Как прозвонить двигатель мегаомметром: Как прозвонить двигатель мегаомметром — Морской флот

Содержание

Как прозвонить двигатель мегаомметром — Морской флот

Мы смотрим на прибор для измерения сопротивления изоляции, называемый «Мегомметр». Назначение этого прибора – проверить сопротивление обмоток таких устройств, как электродвигатель, используя достаточно высокое напряжение. Вы видите три предела настроек для измерения: 250 вольт, 500 вольт и 1000 вольт. Нам нужны такие высокие напряжения, чтобы мы могли обнаружить определенные типы неисправностей. Я собираюсь показать это, используя двигатель мощностью 5 кВт. Это неисправный двигатель, он был снят при обслуживании, потому что имеет замыкание на землю одной из обмоток. Я покажу, как это проверить, с помощью мегомметра. Сначала я собираюсь взять зажим земли мегомметра, и присоединить его к корпусу двигателя. Далее прямо здесь смотрим на трехфазные обмотки на выходе из распределительной коробки двигателя. У меня есть синий, оранжевый и белый провод, и я собираюсь измерить сопротивление моим измерителем сопротивление изоляции между этими фазами и землей. При проведении измерений соблюдаем технику безопасности, потому что во время работы мегомметр выдает высокое напряжение, Я соединю измерительный щуп прибора и оголенный конец фазного провода, щуп надо удерживать только одной рукой за изолированную часть. Для запуска мегомметра нажмите на оранжевую кнопку. Итак, делаем замеры . нажав кнопку, мы видим, что стрелка качнулась до упора вправо. Так как прибор стоит на оранжевом диапазоне измерений, мы будем считывать показания по верхней части шкалы, и стрелка в правой части шкалы означает нулевое значение Ом. Это неисправность, мы не должны иметь ноль Ом. Между фазовой обмоткой и корпусом должно быть очень большое сопротивление. Я сделаю это снова на другой фазе обмотки, я присоединю к ней щуп и нажму кнопку – вы видите, что она также показывает ноль. И, конечно на последней обмотке будут такие же показания. Я говорю – конечно, потому что это не имеет значения, какая обмотка замкнула на корпус. Это измерение можно сделать на любом выводе фазной обмотки, так как они соединены вместе внутри двигателя, и пробой в любом месте обмотки даст одинаковые показания сопротивления изоляции на корпус. Теперь, чтобы доказать вам, что высокое напряжение действительно имеет значение и имеет значение для наших измерений, я переключу прибор в низковольтный диапазон. В зеленом режиме, прибор работает как обычный ом метр. И как обычный ом метр он использует очень низкое напряжение для проверки сопротивление. Чтобы показать вам, как это работает я присоединю зажим земля к корпусу двигателя и вы что стрелка остается на левой стороне шкалы, потому что на зеленой шкале «справа» бесконечность, и «слева» ноль . Итак, при «КЗ» стрелка будет на левой стороне шкалы и при «обрыве» – стрелка будет в правой части шкалы при этом низком значении выставленного напряжения. Помня об этом, я снова соединяю щуп с фазной обмотклй . и нажимаю кнопку «Проверить». Обратите внимание, что стрелка ушла вправо, мы помним, что в это означает «обрыв», и это указывает, что обмотка хорошая. Просто, чтобы убедиться, что я отсоединю щуп и нажму еще раз кнопку, стрелка остается справа, прибор показывает «разомкнуто». Другими словами – короткое замыкание на корпус не обнаруживается в режиме пониженного напряжения, но может быть обнаружено в режиме высокого напряжения. Я присоединю щуп еще раз – просто чтобы доказать, что это работает, щуп присоединен – я нажимаю кнопку, стрелка поворачивается вправо, что означает нулевое значение Ом или низкое сопротивлением. В режиме высокого напряжения, я отсоединю щуп, чтобы посмотреть, что происходит, – стрелка сдвигается влево, что означает «большое сопротивление». Итак, я ясно вижу, что есть неисправность в этом моторе при использовании высокого напряжения, но я не вижу неисправности при низкое значении напряжения. И именно в этом уникальная ценность измерителя сопротивления изоляции под названием мегомметр.
_

Как проверить состояние обмотки электрического двигателя

На 1-ый взор обмотка представляет кусочек проволоки смотанной спецефическим образом и в ней нечему особо ломаться. Но у нее есть особенности:

серьезный подбор однородного материала по всей длине;

четкая калибровка формы и поперечного сечения;

нанесение в промышленных критериях слоя лака, владеющего высочайшими изоляционными качествами;

крепкие контактные соединения.

Если в каком-либо месте провода нарушена хоть какое из этих требований, то меняются условия для прохождения электронного тока и двигатель начинает работать с пониженной мощностью либо вообщем останавливается.

Чтоб проверить одну обмотку трехфазного мотора нужно отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из 2-ух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются знаками «Н» (начало) и «К» (конец). Время от времени отдельные соединения могут быть спрятаны снутри корпуса, а для выводов употребляются другие методы обозначения, к примеру, цифрами.

У трехфазного мотора на статоре употребляются обмотки с схожими электронными чертами, владеющими равными сопротивлениями. Если при замере омметром они демонстрируют различные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Зрительно оценить качество обмоток не представляется вероятным из-за ограниченного допуска к ним. На практике инспектируют их электронные свойства, беря во внимание, что все неисправности обмоток появляются:

обрывом, когда нарушается целостность провода и исключается прохождение электронного тока по нему;

маленьким замыканием, возникающем при нарушении слоя изоляции меж входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

Читайте так же

межвитковым замыканием, когда изоляция нарушается меж одним либо несколькими близлежащими витками, которые этим выводятся из работы. Смотри Проверка мегаомметром Как проверить a21k-m596 Шаговый двигатель,. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электронное сопротивление и не создавая ими определенной работы;

пробоем изоляции меж обмоткой и корпусом статора либо ротора.

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Устройство покажет огромное сопротивление — ∞, которое учитывает образованный разрывом участок воздушного места.

Проверка обмотки на возникновение короткого замыкания

Двигатель, снутри электронной схемы которого появилось куцее замыкание, отключается защитами от сети питания. Но, даже при резвом выводе из работы таким методом место появления КЗ отлично видно зрительно за счет последствий воздействия больших температур с ярко выраженным нагаром либо следами оплавления металлов.

При электронных методах определения сопротивления обмотки омметром выходит очень малая величина, очень приближенная к нулю. Ведь из замера исключается фактически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это более сокрытая и трудно определяемая неисправность. Как проверить 127В проверяйте мегаомметром, трехфазный двигатель работает. Для ее выявления можно пользоваться несколькими методиками.

Способ омметра

Устройство работает на неизменном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков делает существенно огромную индуктивную составляющую.

При замыкании 1-го витка, а их полное количество может быть несколько сотен, изменение активного сопротивления увидеть очень трудно. Ведь оно изменяется в границах нескольких процентов от общей величины, а тотчас и меньше.

Проверка электродвигателя

мегаомметром

Сопротивление изоляции обмоток статора электродвигателя с рабочим напряжением до 500в проверяется напряже.

Как правильно и безопасно

проверить асинхронный электродвигатель

показана пошаговая аннотация для проверки асинхронного электродвигателя, также переключение его на.

Можно испытать точно откалибровать устройство и пристально измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.

Более четкие результаты позволяет получить мостовой способ измерения активного сопротивления, но это, обычно, лабораторный метод, труднодоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании меняется соотношение токов в обмотках, проявляется лишний нагрев статора. У исправного мотора токи схожи. Потому прямое их измерение в действующей схеме под нагрузкой более точно отражает реальную картину технического состояния.

Измерения переменным током

Найти полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда может быть. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы мотора можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток дозволит токоограничивающий резистор либо реостат соответственного номинала.

При выполнении замера обмотка находится снутри магнитопровода, а ротор либо статор могут быть извлечены. Баланса электрических потоков, на условие которого проектируется двигатель, не будет. Потому употребляется пониженное напряжение и контролируются величины токов, которые не должны превосходить номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Как проверить Асинхронный трёхфазный двигатель с корпуса измерялось мегаомметром на. Его остается сопоставить с чертами других обмоток.

Эта же схема позволяет снять вольтамперные свойства обмоток. Просто нужно выполнить замеры на различных токах и записать их в табличной форме либо выстроить графики. Если при сопоставлении с подобными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Метод основан на разработке вращающегося электрического поля исправными обмотками. Для этого на их подается трехфазное симметричное напряжение, но непременно пониженной величины. С этой целью обычно используют три схожих понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки опыт проводят краткосрочно.

Маленькой металлической шарик от шарикоподшипника вводят во крутящееся магнитное поле статора сходу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превосходить ток в обмотках больше номинальной величины и следует учесть, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

Читайте так же

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это сделает труднее корректность сборки.

На практике для поиска полярности употребляются 2 метода:

1. при помощи маломощного источника неизменного тока и чувствительного амперметра, показывающего направление тока;

2. способом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На наружной поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых нужно найти.

При помощи омметра вызванивают и отмечают вывода, относящиеся к каждой обмотке, к примеру, цифрами 1, 2, 3. Потом произвольно маркируют на хоть какой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой в центре шкалы, способной указывать направление тока.

Минус батарейки агрессивно подключают к концу выбранной обмотки, а плюсом краткосрочно прикасаются к ее началу и сходу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электрической индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. На практике достаточно проверить мегаомметром трехфазный двигатель в. При этом, если полярность обмоток угадана верно, то стрелка амперметра отклонится на право при начале импульса и отойдет на лево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто спутана. Остается только промаркировать выводы 2-ой обмотки.

Еще одна 3-я обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Тут тоже сначала вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Потом произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, к примеру, на 12 вольт.

Две оставшиеся обмотки случайным образом скручивают в одной точке 2-мя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в другие обмотки с таковой же величиной, так как у их равное число витков.

За счет поочередного подключения 2-ой и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток данная величина будет составлять 24 вольта, а при разной полярности — 0.

Остается промаркировать все концы и выполнить контрольный застыл.

В статье дан общий порядок действий при проверке технического состояния какого-то случайного мотора без определенных технических черт. Они в каждом личном случае могут изменяться. Смотрите их в документации на ваше оборудование.

Электродвигатели используются практически везде: как автомобилестроении, так и в других областях промышленности. Однако, как и любые агрегаты, они имеют свой срок службы и их периодически необходимо проверять. Одним из приборов, который позволяет выявить неисправности, является мегаомметр. Как мегаомметром проверить двигатель, расскажем ниже.

Чаще всего используются два вида электрических двигателей: асинхронные и коллекторные.

Прозвонка асинхронного двигателя мегаомметром

Им чаще всего оборудованы приборы бытового использования. Измерение сопротивления изоляции электродвигателя мегаомметром производится следующим образом:

  1. Проводим замеры сопротивления между выводами двигателя. Переводим прибор в режим до 100 Ом. После этого подключаем мегаомметр. Между крайним и средним выводом сопротивление должно быть от 30 до 50 Ом, а между вторым и крайним – до 20. Если такие значения получены во время прозвона, то двигатель исправен.
  2. Для исключения утечки тока на «массу» мегаомметр переводится в положение до 2000 Ом. Каждая клемма соединяется щупами с корпусом самого двигателя. Если никаких отклонений не произошло, то такой двигатель исправен.

Проверка коллекторного электродвигателя мегаомметром

Проводить измерения такого двигателя можно, только полностью его разобрав.

  1. Соединяем щупы с каждым выводом. Если будет выявлено отсутствие сопротивления, то такой двигатель неисправен и его требуется заменить.
  2. Проверяем ротор. Переводим прибор в положение до 200 Ом и располагаем щупы на максимальном расстоянии. Фактически щупы занимают место щеток и таким образом всё прозванивается. Для ускорения процесса можно вручную поворачивать ротор, до прикосновения каждой обмотки с щупом.

Если мегаомметр показывает примерно одинаковые значения, то двигатель абсолютно исправен и нареканий к нему быть не может.

Как прозвонить электродвигатель мегаомметром?

Проверка мегомметром сопротивления изоляции двигателя Мы смотрим на прибор для измерения сопротивления изоляции, называемый «Мегомметр». Назначение этого

Проверка электродвигателя

мегаомметром

Сопротивление изоляции обмоток статора электродвигателя с рабочим напряжением до 500в проверяется напряже.

Источник: http://morflot.su/kak-prozvonit-dvigatel-megaommetrom/

Как проводить измерения мегаомметром

Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье.

Источник: http://tractor-sale.ru/dvigatel/kak-prozvonit-dvigatel-megaommetrom.html

Как проводится измерение сопротивления изоляции кабельных линий мегаомметром

Кабельные линии перед началом работ, а также с определенной периодичностью, проверяются на эксплуатационные характеристики, одна из которых сопротивление изоляции. Именно данная характеристика определяет, сможет ли кабель выдерживать токовые нагрузки, не перегреется ли он и не прогорит ли. Проверка сопротивления изоляции производится мегаомметром. Прибор этот не самый сложный в плане использования, но некоторые моменты применения требуют знаний. Итак, как провести измерение сопротивления изоляции кабельных линий мегаомметром.

Источник: http://NpfGeoProm.ru/tehnologii/kak-proverit-dvigatel-megaommetrom.html

Как пользоваться мультиметром?

Друзья, всем привет! Сегодня приобрел мультиметр и хотел пару слов рассказать про этот прибор, для чего он нужен и как им пользоваться. Мультиме́тр комбинированный электроизмерительный прибор, объединяющий в себе несколько функций.

включает функции вольтметра (для измерения напряжения), амперметра (для измерения тока) и омметра (для измерения сопративления

), имеет функции прозвонки и функции узмерения температурой термопарой.

Иногда мульмиметр выполняется в виде токоизмерительных клещей. Существуют цифровые и аналоговые мультиметры.

Важно

Я преобрел мультимерт с измерением температуры и звуковой прозвонкой. Перед началом работы вставляем черный щуп в самое нижнее гнездо прибора с надписью СОМ), а красный щупт в среднее. При замере силы тока красный щуп переставляем в верхнее гнездо.

1. Итак начнем с измерения напряжения. Напряжение, как мы знаем, бывает постоянное и переменное. К постоянному напряжению относятся батарейки, аккумуляторы, зарядные устройства.

Измерять будем при помощи обычной батарейки. Заранее нам известно что напряжение равно 1,5 вольта соответственно выбираем диапозон.

