. Но мегаомметры различных производителей – это тема отдельной большой статьи.

В общем, не забывайте разряжать кабель после испытания, снимая накопившийся заряд заземлением. А уже затем снимайте конец прибора с испытуемой жилы. И чем длиннее кабель, тем больше времени держите заземление.

Замер сопротивления изоляции кабеля

Замер сопротивления изоляции электропроводки происходит около двух точек электрической установки, характеризующей утечку при подаче напряжения в сети. Результат — показатель, выражаемый в мегаомах. Измерение осуществляется при помощи мегаомметра, который исследует утечку тока, возникающую при действии регулярно поступающего напряжения к электрической установке.

Современными мегаомметрами выдаются разные уровни напряжения, чтобы испытать различное оборудование. В итоге, обязательная часть проверки цепи — изучение изоляционного сопротивления.

Принцип измерения показателя

Виды тестеров

При эксплуатации электрических устройств широко используются цифровые мегомметры модели: Ф4101/4102 от 100.0 до 1000.0 В. Наладчики до сих пор работают с марками тестеров М4100/1, 4100/5 и МС-05 м от 100.0 до 2500.0 В. Выбор типоразмера мегомметра базируется по номинальному сопротивлению тестируемого устройства: силовые кабели и трансформаторы, машины и изоляторы. Для определения состояния изоляции в электроустановках до 1000.0 В допускается применять мегомметры от 100.0-1000.0 В, а в установках более 1000.0 В — 1000.0-2500.0 В.

Устройства также классифицируются по генерируемому напряжению и пределам сопротивления в МОм:

  • 500.0 В — 500.0;
  • 1000.0 В — 1000.0;
  • 2500.0 В — 2500.0.

Дополнительная информация. Приборы также разнятся классами точности. У популярной модели М4100 погрешностью не более 1%, а у марки Ф4101 до 2,5%. Выбор приборов тестирования электроустановок выполняют с учетом допустимых эксплуатационных показателей.

Электронный измеритель

Электронный измеритель

Цифровой или электронный тестер — современный вид оборудования, оснащен производительным генератором с полевыми транзисторами. Замеры выполняются путем сопоставления падения напряжения в эталонной цепи с фиксированным сопротивлением. Результаты демонстрируются на панели. Функция сохранения результатов тестирования накапливает данные для последующего анализа. Эта модель отличается от аналоговых приборов компактными размерами и малым весом.
Преимущества цифрового тестера:

  • Высокий уровень точности, позволяет определять сопротивление на больших участках цепи;
  • удобная легко читаемая цифровая панель;
  • технологическая доступность для измерения одним пользователем;
  • прекрасно работает даже в очень загруженном пространстве;
  • удобный и безопасный в использовании.

Недостатки электронного типа мегомметра:

  • Требуется внешний источник энергии;
  • высокие цены на изделия.

Электромеханический измеритель

Электромеханический прибор

Эти модели имеют аналоговый дисплей на передней панели тестера и ручную рукоятку, используемую для вращения и выработки напряжения, которое проходит через электрическую систему.

Преимущества ручного мегомметра:

  1. Остается важным в современном высокотехнологичном мире, оставаясь самым старым методом определения значения сопротивления.
  2. Для работы не требуется внешний источник.
  3. Низкие цены на рынке.

Недостатки ручного мегомметра:

  1. Для работы требуется не менее 2 человек, один для вращения ручки, другой для подключения мегомметра к проверяемой электрической системе.
  2. Низкая точность измерения.
  3. Требует большое свободное место для размещения.
  4. Предоставляет аналоговый результат измерения.
  5. Высокие требования к безопасности при использовании.

Особенности конструкции схемы:

  1. Отклоняющая и управляющая катушка — подключены параллельно генератору, установлены под прямым углом друг к другу и поддерживают полярность таким образом, чтобы создавался крутящий момент в противоположном направлении.
  2. Постоянные магниты, создают магнитное поле для отклонения указателя с помощью магнитного полюса «Север-Юг».
  3. Указатель — один конец, связанный с катушкой, другой отклоняется по шкале от бесконечности до «0».
  4. Масштаб предоставляется в верхней части мегомметра от диапазона «ноль» до «бесконечности» и позволяет пользователю прочитать значение.
  5. Подключение источника постоянного тока (DC) или аккумулятора.
  6. Испытательный режим вырабатывается генератором для мегомметра с ручным управлением. Аккумулятор или электронное зарядное устройство предусмотрено для цифрового мегомметра с той же целью.

Обратите внимание! Сопротивление токовой катушки помогает защитить тестер от любых повреждений при испытании из-за низкого внешнего электросопротивления

 

 

Помогла ли вам статья?

Задать вопрос

Пишите ваши рекомендации и задавайте вопросы в комментариях

Как правильно пользоваться мегаомметром?

04 декабря 2019, 16:17

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний. Купить мегаомметр можно в магазине или на сайтах поставщиков промышленного оборудования, например, на сайте Lizantan. Как пользоваться мегаомметром и о правилах безопасности рассказано в нашей статье.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объектУровень напряжения (В)Минимальное сопротивление изоляции (МОм)
Проверка электропроводки1000,00,5>
Бытовая электроплита1000,01,0>
РУ, Электрические щиты, линии электропередач1000,0-2500,01,0>
Электрооборудование с питанием до 50,0 вольт100,00,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт250,00,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт500,0-1000,00,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В2500,00,5 или более в зависимости от параметров, указанных техническом паспорте

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Подписывайтесь на наш канал Яндекс Дзен

Подписаться

Использование наконечников тестера сопротивления изоляции

Вс, 08 мая, ATO. com

Тестер сопротивления изоляции, также известный как мегомметр или мегомметр. Шкала мегомметра в мегаомах. Меггер состоит из средних и больших интегральных схем. Мегаомметры являются широко используемыми и незаменимыми приборами для электроэнергетики, почты и телекоммуникаций, связи, электромеханического монтажа и обслуживания, а также промышленных предприятий, использующих электроэнергию в качестве промышленной мощности или энергии. Он подходит для измерения сопротивления различных изоляционных материалов и сопротивления изоляции трансформаторов, двигателей, кабелей и электрооборудования.

Сегодня мы познакомимся с использованием наконечников тестера сопротивления изоляции. Мы надеемся, что после прочтения этой статьи у вас появится четкое представление о меггере.

Подготовка перед использованием

  • Перед использованием положение переключателей на панели должно быть следующим:
    Переключатель испытательного напряжения находится в положении «10 В», а переключатель увеличения — в самом нижнем положении. Разрядка — тестовый переключатель находится в положении «разрядка», а выключатель питания — в положении «выключено». Входной выключатель короткого замыкания ставится в положение «короткое замыкание», а ступенчатый переключатель — в положение «0».
  • Проверьте, находятся ли температура и влажность тестовой среды в допустимых пределах. В частности, когда влажность окружающей среды выше 80%, микроток может вызвать большие ошибки при измерении более высокого сопротивления изоляции.
  • Проверьте, соответствует ли напряжение сети переменного тока допуску 220 В ±10 %.
  • Клемма заземления прибора должна быть надлежащим образом заземлена проводом.
  • Подключите прибор к источнику питания, замкните выключатель питания, загорится индикатор и раздастся звуковой сигнал. Если индикатор не горит, немедленно отключите питание и используйте его только после выяснения причины.
  • Включите питание примерно на 30 минут. Установите переключатель полярности на «+». (Для общих испытаний ставится на «+». А на «-» ставится только при проверке микротока отрицательной полярности.) Здесь можно обнаружить, что стрелка индикатора выйдет из «∞» и «0». позиции. В это время вы можете медленно отрегулировать потенциометры «0» и «0», чтобы указатель находился в положениях «∞» и «0», пока больше не перестанет меняться.
  • Переведите переключатель увеличения из положения ×102 в положение «полная шкала». (В это время входной переключатель должен быть повернут в положение разомкнутой цепи.) Затем указатель будет указывать на «полную шкалу» из положения «∞». Если «полная шкала» меньше или превышается, потенциометр «полной шкалы» можно отрегулировать, чтобы сделать его «полной шкалой». Затем поверните переключатель увеличения в положение ×102, чтобы указатель по-прежнему указывал на «∞» и «0». Это повторяется много раз, чтобы отрегулировать чувствительность прибора. При испытании следует часто проверять полную шкалу и «∞», чтобы обеспечить точность измерения прибора.

Использование наконечников

Советы по использованию тестера сопротивления изоляции следующие:

  • Правильно выберите его напряжение и диапазон измерения.
  • При выборе внешнего провода мегомметра следует использовать один медный провод. Прочность изоляции провода должна быть выше 500 В, чтобы не влиять на точность.
  • При измерении сопротивления изоляции электрооборудования сначала должно быть отключено питание оборудования, а измерение должно выполняться при отсутствии электричества. Для более длинных кабельных линий его следует измерять после разрядки.
  • Меггер должен работать с сильным магнитным полем и лежать ровно.
  • Перед измерением мегомметр должен выполнить тест на обрыв цепи и тест на короткое замыкание. Стрелка должна указывать на бесконечность в тесте на разомкнутую цепь, но она может указывать на ноль в тесте на короткое замыкание, указывая на то, что мегомметр находится в нормальном рабочем состоянии перед измерением электрического оборудования.
  • Во время измерения измеряемая электрическая поверхность должна быть очищена во избежание высокого контактного сопротивления и ошибок в результатах измерения.
  • При измерении конденсаторов следует учитывать, что выдерживаемое напряжение конденсатора должно быть больше значения напряжения, выдаваемого мегомметром. После измерения емкости кабель мегомметра необходимо сначала снять, а затем прекратить тряску, чтобы предотвратить повреждение заряженного конденсатора разрядом на мегомметр. Измеряемый конденсатор должен быть разряжен.
  • При измерении мегомметра следует отметить, что клемма L на мегомметре подключена к одному концу токоведущего корпуса электрооборудования, а клемма с маркировкой E заземления должна быть подключена к корпусу или заземляющему проводу оборудования. .
    При измерении сопротивления изоляции кабеля, помимо соединения заземляющего конца мегомметра с заземлением электрооборудования, другой конец присоединяют к линии. Внутренний слой изоляции между жилами кабеля должен быть соединен с защитным кольцом, чтобы исключить поверхностную утечку и избежать ошибок считывания.
  • При влажной погоде следует использовать защитное кольцо для устранения течи на поверхности изолятора, чтобы измеренное сопротивление изоляции было ниже фактического значения.
  • После использования мегомметра один раз разрядите электрооборудование.
  • При использовании мегомметра необходимо поддерживать определенную скорость. Согласно регламенту мегомметра, обычно она составляет около 120 об/мин, а стабильное показание снимается через 1 мин. Не прикасайтесь к измеряемому объекту и клеммам мегомметра руками во время измерения во избежание поражения электрическим током.
  • Встряхните ручку меггера, сначала медленно, а затем быстро. После проскальзывания регулятора скорость должна оставаться стабильной. Если испытуемое устройство имеет электрическое короткое замыкание, когда стрелка колеблется в положение «0», она должна перестать трястись, чтобы предотвратить перегрузку мегомметра по току и перегорание.

Методы измерения сопротивления изоляции.

Руководство для начинающих. Статьи


Мегаомметр 1 кВ, обычно используемый в полевых условиях для проверки электрической изоляции. Фото: Megger

С помощью мегомметра можно выполнить три различных теста. Четкое понимание этих общих методов испытаний является важным инструментом для получения возможности определять состояние и качество электрической изоляции.

Испытания обычно проводятся путем приложения напряжения постоянного тока (постоянного тока) к испытуемому проводнику и измерения тока, протекающего через изоляцию (так называемый «ток утечки») и в нетоконесущие металлические части оборудования.

1.) Кратковременный или точечный тест

Кратковременный или точечный тест используется для электрического оборудования с очень малой емкостью, например, короткого участка проводки дома или электрического щита.

Поскольку крупногабаритное оборудование, как правило, обладает большей емкостью, это испытание следует использовать только в качестве приблизительного ориентира для определения качества изоляции, если не указан исходный уровень. Важно отметить, что на показания влияют температура и влажность, а также состояние изоляции.

В этом методе просто подключите мегомметр к проверяемой изоляции и подайте надлежащее испытательное напряжение на короткий определенный период времени (обычно рекомендуется 60 секунд).

Записывая эти измерения с течением времени, вы получаете более надежную основу для оценки фактического состояния изоляции. Любая устойчивая нисходящая тенденция обычно является справедливым предупреждением о предстоящих проблемах, даже если показания могут быть выше, чем предлагаемые минимальные значения.

Периодические показания ниже рекомендуемых значений могут быть приемлемыми, если они непротиворечивы. Обратитесь к спецификациям эксплуатационных испытаний ANSI/NETA для получения рекомендуемых значений сопротивления изоляции при отсутствии стандартов производителей.

Правило одного мегаома

Как правило, сопротивление изоляции должно составлять приблизительно один МОм на каждые 1000 вольт рабочего напряжения, с минимальным значением один МОм. Это то, что известно как «правило одного мегаома».

Например, двигатель с номинальным напряжением 5000 В должен иметь минимальное сопротивление изоляции 5 МОм. На практике показания в мегаомах должны быть намного выше этого минимального значения, если изоляция новая или находится в хорошем состоянии.


2.) Метод временной стойкости

В отличие от теста точечного считывания, метод временной стойкости практически не зависит от температуры и часто может дать вам окончательную информацию без записей прошлых испытаний.

Этот метод испытаний иногда также называют «испытанием на поглощение», поскольку он основан на поглощающем эффекте хорошей изоляции по сравнению с влажным или загрязненным изоляционным материалом, что дает более четкое представление о качестве изоляции даже при точечном измерении. указывает на приемлемое состояние.

В этом методе подключите мегаомметр так же, как при кратковременном или точечном тесте, при этом последовательно снимайте показания в определенное время и отмечайте различия в показаниях.


Типичные кривые, показывающие эффект диэлектрической абсорбции в тесте на «временную стойкость», выполненном на емкостном оборудовании, таком как большая обмотка двигателя. Кредит Фотографии: Меггер США.

Хорошая изоляция показывает постоянное увеличение сопротивления в течение определенного периода времени (приблизительно от 5 до 10 минут) — это вызвано зарядами, которые образуются на пластинах конденсатора, которые притягивают заряды противоположной полярности в изоляцию, заставляя эти заряды двигаться и, таким образом, потребляя ток. Хорошая изоляция проявляет этот эффект заряда в течение периода времени, намного превышающего время, необходимое для зарядки емкости изоляции.

Выполнение испытаний на временную устойчивость больших распределительных устройств, трансформаторов, вводов, двигателей и кабелей, особенно при более высоких напряжениях, требует высоких диапазонов сопротивления изоляции и чистых, стабильных испытательных напряжений. Эти типы оборудования должны быть испытаны линейным мегомметром.


3.) Коэффициент диэлектрической абсорбции и показатель поляризации

Отношение двух показаний временного сопротивления (например, 60-секундное показание, деленное на 30-секундное показание) называется

коэффициент диэлектрической абсорбции . Если отношение представляет собой 10-минутное показание, деленное на 1-минутное показание, значение называется индексом поляризации .

Эти значения очень полезны для определения качества изоляции. При использовании ручных контрольно-измерительных приборов гораздо проще провести тест всего за 60 секунд, а первое показание сделать через 30 секунд.

Вы получите наилучшие результаты, выполнив 10-минутный тест с использованием линейного тестового комплекта, сняв показания на 1-й и 10-й минутах для получения индекса поляризации. Вы можете применить это значение к приведенной ниже таблице, чтобы получить относительное состояние изоляции.

Любое значение индекса поляризации менее 1,0 должно быть исследовано

в соответствии со стандартами приемки и обслуживания NETA/ANSI.

Состояние изоляции Коэффициент диэлектрической абсорбции Индекс поляризации
Опасно Ниже 1,00
Сомнительный/плохой от 1,00 до 1,25 от 1,00 до 2,00***
Хорошо от 1,40 до 1,60 от 2,00 до 4,00
Отлично Свыше 1,60** Более 4,00**

*Эти значения следует рассматривать как ориентировочные и относительные — в зависимости от опыта работы с методом временного сопротивления в течение определенного периода времени.

**В некоторых случаях для двигателей значения, примерно на 20 % превышающие указанные здесь, указывают на сухую хрупкую обмотку, которая выйдет из строя в условиях удара или во время пуска.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *