Как работает осциллограф: назначение и принцип действия, классификация (цифровой, механический)

Содержание

Что такое осциллограф и как им пользоваться

Начинающим подробно о осциллографе, о том что это за измерительный прибор, как он работает и как используется в радиоэлектронике.

Как работает осциллограф

Осциллограф, в прямом смысле слова, является глазами радиолюбителя. Он позволяет не только оценить какие-то основные физические характеристики сигнала (напряжение, частота, сила тока), но и буквально увидеть график функции исследуемого сигнала, увидеть какие-то отклонения сигнала от нормы, искажения его формы, наличие помех и паразитных импульсов или сигналов.

Экран осциллографа представляет собой координатную плоскость с осями X и Y, а поступающие на его вход сигналы отображаются на этой плоскости как алгебраические функции.

В настоящее время существует множество типов осциллографов, как обычных аналоговых, отображающих сигналы на экране электронно-лучевой трубки, так и цифровые и компьютерные.

Как бы не был устроен осциллограф, и каким бы способом, электронным аналоговым или цифровым, программным не происходило построение функции, всегда одно и тоже, - на экране отображается зависимость сигнала Y от сигнала X, или от сигнала Y от шкалы времени, выложенной на ось X.

Схематическое изображение электронно-лучевой трубки

Рис. 1. Схематическое изображение электронно-лучевой трубки.

В основе обычного осциллографа лежит электронно-лучевая трубка, - вакуумный прибор, состоящий из экрана, покрытого слоем люминофора и электронной пушки, создающей электронный луч, направленный на этот экран. В месте попадания луча на экран люминофор светится, и мы видим светящуюся точку. Еще есть пластины горизонтального и вертикального отклонения. Ма рисунке 1 изображена схематически электронно-лучевая трубка, направленная экраном на вас, уважаемый читатель.

Как отклоняется луч, если подать напряжение на пластины Y

Рис. 2. Как отклоняется луч, если подать напряжение на пластины Y.

Круг -это корпус трубки, прямоугольник - экран, покрытый люминофором, а четыре черточки, обозначенные Х1, Х2, Y1, Y2 - это пластины горизонтального (X) и вертикального отклонения (Y). Точка в центре - «отпечаток» электронного луча на люминофоре.

Как уже было сказано, пушка электроннолучевой трубки создает поток электронов (электронный луч), который направлен в сторону экрана. Когда на этот луч не воздействуют никакие электрические или магнитные поля он летит себе в центр экрана.

Отколоняющие платины расположены с четырех сторон от луча, и если на них подать какое-то напряжение луч отклонится в сторону пластины под положительным потенциалом. Величина этого отклонения будет пропорциональна величине этого потенциала.

Как отклоняется луч, если подать напряжение на пластины Х

Рис. 3. Как отклоняется луч, если подать напряжение на пластины Х.

На рисунке 2 показано как отклоняется луч, если подать напряжение на пластины Y, причем, на Y2 - отрицательный полюс, а на Y1 - положительный. Если сменить полярность, - отклонение будет в другую сторону от среднего положения. Аналогичным образом отклоняется луч и при подаче напряжения на пластины X (рис. 3). А вот на рис. 4 показано что будет, если под напряжением будут и горизонтальные (X) и вертикальные (Y) пластины.

Так, изменяя напряжение на пластинах вертикального и горизонтального отклонения можно «гонять» луч как угодно по экрану, и вырисовывать им любые фигуры. При быстром перемещении луча, благодаря известному свойству человеческого зрения, и послесвечению люминофора электроннолучевой трубки, точка превратится в линию, и на экране появится геометрическая фигура.

Что будет если под напряжением горизонтальные (X) и вертикальные (Y) пластины

Рис. 4. Что будет если под напряжением горизонтальные (X) и вертикальные (Y) пластины.

Теперь понятно, что изменяя напряжение между пластинами X можно перемещать луч по горизонтали, а изменяя напряжение между пластинами Y -по вертикали.

Для подачи сигналов на каналы вертикального и горизонтального отклонения у осциллографа есть входы «У» и «X». Но, обычно, необходимо видеть не зависимость одного сигнала от другого, а зависимость сигнала, поданного на вход «У» от шкалы времени, выложенного на ось X.

Чтобы это было возможно в осциллографе есть генератор горизонтальной развертки, который вырабатывает напряжение, изменяющееся по «пилообразному» закону (рис. 5). Это напряжение подается на пластины горизонтального отклонения (X).

Напряжение, изменяющееся по пилообразному закону

Рис. 5. Напряжение, изменяющееся по пилообразному закону.

Пилообразное напряжение плавно и равномерно возрастает, перемещая луч по горизонтали от одного края экрана до другого, а затем резко возвращает луч обратно. При обратном перемещении специальная схема гасит луч. В результате, на экране луч постоянно перемещается слева - направо, а быстрота перемещения луча зависит от степени «наклона» пилообразного напряжения (то есть, от его частоты).

При частоте развертки более 20 Гц мы уже видим на экране не перемещающийся луч, а горизонтальную линию (рис. 6). Причем положение этой линии по вертикали зависит от напряжения, поданного на вход У (на вертикальные пластины).

Например, если масштаб оси У установить 1V на деление (на экране осциллографа обычно нанесена масштабная сетка), то при подаче на вход У постоянного напряжения величиной, например, +2V, линия переместится вверх на два деления (рис. 7).

Горизонтальная линия на экране осциллографа

Рис. 6. Горизонтальная линия на экране осциллографа.

Горизонтальная линия на экране осциллографа смещенная вверх

Рис. 7. Горизонтальная линия на экране осциллографа смещенная вверх.

График функции напряжения от времени на экране осциллографа - синусоида

Рис. 8. График функции напряжения от времени на экране осциллографа - синусоида.

График функции напряжения от времени на экране осциллографа - прямоугольные импульсы

Осциллограф. Часть 1. Основы работы

Осциллограф - 1. Применение на практике.

Если вы в своей практике используете мультиметр, то какое-то время тратили на изучение его возможностей. Потратьте немного времени и на осциллограф. Органов управления немногим больше. Главное понять, «что к чему». Кое-что попробую показать, остальное поймете самостоятельно. Также попробую объяснить понятия «основные режимы, характеристики и используемые термины» и как это выглядит на осциллограммах.

Развертка.

В большинстве осциллографов развертка изображения на экране происходит слева - направо по ширине экрана. Измеряется в единицах времени (сек). Иными словами, это «время, когда экран полностью заполнен сигналом». Дальше происходит смена картинки.

Классический пример развертки (справа). Импульсы «лежащие на боку» - есть не что иное, как пилообразные импульсы напряжения генератора развертки (именуемые в народе «пила»).

Но есть «но». Представьте «кашу», это когда на вход осциллографа подан сигнал, быстро меняющийся во времени, и есть генератор развертки, который работает сам по себе. И осциллограф начинает отображать сигнал с разных точек. Изображение будет, только понять что это - не получится.

Триггер.

Управляет генератором развертки и запускает его с одной и той же точки. Поэтому мы имеем устойчивое изображение. При этом может выполняться одно из условий:

- запуск генератора развертки по уровню сигнала. При достижении сигнала на входе определенного уровня происходит запуск развертки;

- запуск по времени нарастания амплитуды в переднем фронте импульса, или по времени изменения амплитуды заднего фронта;

- запуск «на сбой» в импульсной последовательности. Когда устанавливается длительность импульса (нормального). Развертка в этом случае всегда будет запускаться с того места, где длительность импульса будет меньше или больше установленной; на экране вы будете видеть именно этот временной отрезок, где происходит сбой.

- Захват импульса при уменьшении амплитуды (и т.д.)

Это не все возможные варианты режимов работы триггера, некоторые модели осциллографов имеют их больше – все зависит от предназначения осциллографа и решаемых задач.

Осциллограф имеет органы управления, позволяющие не только посмотреть, но и

рассмотреть сигнал. Об этом ниже.

К одному из таких органов управления относится и «Усиление» сигнала (пороговое значение входного сигнала). Это может быть и «крутилка» или кнопка - кто что имеет. Но есть обязательно. И совместно с органами управления развертки, это мощный инструмент.

Практическое применение

Применять будем осциллограф на фото справа.

Фото №1

На фото прибор, его экран. Подключен ёмкостной датчик. Автомобиль «Subaru Forester». Рассматриваем систему зажигания.

Фото №2

Прибор включен. Меню прибора, выбираю первый пункт. Следующие пункты позволяют выбрать количество каналов, а также при их выборе идет переход в следующее меню, где перечислены основные типы датчиков и исполнительные устройства автомобильных систем, которые можно выбрать на любой канал. Но тогда все установки прибора устанавливаются автоматически, исходя из конкретного сигнала, конкретного устройства. (Это первое отличие автомобильного осциллографа от осциллографа вообще. Он «заточен» на конкретные виды сигналов). Кроме этого имеются свободные выборки: для сигналов от 0 - 5В...0 -12В


Фото №3

Питание включено, датчик подключен, мотор работает. Сигнала нет. В чем причина?


Фото №4

Нет, сигнал есть. Смотрите, чем отличается фото № 3 от № 4. Вверху смотрите, пункт выделен, а внизу его значение. Время развертки 10ms осталось неизменным. Что изменилось?

На первом фото видно, к какой катушке совершено подключение. А давайте представим, что знаний «что такое триггер» - нет. Можно ли зафиксировать изображение так же, как на фото? Если этого не сделать, оно будет постоянно «бежать».


Фото№5

А здесь развёртка изменена: было 10 - стало 1ms. А экран вроде бы маленький.


Фото №6

* здесь не только развертку изменил, а и увеличил (фото 2-пункт 3). И уже есть возможность посмотреть участок, где ключ сработал и чуть дальше. В принципе, можно «прокрутить» сигнал до его окончания.


Фото №7

Вот так. Начало на фото №6, а конец вот:


Фото 8

Можно еще вывести курсоры (если надо посмотреть длительность горения искры или время насыщения).


Фото №9

Примерно так. Курсор А сплошной, курсор В – прерывистый. Длительность на экране - 4,60ms/


Фото №10

* курсоры стоят от момента включения ключа, до момента возникновения искры.


Фото №11

* длительность горения искры.

Показано всего процентов 20 от возможностей прибора, только на одной опции и в одном пункте меню (осциллоскоп)

ИМХО:

Не считаю, что работаю плохим прибором и считаю, что плохими приборами работать недопустимо. Данный прибор использую постоянно при входной диагностике. Он позволяет наблюдать и проводить измерения с достаточной степенью достоверности всех сигналов системы управления автомобиля.

Когда необходимо проводить анализ, когда машина «зависает», осциллоскоп и мотор- тестер данного прибора мною не используется. Хотя такая возможность в прибор заложена. Неудобно «прокручивать» сигнал, просматривая детали, растянув его разверткой и усилив, не видя полной фазы или цикла. Тем более, когда используется не один канал. Слишком много манипуляций, при выполнении переходов, что отвлекает от рассмотрения сигнала. Но это все, что я могу сказать о недостатках. Утверждение же о маленьких экранах и пр. считаю необоснованным и ведущим в заблуждение.

Но всегда использую просмотр графического изображения, выделенных пунктов из текущих параметров. Это тогда, когда прибор вкл. в режиме сканера и подключен к диагностическому разъему. Не всегда можно сравнить нужные параметры, они могут оказаться на разных «страничках». Надо «листать», или выделив нужные, перейти в режим просмотра только этих параметров, а в голове держать цифры. А если просто: выделил до 4-х датчиков (параметров), нажал кнопочку и пошло графическое изображение. Развертка очень медленная, рукой можно быстрее нарисовать, а рядом с каждой осциллограммой цифровые значения. Такие же, как в «дате». И все в одном месте - осциллограмму смотришь и цифровые значения видишь.

Продолжение следует

МАРКИН Александр Васильевич

г. Белгород

Таврово мкр 2, пер. Парковый 29Б (4722) 300-709

© 1999 – 2010 Легион-Автодата

что это, какие бывают, что измеряют, как пользоваться

Чтобы отремонтировать современную электронную технику одного мультиметра порой недостаточно. Им можно определить целостность радиодеталей. Но определить работает или нет микросхема мультиметром не получится. Для этого нужен осциллограф. Что это за прибор, что он делает? Об этом и будет статья.

Содержание статьи

Что такое осциллограф

Осциллограф — это прибор для визуального отображения и измерений параметров сигналов различной формы (процесс называется «осциллографирование»). Сигналы подаются на вход и отображаются на экране. Экран разбит на квадраты, по центру проходят две оси координат.  По горизонтали измеряется время. По вертикали — амплитуда и/или напряжение. Цена деления задается при помощи ручек калибровки. Режим отображения подстраивается под каждый сигнал. Выбирается такой режим, который наиболее удобен в данном случае (в пределах возможностей прибора).

Осциллограф — это не обязательно большая, громоздкая вещь. Есть портативные цифровые модели, есть приставки. Есть даже программы, которые можно с адаптером установить на стационарный компьютер или ноутбук.

Осциллограф что это такое: внешний вид прибора Tektronix DPO 3054

Так выглядит цифровой осциллограф Tektronix DPO 3054. На дисплее отображает сигнал, регуляторами выбираются параметры

По количеству одновременно отслеживаемых сигналов осциллографы есть однолучевые (одноканальные/моноканальные) и многолучевые (многоканальные). Однолучевые могут одновременно принимать только один сигнал, многолучевые — два, три, четыре и больше — до 16. Зависит от прибора.

Какой тип лучше? Многолучевой. Вы одновременно можете отслеживать сигнал в нескольких точках схемы. Изменяя параметры будете видеть реакцию устройства не только на выходе, но и в разных точках схемы.

Для чего он нужен

Для чего нужен осциллограф? Это просто необходимая вещь при ремонте электронной аппаратуры, при самостоятельной сборке или усовершенствовании каких-либо устройств. Многим хватает тестера или мультиметра. Да. Но для ремонта простых устройств без микросхем и микропроцессоров. Мультиметром вы можете проверить наличие обрыва, короткого замыкания, измерить напряжение и ток. Ни форму сигнала, ни конкретные параметры синусоиды или импульсов не измерить и не увидеть.

Назначение осциллографа

Осциллограф нужен для измерения напряжения и визуального отображения сигналов. На фото цифровой двухканальный осциллограф Hantek DSO5102B в рабочем режиме

А ведь бывает так, что все детали, вроде исправны, но устройство не работает. А все потому что некоторые детали требовательны не только к физическим параметрам питания (напряжение, сила тока), но и к форме сигнала. Этим «страдают» некоторые полупроводниковые детали, практически все микросхемы и процессоры. А без них сейчас обходятся только самые элементарные приборы типа кипятильника. Вот и получается, что найти сгоревший резистор, пробитый транзистор можно и мультиметром. Но для чуть более сложную поломку уже не устранить. Вот для этих случаев и нужен осциллограф. Он позволяет видеть форму сигнала, определять есть ли отклонения и находить источник проблемы.

Виды осциллографов

По принципу преобразования сигнала осциллографы бывают аналоговыми и цифровыми. Есть еще смешанный тип — аналогово-цифровой. Принципиальная разница между ними — в методах обработки сигналов и в возможности запоминания. Аналоговые модели транслируют «живой» сигнал в режиме реального времени. Записывать его на таком приборе нет возможности.

Аналогово-цифровые и цифровые уже имеют возможность записи. На них можно «открутить» время назад и просмотреть информацию, увидеть динамику изменения амплитуды или времени.

Маленький цифровой осциллограф

Еще одно отличие цифровых осциллографов от аналоговых — размеры. Цифровые приборы имеют значительно меньшие габариты

Цифровые осциллографы сначала оцифровывают синусоиду, записывают эту информацию в запоминающее устройство (ЗУ), а затем передают на экран монитора. Но не все цифровые модели имеют долговременную память — в таком случае запись ведется циклически. Это когда вновь пришедший сигнал записывается поверх предыдущего. В памяти хранится то, что появлялось на экране, но промежуток времени не такой большой. Если вам необходима запись длиной пять-десять минут, нужен запоминающий осциллограф.

Что измеряет осциллограф

На экране осциллографа отображается двухмерная картинка сигнала, который подали на измерительный вход. На экране есть две оси координат. Горизонтальная — ось времени, вертикальная — напряжение. Эти параметры и измеряют. А уже из них высчитывают остальные.

Что показывает осциллограф: форму напряжения в любой токе схемы

На экране осциллографа отображаются сигналы, которые подаются на его входы. Это например, двухлучевой аналоговый осциллограф, который показывает форму сигнала на входе (синусоида) и выходе (прямоугольный) импульсного преобразователя напряжения

Вот что можно измерить и отследить при помощи осциллографа:

  • Напряжение (амплитуду).
  • Временные параметры, по которым можно рассчитать частоту.
  • Отслеживать сдвиг фаз.
  • Видеть искажения, которые вносит элемент или участок цепи.
  • Определить постоянную и временную составляющие сигнала.
  • Увидеть наличие шума.
  • Рассчитать соотношение сигнал/шум.
  • Видеть/определить параметры импульсов.

Сигнал, который показывает осциллограф, довольно информативен. Видны искажения, которые вносит та или иная деталь, можно отследить, как меняется форма/амплитуда/частота в каждой точке схемы, после каждой детали.

Кроме наблюдения за формой сигнала, осциллограф можно использовать для определения целостности сопротивлений, конденсаторов, катушек индуктивности (см. видео ниже).

Устройство и принцип работы

Рассмотрим блок-схему и алгоритм работы аналогового осциллографа. Как уже говорили, изменять изображения можно по горизонтали и по вертикали. Приборы на основе электронно-лучевой трубки (ЭЛТ) для этого имеют две пары пластин. Одна пара для изменения масштаба по вертикали (амплитуда или напряжение). Вторая — для растягивания или сжатия по горизонтали (временные параметры).

Блок-схема осциллографа

Устройство аналогового осциллографа: блок-схема

Отслеживаемый сигнал подается на входной усилитель, где усиливается или уменьшается до заданных значений. Значение задается переключателями. Коэффициент усиления обычно от 100 до 1000. Усиленный сигнал идет на пластины вертикальной развертки электронно-лучевой трубки.

Горизонтальная развертка формируется на основе пилообразного сигнала, который генерируется в соответствующем блоке (генератор развертки). Его параметры также задаются соответствующим переключателем. Отображение на экране ЭЛТ идет в режиме реального времени, с некоторой задержкой. Величина задержки прописывается в технических характеристиках прибора.

Из каких блоков состоит осциллограф

Основные блоки аналогового осциллографа

Для работы осциллографа важен блок синхронизации. Он обеспечивает появление картинки в момент поступления потенциала на вход. За счет этого на экране мы видим сигнал за некоторый промежуток времени. Есть разные типы синхронизации. Они выбираются переключателем. Чаще всего выбирают синхронизацию от самого исследуемого сигнала. Есть еще от сети и внешнего источника.

Режимы работы осциллографа

Осциллографом исследуют различные типы сигналов. Они могут быть постоянными (напряжение в сети), периодическими (шумы, помехи, звуки и т.д.). Периодические могут возникать случайно или с определенным интервалом. В зависимости от того, как часто или редко возникает сигнал, выбирают тот или иной режим работы.  Чаще всего в осциллографе есть два режима: автоматический (автоколебательный) и ждущий. Еще может быть однократный.

Осциллограф может работать в жательном и одиночном режиме ждущем, автоколебательном

Выбор режима работы осциллографа

Если мы не знаем, как часто возникают импульсы, выбирают обычно автоматический режим. В нем даже при отсутствии потенциала на входе или при его недостаточном уровне экран светится. Отображается «нулевой» сигнал — прямая линия, которая должна идти по горизонтальной оси на экране (выставляется по линии регуляторами со стрелочками). При появлении потенциала на входе, он отображается на экране. Картинка при этом периодически обновляется и мы видим развертку сигнала по времени.

Нулевой сигнал на экране осциллографа

Так выглядит экран осциллографа в автоколебательном (авторежиме) при отсутствии сигнала

Ждущий режим хорош для редко появляющихся сигналах. Пока на входе ничего нет, экран не светится. При появлении каких-либо изменений он загорается, запускается генератор развертки и сигнал отображается на экране. Запуск можно настроить как по восходящему фронту импульса/синусоиды, так и по нисходящему. Можно настроить запуск не на исследуемый сигнал, а на то событие, которое ему предшествует (если такое есть).

Одиночный режим настраивает осциллограф на принятие одного сигнала. Когда на вход приходит потенциал нужного уровня, сигнал отображается на экране. После этого прибор переходит в неактивное состояние. И, даже если на входе будет следующий потенциал (или пять, или сто пять) он его не зарегистрирует. Для приема другого импульса нужно заново «взвести» прибор.

Делитель (аттенюатор)

Исследуемый сигнал может иметь напряжение от десятых долей до сотен вольт. Есть осциллографы со встроенным регулятором чувствительности — аттенюатором. Выглядит он как переключатель с градуировкой. Она задает «вес» одного деления на экране и определяет, во сколько раз понижается входной сигнал. Если ожидается малый уровень, мы просто выставляем на 1 или на 0,1. В таком случае одно деление на экране по вертикали будет 1 В и 0,1 В соответственно. И «понижать» сигнал будут в 1 раз (то есть, передадут как есть) или усилят в 10 раз перед подачей на вход (это если стоит 0,1).

Не все осциллографы имеют встроенный делитель (аттенюатор). В комплекте с таким прибором  идут внешние делители на 1:10 или 1:100. Это прямоугольные или цилиндрические насадки с разъемами с обоих сторон. Они устанавливаются во входной разъем и через них подается напряжение на вход, но уже пониженное в соответствующее количество раз.

Делитель для осциллографа нужен если нет встроенного аттенюатора и ожидается высокий уровень сигнала

Примерно так выглядит делитель. Он устанавливается во входное гнездо, а к нему уже подключается измерительный шнур

Ставить делитель необязательно. Необходимость определяется по ожидаемому уровню сигнала. В характеристиках указывается максимальное входное напряжение, которое может подаваться на прибор без делителя и с делителем. По уровню ожидаемого сигнала и ставим насадку.

Если уровень неизвестен, сначала выставляют самый большой делитель (или самое большое деление на аттенюаторе). Это предохранит прибор от перегорания если потенциал будет высоким. По результатам первого замера выбирается оптимальный режим.

Особенности цифровых моделей

Цифровой осциллограф работает иначе — аналоговый сигнал преобразуется в цифровую форму. В таком виде он записывается в ЗУ и передается на монитор, где из цифрового формата переводится снова в аналоговую форму. Отображение на экране начинается только в тот момент, когда уровень на входе превысит определенное значение (задается настройками).

Периодичность смены картинки зависит от выбранного режима работы: автоматический, одиночный и обычный. Обычный — это аналог ждущего.

Чем отличаются цифровой и аналоговый осциллограф

Упрощенная блок-схема цифрового осциллографа

Чем лучше цифровые модели? Во-первых, такое преобразование делает изображение более стабильным. Во-вторых, проще увеличивать и уменьшать масштаб. В-третьих, есть возможность записи. Ну, и габариты. Самый небольшой аналоговый осциллограф — С1-94 — имеет размеры 100*190*300 мм и вес 3,5 кг. А цифровые при размерах 100*50-60*13-20 мм имеют вес порядка 150-300 граммов. И это вместе с аккумуляторами.

Как работать с осциллографом

Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения.
Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.

Подключение осциллографа

В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.

Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу.

Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.

Для подключения осциллографа к измерительным гнездам подключаем шнуры

Измерительные шнуры для осциллографа

Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа).

После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.

Проверка осциллографа перед работой

Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.

Проверка работоспособности осциллографа

Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен

Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.

Как измерить осциллографом напряжение: переменное, меандра, постоянное

Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление. Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно.

Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.

Как померять напряжение осциллографом

Измерение напряжения осциллографом

Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел  = 15 V. Получается, данный сигнал имеет напряжение 15 вольт.

Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.

Как осциллографом определить частоту

Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.

Рассчет частоты по осциллографу

Как определить частоту сигнала по осциллографу

Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц

Полоса пропускания осциллографа: что это и на что влияет

При выборе осциллографа смотрят на следующие параметры:

  • Полоса пропускания.
  • Максимальное входное напряжение.
  • Режимы развертки.
  • Источники синхронизации.

Обо всех параметрах, кроме полосы пропускания, уже рассказали. Полоса пропускания — это чуть ли не важнейший показатель. Она определяет максимальную частоту сигнала, который будет отображаться без искажений. Например, при полосе пропускания 20 Гц — 20 МГц, все что имеет более высокую частоту будет подавляться.

Пример работы полосы пропускания

Там, где полоса пропускания заканчивается, частоты жестко подавляются

Как же выбирать частоту пропускания? Зависит от того, какие сигналы вы собираетесь изучать и насколько «глубоко» вам надо их исследовать. Для аналоговых сигналов все просто — верхний предел должен быть больше чем максимальная частота. С меандрами все сложнее. На самом деле они состоят их суммы нечетных гармоник сигнала. Чем больше гармоник, тем больше форма похожа на квадрат, а не на сглаженное что-то. Но гармоники высокого порядка имеют очень высокую частоту. Если надо исследовать фронты, их отклонение, то верхний предел полосы пропускания — это десятки гигагерц. А такие приборы очень дорогие. Для обычной синусоиды достаточно 10-20 МГц, что значительно дешевле.

Как работает и что показывает осциллограф

Некоторое время назад я публиковал обзор набора, который позволяет собрать простой осциллограф. Все бы ничего, но у него был сильно ограничена частота измеряемого сигнала. Не скажу, что обозреваемый приборчик намного круче, но у него заявлена полоса пропускания до 4 МГц.
Посмотрим что это такое и как оно работает 🙂

Данный осциллограф изначально даже на странице продавца позиционируется как вариант для обучения, т.е. рассчитан на неподготовленного, начинающего пользователя, который сильно далек от управления более «навороченными» моделями и вполне может запутаться.

Для начала технические характеристики, сразу извиняюсь за местами кривой перевод.
Частота выборки: 20MSa / s
Аналоговая полоса пропускания: 4 МГц
Точность выборки: 8 бит
Размер кэша: 650 байт
Вертикальная чувствительность: 10 мВ / дел ~ 5 В / дел (прогрессивная на 1-2-5)
Горизонтальная скорость сканирования: 1.5us / div ~ 6ms / div (по 1-2-5 прогрессивным образом)
Дисплей: 2,4-дюймовый TFT 320X240 (чип драйвера ILI9325)
Входное сопротивление: 1MОм
Максимальное входное напряжение: 40Vpp (щуп 1: 1), 400Vpp (щуп 10: 1)
Входной сигнал: AC
Фиксация формы сигнала (функция HOLD)

Продается осциллограф в нескольких вариантах комплектации (цены ориентировочные со страницы товара):
1. Осциллограф + кабель питания USB — $17.40
2. Осциллограф + кабель питания + щуп — $20.09

Также можно купить отдельно:
3. Щуп 40 МГц — $2.69
4. Кабель BNC-BNC + BNC+ крокодилы — $1.74

Я заказал вариант номер два. В итоге получил два вот таких пакета.
Кстати, осциллограф заказывался у того же продавца, что и LCR-метр, потому стоимость доставки немного снизилась.

Так как стоимость доставки зависит от веса, то взвесил сначала комплект по п1, а потом полный вариант по п2.

Перейдем к осмотру, сначала комплектация.
В большом пакете лежал щуп, кабель питания и всякие мелочи. Пакет плотный с «клапаном», удобно в будущем хранить все дополнительное «хозяйство».

Кабель питания имеет на одном конце привычный USB штекер, а на втором круглый штекер диаметром 3.5мм.
Щуп самый обычный, кабель мягкий.

Чуть подробнее про щуп.

В комплекте была инструкция, прочитав которую я понял, что комплект все таки не совсем полный, не хватает специального контакта заземления в виде пружинки и четырех цветных колечек. Ну колечки это такое, можно и пережить, а вот дополнительный контакт жалко, мне бы очень пригодился 🙁

Щуп имеет встроенный делитель 1:10, с соответствующим переключателем. Земляной контакт одет в изоляцию, правда крокодил довольно «дубовый».
Выше я показал инструкцию, согласно ей мой щуп рассчитан на частоту до 40 МГц и напряжение до 600 Вольт. Сам же осциллограф имеет более скромные границы, потому здесь все с приличным запасом.

Щуп имеет возможность подстройки, но так как пробовал я при частотах, которые заметно ниже предельной частоты, то регулировка ни на что не влияла.
Для регулировки была также и отверточка, но она мне сильно пригодилась для работы с осциллографом, а не щупом. но следует учитывать, отвертка идет в комплекте к щупу, а не осциллографу. Кстати, цена щупа весьма низкая, как на мой взгляд, у нас в оффлайне они стоят куда дороже.

А вот и предмет обзора.
Внешне типичный кружок «умелые руки» в школе, простенький корпус, правда присутствует лазерная гравировка, а не банальные наклейки, впрочем это к делу не относится.

Сверху корпуса расположен цветной дисплей с диагональю 2.4 дюйма и разрешением 320х240. У моего DSO203 дисплей больше как размером, так и разрешением (400х240), хотя и ненамного.
Справа кнопки управления, причем управление предельно простое, здесь нет никаких меню, настроек и пр. Просто пять кнопок —
1, 2. Входное напряжение от 0.01 до 5 В на клетку. 9 ступеней.
3, 4. Развертка, от 1.5мкС до 6мС на клетку, 12 ступеней.
5. Кнопка Hold, просто фиксирует показания на дисплее. Как оказалось, самая используемая кнопка в некоторых ситуациях.

На верхнем торце корпуса расположили входной BNC разъем, а также выключатель и разъем питания.
К слову, потребление прибора составляет всего около 150мА, что делает возможным организовать его автономное питание, но так как прибор довольно чувствительный, то рекомендуется применить пару литиевых элементов и линейный стабилизатор напряжения с низким падением. В интернете искать по приставке — Low Drop.

Снизу отверстие для доступа к подстроечному резистору установки нуля.

Разбирается данная конструкция весьма просто, сначала выкручиваем четыре самореза снизу.

Затем четыре винта сверху и вынимаем плату. В корпусе просверлено отверстие для разъема, потому вынимать плату надо от отверстия.

Внутри можно увидеть плату осциллографа и довольно знакомый многим радиолюбителям дисплей. Если не путаю, то такой же дисплей применяется и в DSO138.

Дисплей удерживается только за счет фиксации в разъеме, сверху прижат корпусом, снизу приплавлены две пластмассовые стояки.

Вот печатная плата сделана весьма неплохо, около каждого элемента проставлен не только позиционный номер, а и номинал, что бывает крайне редко. Прямо «мечта ремонтника» 🙂 Снимал как-то видео, как определить номинал сгоревшего резистора, здесь бы такое не потребовалось.

Узел питания и входного операционного усилителя. Пайка довольно неплохая, но есть ощущение, что некоторые компоненты меняли после сборки, видны следы флюса.

Входные цепи и делители сигнала. К сожалению осциллограф умеет работать только с переменным током, впрочем для большинства задач этого более чем достаточно.
По входу стоит конденсатор 330нФ 250 Вольт.

Входной делитель. На плате герконовых реле, делитель имеет 9 вариантов входного напряжения. Первые три реле работают в цепи первого ОУ, потом еще пара в цепи второго ОУ, получается 3х3=9 вариантов.

Резистор установки нуля. изначально осциллограф пришел с «уплывшим» нулем, установил, но практика показала, что ноль все таки любит иногда «поплавать», потому отверточка нужна довольно часто.

Элементы осциллографа:
1. Входной сдвоенный ОУ LM6172 с максимальной частотой в 100 МГц.
2. АЦП — ADS830E, максимальная частота в 60 МГц
3. Асинхронный буфер FIFO с временем доступа не более 12 нС.
4. Микроконтроллер Atmega16A, слева кварцевый резонатор 20 МГц.
5. Просто логическая микросхема
6. Преобразователь напряжения 7660, формирует отрицательный полюс 5 Вольт.
Еще на плате есть линейный стабилизатор напряжения 3.3 Вольта, он виден выше на фото.

Снизу пайка хоть и относительно качественная, но вот флюс, его много.

Кроме того, что на плате указаны номиналы компонентов, есть еще и принципиальная схема. Правда в варианте с другим питанием. Здесь за питание отвечает не 7660, а просто собран сетевой БП с двухполярным питанием.
К сожалению качество схемы немного подкачало, но что есть.
Виден входной аттенюатор, АЦП, буфер и микроконтроллер с дисплеем. Схемотехника проста как три копейки, но вполне неплохая для по сути игрушки.

Посмотрим более внимательно, на базе чего собран осциллограф.
Сразу после первого аттенюатора сигнал попадает на усилитель.
Применен довольно неплохой ОУ с частотой до 100 МГц, что при заявленных 4 МГц более чем с запасом.

Дальше неплохой 8 бит АЦП производства Burr-Brown с верхней частотой 60 МГц, что также с огромным запасом.
Интересно то, что у DS203, которым я пользуюсь, стоит хоть и сдвоенный АЦП, но имеющий только 40 Мегасемплов.

Буфер FIFO, насколько я понимаю, максимальная рабочая частота составляет порядка 80 МГц. Применена IDT7205. Похоже, что данная серия выпускается в военном исполнении.

А вот дальше выводом на экран сигнала, а также масштабной сетки и измерением частоты занимается Atmega16A.
Пожалуй это самое «слабое звено». По крайней мере на мой взгляд «не программиста». Со своей стороны я только смог заметить, что здесь микроконтроллер работает на частоте 20 МГц при заявленной максимальной в 16 МГц, «оверклокеры» однако, но работает ведь 🙂

Первым делом я сначала решил оценить уровень шумов. Вход не был закорочен, если закоротить, то на экране просто прямая линия.
Слева осциллограф просто лежит на столе, справа я приложил руку к корпусу около входного аттенюатора.

Не пугайтесь, на самом деле экран осциллографа выглядит куда красивее, все четко и контрастно.

Просто так как скриншоты осциллограф делать не умеет, то пришлось прибегнуть к «дедовскому способу».

Для начала в качестве генератора я использовал встроенный в мой привычный DS203.
Пила и треугольник 20 кГц, соответственно так как видит это обозреваемый и мой, вполне неплохо.

Еще много тестов.

Синус и прямоугольник 20 кГц.
Синус совпадает, а вот у прямоугольника сильно завален передний фронт.

Предположу что выше генератор работал в режиме DDS, потому я повысил частоту выше 20кГц, так как в таком режиме точно работает именно генератор прямоугольных импульсов.
200 и 500 кГц. пожалуй я бы сказал что даже неплохо, если бы не то, что на одной осциллограмме завалено одно, на другой — другое. Такое впечатление, что изображение зеркальное. В обоих случаях использовался кабель от DS203, подключаясь поочередно на вход одного и другого осциллографа.

И тут я случайно увидел одну интересную особенность, возможно это ошибка в программе, возможно так задумано, но осциллограф позволяет заметно уменьшить время развертки, чем заявленные 1.5мкс на клетку.
Я начал переключать режимы развертки (они идут по кругу) и увеличив время смог растянуть сигнал.
Частотометр конечно начал показывать значение «от балды».

Ладно, уже любопытно, подаем 1 МГц.

Слева 1.5мкс, справа «неправильный» растянутый режим.

Подадим 2 МГц.

Ну все думаю, «Бобик сдох», на экране ерунда, в первом режиме не рассмотреть, во втором почти треугольник.

Но я не сдаюсь и подам 4 МГц. Уже и на экране моего осциллографа нечто слабо напоминающее прямоугольник.

А на экране обозреваемого «зверька вообще мрак, но…
1. Исходный сигнал на самой короткой развертке, частотомер работает нормально, отображает поданные 4 МГц. Но на сигнал без слез не взглянешь.
2. Увеличиваем время развертки, как я делал выше, ну что, треугольник.
3. А давайте изменим входной аттенюатор с 1 В на клетку до 0.5 В. О, уже заметно лучше.
4. Ну а теперь еще растянем развертку. Даже на прямоугольник похоже 🙂

С другой стороны, выше 4 МГц никто собственно и не обещал.

Следующий эксперимент провел уже в этом режиме, кстати, встроенный частотомер при частоте в 6МГц уже начинает показывать ерунду. Но как оказалось, отображаемая на экране частота все равно кратна реальной частоте входного сигнала.
1. 6 МГц, на экране отображает как 2 кГц, т.е. в 3000 раз меньше.
2. 8 МГц, на экране 2.8 кГц, что также примерно в 3000 раз меньше чем 8 МГц.

Но ведь работает же. У меня создалось впечатление, что каким-то образом выводится не весь реальный сигнал, и сильно разделенный, т.е. из него „вынули“ большую часть и он приобрел вменяемый вид.
К сожалению мне особо нечем тестировать на высоких частотах.

Вообще, справедливости ради, сначала я пробовал проводить тесты с другим генератором сигналов.

И я бы не добавлял их в обзор, если бы не некоторые мелочи, которые я заметил в процессе.
Для начала сигнал 8 МГц в штатном виде и растянутый, как я делал выше.

Но если его растянуть еще больше, то он приобретает такой вид, возможно кому нибудь данная информация даст почву для размышлений.

А вот так выглядит треугольник и пила, поданная с этого генератора на обозреваемый осциллограф и мой основной.
Частота 65кГц.

Раз уж тестирую, то проверю как данный осциллограф работает с более реальными сигналами. Например осциллограмма из одного моего обзора блока питания. правда здесь использовался конденсатор параллельно щупу, как я делал в последних обзорах БП.

Тот же блок питания, примерно та же нагрузка, но с разными параметрами вывода сигнала.
Похоже? На мой взгляд да.

Возможно кому-то осциллограмма, которую я показал выше, покажется не очень наглядной, потому я подобрал один из блоков питания, где пульсации имеют более привычный вид.
Один и тот же блок питания, слева нагрузка 50%, справа 100%. В обоих случаях осциллограммы совпадают, причем на обозреваемом можно еще растянуть картинку в 2 или 4 раза.
Но при этом мой осциллограф работает при минимально возможных 50мВ на клетку, а у обозреваемого можно увеличить чувствительность еще в 5 раз, доведя до 10мВ на клетку. Правда обнаружился и небольшая „особенность“, у одного осциллографа размах пульсации получился больше, чем у другого. Кстати, у обозреваемого значение полного размаха отображается довольно корректно.

Групповое фото, DSO138, обозреваемый и DS203.

В качестве выводов могу сказать, что осциллограф приятно удивил и прежде всего весьма неплохой элементной базой и простотой схемного решения. В плане функционала он конечно проиграет даже DSO138, не говоря о DS203, но вот в плане характеристик он стоит на голову выше чем DSO138 и я бы сказал, что в чем-то он не сильно и хуже моего. Не стоит забывать, что в DS203 применен АЦП с максимальной частотой 40 МГц, а в обозреваемом 60 МГц.
Входной аттенюатор построен без хитрых коммутаторов, только лишь на базе самых простых реле, но данное решение работает.
Из минусов отмечу то, что режим входа только АС, а не AC/DC, как у DSO138 и DS203.
Зато из плюсов простейшее управление, которое к сожалению все равно добавило ложку дегтя в виде некоторых сложностей в работе встроенного триггера, отвечающего за удержание сигнала на экране. Именно про это я писал выше, когда речь шла о кнопке Hold. В некоторых ситуациях осциллограф не может удержать стабильно сигнал на экране и он начинает „дергаться“, при нажатии на кнопку Hold результат получается чаще всего нормальный, просто надо привыкнуть к этому.
Самая большая странность, прямоугольник на частоте 20кГц.

В остальном весьма интересный вариант для самых начинающих радиолюбителей, который прост в управлении и позволяет применить его и на практике, например при работе с блоками питания.
Кроме того, данный осциллограф продается в корпусе (это и преимущество и недостаток одновременно), а также имеет питание 5 Вольт. Я пробовал питать его от повербанка, работает отлично.

Покупал через посредника yoybuy.com, стоимость комплекта около 22 долларов, стоимость доставки зависит от страны, в обзоре указан вес составных частей.

На этом у меня все, как всегда жду вопросов, надеюсь что обзор был полезен.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Цифровой осциллограф для начинающих. Ч1

Что такое осциллограф и для каких целей он нужен, ты можешь узнать из предудщих статей: Как пользоваться осциллографом и для чего он вообще нужен. Часть I и Как пользоваться осциллографом и для чего он вообще нужен. Часть II

Если же тебе их читать лень, то скажу, что главная задача этого прибора в том, чтобы отобразить на экране изменение электрического сигнала с течением времени. Для этого на экране осциллографа размечена координатная система. Обычная декартова система, на которой имеются ось X и ось Y. По оси X отмечается время, а по оси Y — напряжение.

Всякие управляющие ручки и кнопочки, которые расположены вокруг экрана прибора предназначены для того, чтобы можно было настраивать отображение сигнала: масштаб по Х, масштаб по Y, триггеры и курсоры. Таким образом можно как бы отдалить или приблизить сигнал, чтобы рассмотреть его по лучше.

Хочу также заметить, что современный осциллограф отличается от своих предшественников тем, что представляет собой компьютер, который собирает, преобразует, анализирует и манипулирует измеренными значениями сигнала, поданного на вход. Это современный вычислительный комплекс.

Осциллограф очень полезен при:

  • Измерении частоты и амплитуды сигнала, что может сильно помочь при отладке создаваемой тобой схемы.
  • Определении уровня шума в цепи
  • Визуальном контроле формы сигнала
  • Определение сдвига фаз между двумя сигналами
  • ...и другие способы применения. Например, анализ работы датчиков автомобиля.

Осциллографы применяются при создании, наладке, ремонте различных электронных приборов:от сотовых телефонов, до эл. цепей автомобильных двигателей. От гражданских до военных. Они нужны везде.

В дополнение к описанным выше возможностям, многие современные приборы имеют дополнительные функции, с помощью которых можно быстро узнать частоту сигнала, его амплитуду и многие другие характеристики. Некоторые приборы уже предоставляют возможность провести с сигналами в реальном времени различные математические преобразования или, например, быстрое преобразование фурье. В целом, осциллограф позволяет наблюдать на экране временные и физические характеристики сигнала. Вот как выглядит такое меню функций у Siglent SDS 1202X-E (38 параметров!):


На мой взгляд, это очень удобно и полезно. Поэтому следует все таки обращать свое внимание на современный инструментарий. Благодаря хорошим измерительным приборам можно сильно сократить время поиска неисправности. Особенно это касается осциллографа, который является единственными "глазами", которые позволяют заглянуть внутрь происходящего в электронной цепи и оценить временные и физические характеристики сигналов в этой цепи.

→ Временные характеристики:

Частота и период, скважность и коэфф. заполнения (Duty cycle), время спада и нарастания сигнала.

→ Физические характеристики:

Амплитуда,  максимум и минимум сигнала, средне квадратичное, среднее значение напряжения и т.д.

Принцип работы цифрового осциллографа

Цифровые осциллографы, в отличие от аналоговых, не повторяют получаемый сигнал сразу на экран, а предварительно его преобразовывают в "цифровую" форму. Для этого входной сигнал замеряется определённое число раз в секунду, затем прибор после некоторых преобразований этих данных реконструирует сигнал и отображает его на экране. Оцифровка выполняется помощью блока аналогово-цифрового преобразования. 

 

 

Ключевые характеристики цифрового осциллографа

Еще 5-6 лет назад большинство радиолюбителей (а некоторые и по сей день) пользовались приборами, которые остались ещё от СССР. В свое время это были замечательные приборы со своими плюсами и минусами. Но СССР уже нет более четверти века, а технологии продолжали развиваться, совершенствоваться и дешеветь. Теперь у нас есть возможность пользоваться современными цифровыми приборами с превосходными характеристиками.

Для того, чтобы научиться пользоваться современным цифровым осциллографом требуется освоить небольшой, но специфичный набор понятий и принципов, на основе которых строится его работа. Это по силам каждому. Приступим.

→ Полоса пропускания

Осциллографы (Oscilloscope, O-Scope) не могут измерять абсолютно любые сигналы. Все приборы имеют ограничения, которые определяют сигналы какой минимальной и максимальной частоты или амплитуды с помощью этого прибора могут быть измерены. А полоса пропускания — это как раз та характеристика прибора, которая говорит тебе какой диапазон частот может быть измерен этим прибором. Говоря про полосу пропускания осциллографов обычно имеют ввиду верхнюю границу, так как нижняя граница -- это сигнал постоянного тока и его умеют рисовать абсолютно все приборы.

К слову, на самом деле при реальных измерениях диапазон ещё уже, чем заявляет полоса пропускания. В современных цифровых приборах сигнал проходит оцифровку и обработку, прежде чем попадёт на экран прибора. Существует определенная теоретическая база из-за которой производители советуют выбирать прибор таким образом, чтобы его полоса пропускания была в 3 раза больше, чем измеряемый синусоидальный сигнал в 4 или в 5 раз больше, если сигнал цифровой (т.е. всякие разные формы и виды прямоугольных сигналов).

Нижняя и верхняя границы полосы пропускания -- это

Выбираем бюджетный карманный осциллограф / Инструменты / iXBT Live

Приветствую! 

Добавляю небольшую статью на тему выбора домашнего компактного осциллографа начального уровня для работы и хобби. 

Почему речь пойдет про карманные и и компактные — потому что это самые бюджетные варианты. Настольные осциллографы можно посмотреть по ссылке ниже. Это, как правило, достаточно дорогие модели ($200-400 и дороже) на 4 канала со множеством функций. А вот компактные модели на 1 канал для простых измерений и оценки формы сигнала можно приобрести буквально за $20...$40. И будут приличные модели, достаточные для большинства измерений.Основные технические характеристики карманных осциллографов — это рабочая полоса, которая измеряется в МГц, а также частота дискретизации, которая напрямую влияет на качество измерений. Не менее важная характеристика — это размер дисплея и емкость батареи, обеспечивающие комфортную работу в автономном режиме.

В статье постараюсь описать осциллографы, которые лично были в руках и дать небольшие плюсы и минусы данных моделей.

Начальный вариант, через который прошли многие радиолюбители — это осциллограф на базе микроконтроллера ATmega, на Али есть множество вариантов, в том числе для самостоятельной сборки, например, DSO138. Его развитие на базе микроконтроллера STM32 называется DSO150.

ОСЦИЛЛОГРАФ DSO 150 В КОМПЛЕКТЕ С ЩУПОМ P6020 ЗА $21

DSO150 — это неплохой осциллограф для радиолюбителя начального уровня. Сам осциллограф имеет полосу около 200кГц. Построен на базе STM32, АЦП до 1М семплов. Хороший вариант для проверки простых блоков питания (ШИМ) и аудиотрактов. Цена $17 за комплект с корпусом и щупом Р6100. Подойдет для начинающих, например, для исследования звуковых сигналов (настройке усилителя и т.п.). Из минусов отмечу невозможность сохранить картинку осциллограммы, а также небольшую полосу пропускания.

Технические характеристики:
• Максимальная частота выборки в режиме реального времени: 1 Мвыб/с
• Аналоговая полоса пропускания: 0 — 200 кГц
• Диапазон чувствительности: 5 – 20 мВ/дел
• Максимальное входное напряжение: 50 В макс. (1 зонд)
• Полное входное сопротивление: 1M ом/20пФ
• Точность: 12 бит
• Длина записи: 1024 точек
• Режимы связи: постоянный ток / переменный ток/ заземление
• Временной диапазон развёртки: 500с/дел– 10 мкc/дел
• Режимы ожидания: автоматический, нормальный и одиночный
• Положение запуска: в центре буфера
• Напряжение источника питания: 9 В (8 – 10 В) постоянного тока
• Потребление тока: ~ 120 мА @ 9 В
• Размер основной платы: 94 x 65 мм 
• Размер аналоговой платы: 65 x 47 мм 
• Размер экрана: 52 x 40 мм
• Размер упаковки: 14,5 x 10 x 3,7 см 
• Вес упаковки: 179 граммов

 

 Но хобби быстро прошло, перешел к серьезным моделям.

В начале 2018 года попался один из популярных вариантов осциллографов начального уровня — простой, но неплохой осциллографический пробник — DSO188.

Осциллограф DSO188 — простой «показометр» с одним каналом, без памяти, но с цветным дисплеем, аккумулятором 300mAh и очень маленький по размерам. Его плюс именно в компактности и портативности, а полосы частот хватит для большинства приложений (например, настройка звукотехники).
При небольшой стоимости ($30) он отображает сигналы с частотой 1МГц ( семплирование 5MSA/s). Для работы используются MMCX щупы, но в комплекте есть адаптер MMCX-BNC. Установлен отдельный АЦП на 5MSPS, полоса до 1МГц, корпус сборный из панелей, что очень даже неплохо выглядит. В плюсах отмечу компактные размеры и приличную полосу, по сравнению с DSO150 (1МГц), а также компактные размеры. Очень удобно использовать вместе с обычным тестером. Легко помещается в карман. Из минусов — корпус имеет открытую конструкцию, не защищенную от внешних воздействий (нужно дорабатывать), а также отсутствие возможности перенести на компьютер сохраненные снимки. Наличие коннектора MMCX это удобно, но для полноценной работы потребуется адаптер на BNC или специальные щупы. За свои деньги это очень хороший вариант начального уровня.

Specifications:
1:Analog band width: 1MHz
2:Maximum real time sampling rate: 5MS/s
3:Vertical sensitivity: 50 mV/div ~ 200 V/div
4:Horizontal time base range: 100mS/div ~ 2uS/div
5:Maximum input voltage: 40 V (1X probe), 800 V (10X probe)
6:Storage depth: 40KB
7:Input resistance: 1M
8:ADC precision: 12bits
9:Coupling mode: AC/DC
10:Trigger mode: Auto
11:Trigger edge: Ascending/descending edge
12:External trigger voltage 0 – 40 V
13:Display: TFT color display
14:Power supply: 250 mAh lithium battery
15:Size: 57 x 34 x 11 mm 
16:Weight: 40 grams

Если одного мегагерца мало, можно посмотреть в сторону карманных осциллографов в корпусе с BNC коннектором. 

 КАРМАННЫЙ ОСЦИЛЛОГРАФ DSO FNISKI PRO

 АНАЛОГИЧНАЯ МОДЕЛЬ  DSO FNISKI PRO С ЩУПОМ P6100 

Это очень хороший вариант за свои деньги. Полоса 5МГц (синус). Есть возможность сохранения графиков.  Цена с купоном продавца $38.

Характеристики:
1:Analog band width: 5MHz
2:Maximum real time sampling rate: 20MS/s
3:Vertical sensitivity: 50 mV/div ~ 200 V/div
4:Horizontal time base range: 50S/div ~ 250nS/div
5:Maximum input voltage: 40 V (1X probe), 800 V (10X probe)
6:Storage depth: 40KB
7:Input resistance: 1M
8:ADC precision: 8bits
9:Coupling mode: AC/DC
10:Trigger mode: Single, Normal, Automatic
11:Trigger edge: Ascending/descending edge
12:External trigger voltage 0 – 40 V
13:Display: 2.4 inch @ 320 * 240
14:Power supply: 1200 mAh lithium battery

 

Есть вариант с BNC-крокодилами.

Есть вариант с щупом 10х щуп P6010 (с полосой до 10МГц). 

 Я бы взял первый вариант (с крокодилами) и докупил бы щупы отдельно. Ссылка на щупы есть ниже.

По результатам использования отмечу удобный корпус,  большой дисплей. Тестовый сигнал на 5МГц (синус) показывает без особых проблем, другие периодические и апериодические сигналы нормально показывает до 1 МГц. 

Если полоса выше 1МГЦ не критична, и не требуется работать с большими напряжениями, то DSO FNIRSI PRO c BNC коннектором — хороший выбор. Он использует стандартные щупы и может применяться как быстрый карманный осциллографический пробник — потыкать и посмотреть, жив ли обмен, микросхема и т.п. А потом топать за большим осциллографом либо нести пациента на стол и вскрывать. 

 А вот если требуется полоса чуть больше — обратите внимание на недорогой осциллографический пробник DSO168

Осциллограф DSO168 имеет необычный дизайн, смахивающий на популярные МР3 плееры. Это одновременно и плюс (металлический стильный корпус), и минус устройства. Не самый удачный выбор разъема — MiniUSB для зарядки аккумулятора. А также отмечу подключение через джек 3.5 мм — самый главный минус данной модели.

Технические характеристики:
• Максимальная частота выборки в режиме реального времени: 50 Мвыб/с
• Аналоговая полоса пропускания: 0 — 20 МГц
• Диапазон чувствительности: 50 – 200 мВ/дел
• Максимальное входное напряжение: 40 В макс. (1 зонд)
• Полное входное сопротивление: 1Mом/20пФ
• Точность: 12 бит
• Длина записи: 1024 точек
• Режимы связи: постоянный ток / переменный ток
• Временной диапазон развёртки: 100с/дел– 100нс/дел
• Режимы ожидания: автоматический, нормальный и одиночный
• Положение запуска: в центре буфера
• Напряжение источника питания: 3.7В аккумулятор

DSO168 — интересный прибор за свою стоимость.
Гораздо лучше огромного количества подобных DSО138, которые строятся на базе микроконтроллеров со встроенным АЦП (200kHz).
В данной модели DSO168 установлен отдельный АЦП AD9283, который обеспечивает уверенный анализ сигналов до 1МГц.
До 8 МГц можно использовать данный прибор, но как «отображалку» сигналов, без каких либо серьезных измерений.
А вот до 1МГц — без проблем.

 В комплекте идет стандартный щуп Р6100 BNC, а также адаптер с джека 3.5мм на BNC. 

На борту отдельный АЦП от AD с частотой семплирования до 100 MSPS, аналоговая полоса до 20МГц, один канал.

Осциллограф DSO168 имеет полосу 20МГЦ (при частоте семплирования 60MSA/s), не самый удачный, но более-менее аккуратный корпус аля iPod, встроенный аккумулятор 800 мАч (может питаться от USB). Сходство с плеером добавляют щупы через джек 3,5 мм (есть адаптер BNC-3.5mm). Памяти для сохранения осциллограмм — нет.

Далее предлагаю посмотреть еще одну недорогую модель осциллографа DSO338 с полосой 30МГц.

КОМПАКТНЫЙ ОСЦИЛЛОГРАФ DSO 338 FNISKI 30MHZ 

Это карманный аккумуляторный осциллограф на один канал с частотой семплирования аж 200Msps. Характеристики неплохие, многим такой модели хватает за глаза. В наличии один канал, дисплей имеет хорошие углы обзора, время работы до 8 часов с одного заряда непрерывно. Цена на распродаже с купоном $61.

Технические характеристики:
1:Analog band width: 30MHz
2:Maximum real time sampling rate: 200MS/s
3:Vertical sensitivity: 50 mV/div ~ 200 V/div
4:Horizontal time base range: 100mS/div ~ 125nS/div
5:Maximum input voltage: 40 V (1X probe), 800 V (10X probe)
6:Storage depth: 128KB
7:Input resistance: 1M
8:ADC precision: 8bits
9:Coupling mode: AC/DC
10:Trigger mode: Single, Normal, Automatic
11:Trigger edge: Ascending/descending edge
12:External trigger voltage 0 – 40 V
13:Display: 2.4 inch — IPS — 320*240
14:Power supply: 3000 mAh lithium battery
15:Size: 90 x 70 x 28 mm 
16:Weight: 200g

 Для измерений используется стандартный щуп P6100 BNC.

 Осциллограф достаточно хорошо себя показывает на частотах более 20 МГц.

 Но, учитывая его стоимость, можно посмотреть и другие варианты.

 

 МОЩНЫЙ ОСЦИЛЛОГРАФ FNIRSI-5012H 100МГЦ

 Новая модель и один из лучших за свои деньги. Это одноканальный 100-МГцовый осциллограф с памятью. Частота семплирования достигает 500 Msps.  Цена на распродаже c учетом купона продавца $76.

Осциллограф является одним из самых «мощных» и «навороченных» в своем ценовом диапазоне. Имеется 1 канал BNC, но осциллограф может отображать синусоидальный сигнал до 100МГц. Другие периодические и апериодические сигналы нормально смотрятся до 70-80 МГц.

 В комплекте с осциллографом есть неплохой щуп Р6100 с делителем 10х и полосой до 100МГц, а также кейс для хранения и переноски.

Осциллограф справляется с сигналами не хуже, чем старший собрат Rigol.

 Отмечу отсутствие связи с компьютером (отчасти это не минус, так как нет необходимости осуществлять гальваническую развязку), а также наличие всего одного канала для измерения.

DSO Fniski 100MHz — это хороший выбор, особенно если нет подходящего прибора и остро стоит вопрос стоимости. Если есть возможность добавить — лучше добавить и взять что-то на два канала и с возможностью сохранения результатов.

ПЕРЕНОСНОЙ ОСЦИЛЛОГРАФ HANTEK 2C42 40МГЦ

Хит 2019 года — портативный осциллограф с частотой 40 МГц (есть модель 2C72 до 70МГЦ) на два канала и с генератором частоты. Встроенный мультиметр. Поставляется с сумкой для переноски.  Цена от $99 на распродаже.

В комплекте есть все необходимое + кейс для переноски. Частота оцифровки до 250MSa/s — это самый лучший результат для портативных осциллографов. Существуют версии 2С42/2С72 без встроенного генератора, но они не так интересны с точки зрения цены и функционала.

 Осциллограф чуть дороже предыдущих, но модель 2Dx2 оснащена генератором частоты. На фото ниже показана генерация синусоидального сигнала частотой 1 МГц.

 В остальном, Hantek не хуже своих старших собратьев. Отмечу наличие встроенного мультиметра, что делает данную модель устройством 3-в-1.

 

В статье отмечу еще один популярный вариант карманного осциллографа — DSO203 Handheld ARM Nano Mini Digital Oscilloscope.

Это отличный комбайн со встроенным функциональным генератором сигналов, 4 каналами (2 аналоговых + 2 цифровых), и частотой семплирования 72MHz. Единственно, он самый дорогой из представленных.

 На сегодняшний день существует отработанная прошивка Wildcat, которая значительно повышает функционал данного DSO203.

Осциллограф практически неубиваемый, имеет металлический корпус, два аналоговых входа, два цифровых входа, встроенный генератор частот. Коннекторы MMCX.

 На фото ниже представлен пример работы генератора частоты. В минусы запишу стоимость, мягко говоря нишевый осциллограф. Можно чуть чуть докинуть и взять Rigol или что-то подобное. 

Осциллографы, которые  у меня есть закончились, но я отмечу еще пару моделей, которые имеют право на жизнь. 

 Это удобный и качественный  осциллограф с генератором сигналов Jinhan JDS2023.

Аналоговая полоса 20MHz. Сделан в удобном формфакторе, в комплекте есть все необходмое для работы.

 Осциллограф подключается к компьютеру, имеет встроенный генератор частот, можно сохранять снимки экрана.

 

НОВЫЙ ПОРТАТИВНЫЙ ОСЦИЛЛОГРАФ JDS6031 1CH 30M 200MSPS

МУЛЬТИМЕТР JSD6031 С АЛИ

Характеристики:
Разрешение экрана: 320 * 240
Длина хоста * ширина * высота: 19,5см * 9,5см 3,7см
Внешняя длина упаковки * ширина * высота: 28,5 см * 23 см * 8 см
Вес хозяина: 350 г
Общий вес брутто: 700 г
Канал: 1CH
Пропускная способность: 30МГц
Скорость выборки: 200 MSPS
Режим питания: 18650 съемный аккумулятор
Калибровка сигнала: 1 кГц меандр

А также недорогой осциллограф DSO 112A TFT Mini Digital Oscilloscope.

 Хороший вариант на твердую «четверку». Имеет сенсоный дисплей и возможность подключения по USB. На борту быстрый АЦП c оцифровкой до 5М семплов в секунду, аналоговая полоса до 2МГц. 

Как и с DSO150, применена STM32, полоса 200кГц. При желании можно найти еще дешевле не распаянный вариант. Подойдет для обучения пайки «со смыслом».

Подобные портативные девайсы — то, что я обычно использую. Очень удобно, особенно при настройке различных приборов, проверке, пуско-наладке.  Могу рекомендовать брать вариант DSO150, а еще лучше, похожий DSO138 (200kHz) в варианте DIY для обучения пайки и азам радиоэлектроники.  Из функциональный моделей отмечу DSO Fniski 100MHz, как осциллограф с самым лучшим соотношением цена и рабочая полоса, а также Hantek 2С72 как самый фунциональный.

Рекомендую обратить внимание на полезные аксессуары для осциллографа:

Щуп Р6100 100МГц с компенсацией емкости и делителем 10х ($5)

Щуп Р2100 100МГц с компенсацией емкости и делителем 10х копия Tectronix ($7)

Щуп Р4100 100МГц 2кВ с компенсацией емкости и делителем 100х ($10)

Пассивный аттенюатор сигнала Hantek HT201 для осциллографа 20:1 BNC для измерений напряжения до 800Вольт ($4)

 

 Все перечисленные модели интересны, в период летней распродажи с 18 по 23 июня будут приличные скидки до 15-20%. Старайтесь комбинировать с купонами, приведенными выше. Про оформлении смотрите купоны магазина, которые доступны на странице акций или на странице товара. 

Лучшие модели осциллографов для радиолюбителя с Aliexpress на летней распродаже

Смотрите горячие темы:

Выбираем лучшие карманные осциллографы (DSO) с Али

Электроника, модули и промавтоматика с Али и не только. Недорого и очень выгодно

Топ-10 новых автогаджетов с Aliexpress

Подборка топ-10 аудиомагазинов с Aliexpress: компоненты для самодельных усилителей и акустических систем

Подборка топ-10 аудиоусилителей с Aliexpress

Умный дом с нуля: устройства Xiaomi MiHome

Умный дом с нуля: выбираем устройства Xiaomi MiHome

Подборка лучших павербанков (внешних аккумуляторов) c поддержкой QC3.0 и PD

Профильные магазины с Алиэкспресс: аудиомодули, радиотовары, специальные гаджеты и инструменты

Подборка паяльного оборудования для радиолюбителя с Али (и не только)

Выбираем лучшее оборудование для радиолюбителя с Али (и не только)

Топ мультиметров и измерителей с Али

Недорогие и полезные DIY модули и инструменты для радиолюбителя

Подборка лучших павербанков (внешних аккумуляторов) c поддержкой QC3.0 и PD

Подборка серьезных осциллографов с Али (20МГц-100МГц)

Подборка готовых модулей усилителей звука с Али (плюс пара динамиков) для DIY акустических систем

Аудиомодули и платы усилителей с Али и не только

Лучшие компоненты для создания точечной сварки своими руками с Алиэкспресс (для сварки аккумуляторов)

Подборка интересных товаров, гаджетов, инструментов и игрушек с Алиэкспресс с хорошей скидкой

Инструменты, тестер, павербанк — годнота с Алишки

Лучшие аккумуляторные батарейки с Али: АА (пальчиковые), ААА (мизинчиковые), «Крона»

Подборка лучших внешних аккумуляторов c QC3.0 и PD для питания паяльников и мощных устройств

Подборка очень выгодных товаров технической направленности с Алиэкспресс

Лучшие наборы LEGO с Алиэкспресс (10 сборных моделей автомобилей)

Аксессуары для LEGO — лучшие и самые необычные дополнения с Али

Как работает пробник осциллографа и другие истории

Осциллограф, вероятно, является наиболее универсальным испытательным оборудованием, которое вы можете иметь на своем стенде для электроники, предлагая множество возможностей для измерения времени, частоты и напряжения, а также тонкости в ваших схемах, которые проявляются в форме сигналов, которые они генерируют.

На передней панели современного осциллографа находится разъем BNC, в который вы можете подать сигнал для исследования. Однако если вы просто подключите коаксиальный провод BNC между источником и осциллографом, вы сразу заметите некоторые проблемы.Ваши формы волны будут искажены. Проще говоря, ваши прямоугольные волны больше не будут квадратными.

Почему это? Решающее значение для работы осциллографа имеет очень высокий входной импеданс, позволяющий минимизировать потребление тока в исследуемой цепи. Таким образом, первое, что вы найдете за этим разъемом BNC, - это резистор сопротивлением 1 МОм, соединенный с землей, или, по крайней мере, если не физический резистор, то другую схему, которая представляет его эквивалент. Это высокое сопротивление выполняет свою работу по обеспечению высокого сопротивления внешнему миру, но влечет за собой штраф.Благодаря высокому значению, даже небольшой внешней емкости может быть достаточно для создания удивительно эффективного фильтра низких или высоких частот, который, в свою очередь, может исказить форму сигнала, которую вы ожидаете на экране.

Ответ на эту проблему можно найти в пробнике осциллографа. Может показаться, что пробник - это просто вилка с небольшим количеством провода, подключенной к жесткой точке с зажимом заземления, но на самом деле он содержит простое, но умное решение проблемы емкости.

Принципиальная схема типичного пассивного пробника осциллографа.Ge ² [CC BY-SA 3.0] Большинство пассивных пробников осциллографов содержат аттенюатор для изоляции тестируемой цепи от емкости кабеля и компенсационные конденсаторы, подключенные параллельно каждому из сопротивлений, чтобы нейтрализовать влияние емкости. кабеля. Аттенюатор обычно выбирается так, чтобы входное напряжение делилось на десять, поэтому вы увидите пробники «10x». Показание на осциллографе тогда составляет одну десятую напряжения на датчике, например, уровень 1 В будет измеряться как 100 мВ.Многие прицелы автоматически преобразуют это значение в истинное значение, если в их настройках указан тип датчика.

Эффект плохо настроенного щупа осциллографа, искаженная прямоугольная волна.

Один из компенсационных конденсаторов будет регулируемым для точной настройки отклика. У осциллографа будет откалиброванный выходной сигнал прямоугольной формы, обычно с частотой 1 кГц, к которому подключен зонд, а затем конденсатор регулируется до тех пор, пока волна, отображаемая на экране, не станет действительно квадратной. Слишком большая емкость - и пробник действует как фильтр нижних частот, а при слишком малом - он становится фильтром верхних частот.Проверка датчика на калибровочный терминал и его корректировка, если отображаемая форма волны не является прямоугольной, должна стать полурегулярной частью обслуживания стенда.

Максимумы и минимумы

Пробник предназначен для обеспечения высокого импеданса цепи на месте и не искажает результирующую отображаемую форму волны. Однако бывают случаи, когда необходимо измерить выходной сигнал с низким импедансом, например источник с сопротивлением 50 Ом.В этой ситуации источник должен иметь такое же полное сопротивление, поэтому он должен быть подключен к резистору 50 Ом.

Некоторые прицелы имеют режим входа 50 Ом, что позволяет нажимать кнопку. В противном случае можно провести измерение на оконечном резисторе, но поскольку полное сопротивление теперь уменьшено до точки, при которой малые емкости больше не имеют существенного влияния, в этом нет необходимости, если кабель к осциллографу будет сокращен до минимума. В этих случаях вы можете полностью отказаться от пробника, если у вас есть тройник BNC и терминатор на 50 Ом, и поместите и терминатор, и тройник на конец кабеля, напрямую подключенный к разъему BNC на прицеле.

Для многих читателей этот базовый учебник по работе входа и пробника осциллографа будет устаревшей. Но я помню свой первый осциллограф и то, как он давал мне странные результаты, потому что я был слишком молод, чтобы меня учили компенсации пробников. Когда вы получаете свой первый «прицел», возникает соблазн думать, что «осциллограф - это главное событие», не осознавая, что это настолько хорошо, насколько вы подключаете его к тестируемой схеме.

,

Как работает осциллограф - Работа осциллографа - Учебное пособие по осциллографу

Чтобы лучше понимать элементы управления осциллографа, вам нужно немного больше узнать о том, как осциллографы отображают сигнал. Аналоговые осциллографы работают несколько иначе, чем цифровые осциллографы. Однако некоторые внутренние системы похожи. Аналоговые осциллографы несколько проще по своей концепции, и их сначала описывают, а затем следует описание цифровых осциллографов.

Аналоговые осциллографы

Когда вы подключаете пробник осциллографа к цепи, сигнал напряжения проходит через пробник в вертикальную систему осциллографа.На следующем рисунке представлена ​​простая блок-схема, которая показывает, как аналоговый осциллограф отображает измеренный сигнал.

Блок-схема аналогового осциллографа

В зависимости от того, как вы устанавливаете вертикальную шкалу (регулировка вольт / дел), аттенюатор снижает напряжение сигнала, а усилитель увеличивает напряжение сигнала.

Затем сигнал проходит прямо к вертикальным отклоняющим пластинам электронно-лучевой трубки (ЭЛТ). Напряжение, приложенное к этим отклоняющим пластинам, заставляет светящуюся точку двигаться.(Электронный луч, попадающий на люминофор внутри ЭЛТ, создает светящуюся точку.) Положительное напряжение заставляет точку двигаться вверх, а отрицательное напряжение заставляет точку двигаться вниз.

Сигнал также поступает в систему запуска для запуска или запуска «горизонтальной развертки». Горизонтальная развертка - это термин, относящийся к действию горизонтальной системы, заставляющей светящуюся точку перемещаться по экрану. Активация горизонтальной системы заставляет горизонтальную шкалу времени перемещать светящуюся точку по экрану слева направо в течение определенного интервала времени.Многие развертки в быстрой последовательности заставляют движение светящейся точки плавно переходить в сплошную линию. На более высоких скоростях точка может перемещаться по экрану до 500 000 раз в секунду.

Вместе горизонтальное движение и вертикальное отклонение отображают график сигнала на экране. Триггер необходим для стабилизации повторяющегося сигнала. Это гарантирует, что развертка начинается в той же точке повторяющегося сигнала, что приводит к четкому изображению, как показано на следующем рисунке.

Запуск стабилизирует повторяющуюся форму сигнала

В заключение, чтобы использовать аналоговый осциллограф, вам необходимо настроить три основных параметра для приема входящего сигнала:

  • Затухание или усиление сигнала. С помощью регулятора вольт / деление отрегулируйте амплитуду сигнала перед его подачей на пластины вертикального отклонения.
  • Временная база. Используйте элемент управления сек / дел, чтобы установить количество времени на деление, отображаемое по горизонтали на экране.
  • Запуск осциллографа. Используйте уровень запуска для стабилизации повторяющегося сигнала, а также для запуска по отдельному событию.

Кроме того, регулировка фокуса и яркости позволяет создавать четкое и видимое изображение.

Цифровые осциллографы

Некоторые системы, из которых состоят цифровые осциллографы, аналогичны системам аналоговых осциллографов; однако цифровые осциллографы содержат дополнительные системы обработки данных.С добавленными системами цифровой осциллограф собирает данные для всей формы сигнала и затем отображает их.

Когда вы подключаете пробник цифрового осциллографа к цепи, вертикальная система регулирует амплитуду сигнала, как в аналоговом осциллографе.

Затем аналого-цифровой преобразователь (АЦП) в системе сбора данных производит выборку сигнала в дискретные моменты времени и преобразует напряжение сигнала в этих точках в цифровые значения, называемые точками выборки. Тактовая частота выборки горизонтальной системы определяет, как часто АЦП выполняет выборку.Скорость, с которой «тикают» часы, называется частотой дискретизации и измеряется в отсчетах в секунду.

Точки выборки от АЦП сохраняются в памяти как точки сигнала. Более одной точки выборки могут составлять одну точку сигнала.

Вместе точки формы сигнала составляют одну запись сигнала. Количество точек сигнала, используемых для записи сигнала, называется длиной записи. Система запуска определяет начальную и конечную точки записи. Дисплей получает эти точки записи после сохранения в памяти.

В зависимости от возможностей вашего осциллографа может выполняться дополнительная обработка точек выборки, улучшающая отображение. Может быть доступен предварительный запуск, что позволяет видеть события до точки запуска.

Блок-схема цифрового осциллографа

По сути, с цифровым осциллографом, как с аналоговым осциллографом, вам необходимо настроить параметры по вертикали, горизонтали и синхронизации для выполнения измерения.

Методы отбора проб

Метод выборки сообщает цифровому осциллографу, как собирать точки выборки.Для медленно меняющихся сигналов цифровой осциллограф легко собирает более чем достаточно точек выборки для построения точной картины. Однако для более быстрых сигналов (скорость зависит от максимальной частоты дискретизации осциллографа) осциллограф не может собрать достаточное количество отсчетов. Цифровой осциллограф может делать две вещи:

  • Он может собирать несколько точек выборки сигнала за один проход (в режиме выборки в реальном времени), а затем использовать интерполяцию. Интерполяция - это метод обработки, позволяющий оценить, как выглядит форма волны, по нескольким точкам.
  • Он может создавать изображение формы волны с течением времени, пока сигнал повторяется (режим выборки эквивалентного времени).

Выборка в реальном времени с интерполяцией

Цифровые осциллографы

используют выборку в реальном времени в качестве стандартного метода выборки. При выборке в реальном времени осциллограф собирает столько выборок, сколько возможно, по мере появления сигнала. На следующем рисунке показаны однократные или переходные сигналы, вы должны использовать выборку в реальном времени.

Диаграмма выборки в реальном времени

Цифровые осциллографы

используют интерполяцию для отображения сигналов, которые настолько быстрые, что осциллограф может собрать только несколько точек выборки.Интерполяция «соединяет точки».

Линейная интерполяция просто соединяет точки выборки прямыми линиями. Синусоидальная интерполяция (или интерполяция sin x по x) соединяет точки выборки с кривыми. (См. Следующий рисунок) Интерполяция sin x над x - это математический процесс, подобный «передискретизации», используемой в проигрывателях компакт-дисков. При синусоидальной интерполяции точки вычисляются, чтобы заполнить время между реальными выборками. Используя этот процесс, сигнал, который отбирается только несколько раз в каждом цикле, может быть точно отображен или, в случае проигрывателя компакт-дисков, точно воспроизведен.

Диаграмма линейной и синусоидальной интерполяции

Выборка в эквивалентном времени

Некоторые цифровые осциллографы могут использовать дискретизацию эквивалентного времени для захвата очень быстро повторяющихся сигналов. Выборка в эквивалентном времени создает изображение повторяющегося сигнала путем сбора небольшого количества информации от каждого повторения. (См. Следующий рисунок). Вы видите, что форма волны медленно нарастает, как гирлянда огней, загорающихся один за другим. При последовательном сэмплировании точки появляются последовательно слева направо; при случайной выборке точки появляются на осциллограмме случайным образом.

Диаграмма выборки эквивалентного времени

.

Отправить ответ

avatar
  Подписаться  
Уведомление о