Источник: http://ToolsTver.ru/osnastka/tipy-megaommetrov.html

Проверка электродвигателя внешним осмотром

До того как проверить обмотку электродвигателя мультиметром, нужно исследовать отключенный от сети мотор вместе со шнуром питания для поиска механических повреждений, следов пробоя изоляции или перегрева. Ось двигателя должна вращаться в подшипниках легко, без заеданий или заклиниваний. Не должно быть запаха горелой изоляции, растеканий масла, наплывов.

Отсутствие видимых повреждений может потребовать разборки двигателя для осмотра графитовых щеток, контактных ламелей, состояния катушек, их выводов. Замыкание электрической цепи вызывает нагрев, что проявляется в хорошо видимых изменениях цвета вблизи пробоя изоляции.

Источник: http://voronezh-tehnika.ru/tehosnastka/kak-prozvonit-dvigatel.html

Принцип действия электродвигателя

В основу функционирования электродвигателя положен закон Ампера, согласно которому на провод, который находится в магнитном поле и через который протекает электрический ток, всегда воздействует механическая сила F.

Схема создания усилия, действующего на проводник в магнитном поле

Ее направление определяется известным по школьному курсу физики правилом левой руки, то есть зависит от соотношения направлений протекания тока и ориентации силовых линий магнитного поля, а значение – от силы тока и значения индукции магнитного поля в области его взаимодействия с проводником.

Еще одним средством увеличения силы, действующей на проводник, является наращивание его эффективной длины, для чего цепь протекания тока формируется в форме многовитковой обмотки. За счет этого усилие, развиваемое отдельными витками, суммируется.

Разновидность источника магнитного поля значения не имеет. Это может быть как постоянный магнит, так и его электромагнитный аналог.

Эффективность функционирования электромагнита наращивается сердечником, который фактически концентрирует магнитное поле и подает его в ту область, которая соответствует наибольшему развиваемому усилию.

Источник: http://NpfGeoProm.ru/tehnologii/kak-proverit-dvigatel-megaommetrom.html

Проверить сопротивление изоляции электродвигателя

Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.

Источник: http://tractor-sale.ru/dvigatel/kak-prozvonit-dvigatel-megaommetrom.html

Какие электромоторы можно проверить мультиметром?

Существуют разные модификации электрических двигателей, и перечень их возможных неисправностей достаточно велик. Большинство неполадок можно диагностировать, воспользовавшись обычным мультиметром, даже если вы не специалист в этой области.

Современные электродвигатели разделяются на несколько видов, которые перечислены ниже:

  • Асинхронный, на три фазы, с короткозамкнутым ротором. Этот тип электрических силовых агрегатов является самым популярным благодаря простому устройству, которое обеспечивает легкую диагностику.
  • Асинхронный конденсаторный, с одной или двумя фазами и короткозамкнутым ротором. Такой силовой установкой обычно оснащается бытовая техника, запитывающаяся от обычной сети на 220В, наиболее распространенной в современных домах.
  • Асинхронный, оснащенный фазным ротором. Это оборудование имеет более мощный стартовый момент, чем моторы с короткозамкнутым ротором, в связи с чем его используют как привод в крупных силовых устройствах (подъемники, краны, электростанки).
  • Коллекторный, постоянного тока. Такие двигатели широко используются в автомобилях, где они играют роль привода вентиляторов и насосов, а также стеклоподъемников и дворников.
  • Коллекторный, переменного тока. Этими моторами оснащается ручной электроинструмент.

Первый этап любой диагностики – визуальный осмотр. Если даже невооруженным взглядом видны сгоревшие обмотки или отломанные части мотора, понятно, что дальнейшая проверка бессмысленна, и агрегат нужно везти в мастерскую. Но зачастую осмотра недостаточно, чтобы выявить неполадки, и тогда необходима более тщательная проверка.

Источник: http://NpfGeoProm.ru/tehnologii/kak-proverit-dvigatel-megaommetrom.html

Измерение сопротивление изоляции электродвигателя

Проверку изоляции производят разными способами.

Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение «мегаомы»;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около «0»;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра – 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях – 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

При появлении шума, стуков, дыма или «плавающих» показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Источник: http://avtika.ru/kak-megommetrom-proveryaetsya-elektro-dvigatel/

Другие виды проверок

Проверить исправность двигателя можно и другими способами. Есть специальные устройства, позволяющие проверять якоря двигателей постоянного тока. Нужно приложить движок к специальной призме прибора, а затем включить его в сеть. В процессе диагностики нужно медленно поворачивать двигатель. О межвитковом замыкании свидетельствует вибрация и притягивание межвиткового полотна к пазу.

Для того, чтобы быстро проверить движок можно использовать специальные рабочие стенды. Это особая конструкция, состоящая из источника постоянного тока, инвертора, цифрового вольтметра, компаратора напряжения, светового индикатора и зуммера, сигнализирующего об обрыве.

Смотрите также:

Как купить квартиру в Ростове-на-Дону? https://euroelectrica.ru/kak-kupit-kvartiru-v-rostove-na-donu/.

Интересное по теме: Как самому продать квартиру?

Советы в статье “Закладная на квартиру по ипотеке – что это?” здесь.

Стенд можно собрать самостоятельно, но это целесообразно в том случае, если вы занимаетесь диагностикой и ремонтом двигателей постоянного тока. В домашних условиях для проверки достаточно использовать простой тестер, который можно приобрести в любом электротехническом магазине по приемлемой цене.

Источник: http://NpfGeoProm.ru/tehnologii/kak-proverit-dvigatel-megaommetrom.html

Как прозвонить кабель мегаомметром

Прозвонка – определение целостности электрической цепи. Проверку делают:

  • Для контроля правильности сборки схемы перед включением напряжения.
  • Для определения неисправности проводки.
  • Для контроля качества кабеля или провода перед электромонтажными работами.

Прозвонка проводов и кабелей – обязательное требование ПУЭ после проведения монтажа розеток, распределительных коробок, при реконструкции проводки, ремонтных работах. В статье описано, как прозвонить кабель мультиметром и другими способами.

Источник: http://NpfGeoProm.ru/tehnologii/kak-proverit-dvigatel-megaommetrom.html

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Источник: http://tractor-sale.ru/dvigatel/kak-prozvonit-dvigatel-megaommetrom.html

Тестирование двухфазной модели


Статор и многие другие конструктивные элементы двухфазного электрического двигателя имеют свои отличительные признаки, которые и определяют особенности проверки.
К особенностям проверки двухфазного электрического двигателя отнесем следующие моменты:

  1. В этом случае обязательно проверяется сопротивление на корпусе. Слишком низкий показатель указывает на то, что нужно выполнить перемотку статора.
  2. Для получения более точных показателей рекомендуется использовать мегомметр, однако подобный измерительный инструмент встречается дома крайне редко.

Перед тестированием электрического двигателя следует провести визуальный осмотр. Механические повреждения могут привести к серьезным проблемам с работой.

Источник: http://NpfGeoProm.ru/tehnologii/kak-proverit-dvigatel-megaommetrom.html

Как определить межвитковое замыкание в двигателе

Добрая половина всех случаев неисправностей электродвигателей приходится на межвитковое замыкание. Межвитковым замыканием называется короткое замыкание между разными витками одной катушки или секции обмотки электрической машины. Причин межвитковых замыканий может быть несколько.

Причины межвитковых замыканий

Одна из причин межвиткового замыкания — перегрузка электродвигателя по току, когда нагрузка на двигатель в течение значительного промежутка времени превышает номинальную. В этом случае обмотка статора разогревается от чрезмерного тока настолько сильно, что изоляция в каком-то ее месте может разрушиться и способствовать короткому замыканию между соседними витками. Нормальный ток статора под нагрузкой всегда можно посмотреть в паспорте двигателя либо на информационном шильдике на его корпусе.

Перегрузка может случиться, например, из-за нештатного режима эксплуатации оборудования, приводимого в действие данным двигателем. Кроме того причиной токовой перегрузки может стать механическое повреждение непосредственно двигателя: заклинивание ротора, стопорение подшипников и т. д.

Не исключен также заводской брак обмотки, либо нарушение целостности изоляции во время ручной перемотки статора в кустарных условиях. При несоблюдении условий хранения или эксплуатации электродвигателя, случайно попавшая внутрь влага способна навредить изоляции и привести к межвитковому замыканию.

Так или иначе, какой бы ни оказалась причина межвиткового замыкания, с ним пострадавший двигатель нормально работать уже точно не сможет, либо проработает, но недолго. Поэтому при обнаружении симптомов межвиткового замыкания, следует незамедлительно начать его поиск с целью скорейшего устранения.

Как выявить межвитковое замыкание

Существует несколько простых проверенных способов выявить наличие межвиткового замыкания. Симптомом обычно является перегрев одной части статора по отношению ко всем остальным его частям. Если данное явление наблюдается, то двигатель необходимо остановить, если надо — снять с оборудования, и подвергнуть точной диагностике.

Прежде всего можно воспользоваться токовыми клещами. Достаточно по очереди измерить токи каждой из фаз обмотки статора, и если в одной из них ток существенно больше чем в остальных, то это — явный признак того, что место замыкания находится в соответствующей части обмотки. Предварительно необходимо убедиться, что напряжение на все выводы (между каждой парой из трех фаз) подается одинаковое, то есть проверить отсутствие перекоса фаз. Для этого пользуются вольтметром, поочередно измеряют напряжения на трех фазах.

Три части трехфазной обмотки следует прозвонить омметром. Сопротивления всех трех обмоток по-отдельности должны быть одинаковыми. Используемый прибор должен обладать достаточно высокой точностью, ведь если имеет место замыкание всего между двумя витками, то различие в сопротивлениях будет минимальным, и его невозможно будет различить если обмотка выполнена толстым проводом.

Наличие замыкания на корпус можно проверить при помощи мегаомметра. Для этого один щуп прибора прикладывается к корпусу двигателя, второй — поочередно к каждому из выводов обмоток. В исправном двигателе сопротивление на каждой из фаз должно быть значительным (смотрите — Как правильно пользоваться мегаомметром ).

Не будет лишним визуально рассмотреть обмотку статора. Чтобы это сделать, нужно будет снять с двигателя крышки, вытащить ротор и внимательно рассмотреть всю обмотку секция за секцией. Если замыкание есть, то подгоревшее место наверняка будет видно сразу.

Если у вас под рукой есть понижающий трехфазный трансформатор на напряжение в районе 40 вольт, то используйте его для проверки целостности статора. Выньте ротор, подключите трансформатор, включите его в сеть. Возьмите железный шарик от подшипника и запустите его в статор, немного ускорив щелчком пальца, так чтобы шарик начал бегать по кругу вслед за вращающимся магнитным полем, имитируя вращение ротора. В случае если шарик остановился и застрял на одном месте статора — значит в этом месте межвитковое замыкание.

Если нет шарика, возьмите пластину трансформаторной стали или железную линейку, приложите ее внутри к статору и перемещайте по кругу. В том месте где пластинка начнет заметно дребезжать — есть межвитковое замыкание. Если межвиткового замыкания нет, то пластинка будет везде примагничиваться к статору. Прежде чем использовать способ с шариком или с пластинкой, убедитесь, что двигатель питается от понижающего трансформатора, иначе можно получить поражение электрическим током.

На первый взгляд обмотка представляет кусок проволоки смотанной определенным образом и в ней нечему особо ломаться. Но у нее есть особенности:

строгий подбор однородного материала по всей длине;

точная калибровка формы и поперечного сечения;

нанесение в заводских условиях слоя лака, обладающего высокими изоляционными свойствами;

прочные контактные соединения.

Если в каком-либо месте провода нарушена любое из этих требований, то изменяются условия для прохождения электрического тока и двигатель начинает работать с пониженной мощностью или вообще останавливается.

Чтобы проверить одну обмотку трехфазного двигателя необходимо отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из двух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются буквами «Н» (начало) и «К» (конец). Иногда отдельные соединения могут быть спрятаны внутри корпуса, а для выводов используются другие способы обозначения, например, цифрами.

У трехфазного двигателя на статоре используются обмотки с одинаковыми электрическими характеристиками, обладающими равными сопротивлениями. Если при замере омметром они показывают разные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Визуально оценить качество обмоток не представляется возможным из-за ограниченного допуска к ним. На практике проверяют их электрические характеристики, учитывая, что все неисправности обмоток проявляются:

обрывом, когда нарушается целостность провода и исключается прохождение электрического тока по нему;

коротким замыканием, возникающем при нарушении слоя изоляции между входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается между одним или несколькими близкорасположенными витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электрическое сопротивление и не создавая ими определенной работы;

пробоем изоляции между обмоткой и корпусом статора или ротора.

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Прибор покажет большое сопротивление — ∞, которое учитывает образованный разрывом участок воздушного пространства.

Проверка обмотки на возникновение короткого замыкания

Двигатель, внутри электрической схемы которого возникло короткое замыкание, отключается защитами от сети питания. Но, даже при быстром выводе из работы таким способом место возникновения КЗ хорошо видно визуально за счет последствий воздействия высоких температур с ярко выраженным нагаром или следами оплавления металлов.

При электрических способах определения сопротивления обмотки омметром получается очень маленькая величина, сильно приближенная к нулю. Ведь из замера исключается практически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это наиболее скрытая и сложно определяемая неисправность. Для ее выявления можно воспользоваться несколькими методиками.

Способ омметра

Прибор работает на постоянном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков создает значительно большую индуктивную составляющую.

При замыкании одного витка, а их общее количество может быть несколько сотен, изменение активного сопротивления заметить очень сложно. Ведь оно меняется в пределах нескольких процентов от общей величины, а подчас и меньше.

Можно попробовать точно откалибровать прибор и внимательно измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.

Более точные результаты позволяет получить мостовой метод измерения активного сопротивления, но это, как правило, лабораторный способ, недоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании изменяется соотношение токов в обмотках, проявляется излишний нагрев статора. У исправного двигателя токи одинаковы. Поэтому прямое их измерение в действующей схеме под нагрузкой наиболее точно отражает реальную картину технического состояния.

Измерения переменным током

Определить полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда возможно. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы двигателя можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток позволит токоограничивающий резистор или реостат соответствующего номинала.

При выполнении замера обмотка находится внутри магнитопровода, а ротор или статор могут быть извлечены. Баланса электромагнитных потоков, на условие которого проектируется двигатель, не будет. Поэтому используется пониженное напряжение и контролируются величины токов, которые не должны превышать номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его останется сравнить с характеристиками других обмоток.

