Как проверить индуктивность мультиметром: Правила измерения индуктивности с помощью мультиметра, подключение приставки

Правила измерения индуктивности с помощью мультиметра, подключение приставки

При работе с любыми электроприборами или токопроводящими деталями, наличие измерительной аппаратуры является необходимым, будь то амперметр, вольтметр или омметр. Но для того чтобы не покупать все эти устройства, лучше обзавестись мультиметром.

Мультиметр является универсальным измерительным аппаратом, который позволяет измерить любую характеристику электричества. Мультиметры бывают аналоговые и цифровые.

Содержание

Аналоговый мультиметр

Данный тип мультеметров отображает показания измерений при помощи стрелки, под которой установлено табло с различными шкалами значений. Каждая шкала отображает показания того или иного измерения, которые подписаны непосредственно на табло.

Но для новичков такой мультиметр будет не самым лучшим выбором, поскольку разобраться во всех обозначениях, которые находятся на табло довольно трудно. Это может привести к не правильному пониманию результатов измерения.

Цифровой мультиметр

В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами.

Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний.

Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.

Измеритель индуктивности для мультиметра

Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.

Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.

Сборка платы приставки

Собрать приставку-тестер к мультиметру для измерения индуктивности можно без особых проблем в домашних условиях, обладая базовыми знаниями и навыками в области радиотехники и пайки микросхем.

В схеме платы можно применять транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными маркерами, но для получения более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363.

Эти транзисторы устанавливаются на плате в позициях VT1 и VT2. На позиции VT3 необходимо установить кремневый транзистор со структурой p-n-p, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей.

Подойдет большинство высокочастотных транзисторов, с параметрами h31Э для одного не меньше 150, а для другого более 50.

Для позиций VD и VD2 подойдут любые высокочастотные кремневые диоды.

Резистор можно выбрать МЛТ 0,125 или аналогичный ему. Конденсатор С1 берется с номинальной емкостью 25330 пФ, поскольку он отвечает за точность измерений и ее значение стоит подбирать с отклонением не более 1%.

Такой конденсатор можно сделать объединив термостабильные конденсаторы разной емкости (например, 2 на 10000 пФ, 1 на 5100 пФ и 1 на 220 пФ). Для остальных позиций подойдут любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.

Контактные провода к плате (позиция Х1) можно припаять или подключать при помощи пружинящих зажимов для «акустических» проводов. Разъем Х3 предназначен для подключения приставки к мультиметру (частотомеру).

Проводу к «бананам» и «крокодилам» лучше взять короче, что бы уменьшить влияние их собственной индуктивности на показания замеров. В месте припаивания проводов к плате, соединение стоит дополнительно зафиксировать каплей термоклея.

При необходимости регулирования диапазона измерений на плату можно добавить разъем для переключателя (например, на три диапазона).

Корпус приставки к мультиметру

Корпус можно сделать из уже готового короба подходящего размера или сделать короб самостоятельно. Материал можно выбрать любой, например, пластик или тонкий стеклотекстолит. Короб делается под размер платы, и в нем подготавливаются отверстия для ее крепления. Также делаются отверстия для подключения проводки. Все фиксируется небольшими шурупами.

Питание приставки осуществляется от сети при помощи блока питания с напряжением в 12 В.

Настройка измерителя индуктивности

Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн).

Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%.

По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.

Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.

Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.

Проведение замеров индуктивности

После сборки приставку к мультиметру необходимо протестировать. Есть несколько способов, как проверить устройство:

  1. Определение индуктивности измерительной приставки. Для этого необходимо замкнуть два провода, предназначенных для подключения к индуктивной катушке. Например, при длине каждого провода и перемычки 3 см образуется один виток индукционной катушки. Этот виток обладает индуктивностью 0,1 – 0,2 мкГн. При определении индуктивности свыше 5 мкГн данная погрешность не учитывается в расчетах. В диапазоне 0,5 – 5 мкГн при измерении необходимо брать в расчет индуктивность устройства. Показания менее 0,5 мкГн являются примерными.
  2. Измерение неизвестной величины индуктивности. Зная частоту катушки, при помощи упрощенной формулы расчета индуктивности можно определить это значение.
  3. В случае, когда порог срабатывания кремниевых p-n переходов выше амплитуды измеряемой электрической цепи (от 70 до 80 мВ), можно измерить индуктивность катушек непосредственно в самой схеме (предварительно обесточив ее). Поскольку собственная емкость приставки имеет большое значение (25330 пФ), погрешность подобных измерений будет составлять не более 5% при условии, что емкость измеряемой цепи не превышает 1200 пФ.

При подключении приставки непосредственно к катушкам расположенным на плате применяется проводка длиной 30 сантиметров с зажимами для фиксации или щупами. Провода скручиваются с расчетом один виток на сантиметр длины. В таком случае образуется индуктивность приставки в диапазоне 0,5 – 0,6 мкГн, которую также необходимо учитывать при измерениях индуктивности.

Как проверить дроссель (катушку индуктивности) при помощи мультиметра?

Иногда, дроссель может перестать функционировать. Проявляется это по-разному, может появиться шум, лампа начинать мигать, лампа вовсе не зажигается и другие варианты. Как проверить дроссель, если подозреваете поломку – рассмотрим в статье далее.

Механическими поломками считаются – выход из строя сердечника, повреждение каркаса или креплений, обрыв на обмотке или пробой между ними. Любая проверка должна начинаться с внешнего осмотра. Здесь нужно внимательно осмотреть данной устройство. Так можно сразу выявить причину поломки и по возможности восстановить его. Если осмотр не дал результатов и внешне прибор выглядит идеально, нужно переходить к проверке его мультиметром. Для подробного изучения этого вопроса в статье предложен способ проверки дросселя мультиметром, а также добавлено видео и интересный файл с материалом по теме.

Проверка дросселя мультиметром

Проверка дросселя мультиметром.

Какое строение имеют источники светового потока

Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений.

Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:

  • теплый белый;
  • холодный белый;
  • желтоватый тон.
Схема дросселя

Схема дросселя.

Дроссель

Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света. Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд. Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. Частые поломки и способы их проверки мультимером указаны в таблице ниже:

Основные поломки дросселя и способы проверки мультимером

Таблица основных поломок дросселя и способы их проверки мультимером.

При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света. Очень часто дроссель входит в состав люминесцентных ламп. Для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.

Как проверить дроссель при помощи мультиметра

По существующим на сегодняшний день стандартам, такой балласт нужно подключать последовательно. Затем к нему параллельно подсоединяют стартер. Он ответственен за зажигание лампы.

Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже. Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки. На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.

Тороидальный дроссель

Тороидальный дроссель.

Строение люминесцентной лампы

Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).Сверху колба покрыта специальным слоем из люминофоров.

Принцип работы лампы таков:

  • при поступлении электрического тока на электроды (спирали) они нагреваются;
  • в результате нагревания спиралей происходит зажигание газа;
  • под действием него начинает светиться люминофор.

Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.

Проверка приборов низкой частоты

По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.

К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим – обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.

Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.

  • Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)
  • Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.
  • Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.
  • Измерение индуктивности обмотки.
  • Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.
Диагностика дросселя

Диагностика дросселя.

Стартер

При подаче напряжения в стартере возникает тлеющий разряд. Нагреваясь биметаллические пластины, из которых сделаны электроды стартера, замыкаются, в результате чего ток в цепи значительно увеличивается. Увеличившийся ток разогревает электроды люминесцентной лампы, и они начинают испускать электроны. Одновременно с этим электроды стартера остывают, биметаллическая пластина изгибается и цепь разрывается. Таким образом, стартер нужен только в момент запуска, в дальнейшей работе он не участвует и его электроды остаются разомкнутыми.

При этом на дросселе, благодаря самоиндукции, возникает кратковременный высоковольтный импульс, который приводит к газовому разряду и зажиганию лампы. Когда лампа горит, напряжение на её электродах ниже напряжения сети на величину эдс самоиндукции, возникающей в дросселе при зажигании лампы. Таким образом дроссель препятствует возрастанию тока в рабочем режиме лампы. Недостатками данной схемы являются продолжительное время включения светильника, по мере износа дроссель начинает издавать гул, низкая эффективность при отрицательных температурах.

Стартеры

Стартеры.

Неисправности светильников с ЭМПРА

Лампа не зажигается

  • Неисправность электросети — проверить наличие напряжения на контактах патрона.
  • Плохой контакт между лампой и контактами патрона или между стартером и контактами держателя — пошевелить лампу и стартер. Возможно надо подогнуть контакты патрона для лучшего прилегания.
  • Неисправность лампы — проверить целостность нитей накала или заменить на заведомо исправную. Для проверки нитей накала выставляем мультиметр на минимальное сопротивление или на прозвонку и поочередно прозваниваем выводы цоколя с одной стороны и с другой. При исправной лампе должно быть небольшое сопротивление. В случае обрыва мультиметр покажет бесконечное сопротивление.
  • Неисправность стартера — не замыкает цепь накала электродов лампы. Заменить стартер.
  • Неисправность дросселя — обрыв в обмотке дросселя или межвитковое замыкание. Обрыв дросселя можно определить с помощью мультиметра.

Лампа не зажигается. Свечение по краям лампы

  • Неисправность стартера. Если вынуть стартер из держателя, свечение прекратится. Заменить стартер.

Лампа мигает, но не зажигается

  • Неисправен стартер — заменить стартер.
  • Низкое напряжение сети — проверить мультиметром напряжение.
  • Потеря эмиссии электродов лампы — заменить лампу.
Стартер в лампе

Стартер в лампе.

На концах включенной лампы появляется и пропадает оранжевое свечение, лампа не зажигается

  • В лампу попал воздух — заменить лампу.

Лампа зажигается, но через некоторое время наблюдается потемнение на концах лампы

  • Замыкание на корпус светильника — проверить изоляцию.
  • Неисправен дроссель — несоответствие пускового и рабочего токов вольт-амперной характеристики. Амперметром проверить значение пускового и рабочего токов.

Лампа периодически зажигается и гаснет

  • Неисправна лампа — заменить лампу
  • Неисправен стартер — заменить стартер

Лампа зажигается, но на некоторых участках наблюдается свечение в виде оранжевой змейки

  • Неисправен дроссель — проверить значение пускового и рабочего токов.
  • Неисправна лампа — заменить лампу.

При включении лампы перегорают, потемнение на концах лампы

  • Пробой изоляции дросселя — заменить дроссель

При работе светильника слышно гудение

  • Колебание пластин дросселя — заменить дроссель

Изменение цвета свечения лампы – частичное выгорание люминофора вследствии длительного срока службы лампы — заменить лампу.

Материал в тему: Что такое кондесатор

Как проверить дроссель люминесцентного светильника?

Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА). На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.

После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.

Как проверить дроссель при помощи мультиметра

Проверить исправность дросселя люминесцентной лампы можно путём измерения сопротивления с помощью омметра. Он входит в состав комбинированного прибора электрика.

Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта. Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.

Проверка дросселя люминесцентного светильника?

Проверка дросселя люминесцентного светильника.

Как проверить стартер

Это устройство входит в состав электромагнитной пускорегулирующей аппаратуры и при совместной работе с дросселем обеспечивает запуск процесса образования тлеющего разряда в колбе ЛДС при подаче переменного напряжения сети на контакты светильника. Конструктивно стартер выполнен в виде небольшой лампочки, внутренняя полость которой заполнена инертным газом.

Внутри колбы находятся два биметаллических контакта, один из которых имеет сложный профиль. В исходном состоянии контакты разомкнуты. При подаче на выводы стартера напряжения в газовой среде возникает дуговой разряд, который нагревает контакты. Они изменяют свою форму и происходит их короткое замыкание, в цепи начинает протекать электрический ток.

Схема из лампы и дросселя

Схема из лампы и дросселя.

Контакт имеет меньшее переходное сопротивление, чем существующая до этого «дуга» и температура в нем начинает уменьшаться. Это остывание приводит к повторному изменению формы контактов, в результате которого происходит их размыкание. Дроссель балласта в этот момент вырабатывает высоковольтный импульс, который приводит к появлению тлеющего разряда в ЛДС и протеканию в ней тока, ионизирующего газово-ртутную смесь. Стартер выполнил свое предназначение – произвел запуск. Если цикл прошел по описанному сценарию, то стартер прошел тестирование в составе ЭмПРА. Другим способом проверки его работоспособности может быть только его замена исправным и имеющим те же параметры, что и исследуемый.

Заключение

В данной статье были рассмотрены основные вопросы проверки стартеров и дросселей люминесцентных ламп. Подробнее можно узнать, прочитав статью Проверка дросселей.

В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.1000eletric.com

www.electricalschool.info

www.electric-blogger.ru

Предыдущая

ПрактикаКак проверить конденсатор при помощи мультиметра

Следующая

ПрактикаКак проверить резистор мультиметром

Проверка катушек индуктивности |

Начинающим радиолюбителям не стоит полагаться на интуицию, и наедятся на добротность катушек индуктивности, а просто надо взять и проверить их работоспособность. Ничего особо сложного тут нет, и, не смотря на то, что увидеть магнитное поле своими глазами мы пока что не можем проверить работоспособность катушки индуктивности достаточно просто.  А как это сделать, вкратце и доступно, расскажет вам статья.

Процедура визуальной проверки катушки индуктивности:

Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого убе­ждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсут­ствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.

Процедура электрической проверки катушки индуктивности:

Электрическая проверка катушек индуктивности включает провер­ку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки.

Проверка на обрыв выполняется пробником. Увеличение сопротив­ления означает обрыв или плохой контакт одной или нескольких жил литцендрата. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление рав­но нулю. Для более точного представления о неисправности катушки необходимо измерить индуктивность. В заключение рекомендуется про­верить работоспособность катушки в таком же заведомо исправном аппарате, для которого она предназначена.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/ 

Проверка радиодеталей мультиметром

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Проверка радиодеталей мультиметром

Проверка деталей аналоговым мультиметром.

Без измерительного прибора Вам не обойтись, т.к. придется проверять сопротивление резисторов, напряжения и тока в разных цепях конструкций. Измерительный прибор, в народе – омметр, авометр (ампер-вольт-омметр) , тестер или мультиметр (от английского multimeter – измерительный прибор, объединяющий в себе несколько функций) – должен иметь каждый. Сейчас большой популярностью пользуются цифровые приборы. Они многофункциональные и сравнительно не дорогие . Ранее в качестве измерительного прибора широко пользовались аналоговыми тестерами со стрелочным индикатором (см. Рис. 1).


Не все начинающие знают, что омметром можно проверять почти все радиоэлементы : резисторы, конденсаторы, катушки индуктивности, трансформаторы, диоды, тиристоры, транзисторы, некоторые микросхемы. В авометре омметр образован внутренним источником тока (сухим элементом или батареей), стрелочным прибором и набором резисторов, которые переключаются при изменении пределов измерения. Сопротивления резисторов подобраны таким образом, чтобы при коротком замыкании клемм омметра стрелка прибора отклонилась вправо до последнего деления шкалы. Это деление соответствует нулевому значению измеряемого сопротивления. Когда же клеммы омметра разомкнуты, стрелка прибора стоит напротив левого крайнего деления шкалы, которое обозначено значком бесконечно большого сопротивления. Если к клеммам омметра подключено какое-то сопротивление, стрелка показывает промежуточное значение между нулем и бесконечностью, и отсчет производится по оцифровке шкалы. В связи с тем, что шкалы омметров выполняются в логарифмическом масштабе, края шкалы получаются сжатыми. Поэтому наибольшая точность измерения соответствует положению стрелки в средней, растянутой части шкалы. Таким образом, если стрелка прибора оказывается у края шкалы, в сжатой ее части, для повышения точности отсчета следует переключить омметр на другой предел измерения.
Омметр производит измерение сопротивления, подключенного к его клеммам, путем измерения постоянного тока, протекающего в измерительной цепи. Поэтому к измеряемому сопротивлению прикладывается постоянное напряжение от встроенного в омметр источника. В связи с тем, что некоторые детали обладают разными сопротивлениями постоянному току в зависимости от полярности приложенного напряжения , для грамотного использования омметра необходимо знать, какая из клемм омметра соединена с плюсом источника тока, а какая – с минусом. В паспорте авометра эти сведения обычно не указаны, и их нужно определить самостоятельно . Это можно сделать либо по схеме авометра, либо экспериментально с помощью какого-либо дополнительного вольтметра или исправного диода любого типа. Щупы омметра подключают к вольтметру так, чтобы стрелка вольтметра отклонялась вправо от нуля. Тогда тот щуп, который подключен к плюсу вольтметра, будет также плюсовым, а второй – минусовым. При использовании в этих целях диода два раза измеряют его сопротивление; сначала произвольно подключая к диоду щупы, а второй раз – наоборот. За основу берется то измерение, при котором показания омметра получаются меньшими. При этом щуп, подключенный к аноду диода, будет плюсовым, а щуп, подключенный к катоду диода, – минусовым.
При проверке исправности того или иного радиоэлемента возможны две различные ситуации: либо проверке подлежит изолированный, отдельный элемент, либо элемент, впаянный в какое-то устройство. Нужно учесть, что, за редкими исключениями, проверка элемента, впаянного в схему, не получится полноценной, при такой проверке возможны грубые ошибки. Они связаны с тем, что параллельно контролируемому элементу в схеме могут оказаться подключены другие элементы, и омметр будет измерять не сопротивление проверяемого элемента, а сопротивление параллельного соединения его с другими элементами. Оценить возможность достоверной оценки исправности контролируемого элемента схемы можно путем изучения этой схемы, проверяя, какие другие элементы к нему подключены и как они могут повлиять на результат измерения. Если такую оценку произвести затруднительно или невозможно, следует отпаять от остальной схемы хотя бы один из двух выводов контролируемого элемента и только после этого производить его проверку. При этом также не следует забывать и о том, что тело человека также обладает некоторым сопротивлением, зависящим от влажности кожной поверхности и от других факторов. Поэтому при пользовании омметром во избежание появления ошибки измерения нельзя касаться пальцами обоих выводов проверяемого элемента.

Проверка резисторов
Проверка постоянных резисторов производится омметром путем измерения их сопротивления и сравнения с номинальным значением, которое указано на самом резисторе и на принципиальной схеме аппарата. При измерении сопротивления резистора полярность подключения к нему омметра не имеет значения. Необходимо помнить, что действительное сопротивление резистора может отличаться по сравнению с номинальным на величину допуска. Поэтому, например, если проверяется резистор с номинальным сопротивлением 100 кОм и допуском ±10%, действительное сопротивление такого резистора может лежать в пределах от 90 до 110 кОм. Кроме того, сам омметр обладает определенной погрешностью измерения (обычно порядка 10%) . Таким образом, при отклонении фактически измеренного сопротивления на 20% от номинального значения резистор следует считать исправным.

1. Вообще то, где какой щуп указано на корпусе любого авометра.
2. Если он не оборван, то исправен и всегда может пригодится.

При проверке переменных резисторов измеряется сопротивление между крайними выводами, которое должно соответствовать номинальному значению с учетом допуска и погрешности измерения, а также необходимо измерять сопротивление между каждым из крайних выводов и средним выводом. Эти сопротивления при вращении оси из одного крайнего положения в другое должны плавно, без скачков изменяться от нуля до номинального значения. При проверке переменного резистора, впаянного в схему, два из его трех выводов необходимо выпаивать. Если переменный резистор имеет дополнительные отводы, допустимо, чтобы только один вывод оставался припаянным к остальной части схемы.

Проверка конденсаторов
В принципе конденсаторы могут иметь следующие дефекты: обрыв, пробой и повышенная утечка. Пробой конденсатора характеризуется наличием между его выводами короткого замыкания, то есть нулевого сопротивления. Поэтому пробитый конденсатор любого типа легко обнаруживается омметром путем проверки сопротивления между его выводами. Конденсатор не пропускает постоянного тока, его сопротивление постоянному току, которое измеряется омметром, должно быть бесконечно велико. Однако это оказывается справедливо лишь для идеального конденсатора. В действительности между обкладками конденсатора всегда имеется какой-то диэлектрик, обладающий конечным значением сопротивления, которое называется сопротивлением утечки. Его-то и измеряют омметром. В зависимости от используемого в конденсаторе диэлектрика устанавливаются критерии исправности по величине сопротивления утечки. Слюдяные, керамические, пленочные, бумажные, стеклянные и воздушные конденсаторы имеют очень большое сопротивление утечки, и при их проверке омметр должен показывать бесконечно большое сопротивление . Однако имеется большая группа конденсаторов, сопротивление утечки которых сравнительно невелико. К ней относятся все полярные конденсаторы, которые рассчитаны на определенную полярность приложенного к ним напряжения, и эта полярность указывается на их корпусах. При измерении сопротивления утечки этой группы конденсаторов необходимо соблюдать полярность подключения омметра (плюсовой вывод омметра должен присоединяться к плюсовому выводу конденсатора), в противном случае результат измерения будет неверным. К этой группе конденсаторов в первую очередь относятся все электролитические конденсаторы и оксидно-полупроводниковые. Сопротивление утечки исправных конденсаторов этой группы должно быть не менее 100 кОм, остальных не менее 1 МОм. При проверке конденсаторов большой емкости нужно учесть, что при подключении омметра к конденсатору, если он не был заряжен, начинается его зарядка, и стрелка омметра делает бросок в сторону нулевого значения шкалы. По мере зарядки стрелка движется в сторону увеличения сопротивлений. Чем больше емкость конденсатора, тем медленнее движется стрелка. Отсчет сопротивления утечки следует производить только после того, как она практически остановится. При проверке конденсаторов емкостью порядка 1000 мкФ на это может потребоваться несколько минут. Внутренний обрыв или частичная потеря емкости конденсатором не могут быть обнаружены омметром, для этого необходим прибор, позволяющий измерять емкость конденсатора. Однако обрыв конденсатора емкостью более 0,2 мкФ может быть обнаружен омметром по отсутствию начального скачка стрелки во время зарядки . Следует заметить, что повторная проверка конденсатора на обрыв по отсутствию начального скачка стрелки может производиться только после снятия заряда, для чего выводы конденсатора нужно замкнуть на короткое время.
Конденсаторы переменной емкости проверяются омметром на отсутствие замыканий. Для этого омметр подключается к каждой секции агрегата и медленно поворачивается ось из одного крайнего положения в другое. Омметр должен показывать бесконечно большое сопротивление в любом положении оси.

Проверка катушек индуктивности
При проверке катушек индуктивности омметром контролируется только отсутствие в них обрыва. Сопротивление однослойных катушек должно быть равно нулю, сопротивление многослойных катушек близко к нулю. Иногда в паспортных данных аппарата указывается сопротивление многослойных катушек постоянному току и на его величину можно ориентироваться при их проверке. При обрыве катушки омметр показывает бесконечно большое сопротивление. Если катушка имеет отвод, нужно проверить обе секции катушки, подключая омметр сначала к одному из крайних выводов катушки и к ее отводу, а затем – ко второму крайнему выводу и отводу.

Проверка низкочастотных дросселей и трансформаторов
Как правило, в паспортных данных аппаратуры или в инструкциях по ее ремонту указываются значения сопротивлений обмоток постоянному току, которые можно использовать при проверке трансформаторов и дросселей. Обрыв обмотки фиксируется по бесконечно большому сопротивлению между ее выводами. Если же сопротивление значительно меньше номинального, это может указывать на наличие короткозамкнутых витков. Однако чаще всего короткозамкнутые витки возникают в небольшом количестве, когда происходит замыкание между соседними витками, и сопротивление обмотки изменяется незначительно. Для проверки отсутствия короткозамкнутых витков можно поступить следующим образом. У трансформатора выбирается обмотка с наибольшим количеством витков, к одному из выводов которой подключается омметр с помощью зажима “крокодил”. Ко второму выводу этой обмотки прикасаются слегка влажным пальцем левой руки. Держа металлический наконечник второго щупа омметра правой рукой, подключают его ко второму выводу обмотки, не отрывая от него пальца левой руки. Стрелка омметра отклоняется от своего начального положения, показывая сопротивление обмотки. Когда стрелка остановится, отводят правую руку с щупом от второго вывода обмотки. В момент разрыва цепи при исправном трансформаторе чувствуется легкий удар электрическим током, возникающей при разрыве цепи. В связи с тем, что энергия разряда мизерна, никакой опасности такая проверка не представляет. Омметр при этом нужно использовать на самом меньшем пределе измерения, который соответствует наибольшему току измерения.

Проверка диодов
Полупроводниковые диоды характеризуются резко нелинейной вольтамперной характеристикой. Поэтому их прямой и обратный токи при одинаковом приложенном напряжений различны. На этом основана проверка диодов омметром. Прямое сопротивление измеряется при подключении плюсового вывода омметра к аноду, а минусового вывода – к катоду диода. У пробитого диода прямое и обратное сопротивления равны нулю. Если диод оборван, оба сопротивления бесконечно велики.
Указать заранее значения прямого и обратного сопротивлений или их соотношение нельзя, так как они зависят от приложенного напряжения, а это напряжение у разных авометров и на разных пределах измерения различно. Тем не менее, у исправного диода обратное сопротивление должно быть больше прямого. Отношение обратного сопротивления к прямому у диодов, рассчитанных на низкие обратные напряжения, велико (может быть более 100). У диодов, рассчитанных на большие обратные напряжения, это отношение оказывается незначительным, так как обратное напряжение, приложенное к диоду омметром, мало по сравнению с тем обратным напряжением, на которое диод рассчитан. Методика проверки стабилитронов и варикапов не отличается от изложенной. Как известно, если к диоду приложено напряжение, равное нулю, ток диода также будет равен нулю. Для получения прямого тока необходимо приложить к диоду какое-то пороговое небольшое напряжение . Любой омметр обеспечивает приложение такого напряжения. Однако если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается и может оказаться больше, чем напряжение на клеммах омметра. По этой причине измерить прямые напряжения диодных столбов или селеновых столбиков при помощи омметра оказывается невозможно.

Проверка тиристоров.
Неуправляемые тиристоры (динисторы) могут быть проверены таким же образом, как диоды, если напряжение отпирания динистора меньше напряжения на клеммах омметра. Если же оно больше, динистор при подключении омметра не отпирается и омметр в обоих направлениях показывает очень большое сопротивление. Тем не менее, если динистор пробит, омметр это регистрирует нулевыми показаниями прямого и обратного сопротивлений. Для проверки управляемых тиристоров (тринисторов) плюсовой вывод омметра подключается к аноду тринистора, а минусовой вывод – к катоду. Омметр при этом должен показывать очень большое сопротивление, почти равное бесконечному. Затем замыкают выводы анода и управляющего электрода тринистора, что должно приводить к резкому уменьшению сопротивления, так как тринистор отпирается. Если после этого отключить управляющий электрод от анода, не разрывая цепи, соединяющей анод тринистора с омметром, для многих типов тринисторов омметр будет продолжать показывать низкое сопротивление открытого тринистора. Это происходит в тех случаях, когда анодный ток тринистора оказывается больше так называемого тока удержания. Тринистор остается открытым обязательно, если анодный ток больше гарантированного тока удержания. Это требование является достаточным, но не необходимым. Отдельные экземпляры тринисторов одного и того же типа могут иметь значения тока удержания значительно меньше гарантированного. В этом случае тринистор при отключении управляющего электрода от анода остается открытым. Но если при этом тринистор запирается и омметр показывает большое сопротивление, нельзя считать , что тринистор неисправен.

Проверка транзисторов.
Эквивалентная схема биполярного транзистора представляет собой два диода, включенных навстречу один другому. Для p-n-р транзисторов эти эквивалентные диоды соединены катодами, а для n-p-п транзисторов – анодами. Таким образом, проверка транзистора омметром сводится к проверке обоих р-n переходов транзистора: коллектор-база и эмиттер-база. Для проверки прямого сопротивления переходов p-n-р транзистора минусовой вывод омметра подключается к базе, а плюсовой вывод омметра – поочередно к коллектору и эмиттеру. Для проверки обратного сопротивления переходов к базе подключается плюсовой вывод омметра. При проверке n-p-п транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление – при соединении с базой минусового вывода. При пробое перехода его прямое и обратное сопротивления оказываются равными нулю. При обрыве перехода его прямое сопротивление бесконечно велико. У исправных маломощных транзисторов обратные сопротивления переходов во много раз больше их прямых сопротивлений. У мощных транзисторов это отношение не столь велико, тем не менее, омметр позволяет их различить. Из эквивалентной схемы биполярного транзистора вытекает, что с помощью омметра можно определить тип проводимости транзистора и назначение его выводов (цоколевку). Сначала определяют тип проводимости и находят вывод базы транзистора. Для этого один вывод омметра подключают к одному выводу транзистора, а другим выводом омметра
касаются поочередно двух других выводов транзистора. Затем первый вывод омметра подключают к другому выводу транзистора, а другим выводом омметра касаются свободных выводов транзистора. Затем первый вывод омметра подключают к третьему выводу транзистора, а другим выводом касаются остальных. После этого меняют местами выводы омметра и повторяют указанные измерения. Нужно найти такое подключение омметра, при котором подключение второго вывода омметра к каждому из двух выводов транзистора, не подключенных к первому выводу омметра, соответствует небольшому сопротивлению (оба перехода открыты). Тогда вывод транзистора, к которому подключен первый вывод омметра, является выводом базы. Если первый вывод омметра является плюсовым, значит, транзистор относится к n-p-п проводимости, если – минусовым, значит, – p-n-р проводимости. Теперь нужно определить, какой из двух оставшихся выводов транзистора является выводом коллектора. Для этого омметр подключается к этим двум выводам, база соединяется с плюсовым выводом омметра при n-p-п транзисторе или с минусовым выводом омметра при p-n-р транзисторе и замечается сопротивление, которое измеряется омметром. Затем выводы омметра меняются местами (база остается подключенной к тому же выводу омметра, что и ранее) и вновь замечается сопротивление по омметру. В том случае, когда сопротивление оказывается меньше, база была соединена с коллектором транзистора.


Проверка деталей цифровым мультиметром.

Главным отличием цифрового прибора от аналогового является то, что результаты измерения отображаются на жидкокристаллическом дисплее. К тому же цифровые мультиметры обладают более высокой точностью и отличаются простотой использования, т.к. не приходится разбираться во всех тонкостях градирования измерительной шкалы, как со стрелочными измерительными приборами.
Цифровой тестер (см. Рис. 1), как и аналоговый, имеет два щупа – черный и красный, и от двух до четырех гнезд. Черный вывод является общим (масса). Гнездо для общего вывода помечается как СОМ или просто “-” (минус), а сам вывод на конце часто имеет так называемый пкрокодильчикп, для того, чтобы при измерении можно было зацепить его за массу электронной схемы. Красный вывод вставляется в гнездо, помеченное символами напряжения – “V” или “+” (плюс).
Если Ваш прибор содержит более двух гнезд, например, как на Рис. 1, красный щуп вставляется в гнездо “VQmA”. Эта надпись говорит о том, что Вы можете измерять напряжение, сопротивление и небольшой ток – в миллиамперах. Гнездо, расположение немного выше, с маркировкой 10ADC говорит о том, что Вы можете измерять большой постоянный ток, но не выше 10А.
Переключатель мультиметра позволяет выбрать один из нескольких пределов для измерений.
Чтобы измерить постоянное напряжение выбираем режим DCV1, если переменное ACV, подключаем щупы и смотрим результат. При этом на шкале переключателя вы должны выбрать большее напряжение, чем измеряемое. Например, Вам необходимо измерить напряжение в электрической розетки. В вашем приборе шкала ACV состоит из двух параметров: 200 и 750 (это вольты). Значит, нужно установить стрелочку переключателя на параметр 750 и можно смело измерять напряжение.

1 DC – постоянный ток (Direct Current), AC – переменный ток (Alternating Current).


Ток измеряется последовательным включением мультиметра в электрическую цепь. Для примера можно взять обычную лампочку от карманного фонаря и подключить ее последовательно с прибором к адаптеру 5В. Корда по цепи пойдет ток и лампочка загорится, прибор покажет значение тока.
Сопротивление на приборе обозначается значком, немного похожим на наушники. Для измерения сопротивления резистор должен быть выпаян из электрической цепи хотя бы одним концом, чтобы быть уверенным в том, что никакие другие компоненты схемы не повлияют на результат. Подключаем щупы к двум концам резистора и сравниваем показания омметра со значением, которое указано на самом резисторе . Стоит учитывать и величину допуска (возможных отклонений от нормы), т.е. если по маркировке резистор на 200кОм и допуском ± 15%, его действительное сопротивление может быть в пределах 170-230кОм.
Проверяя переменные резисторы, измеряем сначала сопротивление между крайними выводами (должно соответствовать номиналу резистора), а затем подключив щуп мультиметра к среднему выводу, поочередно с каждым из крайних. При вращении оси переменного резистора, сопротивление должно изменяться плавно, от нуля до его максимального значения, в этом случае удобней использовать аналоговый мультиметр наблюдая за движением стрелки, чем за быстро меняющимися цифрами на жидкокристаллическом экране.
Для проверки диодов типовые приборы содержат специальный режим. В более дешевых тестерах можно воспользоваться режимом прозвонки. Тут все просто: в одну сторону диод звониться, а в другую – нет. Проверить диод можно и в режиме сопротивления. Для этого устанавливаем переключатель на 1к0м. При подключении красного вывода мультиметра к аноду диода, а черного к катоду, Вы увидите его прямое сопротивление, при обратном подключении сопротивление будет настолько высоко, что на данном пределе измерения вы не увидите ничего. Если диод пробит, его сопротивление в любую сторону будет равно нулю, если оборван, то в любую сторону сопротивление будет бесконечно большим.
Обычный биполярный транзистор представляет собой два диода, включенных навстречу один другому. Зная, как проверяются диоды, несложно проверить и такой транзистор. Стоит не забывать, что транзисторы бывают разных типов: у р-п-р условные диоды соединены катодами, у п-р-п – анодами. Для измерения прямого сопротивления транзисторных p-n-р переходов, минус мультиметра подключается к базе, а плюс поочередно к коллектору и эмиттеру. При измерении обратного опротивления меняем полярность. Для проверки транзисторов п-р-п типа делаем все наоборот. Если еще короче, то переходы база-коллектор и база-эмиттер в одну сторону должны прозваниваться, в другую – нет.
Для измерения у транзистора коэффициента усиления по току используем режим hEF, если он есть на Вашем приборе. Разъем, в который вставляют контакты транзистора для измерения hEF, не очень качественный практически во всех моделях тестеров и довольно глубоко посажен. То есть ножки транзистора до них иногда не достают. Как выход – вставьте одножильные провода и выводами транзистора касайтесь именно их.
На цифровых мультиметрах пределов измерений обычно больше, к тому же часто добавлены дополнительные функции, например, частотомер, измеритель емкости конденсаторов и даже датчик температуры. Но такими возможностями обладают более дорогие модели тестеров. Кроме того, в дорогих моделях отсутствует необходимость переключать шкалу измерения. Просто устанавливаете переключать на измерение емкости, сопротивления и т.д., и прибор показывает результат.

Для того, чтобы мультиметр не вышел из строя при измерениях напряжения или тока, особенно если их значение неизвестно, переключатель желательно установить на максимально возможный предел измерений, и только если показание при этом слишком мало, для получения более точного результата, переключайте мультиметр на предел ниже текущего.



Как проверить дроссель с помощью мультиметра

Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером.

Назначение и устройство

В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.

Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.

В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.

В светильниках

В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.

Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.

Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.

Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.

Проверка в лампах

Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.

До того, как проверить дроссель лампы, проверяются сама лампа и стартер.

Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.

Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.

В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.

Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.

Проверка межвиткового замыкания

В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.

Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.

Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.

В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.

Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.

Схема прибора приведена на рисунке.

Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).

Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.

Последовательность действия

Порядок проверки следующий:

  1. включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
  2. в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
  3. к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.

Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.

Проверка индуктивности

Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.

Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.

При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.

«как сделать измеритель индуктивности» – Яндекс.Кью

Чтобы понять принцип работы индуктивного датчика, разберём его составляющие.

Состоит индуктивный датчик:

1. Электромагнитная система → 2. Генератор → 3. Демодулятор → 4. Пороговое устройство → 5. Выходной усилитель

1электромагнитная система.
Её также называют чувствительным элементом датчика. Электромагнитная система является частью генератора.
Она представляет собой катушку индуктивности, помещенную в магнитопровод. Чаще всего это круглая ферритовая чашка. Чашки в зависимости от габаритов датчика могут иметь диаметр от 3,3 мм до 150 мм.

С внешней стороны ферритовый сердечник закрыт диэлектрическим колпачком. Его торцевая часть называется чувствительной поверхностью.

Область перед чувствительной поверхностью является зоной чувствительности датчика. Там сконцентрировано магнитное поле. Оно распространяется примерно на половину диаметра датчика.

2 - генератор.
Это та часть электронной схемы датчика, которая вырабатывает электрические колебания. Генератор формирует переменное электромагнитное поле, в сечении напоминающее букву М.
Катушка индуктивности и конденсатор (устройство для накопления заряда и энергии электрического поля) образуют колебательный контур. Генератор вырабатывает незатухающие синусоидальные колебания. При попадании металлического объекта в зону чувствительности датчика в нём образуются вихревые токи. Они создают встречный магнитный поток, демпфирующий колебания контура. Другими словами, происходит затухание электромагнитных колебаний, уменьшается их амплитуда. Чем ближе металлический объект к чувствительной поверхности датчика и чем больше его размер, тем сильнее затухание.

3 - демодулятор или детектор, он же выпрямитель.

Преобразует изменение высокочастотных колебаний генератора в изменение постоянного напряжения.

4 - пороговое устройство сравнивает переданное демодулятором напряжение с заранее установленным порогом срабатывания.
При достижении порога формируется логический сигнал "0 или 1" (т. е. "вы

Прибор для проверки катушек индуктивности

Всем доброго времени суток. Предлагаю вашему вниманию свой вариант изготовления довольно распространённой (судя по ее повторению и описаниям в интернете) и простой конструкции устройства для проверки обмоток трансформаторов, дросселей, электродвигателей, реле и других катушек индуктивностью от 200 мкГн до 2 Гн. Схема и подробное описание принципа ее работы были опубликованы в журнале «Радио» №7 за 1990г., стр. 68-69, автор И. Паздников.

Идея была собрать данное устройство из имевшихся после разборки разного электронного хлама деталей. Сделать приборчик относительно компактным и удобным в эксплуатации. Для возможности быстрого повторения конструкции, в качестве корпуса использовать дешёвое стандартное изделие из магазина.

Данным приборчиком можно определять целостность или разрыв обмоток, межвитковые замыкания катушек, исправность p-n переходов кремниевых полупроводников.

В данной конструкции использовано:
- Коробка соединительная 75х75х30мм «HEGEL».
- Монтажный провод.
- Фольгированный стеклотекстолит 68х68мм.
- Винты М3.
- Стойки для плат 10мм.
- Радиодетали согласно схеме.


Из инструментов использовалось:
- Дрель.
- Паяльник.
- Термо-клеевой пистолет.
- Отвертка, кусачки и т.д.

В схеме И. Паздникова некоторые детали были заменены на имевшиеся у меня в наличии. Добавлен резистор плавной подстройки. С целью экономии батареи лампочка заменена на светодиод. Для удобства проверки и настройки выведены дополнительные контакты на питание. Которые при необходимости можно вывести на разъем, для подключения сетевого адаптера (если отсутствует батарейка).



Принципиальная схема устройства, согласно использованных деталей.

Печатная плата изготовлена под корпус соединительной коробки, из стеклотекстолита 68х68мм. Сверловка под ножки транзисторов сделана симметричной, что позволяет беспроблемно устанавливать транзисторы как в корпусах КТ-13 так и ТО-92 (КТ-26). Светодиод установлен на пластиковой опоре. Разводка платы представлена со стороны радиодеталей.



Прибор для проверки катушек индуктивности
Прибор для проверки катушек индуктивности

На нижней части корпуса соединительной коробки установлены монтажные стойки. В верхней части вырезаны соответствующие отверстия (по трафарету печатной платы). Заводские крепежные отверстия залиты термоклеем.

Прибор для проверки катушек индуктивности
Прибор для проверки катушек индуктивности

Для защиты от пыли и мусора на бегунок переключателя наклеена «юбка», вырезанная из тонкого пластика.

Прибор для проверки катушек индуктивности

Для удобства сборки конструкции переменные резисторы подключаются с помощью разъема. Для возможности простой замены, провода щупов подсоединяются через клемник.

Прибор для проверки катушек индуктивности
Прибор для проверки катушек индуктивности

Шкалы регулировки рассчитаны на импортные переменные резисторы с углом поворота вала 300 градусов.

Прибор для проверки катушек индуктивности

Для щупов использован разноцветный монтажный провод, длинной около 30см и зажимы типа «крокодил».

Прибор для проверки катушек индуктивности

Получившийся приборчик испытывался на имевшихся в наличии трансформаторах, диодах, транзисторах, дросселях, статорах и якоре электродвигателя. Для простоты использованной схемы он показал довольно неплохой результат.


Описание результатов проведенных испытаний данной «игрушки».

«Крокодилы» разомкнуты – светодиод не горит, вне зависимости от положения регуляторов.
«Крокодилы» замкнуты – светодиод постоянно горит, вне зависимости от положения регуляторов.

При подключении к обмотке статора подбирается положение регуляторов самое близкое к переходу от постоянного горения светодиода к началу его мигания (начало запуска генерации). При замыкании дополнительного витка на статоре, светодиод постоянно горит, показывая межвитковое замыкание (срыв генерации). При сильном уменьшении сопротивления R1 мигание светодиода может возобновляться, но с меньшей частотой.

Прибор для проверки катушек индуктивности

Поэтому удобно сравнивать состояние обмоток между собой или по образцу при одинаковом положении регуляторов.

Прибор для проверки катушек индуктивности

При проверке якоря щупы подключались непосредственно к щеткам коллектора. Далее выставляется режим начала мигания светодиода. Якорь проворачивается на полный оборот. Если мигание светодиода стабильно во всех положениях коллектора - то якорь, скорее всего живой. При замыкании даже соседних ламелей коллектора между собой светодиод начинает постоянно гореть, показывая замыкание. Реально убитых якорей у меня под рукой не было. Так, что результат, скорее всего весьма вероятный. Что связано с особенностями обмотки якоря.

Прибор для проверки катушек индуктивности

При проверке трансформаторов прибор подключался к наиболее высоковольтной обмотке. Далее действия как при проверке статоров. При замыкании какой либо обмотки прибор показывает КЗ - светодиод горит постоянно. Аналогично проверялись и дросселя.

При проверке p-n переходов (+ к аноду – к катоду) индикатор показывает следующее:
- Светодиод горит вне зависимости от положения регуляторов: p-n переход пробит.
- Светодиод не горит вне зависимости от положения регуляторов: p-n переход перегорел.
- Светодиод мигает - p-n переход рабочий.

Прибор для проверки катушек индуктивностиЕсли возникнет необходимость проверки часто попадающихся изделий, то благодаря удачно получившимся шкалам регуляторов можно будет составить удобную шпаргалку в виде таблицы. Отпадает необходимость иметь под рукой сравнительный образец. В общем, для использования в домашних условиях данный приборчик может оказаться достаточно полезным. Дальше время покажет.

Если что-то в описании упущено, надеюсь, эти нюансы можно рассмотреть на представленных фото. Заранее прошу прощения за возможные ошибки и опечатки.

Если нужна дополнительная информация, пишите на почту, постараюсь обязательно ответить. Отзывы, идеи, предложения по улучшению конструкции и комментарии очень приветствуются.

Декабрь 2019г.
Станислав Шурупкин.
Email: [email protected]

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Как проверить конденсатор с помощью цифрового и аналогового мультиметра

6 способов проверки конденсатора с помощью цифрового мультиметра и AMM (AVO)

В большинстве работ по устранению неисправностей и ремонту электрических и электронных устройств мы сталкиваемся с общей проблемой : проверить и проверить конденсатор? Это хорошо, плохо (мертвый), короткий или открытый?

Здесь мы можем проверить конденсатор с аналоговым (измеритель AVO, то есть ампер, напряжение, омметр), а также с цифровым мультиметром, либо он находится в хорошем состоянии, либо мы должны заменить его на новый.,

Примечание. Чтобы определить значение ёмкости, необходим цифровой измеритель с функциями измерения ёмкости.

How to Test a Capacitor with Digital Multimeter and Analog AVO Meter. By six (6) Methods with pictorial View. How to Test a Capacitor with Digital Multimeter and Analog AVO Meter. By six (6) Methods with pictorial View.

Ниже приведены пять (6) методов проверки и проверки, что конденсатор является хорошим, плохим, открытым, мертвым или коротким .

Похожие сообщения:

Метод 1.

Традиционный метод испытания и проверки конденсатора

Примечание: Не рекомендуется для всех, кроме профессионалов. Пожалуйста, будьте осторожны, чтобы делать эту практику, так как это опасно.Убедитесь, что вы профессиональный инженер-электрик / электрик (вы действительно знаете, что делаете, или проверьте предупреждения перед применением этого метода), и нет других вариантов проверки конденсатора, поскольку во время этой практики могут возникнуть серьезные повреждения). Если вы уверены, продолжайте, в противном случае перейдите к способу 2 - 6 в качестве альтернативы конденсатору.

Предположим, вы хотите проверить конденсатор (например, конденсаторы вентиляторов, конденсаторы комнатного воздухоохладителя или конденсаторы оловянного типа в плате / печатной плате и т. Д.).)

Предупреждение и рекомендации по тестированию конденсатора по методу 1.

Для большей безопасности используйте 24 В постоянного тока вместо 230 В переменного тока. В случае отсутствия желаемой системы постоянного тока 24 В, вы можете использовать 220-224 В переменного тока, но вы должны сделать серию резисторов (скажем, 1 кОм ~ 10 кОм, 5 ~ 50 Вт) для подключения между конденсатором и источником питания 230 В переменного тока. это уменьшит зарядку и разрядку тока. Вот пошаговое руководство, как вы можете проверить конденсатор этим методом.

  1. Отсоедините предполагаемый конденсатор от источника питания или убедитесь, что хотя бы один вывод конденсатора отсоединен.
  2. Убедитесь, что конденсатор полностью разряжен.
  3. Подключите два отдельных провода к клеммам конденсатора. (Необязательно)
  4. Теперь безопасно подключите эти провода к источнику переменного тока 230 В в течение очень короткого периода (около 1-4 с) [или в течение короткого времени, когда напряжение возрастает до 63,2% от напряжения источника].
  5. Снимите предохранительные провода с источника питания 230 В переменного тока.
  6. Теперь закоротите клеммы конденсатора (пожалуйста, соблюдайте осторожность и убедитесь, что у вас есть защитные очки).
  7. Если он создает сильную искру, то конденсатор - это хорошо .
  8. Если он создает слабую искру, то это плохой конденсатор и немедленно заменить его на новый.

How to Check a Capacitor with Digital Multimeter and Analog AVO Meter. Four Methods (pictorial) View How to Check a Capacitor with Digital Multimeter and Analog AVO Meter. Four Methods (pictorial) View

Похожие сообщения:

Метод 2.

Проверка конденсатора с помощью аналогового мультиметра

Чтобы проверить конденсатор с помощью AVO (ампер, напряжение, Ом метр), выполните следующие действия.

  1. Убедитесь, что предполагаемый конденсатор полностью разряжен.
  2. Возьми AVO метр.
  3. Выберите аналоговый измеритель на ОМ (Всегда выбирайте более высокий диапазон Ом).
  4. Подсоедините провода измерительного прибора к клеммам конденсатора.
  5. Примечание. Чтение и сравнение со следующими результатами.
  6. Короткие конденсаторы : Замкнутый конденсатор будет показывать очень низкое сопротивление.
  7. Открытые конденсаторы : Открытый конденсатор не будет показывать никакого движения (отклонения) на экране измерителя ОМ.
  8. Хорошие конденсаторы : вначале он показывает низкое сопротивление, а затем постепенно увеличивается к бесконечности. Это означает, что конденсатор находится в хорошем состоянии.

how to check that is a capacitor is good, open, dead, or short? how to check that is a capacitor is good, open, dead, or short?

Метод 3.

Проверка конденсатора с помощью цифрового мультиметра

Для проверки конденсатора с помощью цифрового мультиметра (DMM) выполните следующие действия.

  1. Убедитесь, что конденсатор разряжен.
  2. Установите измеритель на диапазон Ом (установите его в аренду 1000 Ом = 1 кОм).
  3. Подсоедините провода измерительного прибора к клеммам конденсатора.
  4. Цифровой счетчик покажет некоторые цифры за секунду. Обратите внимание на чтение.
  5. И тогда сразу же он вернется в ПР (Открытая линия). Каждая попытка шага 2 будет показывать тот же результат, что и на шаге 4 и шаге 5. Это означает, что конденсатор находится в хорошем состоянии .
  6. Если изменений нет, то Конденсатор мертв .

How to Check a Capacitor with Digital Multimeter and Analog AVO Meter. Four Methods How to Check a Capacitor with Digital Multimeter and Analog AVO Meter. Four Methods

Вы также можете проверить:

Метод 4.

Проверка конденсатора мультиметром в емкостном режиме

Примечание. Этот тест можно выполнить с мультиметром, если у вас есть измеритель емкости или у вас есть мультиметр с функцией проверки емкости.Кроме того, этот метод хорош для тестирования крошечных конденсаторов. Для этого теста поверните ручку мультиметра в режим емкости.

  1. Убедитесь, что конденсатор полностью разряжен.
  2. Снимите конденсаторы с платы или цепи.
  3. Теперь выберите «Емкость» на вашем мультиметре.
  4. Теперь подключите клемму конденсатора к выводам мультиметра.
  5. Если показание близко к фактическому значению конденсатора (то есть напечатанному значению на коробке контейнера конденсатора).
  6. Тогда конденсатор в хорошем состоянии. (Обратите внимание, что показание может быть меньше, чем фактическое значение конденсатора (напечатанное значение на коробке контейнера с конденсатором).
  7. Если вы прочитали значительно более низкую емкость или ее нет вообще, то конденсатор не работает, и вы должны изменить его. how to check a capaccitor that is good, bad, open, dead or short? how to check a capaccitor that is good, bad, open, dead or short?

Похожие сообщения:

Метод 5.

Проверка конденсатора с помощью простого вольтметра

  1. Обязательно отсоединяйте один провод (не беспокойтесь, если положительный (длинный) или отрицательный (короткий)) конденсатора от цепи (Вы можете также полностью отключить при необходимости)
  2. Проверьте номинальное напряжение конденсатора, напечатанное на нем (как показано в нашем примере ниже, где напряжение = 16 В)
  3. Теперь зарядите этот конденсатор в течение нескольких секунд, чтобы номинальная (не до точного значения, но меньше, чем яе. зарядить конденсатор 16 В с аккумулятором 9 В). Убедитесь, что положительный (красный) провод источника напряжения подключен к положительному (длинному) проводу конденсатора, а отрицательный - к отрицательному. Если вы не можете найти его или не уверены, вот учебник, как найти отрицательный и положительный вывод конденсатора.
  4. Установите значение вольтметра на постоянный ток и подключите конденсатор к вольтметру, подключив положительный провод батареи к положительному выводу конденсатора и отрицательный к отрицательному.
  5. Обратите внимание на начальные показания напряжения в вольтметре. Если оно близко к напряжению, подаваемому на конденсатор, конденсатор находится в хорошем состоянии. Если он показывает очень мало чтения, то конденсатор мертв. обратите внимание, что вольтметр будет показывать показания в течение очень короткого времени, так как конденсатор разряжает свое напряжение в вольтметре, и это нормально.

Check & Test a Capacitor by Simple Voltmeter. Check & Test a Capacitor by Simple Voltmeter.

Связанные сообщения:

Метод 6.

Найти значение конденсатора путем измерения значения постоянной времени

Мы можем найти значение конденсатора путем измерения постоянной времени ( TC или τ = Tau), если значение емкости конденсатора известно в микрофарадах (обозначенных мкФ), напечатанных на нем i.е. конденсатор не перегорел и не сгорел вообще.

Вкратце, время, затрачиваемое конденсатором на зарядку около 63,2% приложенного напряжения при зарядке через известное значение резистора, называется постоянной времени конденсатора (TC или τ = Тау) и может быть рассчитано с помощью:

. τ = RxC

где:

  • R = известный резистор
  • C = значение емкости
  • τ = TC или τ = Тау (постоянная времени)

Например, если напряжение питания составляет 9 В , затем 63.2% из этого - около 5.7V .

Теперь давайте посмотрим, как найти значение конденсатора путем измерения постоянной времени.

Обязательно отсоедините, а также разрядите конденсатор с платы.

Подключите известное значение сопротивления (например, резистор 5-10 кОм) последовательно с конденсатором.

Подайте известное значение напряжения питания. (например, 12 В или 9 В) к конденсатору, подключенному последовательно с резистором 10 кОм.

Теперь измерьте время зарядки конденсатора около 63.2% от приложенного напряжения. Например, если напряжение питания составляет 9 В, то 63,2% составляет около 5,7 В.

Из значения данного резистора и измеренного времени вычислите значение емкости по формуле временного содержания, то есть τ = TC или τ = Тау (постоянная времени) .

Теперь сравните рассчитанное значение емкости со значением конденсатора, напечатанного на нем.

Если они одинаковы или почти одинаковы, конденсатор в хорошем состоянии. Если вы обнаружите заметную разницу в обоих значениях, пора менять конденсатор, так как он не работает должным образом.

Время разряда также может быть рассчитано. В этом случае может быть измерено время, необходимое конденсатору для разрядки до 36,8% пикового напряжения.

Полезно знать : Время, необходимое конденсатору для разрядки около 36,8% пикового значения приложенного напряжения, также может быть измерено. Время разряда можно использовать так же, как в формуле, чтобы найти значение конденсатора.

find the value of a capacitor by measuring the Time constant find the value of a capacitor by measuring the Time constant

Похожие сообщения:

.
Как проверить электрические и электронные компоненты с помощью мультиметра?

Как проверить электрические и электронные компоненты с помощью мультиметра?

Устранение неисправностей с помощью мультиметра

Все мы знаем правило и важность «Устранения неисправностей» в электротехнике и электронике. Большинство компонентов и элементов ЭЭ, используемых в электрическом и электронном оборудовании, устройствах и инструментах, являются общими по своим функциям и операциям.

Чтобы быть хорошим анализатором и специалистом по поиску и устранению неисправностей, вы должны знать следующие основные методы и обладать хорошими навыками в области устранения неисправностей в области электрики и электроники, проектирования и анализа электрических / электронных цепей.С этой целью мы запустили многоуровневое учебное пособие, в котором мы будем использовать DMM (цифровой мультиметр) и AVO Meter (амперметр-резистор) или Multimeter (цифровой / аналоговый) для тестирования различных электрических / электронных устройств, приборов и компонентов, чтобы найти их терминалы и состояние, такие как они являются короткими, открытыми, исправными или неисправными.

В этом базовом учебнике по мультиметрам мы будем использовать цифровой и аналоговый мультиметры для проверки следующих электрических и электронных компонентов, устройств, инструментов и инструментов:

  • Кабели и провода
  • Кнопки переключателей / нажимные кнопки
  • Предохранитель
  • Конденсаторы и Индукторы
  • Резисторы и сгоревшие резисторы
  • Диоды и светодиоды
  • Батарея
  • Транзисторы
  • Реле

How To Test Electrical and Electronics Components with Multimeter How To Test Electrical and Electronics Components with Multimeter

При устранении неполадок мы используем различные виды базовых инструментов электротехники и электроники, но основным и важным инструментом является мультиметр.Теперь мы будем проверять вышеупомянутые компоненты и устройства с этим инструментом по одному.

Кабель и провода

Чтобы проверить, не повреждены ли кабель и провода, прежде чем выбрать подходящий кабель и провод для монтажа электропроводки, мы проводим тест на целостность. Для этого возьмите измеритель AVO (или цифровой мультиметр) и выберите «Сопротивление» (в измерителе AVO… Поверните ручку на «Ω» или «Сопротивление»).

Теперь подключите оба терминала, т.е.е. оба оголенных конца кабеля / провода с помощью клемм AVO или цифрового мультиметра. Если показание счетчика показывает «0 Ом», это означает, что кабель / провод находится в «хорошем состоянии». С другой стороны, если показание счетчика «Бесконечно», это показывает, что кабель / провод может быть поврежден или поврежден. Поэтому вам нужно заменить его на новый.

Кнопки переключателя / кнопки

Используйте тот же метод (упомянутый выше для проверки кабеля и проводов)… для правильного выполнения этого метода вам нужно будет применить этот метод в обоих случаях (положения ВКЛ и ВЫКЛ) на переключателях и нажимные кнопки… Другими словами, сначала примените этот метод к переключателям / кнопкам, а затем «нажмите» кнопку и выполните тот же метод еще раз.

При первой попытке, если показание счетчика «Ноль», а во второй попытке показание счетчика бесконечно, это означает, что кнопка «Переключатель / Кнопка» находится в хорошем состоянии. Если показание мультиметра «Ноль» или «Бесконечно» в обеих попытках, это означает, что переключатель находится в состоянии короткого замыкания или разрыв цепи и вы должны заменить его на новый.

Предохранитель

Для проверки состояния предохранителя, т. Е. «Предохранитель» в хорошем состоянии или поврежден? ... Мы выполняем тот же метод, т.е. тест на непрерывность, как указано выше.Короче говоря, если показание счетчика «Ноль», это означает, что предохранитель в хорошем состоянии. Если показания мультиметра бесконечны, это означает, что целостность предохранителя может быть нарушена или перегорела. Поэтому вы должны немедленно заменить его на новый.

Testing Electrical and Electronics Components and Devices with Multimeter Testing Electrical and Electronics Components and Devices with Multimeter Конденсатор

Мы уже обсуждали тему «Как проверить конденсатор с цифровым (мультиметр) и аналоговым (AVO Meter), четырьмя (6) методами с графическими представлениями.

В этом руководстве вы можете проверить с помощью цифрового мультиметра или измерителя AVO, хороший ли конденсатор, короткий или открытый?

Диод и светодиод

Мы обновили подробный пост о том, «Как проверить диод с помощью цифрового и аналогового мультиметра» четырьмя методами.В этом уроке по мультиметру мы показали разные вещи о диодах, такие как использование режима диода в DMM и режима сопротивления в DMM и AMM для идентификации клемм диода, светодиода и стабилитрона. Кроме того, вы также можете проверить, хороший ли диод, плохой, короткий или открытый.

Транзистор

В другом подробном учебном пособии по мультиметру «Как проверить транзистор с помощью мультиметра (DMM + AVO)» вы можете найти базу, коллектор и эмиттер транзистора с помощью цифрового и аналогового мультиметра.Кроме того, существует простой способ запомнить направление транзисторов NPN и PNP. Короче говоря, в этом руководстве вы сможете использовать мультиметр в режиме сопротивления (цифровой + аналоговый мультиметр) или в режиме hFE / бета (только цифровой мультиметр) для проверки транзистора, если он исправен, неисправен, короток или открыт.

Аккумулятор

В учебном пособии по базовому тестеру, «Как проверить аккумулятор с помощью тестера?» Вы сможете определить, находится ли аккумулятор в хорошем состоянии, заряжен, нуждается в зарядке, низком заряде / токе, высоком заряде / токе или он неисправен и требует замены на новый.

Резистор и сгоревшие резисторы

Чтобы проверить, находится ли резистор в хорошем состоянии или он поврежден, мы используем мультиметр. Для этого возьмите измеритель AVO (или цифровой мультиметр) и выберите «Сопротивление» (в измерителе AVO… Поверните ручку на «Ω» или «Сопротивление»). Теперь подключите оба конца резистора к клеммам AVO или цифрового мультиметра. Если показания счетчика показывают точное значение сопротивления или с процентным допуском, это означает, что резистор находится в «хорошем состоянии».

Например, 1 кОм = 1000 Ом с допуском 5% будет показывать значение около 950 Ом - 1050 Ом. С другой стороны, если показания счетчика «Бесконечные», это показывает, что резистор может быть поврежден или сломан и разомкнут. Поэтому вам нужно заменить его на новое (точное значение).

Полезно знать:

Вы также можете проверить значение сгоревшего резистора с помощью цифрового или аналогового мультимера с помощью следующих трех удобных способов.

Связанный пост: Как найти значение сгоревшего резистора (тремя удобными способами)

катушек реле и реле SSR

Для проверки катушек SSR (твердотельного реле) и электромеханического реле с использованием мультиметра, вы должны будете следовать подробное и пошаговое руководство «Как протестировать реле? Проверка SSR и катушечных реле »

Общие меры предосторожности

  • Отключите источник питания перед проверкой, обслуживанием, ремонтом или установкой электрического оборудования и устройств.
  • Всегда, выберите более высокое значение в цифровом или аналоговом мультиметре, а затем постепенно уменьшайте его до нужного клапана.
  • Никогда не пытайтесь работать на электричестве без надлежащего руководства и ухода.
  • Прочитайте все инструкции и предостережения и строго следуйте им.
  • Автор не несет ответственности за какие-либо убытки, травмы или ущерб, возникшие в результате отображения или использования этой информации, а также за попытку использования любой схемы в неправильном формате, поэтому, пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.

Примечание. Это базовое учебное пособие по мультиметру необходимо обновить с помощью нового метода тестирования с DMM + AMM ... Оставайтесь на связи.

Связанные учебники:

.
Как проверить транзистор с помощью мультиметра (DMM + AVO) - NPN & PNP

Как найти базу, коллектор, излучатель, направление и состояние транзистора с помощью мультиметра

Как запомнить направление PNP и NPN Транзистор и идентификация контактов, проверьте, хорошо это или плохо.

Если вы выберете эту простую тему с помощью цифрового (DMM) или аналогового (AVO) мультиметра, вы сможете:

  • Запомните направление транзисторов NPN и PNP
  • Определите базу, коллектор и эмиттер Транзистор
  • Проверьте транзистор, если он хороший или плохой.

Запомните направление PNP и NPN Транзистор

How to remember the direction of PNP and NPN Transistor & Pin Identification, Check if it is Good or Bad. How to remember the direction of PNP and NPN Transistor & Pin Identification, Check if it is Good or Bad.

PNP = указано в
NPN = не указано в.
, если вы думаете, что это немного сложно, попробуйте этот ... это более просто. Remember the direction of PNP & NPN Transistor Remember the direction of PNP & NPN Transistor

Нажмите на изображение, чтобы увеличить.

PNP NPN
P = Точки N = Никогда
N = IN P = Точки
P = Постоянно N = iN

Проверить транзистор с цифровым мультиметром в режиме диодов или непрерывности

To to Итак, следуйте инструкциям, приведенным ниже.

  1. Извлеките транзистор из цепи, т. Е. Отключите источник питания через транзистор, который необходимо проверить. Разрядите весь конденсатор (закорачивая выводы конденсатора) в цепи (если есть).
  2. Установите измеритель в режим «Диодный тест», повернув поворотный переключатель мультиметра.
  3. Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) измерительный вывод к 2-й клемме (рис. Ниже). Вы должны выполнить 6 тестов, подключив черный (-Ve) тестовый вывод и красный (+ Ve) тестовый вывод к 1 к 2, от 1 до 3, от 2 до 1, от 2 до 3, от 3 до 1, от 3 до 2 соответственно: просто замените измерительные провода мультиметра или поменяйте местами клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показано ниже).Цифры красного цвета обозначены красным тестовым выводом, а черные номера связаны с черным (-Ve) измерительным проводом мультиметра.
  4. Проверьте, измерьте и запишите показания дисплея, показанные на мультиметре в таблице ниже. Check Transistor with Digital Multimeter in Diode or Continuity Mode Check Transistor with Digital Multimeter in Diode or Continuity Mode

У нас есть следующие данные из таблицы, приведенной ниже.

Из 6 тестов мы получили данные и результаты только по двум тестам, то есть пунктам 2–1 и 2–3. Мы получили точки 2–1 с 0,733 В постоянного тока и с 2 до 3 0,728 В постоянного тока. Теперь мы можем легко найти тип транзистора, а также его коллектор, базу и эмиттер.

  1. Точка 2 - транзисторная база в транзисторе BC55.
  2. BC 557 - это транзистор PNP, в котором 2 и (средняя клемма является базой) подключены к красному (+ Ve) измерительному выводу мультиметра.
  3. В целом, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор PNP BC 557), поскольку результат теста для 2-1 = 0,733 В пост. Тока и 2-3 = 0,728 В пост. Тока, т.е. 2-1 > 2-3.
BC 557 PNP Checking BC 557 PNP Transistor Checking BC 557 PNP Transistor Точки измерения Результат
1-2 OL
1-3 OL
2-1 0.733 В постоянного тока
2-3 0,728 В постоянного тока
3-1 OL
3-2 OL
Поиск базы транзистора :

Как указано в В приведенном выше руководстве общее число, найденное в приведенных выше тестах, является базовым. В нашем случае терминал 2 и является базовым, а 2 - общим из 1-2 и 2-3.

2 и Метод с использованием цифрового мультиметра для поиска базы транзистора.

Если вы будете следовать одному и тому же шаблону и методу подключения выводов мультиметра и транзисторных клемм по одному на рисунке, показанном выше, на рис. «С» и «d», красный (+ Ve) измерительный провод подключен к среднему. я.е. 2 nd выводов и черный (-Ve) измерительный вывод подключен к 1 st одному выводу транзистора.

Опять же, красный (+ Ve) измерительный вывод подключен к среднему, то есть к клемме 2 nd , а черный (-Ve) измерительный вывод подключен к 3 rd одной клемме транзистора и показывает мультиметр некоторое чтение то есть 0,717 В постоянного тока и 0,711 В постоянного тока соответственно в случае BC 547 NPN.

Общий провод - 2 и , подключенный к красному (+ Ve) измерительному выводу (i.е. P и да, два других отведения - это N), что является основанием. Случай обратный в случае транзистора PNP BC 557.

NPN или PNP?

Это просто. Если черный (-Ve) измерительный провод мультиметра подключен к базе транзистора (в нашем случае клемма 2 и ), то это PNP-транзистор , а когда красный (+ Ve) измерительный провод подключен к База терминала, это NPN транзистор .

BC 547 NPN and BC557 PNP Transistor Checking BC 547 NPN and BC557 PNP Transistor Checking

Эмиттер или коллектор?

Прямое смещение EB (эмиттер - база) больше CB (коллектор - база) i.е. EB> CB в PNP Транзисторе, например BC 557 NPN. Следовательно, это резистор типа PNP. В NPN-транзисторе прямое смещение BE (база-эмиттер) больше, чем BC (база-коллектор), т.е. BE> BC, например, BC 547 PNP.

Вот заключение.

  1. Точка 2 - транзисторная база в BC547 Транзистор
  2. BC 547 - NPN-транзистор, в котором 2 и (средняя клемма является базой) подключены к красному (+ Ve) измерительному выводу мультиметра.
  3. В общем, клемма 1 = эмиттер, клемма 2 = база и клемма 3 = коллектор (транзистор NPN BC 547), потому что результат теста для 1-2 = 0.717 В постоянного тока и 2-3 = 0,711 В постоянного тока, то есть 1-2> 2-3.
BC 547 NPN Checking BC 547 NPN Transistor Checking BC 547 NPN Transistor Точки измерения Результат
1-2 0,717 В постоянного тока
1-2 OL
1-3 OL
1-3 OL
2-3 OL
2-3 0,711 В постоянного тока

Проверить транзистор с аналоговым или цифровым мультиметром в Ом ( Ω) Диапазон режима:

Шаги:

  1. Отсоедините источник питания от цепи и отсоедините транзистор от цепи.
  2. Поверните селекторный переключатель и переведите ручку мультиметра в диапазон ом (900 Ом).
  3. Подключите черный (общий или -Ve) измерительный провод мультиметра к 1-й клемме транзистора, а красный (+ Ve) - к 2-й клемме ( Рис 1 (а). (Вы должны выполнить 6 тестов, подключив черный (-Ve) измерительный провод к 1 к 2, от 1 до 3, от 2 до 1, от 2 до 3, от 3 до 1, от 3 до 2 соответственно, просто замените измерительные провода мультиметра или поменяйте местами клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показано ниже).(Цифрами красного цвета обозначены выводы транзистора, подключенного к тестовому выводу мультиметра Red (+ Ve) , а цифрами черного цвета показаны выводы транзистора, подключенного к тестовому выводу черного (-Ve) мультиметра. (Лучше объяснение в таблице и на рис. ниже)
  4. Если мультиметр показывает высокое сопротивление как в первом, так и во втором тестах путем изменения полярности транзистора или мультиметра, как показано на рис. 1 (а) и (b). (Обратите внимание, что результат будет показан только для 2 тестов из 6, как указано выше).т.е. в нашем случае, клемма 2 и транзистора является BASE, потому что она показывает высокое сопротивление в обоих тестах с 2 по 3 и с 3 по 2, где красный (+ Ve) измерительный вывод мультиметра подключен к 2 -му Клемма транзистора. Другими словами, общее число в тестах - это Base, которое составляет 2 из 1, 2 и 3.

Нажмите для увеличения изображения

Check Transistor with Analog or Digital Multimeter in Ohm (Ω) Range Mode: Check Transistor with Analog or Digital Multimeter in Ohm (Ω) Range Mode:

PNP или NPN?

Теперь это NPN-транзистор, потому что он показывает чтение только тогда, когда КРАСНЫЙ (+ Ve) измерительный провод (i.е. Клемма P, где P = Положительный) подключена к базе транзистора (см. Рис. Ниже). Если вы делаете обратное, то есть черный (-Ve) тестовый вывод (т.е. N = где N = отрицательный) мультиметра, подключенного к клемме транзистора в последовательности (от 1 до 2 и от 2 до 3), и показывает показания в обоих тестах, как указано выше , Терминал 2 и по-прежнему BASE, но транзистор PNP (см. Рис. Ниже).

Проверочный транзистор в цифровом мультиметре с транзистором или hFE или бета-режимом

hFE, также известный как бета-усиление постоянного тока, обозначает «Коэффициент усиления прямого тока гибридного параметра, общий эмиттер», используемый для измерения hFE транзистора, который можно найти. по следующей формуле.

h FE = β DC = I C / I B

Он также может использоваться для проверки транзистора и его выводов, как показано на рис. 1.

Для проверки транзистор в режиме hFE, в мультиметре имеется 8-контактный слот, обозначенный PNP и NPN, а также ECB (эмиттер, коллектор и база). Просто вставьте три контакта транзистора в слот мультиметра один за другим в разные слоты, т. Е. ECB или CBE (поворотная ручка должна работать в режиме hFE).

Если они отображают показания (это будет ч FE показания транзистора), В нашем примере мы использовали транзистор BC548, который показывает бета-значение 368 (положение CBE) текущей позиции на C, B, Слот E - это точные клеммы транзистора (т.е. коллектор, база и эмиттер), а транзистор находится в хорошем положении, в противном случае замените его на новый. Check Transistor in Digital Multimeter with Transistor or hFE or Beta Mode Check Transistor in Digital Multimeter with Transistor or hFE or Beta Mode

Похожие сообщения:

.

Отправить ответ

avatar
  Подписаться  
Уведомление о