Эта же схема позволяет снять вольтамперные характеристики обмоток. Просто надо выполнить замеры на разных токах и записать их в табличной форме или построить графики. Если при сравнении с аналогичными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Способ основан на создании вращающегося электромагнитного поля исправными обмотками. Для этого на них подается трехфазное симметричное напряжение, но обязательно пониженной величины. С этой целью обычно применяют три одинаковых понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки эксперимент проводят кратковременно.

Небольшой стальной шарик от шарикоподшипника вводят во вращающееся магнитное поле статора сразу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превышать ток в обмотках больше номинальной величины и следует учитывать, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это затруднит правильность сборки.

На практике для поиска полярности используются 2 способа:

1. с помощью маломощного источника постоянного тока и чувствительного амперметра, показывающего направление тока;

2. методом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На внешней поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых надо определить.

С помощью омметра вызванивают и помечают вывода, относящиеся к каждой обмотке, например, цифрами 1, 2, 3. Затем произвольно маркируют на любой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой посередине шкалы, способной указывать направление тока.

Минус батарейки жестко подключают к концу выбранной обмотки, а плюсом кратковременно прикасаются к ее началу и сразу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электромагнитной индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. Причем, если полярность обмоток угадана правильно, то стрелка амперметра отклонится вправо при начале импульса и отойдет влево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто перепутана. Останется только промаркировать выводы второй обмотки.

Очередная третья обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Здесь тоже вначале вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Затем произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, например, на 12 вольт.

Две оставшиеся обмотки случайным образом скручивают в одной точке двумя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в остальные обмотки с такой же величиной, поскольку у них равное число витков.

За счет последовательного подключения второй и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток эта величина будет составлять 24 вольта, а при разной полярности — 0.

Останется промаркировать все концы и выполнить контрольный замер.

В статье дан общий порядок действий при проверке технического состояния какого-то произвольного двигателя без конкретных технических характеристик. Они в каждом индивидуальном случае могут меняться. Смотрите их в документации на ваше оборудование.

Источник: http://tractor-sale.ru/dvigatel/kak-prozvonit-dvigatel-megaommetrom.html

Трудности диагностики

Перед тем как проверить электродвигатель мультиметром, следует провести внешний осмотр корпуса, охлаждающей крыльчатки, проверить температуру прикосновением руки к металлическим поверхностям. Нагретый корпус свидетельствует о завышенном токе из-за проблем с механической частью.

Проанализировать потребуется состояние внутренностей борно, проверить затяжку болтов или гаек. При ненадежном соединении токоведущих частей выход из строя обмоток может произойти в любой момент. Поверхность двигателя должна быть очищена от загрязнений, а внутри отсутствовать влага.

Если рассматривать вопрос, как проверить электродвигатель мультиметром, то нужно учитывать несколько нюансов:

  • Кроме мультиметра понадобятся клещи для бесконтактного замера тока, проходящего через провод.
  • Мультиметром можно измерить только незначительно высокие сопротивления. Для проверки состояния изоляции (где сопротивление — от кОм до МОм) используют мегоомметр.
  • Чтобы сделать выводы о годности мотора, потребуется отсоединить механические узлы (редуктор, насос и другие) либо нужно быть уверенным в полной исправности этих компонентов.

( 2 оценки, среднее 4.5 из 5 )

Источник: http://NpfGeoProm.ru/tehnologii/kak-proverit-dvigatel-megaommetrom.html

Как проверить обмотку электродвигателя

Электродвигатели на автомобиле могут выполнять самые разнообразные функции. Они приводят в действие стеклоочистители и стеклоподъемник, отодвигают люк крыши, позволяют действовать замкам с центральным управлением. Если электродвигатель перестал работать, то, возможно, причина кроется в нарушении целостности его обмотки. Для проверки обмотки существуют специальные приемы и приспособления.

При помощи мегаомметра проверьте сопротивление изоляции обмоток двигателя между корпусом и фазами. Для этого вначале уберите перемычки на клеммнике двигателя (они могут быть выполнены по типу «звезда» или «треугольник»). Проверьте клеммник, замкнув его на корпус, а также между крепежными болтами соединения выводов.

У двигателя с фазным ротором осуществите визуальную проверку изоляции щеткодержателей и контактных колец.

Двигатели с номинальным напряжением менее 127В проверяйте мегаомметром, рассчитанным на 500В. Если номинальное напряжение выше, потребуется мегаомметр на 1000В.

Если по результатам проверки обмотки относительно корпуса и между фазами результаты измерения существенно отличаются, двигатель подлежит ремонту или замене. Вероятнее всего, он работает на двух фазах. Следует считать двигатель неисправным, если сопротивление изоляции обмотки менее 1Мом.

Для проверки возможных межвитковых замыканий используйте специальную аппаратуру, поскольку обычный омметр, даже цифровой, покажет разницу между обмотками лишь при явном и уже видимом на глаз коротком замыкании в витках.

Чтобы измерить обмотку с малым сопротивлением, пропустите через нее постоянный ток от аккумуляторной батареи. При помощи регулировочного реостата установите ток от 0,5-3,0А. После установки тока и до окончания измерений не меняйте положение реостата.

Теперь измерьте падение напряжения и тока, а затем вычислите сопротивление обмотки по формуле R = U/I (где R – сопротивление, U – напряжение, а I – сила тока). Сопротивление обмотки не должно отличаться более чем на 3%. Такой способ подходит и для проверки коллекторного двигателя.

В некоторых случаях определить, что трехфазный двигатель работает на двух фазах, можно путем визуального осмотра. Признаком неисправности будет потемнение в «лобовой» части только тех катушек, на которых было напряжение.

Как проверить электродвигатель? | Кабель.РФ: всё об электрике

На любом предприятии как тяжелой, так и легкой промышленности невозможно обойтись без электродвигателей переменного и постоянного тока, которыми комплектуются различные станки, вентиляторы, насосы и другие механизмы. Такие электрические машины также широко используются и в быту. В процессе эксплуатации этих приборов могут возникать непредвиденные поломки. Поэтому тем, кто хочет заняться их нахождением и устранением самостоятельно, нужно знать, как проверить электродвигатель на исправность.

Асинхронный трехфазный двигатель

Асинхронный трехфазный двигатель

Алгоритм проверки электродвигателей

Прежде, чем перейти к описанию методов выявления возможных неполадок в электродвигателях, напомним, что лучше эту работу поручить специалистам.

Наиболее часто встречающимися неисправностями являются снижение мощности на валу, посторонние шумы при работе, а также неравномерное вращение ротора или его полная остановка. Последние две неполадки могут быть вызваны механическими и электрическими причинами. В первую очередь нужно проверить исправность подшипников и добавить смазку или заменить их в случае необходимости.

Однако причина неполноценной работы двигателя или полного выхода его из строя может носить совершенно другой характер. Неполадки могут быть вызваны замыканием обмоток статора на корпус, короткими и межвитковыми замыканиями или обрывами провода в обмотках.

Замыкание на корпус

Проверка электродвигателя на наличие замыкания обмоток статора на корпус выполняется с помощью специального прибора – мегаомметра, однако при его отсутствии можно воспользоваться мультиметром, выставив предел измерений сопротивления на максимум. Этот метод определения подходит как для двигателей постоянного, так и переменного тока. Перед началом работ двигатель отключается от питающей сети.

Для стрелочного тестера необходимо выполнить калибровку – накоротко замкнуть щупы и выставить стрелку прибора на «ноль». Далее один из щупов прибора надежно фиксируется на корпусе электродвигателя или на винте заземления, который расположен в клеммной коробке. После этого выполняются замеры сопротивления изоляции обмоток. Для этого вторым щупом нужно поочередно прикоснуться к выводам обмоток статора и зафиксировать показатели. Данные измерений не должны быть менее 1 МОм для асинхронных двигателей и 0,5 МОм – для машин постоянного тока.

Проверка сопротивления обмоток мегаомметром

Проверка сопротивления обмоток мегаомметром

Проверка целостности обмоток статора

Зная, как проверить электродвигатель мультиметром, можно без труда выявить короткое замыкание или обрыв провода. Перед началом измерений в трехфазных двигателях нужно снять перемычки, соединяющие концы обмоток. Предел измерений нужно выставить минимальный, так как сопротивление обмоток имеет небольшие величины, особенно у мощных двигателей. Полученные данные не должны отличаться друг от друга.

Если замер в одной из обмоток показывает большое сопротивление, это свидетельствует об обрыве провода в обмотке.

Проверка обмоток трехфазного двигателя

Проверка обмоток трехфазного двигателя

В том случае, когда показания прибора стремятся к «нулю», значит начало и конец обмоток замкнуты накоротко.

В однофазных двигателях с двумя рабочими обмотками перед началом измерений нужно отсоединить пусковой и рабочий конденсаторы. Сопротивление обмоток должно быть одинаковым. В двигателях с пусковой обмоткой, из-за того что она выполняется проводом меньшего сечения, показания мультиметра будут различаться. Сопротивление рабочей обмотки должно быть меньше сопротивления пусковой обмотки на 40-50°С.

Для полноценной диагностики важно знать, как проверить обмотку электродвигателя на наличие межвитковых замыканий. Самым простым способом выявления такой неисправности у трехфазных двигателей являются замеры потребляемого тока каждой фазы в рабочем режиме. У двигателя с наличием межвиткового замыкания в одной из обмоток фактический потребляемый ток будет отличаться от номинального значения более чем на 15°С.

У разобранного двигателя межвитковые замыкания иногда можно определить визуально по наличию почернения и прогаров на изоляции обмоточных проводов в обмотках. Кроме того, существует способ обнаружения межвиткового замыкания с помощью стального шарика. Для этого на обмотки подается пониженное напряжение, после чего в статор вводится небольшой стальной шарик (например, от шарикоподшипника). В двигателях с исправной обмоткой шарик будет совершать вращение вслед за магнитным полем. Если же в обмотке есть межвитковое замыкание – шарик остановится на том месте, где витки соединяются.

Обнаружение межвиткового замыкания с помощью токоизмерительных клещей

Обнаружение межвиткового замыкания с помощью токоизмерительных клещей

Как проверить якорь электродвигателя

В коллекторных двигателях постоянного и переменного тока кроме проверки целостности обмоток статора обязательно нужно протестировать обмотки якоря. Это можно сделать с помощью мультиметра.

Проверка якоря

Проверка якоря

Для этого предел измерений сопротивления устанавливается на минимальное значение. После этого последовательно замеряется сопротивление между двумя соседними ламелями коллектора. Данные измерений не должны отличаться друг от друга.

Последним шагом проверки является измерение сопротивления между корпусом якоря и коллекторными пластинами. Этот показатель должен стремиться к бесконечности. К сожалению, проверить межвитковое замыкание в якоре без специальных приборов не получится.

Если Вам понравился этот материал, поделитесь им в социальных сетях!

Также рекомендуем статью как выбрать сечение кабеля.

Заказать электродвигатель можно на нашем сайте. Менеджеры Кабель.РФ® помогут Вам подобрать нужную марку электродвигателя с учетом Ваших пожеланий и потребностей.

А для того, чтобы не пропустить выход новых статей, ставьте «лайк» и подписывайтесь на наш канал: Кабель.РФ: всё об электрике.

пошаговая инструкция и рекомендации Как проверить эл двигатель

Как проверить состояние обмотки электрического двигателя

На 1-ый взор обмотка представляет кусочек проволоки смотанной спецефическим образом и в ней нечему особо ломаться. Но у нее есть особенности:

серьезный подбор однородного материала по всей длине;

четкая калибровка формы и поперечного сечения;

нанесение в промышленных критериях слоя лака, владеющего высочайшими изоляционными качествами;

крепкие контактные соединения.

Если в каком-либо месте провода нарушена хоть какое из этих требований, то меняются условия для прохождения электронного тока и движок начинает работать с пониженной мощностью либо вообщем останавливается.

Чтоб проверить одну обмотку трехфазного мотора нужно отключить ее от других цепей. Какие электромоторы можно проверить мультиметром? Трехфазный как проверить изоляцию. Во всех электродвигателях они могут собираться по одной из 2-ух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются знаками «Н» (начало) и «К» (конец). Как проверить двигатель мультиметром. Время от времени отдельные соединения могут быть спрятаны снутри корпуса, а для выводов употребляются другие методы обозначения, к примеру, цифрами.


У трехфазного мотора на статоре употребляются обмотки с схожими электронными чертами, владеющими равными сопротивлениями. Если при замере омметром они демонстрируют различные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Зрительно оценить качество обмоток не представляется вероятным из-за ограниченного допуска к ним. На практике инспектируют их электронные свойства, беря во внимание, что все неисправности обмоток появляются:

обрывом, когда нарушается целостность провода и исключается прохождение электронного тока по нему;

маленьким замыканием, возникающем при нарушении слоя изоляции меж входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается меж одним либо несколькими близлежащими витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электронное сопротивление и не создавая ими определенной работы;

пробоем изоляции меж обмоткой и корпусом статора либо ротора.


Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Устройство покажет огромное сопротивление — ∞, которое учитывает образованный разрывом участок воздушного места.

Проверка обмотки на возникновение короткого замыкания

Движок, снутри электронной схемы которого появилось куцее замыкание, отключается защитами от сети питания. Но, даже при резвом выводе из работы таким методом место появления КЗ отлично видно зрительно за счет последствий воздействия больших температур с ярко выраженным нагаром либо следами оплавления металлов.

При электронных методах определения сопротивления обмотки омметром выходит очень малая величина, очень приближенная к нулю. Ведь из замера исключается фактически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это более сокрытая и трудно определяемая неисправность. Для ее выявления можно пользоваться несколькими методиками.

Способ омметра

Устройство работает на неизменном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков делает существенно огромную индуктивную составляющую.

При замыкании 1-го витка, а их полное количество может быть несколько сотен, изменение активного сопротивления увидеть очень трудно. Ведь оно изменяется в границах нескольких процентов от общей величины, а тотчас и меньше.

Как прозвонить электродвигатель

Трёхфазный асинхронный электродвигатель , проверка тестером. На практике довольно проверить электродви.

Расположение контактов трехфазного двигателя и прозвонка обмоток

Рассматриваем размещение концов обмоток трехфазного двигателя , определяем, верно ли они подключены.

Можно испытать точно откалибровать устройство и пристально измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в данном случае не всегда будет видна.

Более четкие результаты позволяет получить мостовой способ измерения активного сопротивления, но это, обычно, лабораторный метод, труднодоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании меняется соотношение токов в обмотках, проявляется лишний нагрев статора. У исправного мотора токи схожи. Потому прямое их измерение в действующей схеме под нагрузкой более точно отражает реальную картину технического состояния.

Измерения переменным током

Найти полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда может быть. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы мотора можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток дозволит токоограничивающий резистор либо реостат соответственного номинала.


При выполнении замера обмотка находится снутри магнитопровода, а ротор либо статор могут быть извлечены. Баланса электрических потоков, на условие которого проектируется движок, не будет. Про то как проверить и двигатель от можно ли поверить мультиметром? И как можно. Потому употребляется пониженное напряжение и контролируются величины токов, которые не должны превосходить номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его остается сопоставить с чертами других обмоток.

Эта же схема позволяет снять вольтамперные свойства обмоток. Просто нужно выполнить замеры на различных токах и записать их в табличной форме либо выстроить графики. Если при сопоставлении с подобными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Метод основан на разработке вращающегося электрического поля исправными обмотками. Как проверить электродвигатель мультиметром пошаговая. Для этого на их подается трехфазное симметричное напряжение, но непременно пониженной величины. С этой целью обычно используют три схожих понижающих трансформатора, работающих в каждой фазе схемы питания.


Для ограничения токовых нагрузок на обмотки опыт проводят краткосрочно.

Маленькой металлической шарик от шарикоподшипника вводят во крутящееся магнитное поле статора сходу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превосходить ток в обмотках больше номинальной величины и следует учесть, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это сделает труднее корректность сборки.

На практике для поиска полярности употребляются 2 метода:

1. при помощи маломощного источника неизменного тока и чувствительного амперметра, показывающего направление тока;

2. способом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На наружной поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых нужно найти.

При помощи омметра вызванивают и отмечают вывода, относящиеся к каждой обмотке, к примеру, цифрами 1, 2, 3. Потом произвольно маркируют на хоть какой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой в центре шкалы, способной указывать направление тока.

Минус батарейки агрессивно подключают к концу избранной обмотки, а плюсом краткосрочно прикасаются к ее началу и сходу разрывают цепь.


При подаче импульса тока в первую обмотку он за счет электрической индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. При этом, если полярность обмоток угадана верно, то стрелка амперметра отклонится на право при начале импульса и отойдет на лево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто спутана. Остается только промаркировать выводы 2-ой обмотки.

Еще одна 3-я обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Тут тоже сначала вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Потом произвольно маркируют концы первой избранной обмотки для подключения к понижающему трансформатору напряжения, к примеру, на 12 вольт.


Две оставшиеся обмотки случайным образом скручивают в одной точке 2-мя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в другие обмотки с таковой же величиной, так как у их равное число витков.

За счет поочередного подключения 2-ой и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. Как проверить датчик парктроника мультиметром (тестером. В нашем случае при совпадении направления обмоток данная величина будет составлять 24 вольта, а при разной полярности — 0.

Остается промаркировать все концы и выполнить контрольный застыл.

В статье дан общий порядок действий при проверке технического состояния какого-то случайного мотора без определенных технических черт. Они в каждом личном случае могут изменяться. Смотрите их в документации на ваше оборудование.

Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производится в целях проверки состояния изоляции и пригодности машины к проведению последующих испытаний. Рекомендуется производить измерение:

в практически холодном состоянии испытуемой машины — до начала ее испытания по соответствующей программе;

независимо от температуры обмоток — до и после испытаний изоляции обмоток на электрическую прочность относительно корпуса машины и между обмотками переменным напряжением.

Измерение сопротивления изоляции обмоток следует проводить: при номинальном напряжении обмотки до 500 В включительно — мегаомметром на 500 В; при номинальном напряжении обмотки свыше 500 В — мегаомметром не менее чем на 1000 В. При измерении сопротивления изоляции обмоток с номинальным напряжением свыше 6000 В, имеющих значительную емкость по отношению к корпусу, рекомендуется применять мегаомметр на 2500 В с моторным приводом или со статической схемой выпрямления переменного напряжения.

Измерение сопротивления изоляции относительно корпуса машины и между обмотками следует производить поочередно для каждой цепи, имеющей отдельные выводы, при электрическом соединении всех прочих цепей с корпусом машины.

Измерение сопротивления изоляции обмоток трехфазного тока, наглухо сопряженных в звезду или треугольник, производится для всей обмотки по отношению к корпусу.

Изолированные обмотки и защитные конденсаторы, а также иные устройства, постоянно соединенные с корпусом машины, на время измерения сопротивления их изоляции должны быть отсоединены от корпуса машины.

Измерение сопротивления изоляции обмоток, имеющих непосредственное водяное охлаждение, должно производиться мегаомметром, имеющим внутреннее экранирование; при этом зажим мегаомметра, соединенный с экраном, следует присоединять к водосборным коллекторам, которые при этом не должны иметь металлической связи с внешней системой питания обмоток дистиллятом.

По окончании измерения сопротивления изоляции каждой цепи следует разрядить ее электрическим соединением с заземленным корпусом машины. Для обмоток на номинальное напряжение 3000 В и выше продолжительность соединения с корпусом должна быть:

для машин мощностью до 1000 кВт (кВ·А) — не менее 15 с;

для машин мощностью более 1000 кВт (кВ·А) — не менее 1 мин.

При пользовании мегаомметром на 2500 В продолжительность соединения с корпусом должна быть не менее 3 мин независимо от мощности машины.

Измерение сопротивления изоляции заложенных термопреобразователей сопротивления следует проводить мегаомметром напряжением 500 В.

Измерение сопротивления изоляции изолированных подшипников и масляных уплотнений вала относительно корпуса следует проводить при температуре окружающей среды мегаомметром напряжением не менее 1000 В.

Таблица 2.

Таблица 3.

Таблица 4.

Сопротивление изоляции R из является основным показателем состояния изоляции статора и ротора электродвигателя.

Одновременно с измерением сопротивления изоляции обмотки статора определяют коэффи­циент абсорбции. Измерение сопротивления изоляции ротора проводится у синхронных электро­двигателей и электродвигателей с фазным ротором на напряжение 3кВ и выше или мощностью бо­лее 1МВт. Сопротивление изоляции ротора должно быть не ниже 0,2МОм .

Коэффициент абсорбции в эксплуатации обязательно определять только для электродвигате­лей напряжением выше 3кВ или мощностью боле 1МВт.

Подготовить средства измерений:

Проверить уровень заряда батареи или аккумулятора для мегаомметра типа MIC-2500.

Установить значение испытательного напряжения.

В случае использования стрелочного прибора типа ЭСО202 установить его горизонтально.

Для ЭС0202 установить требуемый предел измерений, шкалу прибора и значение испытательного напряжения мегомметра.

Проверить работоспособность мегомметра. Для этого необходимо замкнуть между собой измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «0». Разомкнуть измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «10 4 МОм».

Перед проведением измерения необходимо открыть вводное устройство электродвигателя (борно), протереть изоляторы от пыли и загрязнения и подключить мегаомметр согласно схемы, приве­дённой на рисунке.

Рисунок. Измерение сопротивления изоляции обмоток электродвигателя.

На рисунке А показана схема подключения мегаомметра к испытуемому электродвигателю, у ко­торого обмотки соединены в звезду или треугольник внутри корпуса и произвести рассоединение в борно невозможно. В этом случае мегаомметр подключает­ся к любому зажиму статора электродвигателя и со­противление изоляции измеряется у всей обмотки сразу относительно корпуса.

На рисунке Б измерение сопротивление изо­ляции производится у электродвигателя по каждой из частей обмотки отдельно, при этом другие части обмотки (которые в данный момент не обрабаты­ваются) закорачиваются и соединяются на землю.

При измерении сопротивления изоляции отсчёт показаний мегаомметра производят каждые
15 секунд и результатом считается сопротивление, отсчитанное через 60 секунд после начала измерения, а отношение показаний R 60 /R 15 считается коэффициентом абсорбции.

Для электродвигателей с номинальным на­пряжением 0,4кВ (электродвигатели до 1000В) одноминутное измерение изоляции мегаомметром на 2500В приравнивается к высоковольтному испытанию.

У синхронных электродвигателей при изме­рении сопротивления изоляции обмоток статора (обмотки статора) необходимо закоротить и за­землить обмотку ротора. Это необходимо сделать для исключения возможности повреждения изо­ляции ротора.

Сегодня статья – ответ на вопрос читателей.

Будут вопросы будут и новые статьи.

Когда электродвигатель не работает, бывает недостаточно просто взглянуть на него, чтобы понять причину. Электродвигатель, давно хранящийся на складе, может работать, а может не работать независимо от его внешнего вида. Быструю проверку можно сделать с помощью омметра, ниже дается намного больше информации, чтобы верно оценить состояние электродвигателя.

Шаги

Часть 1

Внешний осмотр

Часть 2

Проверка подшипников

    Начните с проверки подшипников электродвигателя. Многие неисправности электромоторов вызваны неисправностью подшипников. Подшипники позволяют валу (ротору) свободно и плавно вращаться в статоре. Подшипники расположены на обоих концах вала ротора двигателя в колоколообразных нишах.

  • Есть несколько типов подшипников, которые используются в электродвигателях. Два самых популярных типа: латунные подшипники скольжения и шарикоподшипники. Многие из них имеют фитинги для смазки, в другие смазка заложена при производстве («не обслуживаемые»).
  • Выполните проверку подшипников. Для выполнения беглого контроля подшипников поместите двигатель на твердую поверхность и положите одну руку на верхнюю часть двигателя, покрутите ротор другой рукой. Внимательно следите, старайтесь почувствовать и услышать трение, царапающие звуки, неравномерность вращения ротора. Ротор должен вращаться спокойно, свободно и равномерно.

    Затем проверьте продольный люфт ротора, потолкайте, потяните ротор за ось из статора. Небольшой люфт допустим (в наиболее распространенных бытовых двигателях люфт должен быть не более 3 мм), но чем он ближе к «0», тем лучше. Двигатель, у которого проблемы с подшипниками, шумно работает, подшипники перегреваются, что приводит к поломке двигателя.

    Часть 3

    Проверка обмоток электродвигателя

      Проверьте обмотки двигателя на короткое замыкание на корпус. Большинство бытовых электродвигателей с замкнутыми обмотками работать не будут: скорее всего сгорит предохранитель или сработает автомат защиты (двигатели, рассчитанные на 380 Вольт являются «незаземленными», поэтому такие двигатели могут работать с замкнутыми на корпус обмотками, при этом предохранитель не сгорит).

      Используйте омметр, чтобы проверить сопротивление. Установите омметр в режим измерения сопротивления, подключите щупы к соответствующим гнездам, обычно к «общему» и гнезду «Ом» (изучите руководство по эксплуатации измерительного прибора при необходимости). Выберите шкалу с самым высоким множителем (R*1000 или подобную) и установите стрелку на “0”, касаясь щупами друг друга. Найдите винт, предназначенный для заземления двигателя (они часто зеленые, с шестигранной головкой) или любую металлическую часть корпуса (при необходимости установить хороший контакт с металлом нужно соскрести краску) и прижмите один щуп омметра к этому месту, а другой щуп поочередно к каждому из электрических контактов двигателя. В идеале стрелка омметра должна едва отклониться от самого высокого сопротивления. Убедитесь, что ваши руки не соприкасаются со щупами, так как это приведет к неточным измерениям.

    • Омметр должен указать на значение сопротивления в миллионы Ом (или «МОм»). Иногда значение может достигать всего лишь нескольких сотен тысяч Ом (500000 или около того). Это может быть приемлемым, но чем больше величина сопротивления, тем лучше.
    • Многие цифровые омметры не предлагают возможности установить прибор на “0”, так что пропустите «обнуление», если у вас цифровой омметр.
  • Убедитесь, что обмотки двигателя не оборваны или короткозамкнуты . Многие простые однофазные и 3-фазные двигатели (используются в бытовой технике и в промышленности соответственно) можно проверить, просто переключив диапазон омметра на самый низкий (RX*1), установите стрелку на ноль снова и еще раз измерьте сопротивление между проводами двигателя. Обратитесь к схеме двигателя, чтобы убедиться, что вы измеряете каждую обмотку.

    • Вы можете увидеть очень низкое значение сопротивления. Величина сопротивления может быть довольно низкой. Убедитесь, что ваши руки не прикасаются к щупам омметра, так как это приведет к неточными показаниям прибора. Большое значение сопротивления указывает на потенциальную проблему с обмотками электродвигателя, которые могут иметь разрыв. Двигатель с высоким сопротивлением обмоток не будет работать или не будет работать его регулятор скорости (это может быть с 3-фазными электродвигателями).
  • Часть 4

    Поиск и устранение других потенциальных проблем
    1. Проверьте пусковой конденсатор, используемый для запуска некоторых двигателей. Большинство конденсаторов защищены от повреждений металлической крышкой на внешней стороне двигателя. Необходимо снять крышку, чтобы получить доступ к конденсатору для его проверки. Визуальный осмотр поможет обнаружить утечку масла из конденсатора, отверстия в корпусе, вспученный корпус конденсатора, запах гари или дыма – все это говорит о потенциальных проблемах.

      • Проверку конденсатора можно выполнить с помощью омметра. Прикоснитесь щупами к выводам конденсатора, сопротивление должно начинаться с низких значений и постепенно увеличиваться, так как небольшое напряжение, подающееся от батареек омметра, постепенно заряжает конденсатор. Если конденсатор остается короткозамкнутым или сопротивление не растет, то, вероятно, проблема с конденсатором, его необходимо заменить. Конденсатор должен быть разряжен перед повторной попыткой проведения этого теста.
    2. Проверьте заднюю часть картера двигателя в месте, где устанавливается подшипник. Там некоторые двигатели имеют центробежные переключатели, используемые для переключения пускового конденсатора или для подключения цепей, определяющих количество оборотов в минуту. Проверьте контакты реле, не пригорели ли они, очистите их от грязи и жира. С помощью отвертки проверьте механизм выключателя, пружина должна работать свободно.

      Проверьте вентилятор. Тип «TEFC» (полностью закрытый, с воздушным охлаждением электродвигатель). У двигателей этого типа лопасти вентилятора находятся за металлической решеткой на задней части двигателя. Убедитесь, что вентилятор надежно закреплен и не забит грязью и другим мусором. Отверстия в металлической решетке должны обеспечивать свободное движение воздуха, в противном случае может случиться перегрев двигателя и выход его из строя.

    3. Подбирайте правильный двигатель под условия, в которых он будет работать. Во влажной среде используются брызгозащищенные двигатели, а открытые двигатели не должны подвергаться воздействию воды или влаги.

      • Брызгозащищенные двигатели могут быть установлены в сырых или влажных местах, они устроены таким образом, что вода (или другие жидкости) не могут проникнуть внутрь двигателя под действием силы тяжести или под воздействием потока воды (или другой жидкости).
      • Открытый двигатель, как следует из названия, полностью открыт. С торцов эти двигатели имеют довольно большие отверстия, и обмотки статора явно видны. Эти отверстия не должны быть заблокированы, и эти двигатели не должны устанавливаться во влажных, загрязненных или пыльных местах.
      • TEFC двигатели, с другой стороны, могут быть использованы во всех упомянутых выше областях, но они также не должны использоваться в условиях, на которые они не рассчитаны.
    • Нельзя сказать, что для обмоток двигателя является редкостью быть как «в разрыве», так и «в коротком замыкании» в одно и то же время. На первый взгляд, это может показаться оксюмороном, но на самом деле это не так. Примером может быть «разрыв» цепи, вызванный инородным предметом, который попал в двигатель, или чрезмерное напряжение питания, что буквально заставляет провода в обмотках плавиться и приводит к разрыву в цепи. Если конец расплавленного медного провода соприкоснется с корпусом двигателя или с другой заземленной частью двигателя – это приведет к «короткому замыканию». Такое случается не часто, но может произойти.
    • A NEMA Quick Reference По данной ссылке вы сможете узнать типовые посадочные места и размеры электродвигателей.

    При помощи мультиметра и нескольких приспособлений, не особо разбираясь в принципе работы электродвигателей, можно проверить:

    Испытание изоляции обмоток

    Независимо от конструкции, электродвигатель нужно проверить при помощи мегомметра на пробой изоляции между обмотками и корпусом. Проверки при помощи одного только мультиметра может быть недостаточно для выявления повреждения изоляции, поэтому используют высокое напряжение.


    мегомметр для измерения сопротивления изоляции

    В паспорте электродвигателя должно указываться напряжение для испытания изоляции обмоток на электрическую прочность. Для двигателей, подключаемых к сети 220 или 380 В, при их проверке используются 500 или 1000 Вольт, но за неимением источника, можно воспользоваться сетевым напряжением.


    паспорт асинхронного двигателя

    Изоляция обмоточных проводов низковольтных двигателей не рассчитана выдерживать такие перенапряжения, поэтому при проверке нужно свериться с паспортными данными. Иногда у некоторых электродвигателей вывод обмоток, соединённых звездой, может быть подключён на корпус, поэтому следует внимательно изучать подключение отводов, делая проверку.

    Проверка обмоток на обрыв и междувитковое замыкание

    Чтобы прозвонить обмотки на обрыв нужно переключить мультиметр в режим омметра. Выявить междувитковое замыкание можно сравнив сопротивление обмотки с паспортными данными или с измерениями симметричных обмоток проверяемого двигателя.

    Нужно помнить, что у мощных электродвигателей поперечное сечение проводов обмоток достаточно большое, поэтому их сопротивление будет близким к нулю, а такую точность измерений в десятые доли Ома обычные тестеры не обеспечивают.

    Поэтому нужно собрать измерительное приспособление из аккумулятора и реостата, (приблизительно 20 Ом) выставив ток 0,5-1А. Измеряют падение напряжения на резисторе, подключенном последовательно в цепь аккумулятора и измеряемой обмотки.

    Для сверки с паспортными данными, можно рассчитать сопротивление по формуле, но, можно этого и не делать – если требуется идентичность обмоток, то достаточно будет совпадения падения напряжения по всем измеряемым выводам.

    Измерения можно производить любым мультиметром

    Цифровой мультиметр Mastech MY61 58954

    Ниже приведены алгоритмы проверки электродвигателей, у которых необходимым условием работоспособности является симметричность обмоток.

    Проверка асинхронных трёхфазных двигателей с короткозамкнутым ротором

    У подобных двигателей можно прозвонить только статорные обмотки, электромагнитное поле которых в замкнутых накоротко стержнях ротора наводит токи, создающие магнитное поле, взаимодействующее с полем статора.

    Неисправности в роторах данных электродвигателей случаются крайне редко, и для их выявления, необходимо специальное оборудование.


    ротор двигателя

    Чтобы проверить трёхфазный мотор, нужно снять крышку клеммника – там находятся клеммы подключения обмоток, которые могут быть соединены по типу «звезда»

    или «треугольник».


    Прозвонку можно сделать, даже не снимая перемычки –

    достаточно измерить сопротивление между фазными клеммами – все три показания омметра должны совпадать.

    При несовпадении показаний необходимо будет разъединить обмотки и проверить их по отдельности. Если расчётное сопротивление у одной из обмоток меньше, чем у остальных – это указывает на наличие междувиткового замыкания, и электродвигатель нужно отдавать на перемотку.

    Проверка конденсаторных двигателей

    Чтобы проверить однофазный асинхронный двигатель с короткозамкнутым ротором, по аналогии с трёхфазным мотором, необходимо прозвонить только статорные обмотки.

    Но у однофазных (двухфазных) электродвигателей имеются только две обмотки – рабочая и пусковая.

    Сопротивление рабочей обмотки всегда меньше, чем у пусковой

    Таким образом, измеряя сопротивление, можно идентифицировать выводы, если табличка со схемой и обозначениями затёрлась или затерялась.

    Часто у таких двигателей рабочая и пусковая обмотки соединены внутри корпуса, и от точки соединения сделан общий вывод.

    Принадлежность выводов идентифицируют следующим образом – сумма сопротивлений, измеренных от общего отвода должна соответствовать суммарному сопротивлению обмоток.

    Проверка коллекторных двигателей

    Поскольку коллекторные электродвигатели переменного и постоянного тока имеют схожую конструкцию, то алгоритм прозвонки будет одинаков.

    Сначала проверить обмотку статора (в двигателях постоянного тока её может заменять магнит). Потом проверяют роторные обмотки, сопротивление которых должно быть одинаково, коснувшись щупами щёток коллектора, или противоположных контактных выводов.

    Удобней проверять обмотки ротора на выводах щёток, прокручивая вал, добиваясь, чтобы щётки контактировали только с одной парой контактов – таким способом можно выявить подгорание у некоторых контактных площадок.

    Чтобы проверить роторные обмотки, нужно найти выводы от данных колец, и удостовериться в совпадении измеренных сопротивлений. Часто такие двигатели оснащаются механической системой отключения роторных обмоток при наборе оборотов, поэтому отсутствие контакта может быть из-за поломки в данном механизме.

    Статорные обмотки проверяются как у обычного трёхфазного двигателя.

    Наладка движков неизменного тока

    Наладку движков неизменного тока делают в последующем объеме: наружный осмотр, измерение сопротивлений обмоток неизменному току, измерение сопротивлений изоляции обмоток относительно корпуса и меж собой, испытание междувитковой изоляции обмотки якоря, пробный запуск.

    Наружный осмотр мотора неизменного тока, как и осмотр асинхронного двигателя , начинают со щитка. На щитке двигателя постоянного тока должны быть указаны последующие данные:

    • наименование либо товарный символ завода-изготовителя,
    • заводской номер машины,
    • номинальные данные (мощность, напряжение, ток, частота вращения),
    • метод возбуждения машины,
    • масса и ГОСТ машины.

    Выводы обмотки мотора постоянного тока должны быть накрепко изолированы друг от друга и от корпуса, расстояние меж ними и корпусом должно быть более 12-15 мм. Повышенное внимание при наружном осмотре обращают на коллектор и щеточный механизм (щетки, траверсу и щеткодержатели), потому что их состояние в значимой мере оказывает влияние на коммутацию машины, а как следует, и на устойчивость ее работы.

    При осмотре коллектора убеждаются в отсутствии на рабочей поверхности следов резца, выбоин, пятен лака и краски, также следов нагара от неудовлетворительной работы щеточного механизма. Изоляция меж коллекторными пластинами должна быть выбрана на глубину 1-2 мм, с краев пластинок должна быть снята фаска шириной 0,5-1 мм (зависимо от мощности мотора). Промежутки меж пластинами должны быть совсем чисты — в их не должно быть железных стружек либо опилок, пыли от графитовых щеток, масла, лака и т. п.

    На работу мотора неизменного тока, а в особенности его щеточного механизма, оказывают влияние биение коллектора и его вибрация. Чем выше окружная скорость коллектора, тем меньше величина допустимого биения. Для быстроходных движков максимально допустимая величина биения не должна превосходить 0,02-0,025 мм. Величину амплитуды вибрации определяют индикатором часового типа.

    При проведении измерения наконечник индикатора придавливают к поверхности в том направлении, в каком нужно произвести измерение вибрации. Потому что поверхность коллектора прерывающаяся (чередуются пластинки коллектора и впадины), употребляют отлично притертую щетку, в которую должен упираться наконечник индикатора. Корпус индикатора должен быть укреплен на основании, не подверженном вибрации.

    При измерении стрелка индикатора колеблется с частотой измеряемой вибрации в границах определенного угла, величина которого и оценивается по шкале индикатора в сотых толиках мм. Но этот устройство позволяет определять вибрации при частоте вращения менее 750 об/мин. Для движков, частота вращения которых превосходит 750 об/мин, нужно воспользоваться особыми приборами-виброметрами либо вибрографами, которые позволяют определять либо записывать вибрацию тех либо других узлов машины.

    Биение также определяют при помощи индикатора. Биение коллектора определяют как в прохладном, так и в нагретом состоянии машины. При измерении обращают свое внимание на поведение стрелки индикатора. Плавное движение стрелки показывает на достаточную цилиндричность поверхности, а подергивание стрелки свидетельствует о местных нарушениях цилиндричности поверхности, в особенности небезопасной для щеточного механизма мотора. Измерение биения носит условный нрав, потому что опыт работы оказывает, что есть движки, у каких при малых частотах вращения значения биений значительны, а при номинальной скорости они работают удовлетворительно. Поэтому окончательное заключение о качестве работы коллектора можно дать только после проверки работы мотора под нагрузкой.

    Осматривая механическую часть мотора неизменного тока, следует уделять свое внимание на состояние паек н соединений обмоток, подшипниковых узлов, на равномерность зазора (при разобранном движке). Зазор, измеренный в диаметрально обратных точках меж якорем и главными полюсами мотора, не должен отличаться от среднего значения более чем на 10% при зазорах наименее 3 мм и менее чем на 5% при зазорах более 3 мм.

    После проверки биений и вибраций приступают к регулировке щеточного механизма мотора. Щетки в обоймах должны свободно передвигаться, но не должны пошатываться. Обычный зазор меж щеткой и обоймой в направлении вращения не должен превосходить 0,1- 0,4 мм, в продольном направлении 0,2-0,5 мм.

    Обычное удельное давление щеток на коллектор зависимо от марки материала щетки должно быть более 150-180 г/см2 для графитовых щеток, 220- 250 г/см2 для медно-графитовых. Во избежание неравномерного рассредотачивания тока давление отдельных щеток не должно отличаться от среднего более чем на 10%. Величину удельного давления определяют следующим образом . Между коллектором и щеткой помещают лист тонкой бумаги, к щетке прикрепляют динамометр, а затем, оттягивая динамометром щетку, находят такое положение, когда можно будет свободно вытянуть лист бумаги. Показание динамометра в этот момент соответствует Давлению щетки на коллектор. Удельное давление определяют путем деления показания динамометра на площадь основания щетки.

    Правильная установка щеток является одним из важнейших факторов нормальной работы машины. Щеткодержатели устанавливают таким образом, чтобы щетки стояли строго параллельно пластинам коллектора и расстояния между их сбегающими краями были равны полюсному делению машины с погрешностью не более 2%.

    У двигателей, имеющих несколько траверс, щеткодержатели размещают таким образом, чтобы щетки перекрывали по возможности большую часть длины коллектора (так называемое шахматное расположение). Это позволит участвовать в коммутации всей длине коллектора, что способствует более равномерному его износу. Однако при таком размещении щеток необходимо следить за тем, чтобы щетки не выступали при работе (с учетом разбега вала) за край коллектора. Щетки перед пуском двигателя в ход тщательно притирают к коллектору (рис. 1) стеклянной (но не карборундовой) бумагой с зернами средней крупности. Зерна карборундовой бумаги могут внедриться в тело щетки и затем при работе наносить царапины на коллектор, тем самым ухудшая условия коммутации машины.

    Как

    проверить коллекторный электродвигатель мультиметром — обмотки статора и ротора

    Читайте так же:

    Электродвигатель постоянного тока. Принцип работы.

    Электродвигатели постоянного тока можно найти во многих портативных бытовых устройствах, автомобилях.

    Прежде чем приступить к проверке правильности включения обмоток, изучают маркировку выводов машины конкретного типа. В двигателях постоянного тока выводы обмоток маркируют согласно ГОСТ 183-66 первыми прописными буквами их наименования с добавлением после них цифры 1 — для начала обмотки и 2 — для ее конца. При наличии в двигателе других обмоток такого же наименования, начала и концы их маркируют цифрами 3-4, 5-6 и т. д. Обозначения выводов могут соответствовать схемам возбуждения и направлениям вращения двигателя, которые приведены на рис. 2.

    Правильность включения обмоток полюсов проверяют для уточнения чередования их полярности. Чередование полярности дополнительных и главных полюсов для любой машины должно быть строго определенным для данного направления вращения машины. При переходе от полюса к полюсу по направлению вращения машины, работающей в режиме двигателя, после каждого главного полюса следует дополнительный полюс той же полярности, например N-п, S-s. Чередование полярности полюсов может быть определено несколькими способами: внешним осмотром, с помощью магнитной стрелки, и с помощью специальной катушки.

    Первый способ применяют в тех случаях, когда направление намотки обмоток можно проследить визуально.

    Рис. 1. Притирание щеток к коллектору: а — неправильно; б — правильно

    Рис. 2. Обозначения выводов обмоток двигателей постоянного тока при различных схемах возбуждения и направлениях вращения

    Зная направление намотки обмотки и пользуясь правилом «буравчика», определяют полярность полюсов. Этот способ удобен для катушек последовательной обмотки возбуждения, направление намотки которой благодаря значительному сечению витков определить очень легко.

    Второй способ применяют в основном для катушек обмоток параллельного возбуждения. Сущность этого способа заключается в следующем. В обмотку двигателя подают ток, подвешивают на нитке магнитную стрелку, полярность концов которой помечена, и подносят ее поочередно к каждому полюсу. В зависимости от полярности полюса стрелка повернется к нему концом противоположной полярности.

    Читайте так же:

    При использовании указанного способа необходимо помнить, что стрелка обладает способностью перемагиичиваться, поэтому опыт необходимо производить как можно быстрее. Способ магнитной стрелки редко применяют для определения полярности обмотки последовательного возбуждения, так как для создания достаточно сильного поля необходимо пропустить через обмотку значительный ток.

    Третий способ определения полярности обмоток применим для любой обмотки, он носит название способа пробной катушки. Катушка может иметь любую форму — торроидальную, прямоугольную, цилиндрическую. Катушку наматывают с возможно большим числом витков из тонкой изолированной медной проволоки на каркас из картона, целлулоида и т. п. Катушку присоединяют к чувствительному гальванометру и прикладывают к поверхности полюса (рис. 3), а затем быстро сдергивают с него и замечают направление отклонения стрелки милливольтметра.

    Соединение обмоток считают правильным, если под каждыми двумя соседними полюсами стрелки прибора отклоняются в разные стороны, при условии, что пробная катушка обращена к полюсам одной и той же стороной. Проверку правильности присоединения обмотки добавочных полюсов по отношению к обмотке якоря производят по схеме, приведенной на рис. 4.

    При замыкании ключа К стрелка милливольтметра будет отклоняться. При правильном включении намагничивающая сила обмотки дополнительных полюсов направлена встречно намагничивающей силе обмотки якоря, поэтому обмотка якоря и обмотка дополнительных полюсов должны включаться встречно, т. е. минус (или плюс) якоря следует соединить с минусом (или с плюсом) обмотки дополнительных полюсов.

    Рис. 3. Определение полярности полюсов двигателей постоянного тока с помощью пробной катушки

    Рис. 4. Схема проверки правильности включения обмотки добавочных полюсов по отношению к обмотке якоря

    Для проверки взаимного включения обмотки дополнительных полюсов и компенсационной обмотки можно использовать схему, приведенную на рис. 5, для небольших по мощности двигателей .

    При нормальней работе двигателя постоянного тока магнитный поток, создаваемый компенсационной обмоткой, должен совпадать по направлению с магнитным потоком обмотки дополнительных полюсов. После определения полярности обмоток компенсационная обмотка и обмотка дополнительных полюсов должны включаться согласованно, т. е. минус одной обмотки следует соединить с плюсом другой.

    Рис. 5. Схема проверки правильности включения обмотки дополнительных полюсов к компенсационной обмотке

    Прежде чем определять полярность щеток и производить необходимые измерения сопротивлений обмоток, устанавливают щетки на нейтраль. Под нейтралью электрического двигателя понимается такое взаимное расположение обмоток главных полюсов и якоря, когда коэффициент трансформации между ними равен нулю. Для установки щеток на нейтраль собирают схему (рис. 6).

    Обмотку возбуждения подключают к источнику питания (батарее) через ключ, а к щеткам якоря подключают чувствительный милливольтметр. При подаче в обмотку возбуждения тока толчком, стрелка милливольтметра отклоняется в ту или иную сторону. При положении щеток строго по нейтрали стрелка прибора отклоняться не будет.

    Диагностика и ремонт якоря стартера в критериях гаража Стартер представляет собой узел, без которого не обходится ни одно тс, так как этот элемент является одним из главных в системе зажигания. Как понятно, нескончаемых деталей не бывает и временами стартерный узел имеет свойство выходить из строя. Как проверить и отремонтировать батарейку в ключе…

    Точность обычных приборов невелика — в лучшем случае 0,5%. Поэтому щетки устанавливают в положение, соответствующее минимальному показанию прибора, и считают, что это нейтраль. Трудность установки щеток на нейтраль заключается в том, что положение нейтрали зависит от положения пластин коллектора.

    Очень часто бывает, что нейтраль, найденная для одного положения якоря, сдвигается при его проворачивании. Поэтому определяют положение нейтрали для двух различных положений вала. Если положение нейтрали оказывается различным для различных положений якоря, то следует выставить щетки в среднем положении между двумя отметками. Точность установки щеток на нейтраль зависит от степени прилегания поверхности щетки к коллектору. Поэтому для получения более точного результата при определении нейтрали двигателя предварительно притирают щетки к коллектору.

    Полярность щеток определяется одним из следующих способов.

    1. К двум точкам коллектора (рис. 7), отстоящим от разноименных щеток на одинаковом расстоянии, присоединяют вольтметр. При подаче возбуждения стрелка вольтметра отклонится в ту или иную сторону. Если стрелка отклонится вправо, то «плюс» находится в точке 1, а «минус» — в точке 2. Ближайшая против направления вращения щетка будет иметь полярность присоединенного зажима прибора.

    2. Через обмотку возбуждения пропускают постоянный ток определенной полярности, к якорю подключают вольтметр и приводят якорь во вращение толчком от руки или с помощью механизма. Стрелка вольтметра при этом отклонится. Направление отклонения стрелки укажет полярность щеток.

    Измерение сопротивления обмоток двигателя постоянного тока является весьма важным элементам проверки двигателей постоянного тока, так как по результатам измерения судят о состоянии контактных соединений обмоток (паек, болтовых, сварных соединений). Измерение сопротивления обмоток двигателя производят одним из следующих методов: амперметра-вольтметра, одинарного или двойного моста и микроомметром. Необходимо помнить о некоторых особенностях измерений сопротивления обмоток двигателей постоянного тока.

    1. Сопротивление последовательной обмотки возбуждения, уравнительной обмотки, обмотки добавочных полюсов невелико (тысячные доли ома), поэтому измерения производят микроомметром или двойным мостом.

    2. Сопротивление обмотки якоря измеряют по методу амперметра-вольтметра с использованием специального двухконтактного щупа с пружинами в изоляционной рукоятке (рис. 8). Измерение проводят следующим образом: к пластинам коллектора неподвижного якоря со снятыми щетками поочередно подводят постоянный ток от хорошо заряженной батареи напряжением 4-6 В. Между пластинами, к которым подводится ток, измеряют падение напряжения с помощью милливольтметра. Искомая величина сопротивления одной ветви якоря

    Рис. 6. Схема проверки правильности установки щеток на нейтраль

    Какое напряжение мегаомметра использовать для измерения сопротивления изоляции?

    Итак, испытательное напряжение 1 кВ используют для измерения сопротивления изоляции электропроводок, к которым относятся изолированные установочные провода всех сечений и небронированные кабели с резиновой или пластмассовой изоляцией в металлической, резиновой или пластмассовой оболочке с сечением фазных жил до 16 мм2 включительно.
    Испытательное напряжение 2,5 кВ используют для проверки сопротивления изоляции силовых кабельных линий до 1 кВ, к которым относятся кабели с сечением фазных жил от 25 мм2 включительно.

    Далее будут приведены требования из таблицы 37 приложения 3.1 к ПТЭЭП; они могут быть скорректированы или ужесточены для отдельных элементов электроустановок отраслевыми нормативными документами:

    1) Электроизделия и аппараты на номинальное напряжение до 50 — напряжение мегаомметра 100В;
    2) Электроизделия и аппараты на номинальное напряжение свыше 50 до 100 — напряжение мегаомметра 250В;
    3) Электроизделия и аппараты на номинальное напряжение свыше 100 до 380 — напряжение мегаомметра 500-1000В;
    4) Электроизделия и аппараты на номинальное напряжение свыше 380 — напряжение мегаомметра 1000-2500В;
    5) Распределительные устройства, щиты и токопроводы — напряжение мегаомметра 1000-2500В;
    6) Электропроводки, в том числе осветительные сети — напряжение мегаомметра 1000В;
    7) Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т.п. — напряжение мегаомметра 1000-2500В;
    8) Краны и лифты — напряжение мегаомметра 1000В;
    9) Стационарные электроплиты — напряжение мегаомметра 1000В;
    10) Шинки постоянного тока и шинки напряжения на щитах управления — напряжение мегаомметра 500-1000В;
    11) Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500-1000В, присоединенных к главным цепям — напряжение мегаомметра 500-1000В;
    12) Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение до 60В — напряжение мегаомметра 100В;
    13) Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение свыше 60В — напряжение мегаомметра 500В.

    прибор для измерения сопротивления изоляции

    1. Главная
    2. Измерительные приборы

    краткое содержание статьи:

    Мегаомметр – это прибор для измерения сопротивления изоляции, который подает постоянное напряжение величиной 100, 250, 500, 1000, 2500, 5000В. Это универсальный переносной прибор, предназначенный также для испытаний повышенным напряжением. Мегаомметром испытывают обмотки электродвигателей, силовые кабельные линии, обмотки турбогенераторов и прочее электрооборудование. В общем, везде где есть изоляция, применяют мегаомметр. Данные приборы бывают ручные, цифровые, аналоговые, электронные, механические, высоковольтные.

    Сопротивление изоляции, физика процесса

    1. Наиболее часто встречающимся видом измерения в моей практике является измерение сопротивление изоляции. Данный вид измерения можно производить на кабеле (до и после высоковольтных испытаний), обмотке статора турбогенератора, электродвигателе, трансформаторе, даже в релейной защите мегерить цепи приходится постоянно. В общем, на любом электрооборудовании, которое имеет изоляцию, необходимо следить за её величиной и выявлять возможные несоответствия для предотвращения возможных неблагоприятных для оборудования последствий.

    Поговорим о физической модели сопротивления изоляции. Более подробно о классах и видах изоляции будет написано в отдельной статье. Уточним же, что факторами, портящими изоляцию являются токи, протекающие в оборудовании и сверхтоки (пусковые, токи кз). В этом материале я остановлюсь на схеме замещения изоляции. Это будет схема, состоящая из двух активных сопротивлений и двух емкостей. Значит, что мы имеем:

    • С1 — геометрическая емкость
    • С2- абсорбционная емкость
    • R1 – сопротивление изоляции
    • R2 – сопротивление, потери в котором вызываются абсорбционными токами

    Зачем Вам это знать? Ну, я не знаю, возможно, покрасоваться перед не знающими эти основы людьми. Или же, чтобы понять характер прохождения постоянного тока через изоляцию.

    Первая цепь состоит из емкости С1. Эта емкость называется геометрической, она характеризуется геометрическими характеристиками изоляции, её расположения относительно земли. Эта емкость разряжается мгновенно, при заземлении изоляции после испытания. Та самая бдыщ, искра при поднесении заземления к испытуемой фазе после опыта.

    Вторая цепь имеет в своем составе два элемента – емкость С2 и активное сопротивление R2. Эта цепь имитирует потери при подаче на изоляцию переменного напряжения. R2 характеризует строение и качество изоляции. Чем более изоляция потрепана, тем меньшая величина R2. Емкость С2 называется абсорбционной емкостью. Эта емкость заряжается, при подаче постоянного напряжения, не мгновенно, а за время пропорциональное произведению R2 на С2. Чем лучше диэлектрические свойства изоляции, тем дольше будет заряжаться емкость С2, потому что величина R2 будет больше у здоровой изоляции. В общем, эта емкость отвечает на вопрос, почему после искры надо держать заземление еще пару минут на испытуемой жиле. Она разряжается медленно и заряжается не мгновенно.

    Третья ветка состоит из активного сопротивления R3, которое характеризует ток утечки изоляции и потери. Ток возрастает при увлажнении изоляции, пропорционален площади изоляции и обратно пропорционален толщине изоляции. Вот такая электрическая модель изоляции.

    История развития мегаомметра

    2. Поговорим про историю развития мегаомметров. Откуда взялось такое название? Вероятно из-за названия измеряемой величины. Кстати, также мегаомметр называют мегер, или говорят промегерить цепь. Знакомо? Оказывается, и возможно, вы это знали, это название происходит от названия древнейшей фирмы по производству измерительного оборудования под названием «Megger». Эта компания появилась еще в 19 веке, а первые тестеры выпускали еще в 1951 году.

    Первые мегаомметры, тогда еще мегомметры, были с ручками. Ты крутишь ручку, вырабатывается постоянное напряжение, и ты производишь испытания. Крутить надо было с частотой 120 об/мин. Однако, долго крутить могли не все. Ведь измерения необходимо производить одну минуту, для определения коэффициента абсорбции. Поэтому наука шагнула вперед, и появились аналогичные мегаомметры, но с питанием от сети и кнопкой подачи напряжения. Держать кнопку куда удобнее, чем крутить ручку. Однако тут встает неудобство в том плане, что необходимо найти розетку.

    Однако и на этом прогресс не остановился, и появились электронные мегаомметры. Они уже с подсветкой, не обязательно держать кнопку подачи напряжения на протяжении всего испытания, однако, при испытании кабеля, остаточная емкость может спалить прибор (ну я не проверял, но так говорят некоторые инженера).

    Как правильно мегаомметр, мегометр, мегомметр, мегаометр или еще как?)

    3. Внимание, говорю правду. Подробнее об этом писал вот тут, но повторюсь еще раз. Правильно прибор для измерения мегаОмов называется мегаомметр. Ранее он назывался мегомметр (например, в книге 1966 года он так и именуется). Новые времена, новые правила. Правильно называть его мегаомметр, так давайте же и будем использовать это название в своей электротехнической жизни. И если мегомметр — это название устаревшее, то прочие интерпретации являются просто неправильными и неграмотными. Хотя можно, например, старые приборы с ручкой, выпущенные в советском союзе называть мегомметры, а новые цифровые, например электронные типа Sonel именовать мегаомметрами. Но это моё личное мнение, скорее даже шутка, чем мнение.

    Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)

    Мегаомметр ЭСО-210

    4. Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой — трансформатор, преобразующий переменное напряжение в постоянное.

    Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».

    Шкала «I» — нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.

    Шкала «II» — верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.

    Шкала «IIx10» — аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.

    В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.

    При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.

    Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.

    Мегаомметр sonel mic-2510

    Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом «энтер» и всё – следи за показаниями и не подпускай никого под напряжение.

    Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.

    Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.

    Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм — впечатляющая величина.

    Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.

    Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.

    В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.

    Как пользоваться мегаомметром

    5. Как же производятся измерения сопротивления изоляции (самое популярное измерение, которое выполняют мегаомметром) у различного электрооборудования. Рассмотрим, как испытывать, на примере энергосистемы РБ. Хотя, нормы в принципе одни и те же, за минимальными различиями.

    Замер сопротивления изоляции мегаомметром, прозвонка с помощью мегаомметра

    Перед началом измерения необходимо проверить, что прибор рабочий, для этого необходимо произвести подачу напряжения при закороченных концах и замкнутых. При замкнутых мы должны получить «0», а в разомкнутом состоянии должны иметь бесконечность (так как мы меряем сопротивление изоляции воздуха). Далее сажаем один конец на землю (заземляющий болт, шина, заземленный корпус оборудования), а второй на испытываемую фазу, обмотку. Два человека производят испытания, один держит концы, а второй подает напряжение. Записывается показание через 15 секунд и через 60. По окончании заземляется жила, на которую подавалось напряжение и через минуту-другую (в зависимости от величины и времени подачи напряжения) снимаются концы и измерения производятся на другой жиле по аналогичной схеме.

    Как же прозвонить что угодно с помощью мегаомметра, прозвонка это проверка на целостность цепи. Прозвонка – это первый прибор электрика, который он должен собрать сам из лампочки, батарейки и проводков. Как же прозвонить с помощью мегаомметра? Мегаомметр не совсем прозванивает, он показывает, что отсутствует связь между фазой и землей, то есть отсутствие замыкания обмотки на землю. Однако если подать большое напряжение, то вполне можно спалить обмотку реле или двигателя.

    Замер сопротивления изоляции электродвигателей мегаомметром

    Значит, подходим мы к электродвигателю, например это 380-вольтовый мотор какого-нибудь насоса. Снимаем крышку, отсоединяем питающий кабель. Далее подаем 500В и смотрим. Если в конце минуты сопротивление меньше 1МОм, значит, не соответствует нормам. Коэффициент абсорбции не нормируется для маленьких электродвигателей. Напряжение подается между одной фазой и землей. Две другие фазы соединяются с корпусом. По окончании испытания производится заземление испытанной жилы.

    Замер сопротивления изоляции кабелей мегаомметром

    Значит, имеем кабель. С одной стороны он, например, подключен к пускателю, а с другой стороны к электродвигателю или приводу, который пускает электродвигатель. Нам необходимо промегерить этот кабель. Мы отключаем его от пускателя и от электродвигателя. Ставим человека у электродвигателя, если он в другом помещении, чтобы не подпускал никого к открытым жилам, которые мы будем испытывать. Далее подаем напряжение между жилой и землей 2500 В в течение минуты. Величина сопротивления изоляции для кабелей напряжением до 1000В должна составлять не ниже 0,5 МОм. Для кабелей напряжением выше 1кВ величина сопротивления изоляции не нормируется. Если мегаомметр показывает ноль, значит, жила пробита и надо искать место повреждения и расстояние до дефекта. Также измеряется сопротивление изоляции между жилами. Или объединяют три жилы и на землю и если величина неадекватная, то необходимо уже измерять каждую жилу на землю по отдельности.

    Также в конце испытаний необходимо до снятия провода, по которому подавалось напряжение, повесить заземляющий провод на него. Чем больше напряжение подавалось, тем дольше необходимо ждать. Для высоковольтных кабелей это время достигает нескольких минут.

    Безопасность при работе мегаомметром

    6. Так как мегаомметр подает высокое напряжение, то он является потенциальным источником опасности как для тех, кто это напряжение подает, так и для тех, кто находится рядом с оборудованием, кабелем, на который это напряжение подается.

    О чем же необходимо помнить, при работе с мегаомметром? Во-первых, необходимо правильно подсоединять концы к прибору, во-вторых надо надежно закреплять концы, по которым подается напряжение к электрооборудованию. Также не стоит забывать про заземление испытываемого оборудования, как до измерения, так и по окончании для снятия остаточного заряда.

    Фокусы с мегаомметром

    7. Про фокусы с мегаомметром могу только отметить, что есть у нас один работник, которого мы мегерили на 500 вольт, тут, как он говорит главное держать концы плотно и не отпускать. Внимание!!! Не советую вам это повторять !!!. Зрелище было стремное конечно. А теоретически ток небольшой и термическое воздействие не напрягает.

    В общем, желаю вам удачи в вашей работе с мегаомметром, и будьте внимательны, ведь наша профессия не только очень интересная, но и достаточно опасная. ТБ превыше всего!!!

    3-фазный двигатель на 480 В

    Мотор мегабайт

    Возможно, здесь есть несколько вещей, на которые стоит обратить внимание. Во-первых, хотя это может показаться пустой тратой времени, в конечном итоге наличие таких данных может быть в определенной степени полезным. Когда двигатель впервые вводится и регистрируется, у вас есть запись двигателя в наилучшей форме, в которой он будет: это даст вам базовый уровень, по которому вы начнете замечать то, что выглядит как низкие показания, потому что вы можете видеть, как низко они упали.многие компании придерживаются мнения, что на это не стоит тратить время, но в любом случае для меня это просто хорошая информация, на которую можно сослаться.
    Вероятно, у вас будет много электриков, которые время от времени будут проверять состояние этого двигателя в целях поиска и устранения неисправностей. И пока у вас есть стандарт, который говорит, что 1 или 1,5 мегабайта — это хорошо, например, если двигатель делает это чтение, да, это хорошо. Но наличие этой небольшой дополнительной информации, к которой можно обратиться, поможет вам решить, может ли потребоваться проверка двигателя на предмет возможной неисправности позже.

    Скажем, например, двигатель вставлен и показывает 40 мегабайт или около того в течение первых 3 лет работы, а затем вы внезапно видите падение до 20 мегабайт, мотор все еще в отличной форме, но это очень значительное падение. Некоторые магазины могут сказать, что двигатель следует снова измерить позже, чтобы увидеть, насколько он изменится. Возможно, падение вызвано тем, что в двигателе есть влага или он загрязняется внутри и т. Д. Но если вы никогда не знали, что показывал мотор до того, как снимали последнее показание мегомметра, то как вы узнали бы, что на нем было такое большое падение?

    без этой дополнительной информации, все, что вы знали бы, это то, что двигатель читает в пределах допустимого диапазона, и вы никогда бы не заметили, что сопротивление сильно изменилось по сравнению с прошлым годом.хотя да, это не на 100% необходимо, вы можете видеть, что, возможно, начальник цеха может пожелать, чтобы двигатель был взорван или прочистился, если он продолжает падать по сравнению с последним показанием несколько месяцев назад. И очистка двигателя в это время вполне может остановить или обратить вспять эту тенденцию к снижению, спасая двигатель от того, что он сделает что-то плохое в будущем.

    Возможно, на маленьких моторах это было бы слишком хлопотно. Но для больших и дорогих (вроде больших двигателей на 2400 В, которые мы используем, например, для работы насосов в сухом доке) это может означать очень большую экономию, чтобы попытаться решить проблему до того, как она станет слишком большой, вместо того, чтобы позволять ей неосознанно вырасти слишком большими.

    О, да, и я забыл сказать ему, что для общего устранения неполадок рекомендуется сначала снять показания мегомметра двигателя с тройников в нижней части контроллера, чтобы вы также проверили провод, идущий к мотор от контроллера одновременно. Если оттуда вы получите странные показания, отключите их от двигателя и посмотрите, что они читают отдельно, чтобы выяснить, проблема в двигателе или в кабелях, идущих к нему. только мои два цента, было здорово обсудить эту тему со всеми вами.: thumbsup:

    Проверка состояния двигателя погружного насоса

    Будь то погружной насос, который у вас уже есть, или подержанный насос, который вы собираетесь купить, важно знать состояние электродвигателя. Несколько быстрых проверок могут сэкономить вам кучу времени или денег.

    Самая распространенная проблема в моторе погружного насоса — попадание воды. Будь то проникновение или повреждение электрического кабеля, корпуса двигателя или системы уплотнения, результаты одинаковы.Вода и электричество плохо сочетаются друг с другом и чаще всего заканчиваются так называемой фазой замыкания на землю. Когда это происходит, электричество, обычно содержащееся в обмотках двигателя, «просачивается» через поврежденную электрическую изоляцию в двигателе насоса и достигает корпуса двигателя / цепи заземления.

    К счастью для пользователей насосов, медленное проникновение воды не сразу приводит к катастрофическому отказу, но вызывает ослабление изоляции обмотки, что со временем действительно приводит к серьезному отказу двигателя.

    Если утечка между фазой на землю привела к катастрофическому отказу, электрическое сопротивление между проводом питания и цепью заземления насоса будет небольшим или отсутствовать. Это явный индикатор того, что изоляция в одной или нескольких точках полностью вышла из строя. Этот тип неисправности часто можно обнаружить с помощью недорогого мультиметра или омметра. Нулевое значение сопротивления (или близкое к нему) при самом низком значении явно указывает на серьезную проблему. (см. ниже)

    Если изоляция только ослаблена, но в основном все еще не повреждена, приложенного напряжения от мультиметра недостаточно для обнаружения проблемы.Чтобы обнаружить это состояние, необходимо приложить гораздо более высокое напряжение. Тестеры сопротивления изоляции генерируют гораздо более высокие напряжения, до 1000 В постоянного тока или более. Эти инструменты часто называют торговой маркой «Megger», но их можно приобрести у многих различных производителей испытательного оборудования.

    Более высокие испытательные напряжения могут вызвать токи утечки, достаточно большие для получения более точных результатов, чем мультиметр. Обнаруженные рано, двигатели с низкими показаниями часто можно разобрать, просушить и снова окунуть, чтобы добавить дополнительную изоляцию.Это гораздо более рентабельно, чем полная перемотка. Ниже представлено изображение современного тестера сопротивления изоляции, а рядом с ним — более старого тестера с кривошипным приводом.

    Измерители сопротивления изоляции часто имеют несколько диапазонов, например 300 В, 500 В, 750 В или 1000 В. Общее правило для проведения теста — определить нормальное рабочее напряжение двигателя и выбрать следующую более высокую шкалу. (например, для Megger, предлагающего четыре напряжения, перечисленные выше, используйте шкалу 750 вольт для двигателя 575 вольт.В идеале, вы хотите показание нескольких гигаомов или больше, но я лично установил двигатели на 575 вольт с сопротивлением 750 мегаом на землю, и у меня не было никаких проблем. Это значение будет уменьшаться по мере старения мотора.

    ПРИМЕЧАНИЕ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ . ПРИ ИСПОЛЬЗОВАНИИ ВЫСОКОГО НАПРЯЖЕНИЯ !!! ОСТАВАЙТЕСЬ СУХОЙ И НЕ ПРИКАСАЙТЕСЬ К ЭЛЕКТРОДАМ ИЛИ НИКАКИМ ЧАСТИ НАСОСА ВО ВРЕМЯ ИСПЫТАНИЯ С MEGGER !!!

    Если вы хотите проверить двигатель погружного насоса, сначала проверьте агрегат с электрическим кабелем, все еще подключенным к насосу, но полностью отключенным от источника питания.При обнаружении неисправности или слабого места отсоедините питающий кабель от насоса, открыв насос и отсоединив провода обмотки двигателя от жил кабеля. Проверьте двигатель и жилы кабеля по отдельности, возможно, вам повезет, и у вас хороший двигатель, и вам нужно будет только заменить кабель.

    Для ясности: тест фазы на землю, описанный в этом блоге, выявляет 90% неисправных или слабых двигателей, но только хорошо оборудованный цех перемотки может выполнить полное тестирование погружного двигателя.

    Если вам потребуется помощь при неисправности мотора или насоса, пожалуйста, позвоните нам. Мы здесь, чтобы помочь!!

    RJ

    Megger 560400 3-фазный тестер двигателя и чередования фаз, 25 Гц, 50 Гц, 60 Гц, 400 Гц Частота: прецизионные измерения Продукты: Amazon.com: Industrial & Scientific

    Тестер двигателя и чередования фаз Megger серии 560000 используется для определения последовательности фаз системы , вращение двигателя и полярность трансформатора в электрических системах и моторных установках.Этот аналоговый измеритель имеет четырехпозиционную ручку для выбора теста, который нужно провести, и кнопку для запуска теста. Амперметр с нулевым центром постоянного тока (DC) указывает правильное или неправильное вращение или полярность, отклоняя указатель влево или вправо. Устройство определяет направление вращения двигателя на 1, 2 и 3-фазных двигателях, проверяет целостность цепи и проверяет последовательность фаз в электрических системах от 0 до 600 В переменного тока (AC). Измерительные провода A и C имеют предохранители для защиты пользователя от случайного контакта с источниками высокого напряжения.Тестер предназначен для работы с двигателями, не находящимися под напряжением, для предотвращения повреждений и повышения безопасности оператора. Тестер заключен в корпус из АБС-пластика с ручкой и съемной крышкой. На крышке есть место для хранения руководства и измерительных проводов. Серия 560000 используется электриками и подрядчиками.

    Измерители электрических испытаний сообщают о таких свойствах электрических цепей, как напряжение, сопротивление, емкость и целостность цепи. Доступные в портативных или настольных моделях, они обнаруживают электрические проблемы в оборудовании, проводке и источниках питания.Разнообразные щупы, зажимы или провода подключают измеритель к цепи или устройству. Однофункциональные измерители, такие как тестеры батарей и тестеры напряжения, измеряют одно свойство цепи; мультиметры измеряют несколько свойств. Измерители электрических испытаний отображают информацию либо в аналоговой форме с помощью стрелки, которая движется по калиброванной шкале, либо в цифровой форме с использованием цифр или графического представления на светодиодном экране. Выбор измерителя включает электрические свойства, которые необходимо измерить, и ожидаемый диапазон результатов, и должен иметь номинал, превышающий максимальное значение ожидаемого диапазона.Измеритель электрических испытаний имеет несколько настроек, которые соответствуют диапазонам возможных значений свойств, которые он может измерять. Ручной измеритель дальности требует от оператора пролистывать различные настройки, пока не будет достигнут правильный диапазон. Измеритель с автоматическим выбором диапазона автоматически перебирает настройки диапазона, пока не достигнет правильного диапазона.

    Megger производит оборудование для обнаружения повреждений кабеля, тестирования защитных реле, телекоммуникаций и целостности данных, а также тестирования качества электроэнергии под несколькими торговыми марками, среди которых Megger, Biddle, States и AVO.Компания, основанная в 1889 году, со штаб-квартирой в Дувре, Англия, соответствует стандартам Международной организации по стандартизации (ISO) 9001: 2008.

    Что в коробке?

    • Серия 560000 Тестер двигателя и чередования фаз
    • Присоединенные измерительные провода
    • (1) линия 1,8 м (6 футов)
    • (1) Двигатель 1,2 м (4 фута)
    • (2) Стандартный 250 В 3A Предохранители
    • Инструкции

    LONGJUAN-C Измеритель сопротивления изоляции Цифровой мегомметр 1000 В Электронный трамеггер высокого напряжения Функция магазина 9850, инструменты для точного измерения

    Измерители емкости и сопротивления Измерители сопротивления изоляции LONGJUAN-C Измеритель сопротивления изоляции Цифровой мегомметр 1000 В Электронный магазин высокого напряжения Трамегметр 9850, Инструменты точного измерения usexpeditersinc.ком
    1. Home
    2. Business & Industrial
    3. Industrial & Scientific
    4. Испытания, измерения и проверки
    5. Электрические испытания
    6. Измерители емкости и сопротивления
    7. Измерители сопротивления изоляции
    8. LONGJUAN-C Измеритель сопротивления изоляции Цифровой мегомметр 1000 В, высоковольтный электронный трамеггер Магазин Функция 9850, точные измерения Инструменты

    Точные инструменты измерения: Измерители сопротивления изоляции — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при определенных покупках.Допустимое отклонение: ± 1%。 Температурный коэффициент: NTC。 Характеристики мощности: низкая мощность。 Частотные характеристики: низкая частота。 Область применения: измерительные приборы。 Мы — профессиональный магазин Amazon. Мы можем предоставить вам профессиональные услуги Amazon. Наш товар может быть доставлен вам примерно через месяц. Добро пожаловать на покупку.。Модель: 9850B。Материал: композитная пленка。Процесс производства: синтетический。Форма: квадратДопустимое отклонение: ± 1% 。Температурный коэффициент: NTC。Характеристики мощности: низкая мощность。Частотные характеристики: низкая частота。 Область применения: измерительные приборы。Аккумулятор: батарея AA, 1.5V * 6, приобретается отдельно 250-2500V четырехскоростной измерительный автоматический разряд。。. Инструменты точного измерения: промышленные и научные. Купить LONGJUAN-C Измеритель сопротивления изоляции Цифровой мегомметр 1000 В, высоковольтный электронный трамеггер, функция магазина 9850. LONGJUAN-C Измеритель сопротивления изоляции, 1000 В, цифровой мегомметр, высоковольтный электронный трамеггер, магазин, функция 9850.









    LONGJUAN-C Измеритель сопротивления изоляции Цифровой мегомметр 1000 В Высоковольтный электронный трамеггер Функция магазина 9850, инструменты точного измерения






    SQUARE D PFA100N 100A 600V Б / у, Echo Shindaiwa 10152514330 STUD.Синяя резина / серая резина на лицевых поверхностях Halder Inc. Halder 3013.060 Simplex 3 фунта, молоток с мягкой поверхностью, 3 PRE-CRIMP A2015 GREEN 0008500113-03-G4 Упаковка 250 шт., Безопасность при сварке 15-0099-12 3M Industrial Market Center 50051131932512 3M Adflo Rubber Breathing Резиновое уплотнительное кольцо трубки. LONGJUAN-C Измеритель сопротивления изоляции Цифровой мегомметр 1000 В Высоковольтный электронный трамеггер Функция магазина 9850, точные измерительные инструменты . 3 мм и 6 мм сферический абразивный быстрорежущий керамический фарфоровый галтовочный тумблер 3 фунта, 25 мкм Белый 6 x 15 Упаковка из 50 продуктов Rosedale Products PE-25-P7S Фильтровальный мешок из полиэфирного войлока.Sylvania 14537-50PAR30LN / CAP / WFL50 120V PAR30 Галогенная лампа. 25 ФУТОВ SVGA SUPER VGA M / M МОНИТОР / ЖК-дисплей / КАБЕЛЬ ПРОЕКТОРА Importer 520 BC75590, C Черный одиночный холодный большой поток настенная розетка швабра для бассейна смеситель для бассейна обычный бытовой балконный кран в стене, LONGJUAN-C Тестер сопротивления изоляции Цифровой мегомметр 1000 В, высокое напряжение Электронный Tramegger Store Function 9850, точные измерительные инструменты . Тройник NPT, мини-игольчатый клапан, 6000 фунтов на квадратный дюйм, металлическое седло, корпус из нержавеющей стали, внутренняя x внутренняя. 23122VB33J30 SNR Новый сферический роликоподшипник.Пакет с изоляционной заглушкой из кедрового дерева 250, 2 1/8 дюйма. Ampro A5625, 8 шт., Комплект головок для глубокого удара 3/4 дюйма. ЗАГЛУШКА DIXON 1.5 Тип A P316L 14VB-R150P. LONGJUAN-C Измеритель сопротивления изоляции Цифровой мегомметр 1000 В Высоковольтный электронный трамеггер Функция магазина 9850, точные измерительные инструменты .


    LONGJUAN-C Измеритель сопротивления изоляции, цифровой мегомметр, 1000 В, высоковольтный электронный трамеггер, функция сохранения 9850, точные измерительные инструменты

    Электронный магазин Tramegger Функция 9850, точные измерительные инструменты Тестер сопротивления изоляции LONGJUAN-C Цифровой мегомметр 1000 В, высокое напряжение, точные измерительные инструменты: Измерители сопротивления изоляции — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках, приобретите измеритель сопротивления изоляции LONGJUAN-C Цифровой мегомметр 1000 В, высокое напряжение Электронный магазин Tramegger Function 9850, быстрая доставка к вашему порогу, доставка по всему миру, хороший продукт онлайн, легкий возврат, высокое качество по доступным ценам! Цифровой мегомметр высокого напряжения Электронный Tramegger Store Функция 9850, точные измерительные инструменты LONGJUAN-C Тестер сопротивления изоляции 1000 В, LONGJUAN-C Тестер сопротивления изоляции 1000 В Цифровой мегомметр Высокое напряжение Электронный Tramegger Store Функция 9850, точные измерительные инструменты.

    Каким должно быть сопротивление обмоток асинхронного двигателя?

    Исправный асинхронный двигатель должен иметь сопротивление около 30-50 Ом между одним крайним и средним выводом подключенной обмотки, а между другим крайним и средним контактом — 15-20 Ом.

    Каким должно быть сопротивление обмотки двигателя?

    Расхождения показаний обмоток не должны превышать 10%. Логично, что сопротивления обмоток зависят от мощности электродвигателя.Для двигателей малой мощности (сотни ватт) сопротивление каждой обмотки может составлять десятки Ом, для двигателей средней мощности (несколько киловатт) — единицы Ом.

    Каким должно быть сопротивление изоляции двигателя?

    Сопротивление изоляции должно быть: в статоре не менее 0,5 мОм; в фазном роторе не менее 0,2 мОм; минимальное сопротивление изоляции датчиков температуры не нормируется.

    Как проверить обмотку двигателя тестером?

    Схема его проверки следующая:

    1. Включите прибор в омах и измерьте сопротивление ламелей коллектора попарно.
    2. Затем измерьте сопротивление между корпусом якоря и коллектором.
    3. Проверить обмотки статора.
    4. Измерьте сопротивление между корпусом и выводами статора.

    Как проверить однофазный двигатель на межвитковое замыкание?

    Последовательность действий следующая: три фазы от понижающего трансформатора подаются на статор ранее разобранного двигателя. Туда бросается мяч. Если он движется по кругу внутри статора, устройство в рабочем состоянии.Если через несколько оборотов он «заедает» в одном месте — именно там и находится короткое замыкание.

    Как узнать сопротивление обмотки?

    Для проверки обмотки двигателя подается низкое напряжение, проверяется значение тока, которое не должно быть выше номинальных значений. Измеренное падение напряжения на обмотке делится на ток, в результате получается полное сопротивление. Его значение сравнивается с другими обмотками.

    Как проверить обмотку двигателя мегомметром?

    Переводим прибор в режим до 100 Ом.После этого подключаем мегаомметр. Сопротивление между крайним и средним выводом должно быть от 30 до 50 Ом, а между вторым и крайним — до 20. Если такие значения получаются при звоне, значит двигатель исправен.

    Как измеряется сопротивление обмотки изоляции?

    Измерение сопротивления изоляции обмоток трансформатора выполняется мегомметром между каждой обмоткой и корпусом (землей) и между обмотками, при этом остальные обмотки отсоединены и заземлены на корпус.

    Каким должно быть сопротивление изоляции?

    Стандарты сопротивления изоляции

    Норма составляет 0,5 МОм и более для каждой жилы кабеля между фазными проводниками по отношению к нейтральному проводнику и проводнику защитного заземления. Для кабельных линий с напряжением выше 1000 В сопротивление не нормируется.

    Как проверить сопротивление изоляции мегомметром?

    Для измерения сопротивления изоляции двухжильного кабеля необходимо соединить плюсовую и минусовую клеммы мегомметра с проводниками.Если кабель одножильный, то плюсовая и минусовая клеммы мегомметра подключаются к проводнику и экрану соответственно.

    Как проверить якорь двигателя тестером?

    Проверка якоря двигателя мультиметром состоит из двух этапов. В первую очередь нужно позвонить ему в случае поломки. Для этого мультиметр переводят в режим проверки цепи звуковым сигналом. Затем одним щупом проходим по ламелям коллектора, а вторым — по корпусу якоря.

    Как проверить трехфазный двигатель на короткое замыкание?

    Небольшой стальной шарик шарикоподшипника впрыскивается во вращающееся магнитное поле статора сразу после подачи напряжения на витки. Если обмотки исправны, то шарик синхронно катится по внутренней поверхности магнитопровода. Когда одна из обмоток имеет межвитковую цепь, шарик будет зависать на месте повреждения.

    Как проверить обмотки однофазного двигателя?

    Рабочая обмотка однофазного двигателя всегда имеет большее сечение провода, а значит сопротивление у нее будет меньше.Посмотрите на фото, хорошо видно, что сечение проводов другое. Обмотка с меньшим поперечным сечением является пусковой. Сопротивление обмоток можно измерить как стрелочными, так и цифровыми тестерами, а также омметром.

    Как проверить ротор на предмет межвиткового замыкания?

    Однако вы можете проверить анкер на предмет межвиткового замыкания с помощью мультиметра. В этом случае можно будет только узнать, есть ли обрыв обмоток якоря или нет.Более точным инструментом был бы аналоговый тестер. С его помощью измеряем сопротивление между каждыми двумя ламелями.

    Как проверить ротор генератора на предмет межвиткового замыкания?

    Мультиметром в режиме измерения сопротивления прозвонить обмотку возбуждения (на роторе). Сопротивление исправной обмотки на генераторах lifan должно быть в пределах 2,7 -3,1 Ом. Если сопротивление вообще не показывает, значит обрыв в обмотке. Если сопротивление ниже положенного, то, скорее всего, межвитковое замыкание.

    Как проверить межвитковую цепь мультиметром?

    Обмотки проверяют мультиметром набором номера. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнутыми оказались всего 2-3 витка, то разница будет незаметна, короткое замыкание не выявится. С помощью мегомметра можно прозвонить электродвигатель, выявив наличие короткого замыкания на корпус.

    2021 Осень и зима Женская женская куртка с отворотом на молнии

    2021 Осень и зима Женская женская куртка с отворотом на молнии

    / kodak1237605.html, Одежда, Обувь, Ювелирные изделия, Женщины, 29 долларов США, Застежка-молния, зима и осень, Куртка, Дамы, Мотор, Женщины, donaludoces.com.br, 2021 год, Пальто, отворот Одежда, обувь Ювелирные изделия Женщины 2021 Осень и зима Женская женская куртка с отворотом на молнии с моторным отворотом 29 $ 2021 Осень и зима Женская женская куртка с отворотом Моторная куртка Пальто на молнии Одежда, обувь Ювелирные изделия Женщины /kodak1237605.html, Одежда, Обувь, Ювелирные изделия, Женщины, 29 долларов США, на молнии, зима, и, осень, куртка, дамы, мотор, женщины, donaludoces.com.br, 2021, Пальто, отворот 2021 Осень и зима Женская куртка женская куртка mart Coat Zip Motor Lapel

    $ 29

    2021 Осень и зима женская женская куртка с лацканами на молнии

    • 【Материал】 Изготовлен из высококачественных материалов и достаточно прочен, чтобы соответствовать повседневному ношению.
    • 【Особенности】 Мода и модный дизайн делают вас более привлекательными.
    • 【Размер】 Пожалуйста, ознакомьтесь с таблицей размеров на картинке перед размещением заказа.
    • 【Match】 Подходит для весны, лета, осени и зимы. Необходимый предмет гардероба!
    • 【Случаи】 Удобный материал очень подходит для повседневного досуга, я думаю, вам он понравится.
    |||

    Описание товара

    Женская женская куртка с отворотом, куртка с капюшоном, байкерская короткая, укороченная верхняя одежда в стиле панк, верхняя одежда
    Обратите внимание, что небольшая разница в цвете может быть допустима из-за освещения и экрана.
    Особенности:
    1.Он изготовлен из высококачественных материалов, достаточно прочен для повседневного ношения
    2. Модный дизайн сделает вас более привлекательным
    3. Идеально сочетается с вашими любимыми шортами, леггинсами, черными брюками, джинсами и т. Д.
    4. Отлично подходит для повседневного, повседневного , Спорт, уверен, вам понравится!
    Информация о продукте:
    Характеристики:
    1.Он изготовлен из высококачественных материалов, достаточно прочен для повседневного ношения
    2. Очень круто носить, New Look, New You
    3. Дизайн застежки-молнии может сделать вас более милым и жизнерадостным,
    4.Это легкое пальто идеально подходит для тех дней!
    Информация о продукте:
    Сезон: Осень
    Пол: Женщины Случай: Повседневный,
    Материал: Полиэстер
    Тип узора: Твердый
    Стиль: Повседневный,
    Длина рукава: Полный
    Длина: Обычный
    Силуэт: Карандаш
    Подходит: Подходит по размеру
    Толщина: Стандарт
    Как стирать: Ручная стирка в холодной воде, повешение или сушка на линии
    Что вы получаете: 1 шт. Женское пальто
    Примечание :
    Пожалуйста, сравните размеры деталей с вашими перед покупкой !!!
    Цвета могут немного отличаться в зависимости от настроек компьютера и монитора
    Пожалуйста, учитывайте разницу в 1-3 см из-за ручного измерения, спасибо (все измерения в см, обратите внимание, что 1 см = 0.39 дюймов)

    2021 Осень и зима Женская женская куртка с лацканами на молнии

    Нет результата

    Просмотреть все результаты

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *