Как работает осциллограф: Принцип работы осфиллографа | Серния Инжиниринг

Содержание

Работа осциллографа для чайников — Яхт клуб Ост-Вест

В прошлой статье «Что такое осциллограф и как им пользоваться» мы познакомились с основами работы этого замечательного прибора. Чтобы освоить работу с осциллографом, нужны практические упражнения. В статье рассмотрены простые эксперименты с источником питания на основе тарнсформатора, с мостовым выпрямителем, а также с RC-цепями. Материал будет полезен тем кто желает познакомиться с измерительным прибором-осциллографом.

Источник питания и мостовой выпрямитель

Начнемс самого простого, – с источника питания на силовом трансформаторе и мостовом выпрямителе. Прежде всего необходим трансформатор, пусть это будет китайский «ALG» с вторичной обмоткой на 12V (рис.1). К вторичной обмотке трансформатора подключим вход осциллографа (пусть это С1-65) и мультиметр.

Предварительно ручку осциллографа «Время/дел.» установим на «10», и ручку «V/дел.» так же на «10», а переключатель входа установим в положение «импульсный режим». Теперь подадим на первичную обмотку переменное напряжение 220V (от электросети, соблюдая все необходимые правила электробезопасности).

Рис. 1. Схема для эксперимента и изображение на экране осциллографа.

Теперь сравним показания осциллографа и мультиметра. Мультиметр покажет переменное напряжение 12V (или около того), а размах синусоиды на экране осциллографа от пика до пика будет целых 34V. Зная, что амплитудное значение синусоидального напряжения равно половине размаха, а действующее , – в корень_из_2 раз раз меньше амплитудного, вычислим действующее значение:

Подключим к вторичной обмотке трансформатора мостовой выпрямитель из четырех диодов (рис. 2). К выходу выпрямителя подключим осциллограф.

На его экране будет весьма интересная картинка, – нижние полуволны синусоиды как бы перевернулись и расположились по положительной оси У. Практически, и частота колебаний увеличилась в два раза, то есть уже не 50, а 100 Гц, а размах уменьшился в два раза.

То, что видно на экране (рис. 2) принято называть пульсирующим напряжением. Но пульсирующее напряжение не годится для питания электронной схемы, – это еще не постоянное напряжение.

А чтобы его сделать постоянным нужно пульсации сгладить с помощью накопительного конденсатора.

На рисунке 3 показана схема с накопительным конденсатором С1 и резистором R1, который служит нагрузкой. Посмотрим, что нам теперь покажут приборы. Мультиметр покажет что-то около 16,5V, а на экране осциллографа будет видна искривленная линия, приподнятая вверх по шкале У на некоторую величину (рисунок 3, левая осциллограмма).

Рис. 2. Подключим и исследуем мостовой выпрямитель из четырех диодов.

По верхним пикам кривизны этой линии – на 17V. Так выглядит напряжение со сглаженными пульсациями. Чтобы посмотреть величину пульсаций нужно переключить вход осциллографа на переменный ток «

» и повернуть ручку «V/дел.» в сторону уменьшения, пока пульсации не будут видны отчетливо. В данном случае, установили 0,5V/дел. (рис.3, осциллограмма справа). Видно, что размах пульсаций равен 1V.

Таким образом, на выходе нашего выпрямителя есть постоянное напряжение с пульсациями 1V. Величина этих пульсаций зависит от емкости сглаживающего конденсатора и от нагрузки. Если нагрузка увеличится (уменьшится сопротивление R1) пульсации возрастут.

Рис. 3. Сглаживающий конденсатор в выпрямителе.

Это можно проверить, заменив R1 переменным. А с увеличением емкости пульсации уменьшаются. Вот, если в этом же примере (при том же сопротивлении R1) вы параллельно С1 подключите еще один конденсатор емкостью 220мкФ, пульсации уменьшатся до 0,ЗV, а при емкости конденсатора 1000 мкФ уровень пульсаций будет менее 0,1V.

Но это при сопротивлении нагрузки 1 кОм, то есть при токе нагрузки 16 миллиампер. С увеличением тока нагрузки пульсации будут увеличиваться. Именно по этому в выпрямителях, рассчитанных на большие нагрузки, используют сглаживающие конденсаторы очень большой емкости.

Выше, с помощью осциллографа была рассмотрена работа мостового выпрямителя. Но источник питания, часто кроме трансформатора и выпрямителя содержит стабилизатор напряжения.

Схема простейшего параметрического стабилизатора состоит из стабилитрона и токоограничительного резистора. Главное свойство стабилитрона в том, что он вроде бы работает как диод, то есть, пропускает ток в прямом направлении, но он пропускает и обратный ток, но только если обратное напряжение превысило некоторую величину, – напряжение стабилизации.

Подключим схему параметрического стабилизатора к вторичной обмотке трансформатора, и с помощью осциллографа, посмотрим во что превратилась синусоида переменного напряжения (рис.4). Ручку «Время/дел.» осциллографа установим на «10», и ручку «V/дел.» так же на «10», а переключатель входа – в импульсный режим.

Рис. 4. Исследуем параметрический стабилизатор.

Стабилитрон, работая как диодный одно-полупериодный выпрямитель, убрал отрицательные полуволны. А как стабилитрон, он обрезал верхушку положительных полуволн на уровне своего напряжения стабилизации (для Д814В – это 10V).

А теперь, подключим такой же стабилизатор на выходе выпрямительного моста (рис. 5). Импульсы пульсирующего напряжения стабилитрон так же, обрезал на уровне своего напряжения стабилизации. Причем, стабилитрону безразлично какой амплитуды эти импульсы или полуволны, 17V или, например, 27V, он их ограничит СТАБИЛЬНО на уровне 10V.

Рис. 5. Исследуем параметрический стабилизатор на выходе моста.

На рисунке 6 показана схема источника питания с параметрическим стабилизатором на выходе. Мультиметр и осциллограф покажут постоянное напряжение 10V, а пульсации будут значительно меньше чем без стабилизатора.

Рис. 6. Схема источника питания с параметрическим стабилизатором на выходе.

Исследуем RC-цепи с помощью осциллографа

Еще одним практическим упражнением работы с осциллографом может быть исследование RC-цепи с помощью осциллографа.

Для этого нам потребуется генератор прямоугольных импульсов. Во многих осциллографах, в частности, и С1-65, есть калибратор. Это генератор постоянного напряжения или прямоугольных импульсов частотой 1 кГц.

Калибратор предназначен для калибровки, но его можно с успехом использовать как лабораторный генератор прямоугольных импульсов при налаживании и ремонте аппаратуры.

Но, есть осциллографы и без калибраторов, если ваш именно такой, то нужно будет взять лабораторный функциональный генератор или самому сделать простой генератор прямоугольных импульсов частотой около 1 кГц, по схеме, показанной на рисунке 1. Это простейший мультивибратор на цифровой микросхеме. Но для наших опытов он подходит.

Далее, мы будем рассматривать работу с калибратором осциллографа в качестве источника импульсов. Если же импульсы берутся от отдельного генератора (например, как на рис.1), нужно будет просто подавать их на исследуемую RC-цепь от него. При этом не забыть общий минус питания генератора соединить с клеммой «корпус» осциллографа.

Рис. 1. Схема простого генератора импульсов.

И так, если мы соединим куском провода гнезда «У» и «Выход калибратора», включим калибратор на генерацию импульсов размахом 5V. При этом ручкой «V/дел» выставим «1», а ручкой «время/дел» выставим «0,2mS», вход переключим на переменное напряжение «

», на экране осциллографа будет видно примерно то, что показано на рисунке 2. То есть, прямоугольные импульсы.

Рис. 2. Импульсы на экране осциллограф.

Для экспериментов с RC-цепью потребуется конденсатор емкостью 0,01 мкФ (часто обозначается как «10п» или «103») и переменный резистор сопротивлением 100 кОм.

Экспериментировать будем с двумя типами цепей, – дифференцирующей и интегрирующей.

Сначала подключаем дифференцирующую цепь, состоящую из резистора R1 и конденсатора С1 (рис. 3). Теперь импульсы

Рис. З. Подключаем дифференцирующую цепь.

от калибратора на вход «У» осциллографа поступают через цепь R1C1. Резистор R1 установить в положение максимального сопротивления. При этом, импульсы на экране осциллографа станут как на рис.4. Их амплитуда немного увеличится, но появится наклон в сторону к спаду.

Рис. 4. Импульсы на экране осциллографа.

Если начать поворачивать рукоятку переменного резистора R1, его сопротивление будет уменьшаться, и при этом, амплитуда импульсов будет увеличиваться, но и наклон в сторону к спаду тоже возрастает. На рисунке 5 уже совсем не похоже на прямоугольные импульсы. Однако амплитуда пиков сильно выросла. При дальнейшем повороте R1, амплитуда пиков будет продолжать расти, а наклоны приобретут параболический вид.

Рис. 5. Это уже не похоже на прямоугольные импульсы.

Но, при дальнейшем повороте R1, амплитуда начинает снижаться, и в самом крайнем положении, когда сопротивление R1 равно нулю, импульсы пропадают (это и не удивительно, ведь R1, в состоянии нулевого сопротивления, фактически замкнул вход осциллографа).

Вывод такой, что в результате дифференцирования прямоугольного импульса, он превращается в остроконечный импульс увеличенной амплитуды. Причем, чем больше R1, тем более импульс похож на прямоугольный.

Связанно это с тем, что от сопротивления R1 зависит время зарядки – разрядки конденсатора. И чем меньше R1, тем меньше это время. К тому же, при переходе от положительной полуволны к отрицательной (и наоборот), накопленное на конденсаторе напряжение добавляется к амплитуде импульса.

Поэтому, амплитуда напряжения на резисторе R1 в пиках увеличивается тем больше, чем быстрее заряжается конденсатор. Но при этом пики тем уже, чем меньше R1. Теперь поменяем детали местами, чтобы получилась схема, показанная на рисунке 6. RC-цепочка стала интегрирующей.

Рис. 6. Новая схема для эксперимента.

Если переменный резистор R1 находится в положении минимального сопротивления, на экране осциллографа будет как на рис. 7. Почти такие же прямоугольные импульсы, только фронты и спады слегка сглажены.

Начинаем поворачивать ручку переменного резистора R1, – фронты и спады еще сильнее сглаживаются и приобретают вид, как на рисунке 8. При этом амплитуда существенно снижается.

Выкручиваем ручку переменного резистора R1 до конца (в положение максимального сопротивления), – амплитуда импульсов сильно снижается, и они уже напоминают скорее треугольники (рис.9).

Рис. 7. Изображение на экране осциллографа для эксперимента.

В интегрирующей цепи осциллограф показывает напряжение на конденсаторе. На него поступают импульсы через резистор R1 и заряжают и разряжают его. Как и в первом случае, скорость заряда -разряда тем больше, чем меньше сопротивление резистора. Но, здесь ситуация обратная, поэтому, чем меньше R1 тем скорее С1 заряжается или разряжается до максимального или минимального значения.

А значит, тем круче фронты и спады импульсов на С1. Вот эти закругления, видимые на осциллограмме на рис. 7 и есть то самое время, в течение которого происходит зарядка и разрядка конденсатора.

И чем быстрее конденсатор заряжается, тем меньше эти участки. Быстрота же зарядки конденсатора зависит от сопротивления резистора R1, через который на него поступают импульсы.

С увеличением сопротивления резистора R1 конденсатор все медленнее и плавней заряжается – разряжается, – закругления, показывающие время зарядки – разрядки увеличиваются. Поэтому фронты и спады сглаживаются, становятся наклонными.

При дальнейшем увеличении сопротивления R1 время, необходимое на зарядку конденсатора до максимального напряжения увеличивается на столько, что уже становится больше длительности полу-периода импульса. Конденсатор просто не успевает зарядиться до максимальной величины, как начинается его разрядка.

Рис. 8. Фронты и спады еще более сглажены.

Рис. 9. Импульсы – треугольники на экране осциллографра.

Поэтому амплитуда импульса уменьшается на столько, на сколько конденсатор не успевает зарядиться. В конечном итоге форма импульсов все более и более становится похожа на треугольную.

Начинающие радиолюбители и электронщики в самом начале пути должны уметь пользоваться измерительными приборами.

Одним из главных измерительных приборов является осциллограф.

Осциллограф предназначен для наблюдения различных сигналов. С его помощью можно измерить не только амплитуду сигнала, но и длительность, период и частоту сигнала.

Посмотрите это видео и вы научитесь работать с осциллографом быстро и без проблем сможете не просто наблюдать сигналы на экране осцилографа, но и ремонтировать аппаратуру с помощю этого прибора.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Назначение, устройство и описание осциллографа

Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: «Какой самый главный прибор на вашем рабочем месте?» Ответ будет однозначным: «Конечно, осциллограф!». И это действительно так.

Конечно, невозможно обойтись без мультиметра. Измерить напряжение в контрольных точках схемы, замерить сопротивление и ток, «прозвонить» диод или проверить транзистор все это важно и нужно.

Но когда речь заходит о регулировке и настройке любого электронного устройства от простого телевизора до многоканального передатчика орбитальной станции, то без осциллографа обойтись невозможно.

Осциллограф предназначен для визуального наблюдения и контроля периодических сигналов любой формы: синусоидальной, прямоугольной и треугольной. Благодаря широкому диапазону развёртки он позволяет так развернуть импульс, что можно контролировать даже наносекундные интервалы. Например, измерить время нарастания импульса, а в цифровой аппаратуре это очень важный параметр.

Осциллограф – это своего рода телевизор, который показывает электрические сигналы.

Как работает осциллограф?

Чтобы понять, как работает осциллограф, рассмотрим блок-схему усреднённого прибора. Практически все осциллографы устроены именно так.

На схеме не показаны только два блока питания: высоковольтный источник, который используется для вырабатывания высокого напряжения поступающего на ЭЛТ (электронно-лучевая трубка) и низковольтный, обеспечивающий работу всех узлов прибора. И отсутствует встроенный калибратор, который служит для настройки осциллографа и подготовки его к работе.

Исследуемый сигнал подаётся на вход «Y» канала вертикального отклонения и попадает на аттенюатор, который представляет собой многопозиционный переключатель, регулирующий чувствительность. Его шкала отградуирована в V/см или V/дел. Имеется в виду одно деление координатной сетки нанесённой на экран ЭЛТ. Там же нанесены сами величины: 0,1 В,10 В, 100 В. Если амплитуда исследуемого сигнала неизвестна, мы устанавливаем минимальную чувствительность, например 100 вольт на деление. Тогда даже сигнал амплитудой 300 вольт не выведет прибор из строя.

В комплект любого осциллографа входят делители 1 : 10 и 1 : 100 они представляют собой цилиндрические или прямоугольные насадки с разъёмами с двух сторон. Выполняют те же функции, что и аттенюатор. Кроме того при работе с короткими импульсами они компенсируют ёмкость коаксиального кабеля. Вот так выглядит внешний делитель от осциллографа С1-94. Как видим, коэффициент деления его составляет 1 : 10.

Благодаря внешнему делителю удаётся расширить возможности прибора, так как при его использовании становится возможным исследование электрических сигналов с амплитудой в сотни вольт.

С выхода входного делителя сигнал поступает на предварительный усилитель. Здесь он разветвляется и поступает на линию задержки и на переключатель синхронизации. Линия задержки предназначена для компенсации времени срабатывания генератора развёртки с поступлением исследуемого сигнала на усилитель вертикального отклонения. Оконечный усилитель формирует напряжение, подаваемое на пластины «Y» и обеспечивает отклонение луча по вертикали.

Генератор развёртки формирует пилообразное напряжение, которое подаётся на усилитель горизонтального отклонения и на пластины «X» ЭЛТ и обеспечивает горизонтальное отклонение луча. Он имеет переключатель, градуированный как время на деление («Время/дел»), и шкалу времени развёртки в секундах (s), миллисекундах (ms) и микросекундах (μs).

Устройство синхронизации обеспечивает начало запуска генератора развёртки одновременно с возникновением сигнала в начальной точке экрана. В результате на экране осциллографа мы видим изображение импульса развёрнутое во времени. Переключатель синхронизации имеет следующие положения:

Синхронизация от исследуемого сигнала.

Синхронизация от сети.

Синхронизация от внешнего источника.

Первый вариант наиболее удобный и он используется чаще всего.

Осциллограф С1-94.

Кроме сложных и дорогих моделей осциллографов, которые используются при разработке электронной аппаратуры, нашей промышленностью был налажен выпуск малогабаритного осциллографа C1-94 специально для радиолюбителей. Несмотря на невысокую стоимость, он хорошо зарекомендовал себя в работе и обладает всеми функциями дорогого и серьёзного прибора.

В отличие от своих более «навороченных» собратьев, осциллограф С1-94 обладает достаточно небольшими размерами, а также прост в использовании. Рассмотрим его органы управления. Вот лицевая панель осциллографа С1-94.

Справа от экрана сверху вниз.

Этими регуляторами можно настроить фокусировку луча на экране, а также его яркость. В целях продления срока службы ЭЛТ желательно выставлять яркость на минимум, но так, чтобы показания были видны достаточно чётко.

Кнопка «Сеть». Кнопка включения прибора.

Кнопка установки времени развёртки. Грубое переключение коэффициентов развёртки. Можно установить миллисекунды (ms) и микросекунды (μs). Напомним, что 1 ms = 1000 μs. Подробнее о сокращённой записи численных величин.

Кнопка режима «Ждущ-Авт».

Это кнопка выбора ждущего и автоматического режима развёртки. При работе в ждущем режиме запуск и синхронизация развёртки производится исследуемым сигналом. При автоматическом режиме запуск развёртки происходит без сигнала. Для исследования сигнала чаще используется ждущий режим запуска развёртки.

Вот этой кнопкой производится выбор полярности запускающего импульса. Можно выбрать запуск от импульса положительной или отрицательной полярности.

Кнопка установки синхронизации «Внутр-Внешн».

Обычно используется внутренняя синхронизация, так как для использования внешнего синхросигнала нужен отдельный источник этого внешнего сигнала. Понятно, что в условиях домашней мастерской это в подавляющем случае не нужно. Вход внешнего синхросигнала на лицевой панели осциллографа выглядит вот так.

Кнопка выбора «Открытого» и «Закрытого» входа.

Тут всё понятно. Если предполагается исследование сигнала с постоянной составляющей, то выбираем «Переменный и постоянный». Этот режим называется «Открытым», так как на канал вертикального отклонения подаётся сигнал, содержащий в своём спектре постоянную составляющую или низкие частоты.

При этом, стоит учитывать, что при отображении сигнала на экране он уйдёт вверх, так как к амплитуде переменной составляющей добавиться и уровень постоянной составляющей. В большинстве случаев лучше выбирать «закрытый» вход (

). При этом постоянная составляющая электрического сигнала будет отсечена и не отображается на экране.

Клемма «корпус» служит для заземления корпуса прибора. Это делается в целях безопасности. В условиях домашней мастерской порой нет возможности заземлить корпус прибора. Поэтому приходится работать без заземления. При этом важно помнить, что во включенном состоянии на корпусе осциллографа может быть потенциал напряжения. При касании корпуса может «дёрнуть». Особенно опасно дотрагиваться одной рукой до корпуса осциллографа, а другой рукой до батарей отопления или других работающих электроприборов. В таком случае опасный потенциал с корпуса пройдёт через ваше тело («рука» – «рука») и вы получите электрический удар! Поэтому при работе осциллографа без заземления желательно не дотрагиваться до металлических частей корпуса. Это правило справедливо и для прочих электроприборов с металлическим корпусом.

По центру лицевой панели переключатель «развёртка» – Время/дел. Именно этот переключатель управляет работой генератора развёртки.

Чуть ниже располагается переключатель входного делителя (аттенюатора) – V/дел. Как уже говорилось, при исследовании сигнала с неизвестной амплитудой, необходимо выставить максимально возможное значение V/дел. Так для осциллографа С1-94 нужно установить переключатель в положение 5 (5V/дел.). В таком случае одна клетка на координатной сетке экрана будет равна 5-ти вольтам. Если ко входу «Y» осциллографа подключить делитель с коэффициентом деления 1 к 10 (1 : 10), то одна клетка будет равна 50-ти вольтам (5V/дел. * 10 = 50V/дел.).

Также на панели осциллографа имеются:

Ручка «Перемещение луча по горизонтали».

Она служит для корректировки положения луча в горизонтальном направлении. Если покрутить данную ручку, то изображение развёртки будет смешатся либо вправо, либо влево.

Также есть и ручка «Перемещение луча по вертикали».

С помощью её можно отрегулировать положение развёртки на экране по вертикали.

Ручки «Перемещение луча по горизонтали» и «Перемещение луча по вертикали» служат исключительно для настройки комфортного отображения осциллограммы сигнала на экране. Они никак не влияют на настройку работы самого осциллографа.

А вот ручка «Уровень синхронизации» необходима для того, чтобы «остановить» осциллограмму сигнала на экране.

Поворотом этой ручки добиваются того, чтобы изображение сигнала «застыло», а не «убегало». Иногда, чтобы поймать изображение с помощью ручки «Уровень» приходится изменить время развёртки переключателем Время/дел.

Входной разъём «Y» , к которому подключается измерительный щуп или внешний делитель выглядит так.

Внизу указываются параметры входа, а именно входное сопротивление (1 MΩ) и входная ёмкость (40pF). Чем выше входное сопротивление измерительного прибора, тем лучше. Таким образом при измерении прибор не шунтирует элементы тестируемой схемы и не вносит искажений в измеряемый сигнал. Входная ёмкость прежде всего влияет на возможность исследования высокочастотных сигналов.

В настоящее время, с развитием цифровой техники, стали широко внедряться цифровые осциллографы. По сути это гибрид аналоговой и цифровой техники. Отношение к ним неоднозначное, как к мясорубке с процессором или к кофемолке с дисплеем.

Аналоговая аппаратура всегда была надежной и удобной в работе. Кроме того она легко ремонтировалась. Цифровой осциллограф стоит на порядок дороже и очень сложен в ремонте. Плюсов конечно много. Если аналоговый сигнал с помощью АЦП (аналогово-цифрового преобразователя) перевести в цифровую форму, то с ним можно делать всё что угодно. Его можно записать в память и в любой момент вывести на экран для сравнения с другим сигналом, складывать в фазе и противофазе с другими сигналами. Конечно, аналоговая техника это хорошо, но за цифровой электроникой будущее.

Основы осциллографических измерений — Technical Support Knowledge Center Open

Operational «How to» Guides

Summary

Электронные технологии проникают во все области нашей жизни. Миллионы и миллиарды людей ежедневно пользуются мобильными телефонами, телевизорами, компьютерами и другими электронными устройствами. По мере совершенствования электронных технологий увеличивается быстродействие этого оборудования. Сегодня в большинстве современных устройств используются высокоскоростные цифровые интерфейсы. Инженеры должны иметь возможность правильно проектировать и достоверно тестировать компоненты своих высокоскоростных цифровых устройств. Контрольно-измерительное оборудование, которое используется инженерами в процессе разработки и испытаний, должно быть пригодно для работы в условиях высоких частот и высоких скоростей передачи данных. И осциллограф является примером именно такого рода приборов.

Description

Осциллографы — это мощные инструменты, которые доказали свою полезность при проектировании и тестировании электронных устройств. Эти приборы крайне необходимы для оценки состояния системы, с их помощью становится возможным определить, какие из компонентов работают корректно, а какие являются источником ошибок. Кроме того, они помогают узнать, функционирует ли новый компонент так, как было спроектировано. Осциллографы намного более функциональны по сравнению с мультиметрами, потому что они позволяют вам увидеть, как на самом деле выглядят электронные сигналы.

 

Осциллографы используются в самых различных сферах — от автомобильной промышленности до университетских научно-исследовательских лабораторий и оборонной и аэрокосмической отраслей. Специалисты доверяют осциллографам, которые помогают им более эффективно выявлять неполадки устройств и создавать продукты с широкими функциональными возможностями.

 

Что такое осциллограф и для чего он нужен инженерам?

Основным назначением осциллографа является точное визуальное представление сигналов. По этой причине целостность сигнала является очень важной характеристикой. Понятие целостности сигнала относится к способности осциллографа воспроизводить форму сигнала так, чтобы он максимально точно отображал исходный сигнал. Осциллограф с низкой целостностью сигнала бесполезен, потому что бессмысленно выполнять измерения, если осциллограмма на экране осциллографа отличается по форме и характеристикам от реального сигнала. При этом, однако, важно помнить, что осциллограмма на экране прибора никогда не будет точным представлением реального сигнала вне зависимости от того, насколько хорош осциллограф. Это происходит потому, что при подключении осциллографа к схеме, сам осциллограф становится частью этой схемы. Другими словами, имеет место некоторое влияние нагрузки. Производители приборов стремятся свести к минимуму воздействие нагрузки, но оно, в той или иной степени, существует всегда.

Как выглядит осциллограф

 

В большинстве случаев современные цифровые осциллографы похожи на осциллограф, показанный на рисунке 1. Вместе с тем, на рынке представлены самые различные модели осциллографов, поэтому ваш прибор может выглядеть совсем иначе. Несмотря на это, есть некоторые характерные признаки, свойственные большей части такого рода приборов.

 

Передняя панель большинства осциллографов может быть разделена на несколько основных частей: входы каналов, дисплей, органы управления системой горизонтального отклонения, органы управления системой вертикального отклонения и органы управления системой синхронизации (запуска). Если ваш осциллограф работает под управлением операционной системы, отличной от Microsoft Windows, то он, скорее всего, будет иметь набор функциональных клавиш для управления меню на экране.

Рис. 1. Передняя панель осциллографа Keysight серии InfiniiVision 2000 X

 

 

Сигналы подаются на осциллограф через входы каналов, которые являются разъемами для подключения пробников. Дисплей — это просто экран, на котором отображаются исследуемые сигналы. Блоки органов управления системами горизонтального и вертикального отклонения содержат регуляторы и клавиши, с помощью которых осуществляется настройка параметров горизонтальной (которая обычно представляет собой ось времени) и вертикальной (которая представляет напряжение) оси при отображении сигналов на экране дисплея. Органы управления системой запуска указывают осциллографу, при каких условиях он должен начинать захватывать данные.

 

Пример того, как выглядит задняя панель осциллографа, показан на рисунке 2. Как можно заметить, многие осциллографы имеют такие же возможности подключения, как и персональные компьютеры. Здесь и приводы CD-ROM, CD-RW и DVD-RW, и USB порты, и последовательные порты, а также разъемы для подключения внешнего монитора, мыши и клавиатуры.
 

Рис. 2. Задняя панель осциллографа Keysight серии Infiniium 9000
 

Назначение осциллографов

Осциллограф — это контрольно-измерительный прибор, который используется для отображения графика зависимости одной переменной от другой. Например, можно построить на дисплее график зависимости напряжения (ось Y) от времени (ось X). На рисунке 3 показан пример такого графика. Это может быть полезным, если вы хотите проверить какой-либо электронный компонент и определить, насколько корректно он функционирует. Если вы знаете, какая форма сигнала должна быть на выходе данного компонента, вы можете использовать осциллограф, чтобы удостовериться, что компонент на самом деле выдает правильный сигнал. Обратите внимание, что оси X и Y разбиты на деления и образуют сетку. Сетка позволяет проводить визуальные измерения параметров сигнала, хотя при использовании современных осциллографов большинство из этих измерений могут быть сделаны автоматически и более точно самим осциллографом.
 

Рис. 3. Изображение зависимости напряжения прямоугольного сигнала от времени на экране осциллографа


Возможности осциллографа не ограничиваются только построением графика зависимости напряжения от времени. Осциллограф имеет несколько входов, называемых каналами, и каждый из них способен работать независимо. Поэтому вы можете подключить канал 1 к одному устройству, а канал 2 — к другому. В этом случае осциллограф позволяет построить график зависимости напряжения, измеренного на канале 1, от напряжения, измеряемого на  канале 2. Такой режим называется режимом XY осциллографа. Этот режим полезен для графического представления вольт-амперных характеристик или построения фигур Лиссажу, по форме которых можно судить о разности фаз и отношении частот двух сигналов. На рисунке 4 показаны примеры фигур Лиссажу и значения разности фаз и отношения частот, которым они соответствуют.
 

Рис. 4. Фигуры Лиссажу
 

 

Типы осциллографов

Аналоговые осциллографы

Первые осциллографы были аналоговыми, в которых для отображения сигнала использовались электронно-лучевые трубки. Фотолюминесцентный люминофор, которым покрыт экран, светится при попадании на него электрона, и по мере того как загорается каждый последующий участок люминофора, вы можете видеть изображение сигнала. Система синхронизации (запуска) осциллографа необходима для того, чтобы изображение сигнала на экране выглядело стабильным. По окончании вывода на экран всей осциллограммы осциллограф ждет наступления следующего определенного события запуска (например, пересечения нарастающим фронтом сигнала заданного значения напряжения), а затем запускает развертку снова. Несинхронизированный запуск развертки бесполезен, потому что изображение сигнала на экране будет нестабильным (это верно также и для цифровых запоминающих осциллографов DSO и осциллографов смешанных сигналов MSO, о которых будет рассказано ниже).
 

Рис. 5. Пример аналогового осциллографа
 

Аналоговые осциллографы полезны, в первую очередь, потому, что свечение люминофора исчезает не мгновенно. Вы можете наблюдать несколько осциллограмм, которые накладываются друг на друга, что позволяет отслеживать глитчи и другие аномалии сигнала. Поскольку отображение сигнала происходит, когда электрон сталкивается с экраном, яркость отображаемой осциллограммы непосредственно связана с интенсивностью реального сигнала. Это позволяет рассматривать осциллограмму как трехмерный график (то есть, ось X — время, ось Y — напряжение, ось Z — интенсивность).

 

Недостаток аналоговых осциллографов состоит в том, что они не позволяют зафиксировать изображение на экране и хранить осциллограмму в течение длительного периода времени. Поскольку вещество люминофора быстро гаснет, часть сигнала может теряться. Кроме того, вы не можете выполнять автоматические измерения параметров сигнала. Вместо этого обычно приходится выполнять измерения с использованием сетки на дисплее. Аналоговые осциллографы могут отображать не все типы сигналов, так как существует верхний предел скорости вертикальной и горизонтальной развертки электронного луча. И хотя аналоговые осциллографы до сих пор используются многими инженерами, их не часто можно увидеть в продаже. Им на смену пришли более современные цифровые осциллографы.

 

Цифровые запоминающие осциллографы (DSO — digital storage oscilloscopes)

Цифровые запоминающие осциллографы (DSO или ЦЗО) были созданы для того, чтобы можно было компенсировать недостатки, присущие аналоговым осциллографам. В цифровом осциллографе подаваемый на вход сигнал оцифровывается с помощью аналого-цифрового преобразователя (АЦП). На рисунке 6 показан пример архитектуры одного из цифровых осциллографов компании Keysight Technologies, Inc.
 

Рис. 6. Архитектура цифрового осциллографа


Аттенюатор предназначен для масштабирования сигнала. Усилитель вертикального отклонения обеспечивает дополнительное масштабирование сигнала перед его подачей на АЦП. Аналого-цифровой преобразователь производит выборку и оцифровку входного сигнала. Эти данные затем сохраняются в памяти прибора. Система синхронизации осуществляет поиск событий запуска, а блок временной развертки определяет длительность интервала времени, отображаемого на экране осциллографа. Микропроцессор выполняет заданную пользователем дополнительную пост-обработку, после чего сигнал, наконец, воспроизводится на экране осциллографа.

 

Наличие данных в цифровой форме позволяет осциллографу выполнить множество измерений различных параметров сигнала. Кроме того, сигналы могут храниться в памяти сколь угодно долго. Данные могут быть распечатаны или переданы на компьютер с помощью флеш-накопителя или диска DVD-RW, а также через интерфейсы LAN и USB. В настоящее время программное обеспечение позволяет управлять осциллографом с компьютера с использованием виртуальной передней панели.

 

Осциллографы смешанных сигналов (MSO)

В цифровых осциллографах входной сигнал является аналоговым, и аналого-цифровой преобразователь производит его оцифровку. Вместе с тем, по мере развития технологий цифровой электроники существенно возросла необходимость одновременного наблюдения аналоговых и цифровых сигналов. В результате производители осциллографов начали выпускать осциллографы смешанных сигналов, которые способны отображать и аналоговые, и цифровые сигналы, и осуществлять запуск по ним. Как правило, типовой осциллограф смешанных сигналов содержит два или четыре аналоговых и большее количество цифровых каналов (рис. 7).
 

 

 

Рис. 7. Входные разъемы на передней панели осциллографа смешанных сигналов: четыре аналоговых канала и восемь или шестнадцать цифровых каналов

 

Преимущество осциллографов смешанных сигналов состоит в том, что они позволяют осуществлять запуск по комбинации аналоговых и цифровых сигналов и отображать их в едином масштабе времени.

 

Органы управления на передней панели

Как правило, для управления осциллографом используются регуляторы и клавиши на передней панели. В дополнение к органам управления на передней панели многие современные высокопроизводительные осциллографы теперь оснащаются операционными системами, в результате чего они ведут себя как компьютеры. Вы можете подключить к осциллографу мышь и клавиатуру и использовать их для настройки органов управления с помощью выпадающих меню и кнопок на дисплее. Кроме того, некоторые осциллографы имеют сенсорные экраны, поэтому для доступа к меню вы можете использовать стилус или прикосновение пальцами.

 

Перед началом измерений…

Когда вы приступаете к работе с осциллографом, прежде всего проверьте, что используемый входной канал включен. Для установки осциллографа в исходное состояние по умолчанию нажмите клавишу [Default Setup] (Настройки по умолчанию), если она есть. Затем, при ее наличии, нажмите клавишу [Autoscale] (Автоматическое масштабирование). Это позволяет автоматически настроить вертикальный и горизонтальный масштаб, так, чтобы сигнал отображался на дисплее наилучшим образом. Эти настройки могут рассматриваться в качестве отправной точки, и в них затем можно вносить необходимые изменения. Если сигнал вдруг будет потерян, или возникнут проблемы с отображением сигнала, рекомендуется повторить эти шаги. Передние панели большинства осциллографов включают, по крайней мере, четыре основных блока: органы управления системами вертикального и горизонтального отклонения, органы управления системой запуска и органы управления входными каналами.

 

Органы управления системой вертикального отклонения

Органы управления системой вертикального отклонения осциллографа обычно объединяются в блок, который обозначен как «Vertical». Эти элементы позволяют настраивать параметры отображения сигнала по вертикальной оси дисплея. Так, например, среди них есть регуляторы, с помощью которых задается число вольт на деление (коэффициент отклонения) по оси Y сетки экрана. Вы можете растягивать осциллограмму по вертикали, уменьшая значение коэффициента отклонения, или, наоборот, сжимать ее, увеличивая эту величину. Кроме того, в блок «Vertical» входят органы управления положением (смещением) сигнала по вертикали. Эти регуляторы позволяют просто перемещать всю осциллограмму вверх или вниз по дисплею. На рисунке 7 показан блок органов управления системой вертикального отклонения осциллографа Keysight серии InfiniiVision 2000 Х.
 

Рис. 8. Блок органов управления системой вертикального отклонения осциллографа Keysight серии InfiniiVision 2000 X


Органы управления системой горизонтального отклонения

Органы управления системой горизонтального отклонения на передней панели осциллографа обычно объединяются в блок, который обозначен как «Horizontal». Эти органы управления обеспечивают настройку горизонтального масштаба осциллограммы. Один из элементов этого блока позволяет задавать масштаб по оси X — число секунд на деление (или коэффициент развертки). Уменьшая величину коэффициента развертки, вы можете уменьшить интервал времени, отображаемый на экране. Еще один регулятор этого блока предназначен для управления положением (смещением) осциллограммы по горизонтали. Он позволяет перемещать осциллограмму по экрану слева направо и наоборот точно в нужное положение. На рисунке 9 показан блок органов управления системой горизонтального отклонения осциллографа Keysight серии InfiniiVision 2000 Х.
 


Рис. 9. Блок органов управления системой горизонтального отклонения осциллографа  Keysight серии InfiniiVision 2000 X

Осциллограф

На рисунке приведено основное окно программы при работе в режиме осциллографа. В центре окна находится рабочий экран на котором отображаются осциллограммы, красная осциллограмма соответствует каналу А, а синяя каналу В. Слева от рамки рабочего экрана расположена шкала по напряжению канала A (красный шрифт), справа от рамки — шкала по напряжению канала B (синий шрифт). Размерность обоих шкал по напряжению всегда Вольты. Снизу рабочего экрана расположена ось времени (развертка).

Слева и справа от рабочего экрана находятся 2 указателя, позволяющих смещать нуль канала A и канала B соответственно. Смещение нуля целесообразно проводить, если сигналы обоих каналов чересчур накладываются друг на друга, что затрудняет их анализ. Для установки одной из 9-ти стандартных позиций нуля необходимо щелкнуть правой кнопкой мыши над соответствующем указателем, после чего из появившегося всплывающего меню выбрать одно из возможных значений положения нуля.


Над рамкой рабочего экрана расположены два маркера, предназначенные для точного измерения временных интервалов и значений амплитуд напряжений каждого из каналов. Маркеры можно передвигать с помощью мыши, для этого необходимо щелкнуть левой кнопкой мыши над треугольником, после чего не отпуская левою кнопку передвигать мышь влево или вправо. При передвижении маркера по рабочему экрану будут отображаться соответствующие данные на панели «параметры сигнала под маркером».

Для задания уровня синхронизации используются два горизонтальных маркера A и B. Маркер A задает уровень (амплитуду) напряжения канала A который используется при включенной синхронизации (абсолютной) по каналу A. Маркер B аналогично задает уровень, используемый при включенной синхронизации по каналу B.

Для перемещения осциллограмм внутри рабочего экрана предназначена стандартная линейка прокрутки. Под линейкой прокрутки находится небольшая кнопка позволяющая скрыть панель настроек осциллографа, что обеспечивает больше места для рабочего экрана.

Кроме того имеется возможность перемещения осциллограмм по вертикали и горизонтали путем перетаскивания соответствующих осей (горизонтальной — вправо-влево, вертикальных — вверх-вниз)

Задать размах шкалы напряжения канала A/B возможно на панели «Канал A/B (В/дел)». Размах задается с помощью ручки настройки  (подробнее). Необходимо отметить, что USB осциллограф DiSco аппаратно поддерживает два диапазона входных сигналов 0-2 В и 2-20 В. Из этого следует, что для того чтобы получить наиболее достоверную осциллограмму амплитуда которой находится в диапазоне ±2 В целесообразно выбрать размах ±0.2 Вольт/деление или ниже. Так как ошибка кантования при размахе ±0.2 Вольт/деление и ниже будет составлять 4В / 1024 = 0,0039 В (разрядность 10 бит), в то время как при размахе ±0,5 Вольт/дел и выше ошибка кантования будет в 10 раз больше 40В / 1024 = 0,039 В. У осциллографа DiSco2 поддиапазонов 12, поэтому ошибка квантования менее заметна.

На этих же панелях расположены кнопки включения / выключения каналов. Если при анализе устройства не требуется анализировать одновременно два аналоговых сигнала, то целесообразно будет выключить один из каналов, что позволит увеличить максимальную частоту дискретизации с 100 кГц до 200 кГц.

При работе с осциллографом DiSco2 рядом кнопкой включения/выключения канала появляется кнопка открытого/закрытого входа с символами [ — ] и [~], включающая установленное в приборе микрореле, замыкающее выводы внутреннего конденсатора, предназначенного для фильтрации постоянной составляющей сигнала.

Панель «Период»  позволяет задавать развертку с которой происходит отображение входного аналогового сигнала. Частота дискретизации подбирается автоматически. В правом нижнем углу панели «Период» располагается кнопка переключения режима чтения: buf — чтение с использованием внутреннего буфера прибора, pipe — потоковое чтение данных в компьютер (в несколько раз увеличивается размер буфера отсчетов но ужесточаются требования предъявляемые к компьютеру (подробнее о режимах чтения)).

Все управляющие элементы синхронизацией, за исключением маркеров, расположены на панели «Синхронизация» . Кнопка «Включена/Выключена» позволяет включить или выключить синхронизацию. Кнопки «A» и «B» выбирают канал и соответствующий маркер, сигнал с которого будет использоваться в качестве источника синхронизации. Кнопка «Ext» указывает что источником синхронизации будет внешний источник подключаемый к каналу B.1 логического анализатора, который работает как вход (внешняя синхронизации доступна только при чтении через буфер).

 

Кнопки выбора фронта определяют, по какому фронту сигнала (нарастающему или спадающему) будет абсолютная синхронизация, по какому перепаду сигнала (положительному или отрицательному) будет дифференциальная синхронизация и по какому фронту внешнего синхросигнала (нарастающему или спадающему) будет внешняя синхронизация. Две кнопки расположенные внизу панели определяют тип синхронизации: абсолютная или дифференциальная. Поле, расположенное возле кнопки задания дифференциальной синхронизации определяет разницу между соседними отсчетами сигнала при превышении, которой будет выполнение условия синхронизации. Необходимом отметить, что при задание параметров синхронизации которые не могут быть выполнены, например задан уровень 5 В, а максимальная амплитуда сигнала не превышает 2 В, прибор все время будет находится в ожидании выполнения условия синхронизации, т.е. одна из кнопок запуска измерения будет красной. В данном случае совсем не обязательно останавливать измерения нажимая кнопку «Сброс», так как при измерения любых условий синхронизации они автоматически будут переданы в устройство.

На панели «Параметры сигнала под маркерами»  отображаются, положение каждого маркера на оси времени и амплитуда сигнала обеих каналов под каждым маркером. Также вычисляется разница времени маркеров и амплитуд сигналов, при этом цвет результата разницы будет определяться цветом того маркера соответствующие значение, которого больше.

На панели «Общие параметры сигнала» отображаются вычисленные значения постоянной и переменной составляющей напряжения и если возможно, то и значение частоты по каждому каналу.

Панель «Фильтрация»  обеспечивает подключение, и расчет цифровых фильтров для каждого канала. Для включения фильтрации по каналу сначала необходимо рассчитать фильтр открыв окно задания параметров фильтра нажав кнопку «…», после чего установить галочку «Вкл. » для выбранного канала.

Для того, чтобы произвести измерение необходимо нажать кнопку «Однокр.» или «Цикл.» на панели «Управление» . Кнопка » Однокр.» инициализирует только одно измерение (оцифровка и накопление отсчетов микроконтроллером, а затем передача их оболочке при работе через буфер) после чего на рабочем экране отображаются только что считанные осциллограммы. Кнопка » Цикл.» выполняет аналогичные действии за исключением того, что после окончания измерения автоматически запускается новое измерение. После нажатия на одну из кнопок запуска она меняет свое название на «Сброс» красного цвета, нажатие на такую кнопку вызовите немедленный сброс устройства и прекращение ожидания результатов измерения. Кнопка «Сброс» может оказаться единственным средством останова измерения, например, когда задан уровень синхронизации который ни когда не может быть достигнут.

Группа выбра режима в группе «Вид» предназначена для переключения из обычного режима с временной разверткой (T) в режим XY.

В этом режиме канал A используется для задания координаты по горизонтальной оси. канал B — для задания координат по вертикальной оси. Индикаторы нуля изменяют свой вид и появляются дополнительные горизонтальные маркеры. Так ка в этом режиме не предполагается работа с временной осью. то параметры сигнала, отображаемые в панели «Параметры сигнала под маркерами», показывают значения напряжения по горизонтальной (A) и вертикальной (B) осям, а также их разницу.

Ручка управления «Период» в режиме XY служит лишь для задания параметров дискретизации и определяет количество данных, обрабатываемых в одном кадре. Чем больше период дискретизации, тем больший промежуток времени будет обработан для отображения сигнала.

Как работает осциллограф и для чего он нужен ▷ ➡️ Creative Stop ▷ ➡️

Если вы хотите понять как работает осциллограф, приглашаем вас прочитать эту статью, в которой объясняются основные операции этого измерительного прибора.

Как работает осциллограф?

Осциллограф — это инструмент, который используется в физических экспериментах для определения электронных измерений, поэтому его используют профессионалы разных специальностей, специализирующиеся на электронике.

Этот измерительный инструмент состоит из экрана, на котором электрические сигналы отображаются с помощью специального графика, который имеет вертикальную ось и горизонтальную ось, которые показывают амплитуду и время соответственно.

Для оптимальной работы его можно дополнить генератором функций, который отвечает за настройку параметров отображения графика на осциллографе, аналогично, мультиметр используется для определения измеряемого напряжения с определенным значением амплитуды или наоборот, т. Е. почему студенты в области электроники изучают применения этого инструмента.

Один из самых распространенных вопросов, представленных в этой области исследования, состоит из что такое осциллограф и как он работает ; Как объяснялось ранее, это прибор для измерения электрических сигналов, и для его работы необходимо использовать регуляторы, позволяющие контролировать измерение, которое принимает сигнал.

Соответствующая настройка, применяемая к осциллятору, — это то, что позволяет использовать различные функции для этого оборудования, для этого доступен первый регулятор осциллятора, который отвечает за управление осью «X», которая состоит из горизонтальной оси графического изображения. отображается на экране, так что соответствующее время определяется до электрического сигнала.

Для второго регулятора можно управлять осью «Y», которая состоит из вертикальной оси, на которой представлено напряжение, поступающее на осциллограф, и преобразуется в сигнал, отображаемый на экране в виде графика; таким образом вы можете иметь значения в различных единицах измерения, например, в вольтах, милливольтах и ​​т. д.

Наконец, есть третий регулятор, предназначенный для синхронизации всех сигналов, поступающих на осциллограф, так что один из них может быть выбран в качестве эталона для начала анализа других измерений, выполняемых с помощью оборудования; Точно так же таблицы на экране упрощают определение соответствующего значения электрического сигнала, обеспечивая более эффективные результаты.

Аналоговый осциллограф

Аналоговый осциллограф состоит из измерительного прибора, который использовался много лет назад с развитием технологий. технология Было возможно разработать другие инструменты, которые обеспечивают оптимальные результаты, однако эти инструменты все еще используются аналоговым способом, из-за их основной функции и их способности получать базовые значения перед физическим экспериментом, они аналогичны своим цифровым аналогам, так что это получается пиковое значение электрического сигнала эффективно.

Из-за этого у вас могут возникнуть сомнения: как работает аналоговый осциллограф • Поскольку это снятый с производства прибор, у них есть горизонтальные вертикальные отклоняющие пластины, которые отвечают за отправку сигнала, генерируемого цепью и смещаемого катодной трубкой, так что получается точное измерение электрического сигнала.

Однако у него есть некоторые ограничения, когда дело доходит до работы, поскольку они могут измерять только сигналы, которые являются периодическими, чтобы установить трассу измерения; Если движение сигнала очень быстрое, будет наблюдаться яркость, но если оно очень медленное, след не устанавливается, что вызывает проблемы при измерениях.

Цифровой осциллятор

В случае цифрового осциллографа его преимущество заключается в передаче каждого из выполненных измерений на ПК, так что данные могут быть более легко сохранены, поскольку он преобразует сигналы с помощью аналого-цифрового преобразователя, в котором он показывает результаты более заметны и с более высоким качеством.

Изучив характеристики аналогового осциллографа, вы сможете получить представление о как работает цифровой осциллограф, так как процедура также применяется с этим типом инструмента, разница между его характеристиками отражается в количестве операций, которые могут быть выполнены, и в скорости, с которой получены результаты, поэтому это один из инструментов, который Он используется в физических лабораториях и лабораториях электроники.

Одной из опций, которые можно использовать, является автоматическое измерение, при котором определяются значения графика в каждом из максимумов и минимумов, установленных сигналом; У вас также есть захват переходных процессов, где вы можете просматривать переходы, выполняемые измеряемым сигналом, получая результаты с минимальным интервалом ошибок.

Если вам понравился этот пост, приглашаем вас прочитать нашу статью о Проектор не имеет изображения, войдите по вышеупомянутой ссылке, чтобы найти решение неудобств, которые это устройство несет до или во время конференции.

Автомобильный осциллограф

Автомобильный осциллограф — еще один инструмент измерения, но стандартизованный, чтобы его можно было работать Более точная автомобильная диагностика, такая как аналоговая и цифровая, отвечает за измерение электрических сигналов для представления их на специальном графике напряжения как функции времени и имеющейся амплитуды, но одно из его значений не может быть определить на обычном мультиметре.

Обычно в автомастерских можно увидеть как работает автомобильный осциллографПоскольку именно в этом учреждении он используется для измерения сигналов электрического напряжения, генерируемого в транспортном средстве, также возможно получить значения тока, производимого как функцию времени; В настоящее время существует множество компаний, которые используют этот инструмент для контроля за использованием транспортных средств.

Сигналы представлены в форме волны, которая меняется в зависимости от скорости, развиваемой автомобилем, поскольку необходимо учитывать различные компоненты и датчики, этот прибор отвечает за установку параметров для отображения этих значений на графике с подробным описанием различных условий, которые могут находить.

Чтобы узнать больше о работе этого типа осциллографа, вам предлагается посмотреть следующее видео:

Как триггер осциллографа действительно работает?

Из общего интереса давайте вернемся назад во времени и поговорим о том, как работал запуск аналогового осциллографа.

Старые школьные осциллографы — это векторные устройства . Другими словами, точка на экране управляется двумя напряжениями. Каждый перемещает это вертикально, один перемещает это горизонтально. Они делают это путем электростатического отклонения электронного пучка. Фактически, напряжение на отклоняющих пластинах напрямую соответствует положению «точки» на дисплее прицела.

Поскольку дисплей напрямую переводит напряжение в положение точки, это достаточно просто сделать для вертикальной (например, величины) величины трассы. Вы просто буферизуете и усиливаете входной сигнал по мере необходимости и применяете его к вертикальным отклоняющим пластинам.

Горизонтальная развертка внутренне контролируется напряжением, накопленным на конденсаторе (который затем усиливается для возбуждения пластин таким же образом, как и вертикальные пластинки). Подметание было выполнено источником тока, который заряжает этот конденсатор. Когда вы меняли горизонтальную временную базу, вы меняли зарядный ток или переключали значение конденсатора.

Триггер работал, в основном, закорачивая конденсатор, поэтому луч (который образует точку) фиксируется в одной позиции в X. Когда происходит событие триггера, он щелкает защелкой в ​​осциллографе, и интегратор конденсатора начинает накапливаться, что генерирует линейную развертку по экрану.

Как только заряд конденсатора достигает определенного напряжения, развертка обрабатывается как «выполнено», заряд в конденсаторе сбрасывается с помощью электронного переключателя, и тогда система готова к другому событию запуска.

Это актуально, потому что большая часть языка, который окружает запуск осциллографа, происходит от аналоговых осциллографов. «Мертвое время» заключается в том, что для аналогового осциллографа требуется ненулевой период времени для разряда конденсатора горизонтальной развертки. Вполне возможно создать цифровой осциллограф, у которого нет мертвого времени.


Тангенс:

Получить данные до события запуска гораздо сложнее с аналоговым осциллографом. Единственный способ сделать это — использовать то, что называется линией задержки .

                                      _____________________
                                     |                     |
Signal > -----+-->| Delay Line |>--->| Analog In           |
              |                      |                     |
              |                      |    Oscilloscope     |
              |                      |                     |
              +--------------------->| Trigger In          |
                                     |_____________________|

То, что вы должны сделать, это использовать линию задержки, чтобы, ну, в общем, задержать входной сигнал и использовать отдельный вход триггера для фактического триггера. Делая это, вы эффективно сдвигаете время начала трассировки на любое время, на которое задерживается линия задержки (обычно до нескольких сотен наносекунд).

Недостатком этой техники является то, что вам нужен специализированный виджет (линия задержки). Обычно они имеют фиксированную задержку и могут влиять на ваш сигнал в зависимости от их полосы пропускания и характеристик.

О других регулировках . Осциллограф-ваш помощник [Как работать с осциллографом]

Вот вы и познакомились с некоторыми ручками управления на лицевой панели осциллографа. А теперь о других регулировках. Под переключателем 6 длительностей развертки расположен переключатель 7 режима работы развертки. Если кнопка переключателя отжата (максимально выступает над панелью), генератор развертки работает в автоматическом режиме — генерирует пилообразное напряжение заданной длительности. Если же кнопка переключателя нажата (утоплена внутрь), генератор переходит в ждущий режим, т. е. «ожидает» прихода входного сигнала, и с его появлением запускается. Этот режим бывает необходим при исследовании сигналов, появляющихся случайно, либо при исследовании параметров импульса, когда его передний фронт должен быть в начале развертки.

В автоматическом режиме работы случайный сигнал может появиться в любом месте развертки, что усложняет его наблюдение. Удобства ждущего режима вы сможете оценить во время импульсных измерений описываемым осциллографом.

Ниже переключателя 7 находится ручка синхронизации 8СИНХР.»), которую можно поворачивать от крайнего левого положения (знак «—») до крайнего правого (знак «+»). Это регулировка синхронизации развертки от сигнала соответствующей полярности. Для чего она нужна? Если между генератором развертки и сигналом нет никакой связи, то начинаться развертка и появляться сигнал будут в разное время, и изображение сигнала на экране осциллографа будет перемещаться либо в одну, либо в другую сторону в зависимости от разности частот сигнала и развертки.

Чтобы остановить изображение, нужно засинхронизировать генератор, т. е. обеспечить такой режим работы, при котором начало развертки будет совпадать с началом появления периодического сигнала (скажем, синусоидального). Причем синхронизировать генератор можно как от внутреннего сигнала (он берется с усилителя вертикального отклонения), так и от внешнего, подаваемого на гнезда 12 «ВХОД х /СИНХР./». Выбирают тот или иной режим кнопкой 9 «ВНУТР. -ВНЕШН.» (при отжатой кнопке действует внутренняя синхронизация, при нажатой — внешняя).

Когда ручка 8 находится в крайнем левом положении («—»), генератор развертки синхронизируется отрицательным сигналом (или полупериодом синусоидального напряжения), а в крайнем правом («+») — положительным. В среднем положении («0») ручки синхронизация выключается. Кроме того, при перемещении этой ручки изменяется амплитуда синхронизирующего сигнала, что также способствует получению устойчивой синхронизации.

И последняя кнопка — 10РАЗВ.-ВХ.Х.»). Когда она отжата, на вход усилителя канала горизонтального отклонения поступает пилообразное напряжение и на экране видна линия развертки. Когда же кнопка нажата, вход усилителя подключается к гнездам «ВХОД х /СИНХР./». Теперь горизонтальная линия развертки будет получаться только при подаче сигнала на указанные гнезда. Причем чувствительность этого канала равна примерно 0,5 В/дел., т. е. для отклонения луча на 8 клеток масштабной сетки на гнезда нужно подать сигнал амплитудой не менее 4 В.

Такой режим работы осциллографа бывает нужен, например, при исследовании частотных и фазовых соотношений гармонических колебаний так называемым методом фигур Лиссажу, когда одни колебания подают на вход Y осциллографа, а другие — на вход X. С этим методом мы встретимся во время практических работ.

На задней стейке осциллографа можно увидеть гнездо, около которого стоит обозначение треугольного импульса. На это гнездо выведен сигнал генератора горизонтального отклонения — он бывает нужен при специальных видах измерений, например, при снятии амплитудно-частотных характеристик (АЧХ) усилителей.

Как работает внешний триггер в осциллографе?

Подумайте, что произойдет, если прицел вообще не сработает — он будет отображать несколько циклов синусоиды (например) по экрану, а затем продолжит отображать 2-ю серию синусоид, но они не будут накладываться поверх первого набора из синусоидальных волн, потому что шансы частоты синусоидального сигнала, точно совпадающие с временем сканирования временной базы, очень и очень малы. В лучшем случае вы увидите движущуюся синусоиду на экране, и это бесполезно для проверки формы волны. Вот один замедлился: —

Как бы вы попытались оценить период этой синусоиды, когда скорость ее вращения ускорилась?

Вам нужна стационарная форма волны, поэтому триггер работает, отображая серию синусоидальных волн, затем ожидая, пока амплитуда синусоидальной волны будет правильной, прежде чем обновлять отображение: —

Я немного обманул картину, но происходит то же самое. После 1-го периода сбора данных (так называемого первого сканирования области) есть некоторое мертвое время, в то время как прицел ожидает, чтобы синусоида была точно в фазе с исходным сканированием, таким образом, 2-й период регистрации (также известный как 2-е сканирование области) перекрывает форму сигнала поверх исходная форма волны. В хорошем смысле «мертвое время» будет очень маленьким, но оно никогда не может быть мгновенным, потому что оно должно ждать, пока форма волны не окажется в правильном положении.

Вот пример двух сканирований запущенного и неуправляемого сигнала на экране области действия: —

Внешний вход просто запускает сканирование.

И это еще более запутанно, когда для этой цели используется выход SYNC / TTL генератора функций.

Что ж, для регулярного периодического сигнала нет необходимости использовать выходной сигнал синхронизации, поскольку прицел будет более чем способен самостоятельно запускать и отображать стационарный сигнал. Однако произвольная форма волны, которая периодически повторяется, является проблемой:

Понятно, что если вышеуказанный сигнал повторяется и вы хотите отобразить его на своей области, вам нужно что-то вроде внешнего запускающего события, которое может гарантировать, что сигнал не будет непрерывно перемещаться по экрану. Вот где поступают синхроимпульсы (красного цвета). Поскольку генератор «знает» начальную позицию сигнала, он может генерировать однозначный маркер, который может перезапустить прицел.

Как работает осциллограф?

Современные цифровые осциллографы делятся на один из трех классов: осциллографы с цифровой памятью (DSO), осциллографы с цифровым люминофором (DPO) и стробоскопические осциллографы. У всех трех есть вертикальная, горизонтальная, захватывающая и пусковая системы.

Вертикальная система — это точка входа для сигналов, поступающих от датчика. Он оптимизирует амплитуду входящего сигнала в соответствии с диапазоном напряжений последующих цепей, особенно аналого-цифрового преобразователя (АЦП).Он не должен вносить никаких изменений в сигнал, кроме преднамеренной регулировки амплитуды и смещения.

Система сбора данных включает элементы временной развертки (или горизонтальные) плюс фактические элементы оцифровки и хранения. Он производит выборку напряжения сигнала, собирая множество точек данных для его отображения. В цифровом осциллографе горизонтальная система содержит тактовый сигнал выборки, который дает каждой выборке напряжения точную временную (горизонтальную) координату. Тактовая частота дискретизации управляет аналого-цифровым преобразователем (АЦП), выходной сигнал которого сохраняется в памяти сбора данных.Емкость этой памяти называется длиной записи. За последние несколько лет были достигнуты огромные успехи в архитектуре подсистемы сбора данных, в том числе такие прорывы, как технология сбора данных DPX ™, используемая в осциллографах с цифровым люминофором.

Система запуска определяет указанное пользователем условие во входящем сигнальном потоке и применяет его в качестве эталона времени в записи формы сигнала. Отображается событие, соответствующее критериям запуска, а также данные формы сигнала, предшествующие или следующие за событием.В каждом случае можно наблюдать положение триггерного события во времени. Система запуска гарантирует, что на экране будет отображаться стабильная согласованная форма сигнала. Система запуска ищет пороговые значения напряжения, ширину импульса, логические комбинации (на нескольких входах) и многие другие условия, чтобы квалифицировать сбор данных.

Что такое осциллограф? »

Изучение осциллографов по осциллографам »

Как работает осциллограф?

Обзор осциллографов

Рисунок 1: Цифровой осциллограф в действии

Глядя на такие формы сигналов, вы можете понять, как цепь работает. Это может помочь вам определить потенциальные проблемы со схемой, охарактеризовать ее работу или просмотреть целостность сигнала по линии передачи. Эта статья может помочь вам лучше понять основы осциллографа: Что такое осциллограф?

Самым популярным современным осциллографом является цифровой запоминающий осциллограф (DSO).Прежде чем мы рассмотрим, как работает DSO, давайте взглянем на его скромное начало.

Одной из первых попыток автоматизации системы преобразования электрических сигналов на дисплей был Hospitalier Ondograph в начале 1900-х годов. Это устройство, показанное на рисунке 3, основывалось на разряде конденсатора в гальванометр, на конце которого была ручка. При изменении напряжения перо двигалось взад и вперед, рисуя форму волны на листе бумаги с прокруткой.

Рисунок 3: Госпитальный ондограф

К сожалению, большинство электрических сигналов менялись слишком быстро для механической системы ондографа.В результате, для точного рисования на бумаге требовалось множество выборок сигнала.

В конце 1800-х годов ученые обнаружили, что субатомные частицы (теперь известные как электроны) будут двигаться по прямым линиям от катодного конца трубки Крукса. В результате ученые окрестили эти частицы «катодными лучами». В последующие годы другие ученые обнаружили, что эти лучи можно искривлять, прикладывая электрическое или магнитное поле.

В 1897 году немецкий физик и изобретатель Карл Фердинанд Браун построил первую электронно-лучевую трубку (ЭЛТ) осциллографа, подав напряжение на вертикальные пластины над и под электронным пучком.Электронный луч попадет на люминофорную пластину на противоположном конце и раскрасит яркую точку. При изменении напряжения на пластинах точка будет танцевать вверх и вниз, как показано на рисунке 4.

Рисунок 4: Электронно-лучевая трубка с одним набором пластин

Джонатан Зеннек, физик и инженер-электрик из Королевства Вюртемберг ( теперь часть Германии), добавил в 1899 г. набор горизонтальных пластин к ЭЛТ, что позволило электронному лучу перемещаться вперед и назад по экрану. Имея возможность управлять вертикальным и горизонтальным движением, теперь мы можем построить график электрического сигнала на экране в реальном времени.

В следующем видео показано, как аналоговый осциллограф можно использовать для измерения напряжения в цепи:

Теперь, когда мы увидели, как появились аналоговые осциллографы, давайте остановимся на их работе. На рисунке 5 показано внутреннее устройство такой области (в виде блок-схемы) вместе с описанием каждого из компонентов.

Рисунок 5: Блок-схема аналогового осциллографа

Пробник: Элемент, который подключается к проверяемой цепи. Большинство пробников имеют два наконечника, поскольку осциллографы измеряют разность электрических потенциалов (напряжение) между двумя точками.

Усилитель / аттенюатор: Часто электрический сигнал необходимо усиливать (увеличивать по амплитуде) или ослаблять (уменьшать по амплитуде) для эффективного отображения пользователю или во избежание повреждения внутренних схем осциллографа.

Система запуска: Запуск — это определяемое пользователем условие (например, пороговое значение напряжения), которое определяет, когда осциллограф должен начать рисовать сигнал. Это может быть чрезвычайно полезно при обнаружении спорадических импульсов в цепи или синхронизации дисплея с повторяющимся шаблоном, например синусоидальной волной, чтобы он постоянно отображался на экране.

Генератор развертки: Для управления горизонтальными пластинами ЭЛТ генератор развертки создает повторяющуюся диаграмму напряжения пилообразной формы. Это заставляет луч перемещаться с одной стороны на другую в ЭЛТ. Частота и запуск генератора развертки устанавливаются пользователем.

Горизонтальный усилитель: Подобно усилителю, установленному после пробника, горизонтальный усилитель увеличивает амплитуду пилообразной волны от генератора развертки, чтобы он мог управлять горизонтальными пластинами в ЭЛТ.

CRT: Электронная пушка выстреливает непрерывным потоком электронов на покрытый люминофором экран, который производит яркую точку. Два набора пластин контролируют отклонение балки. Вертикальные пластины напрямую контролируются напряжением, наблюдаемым на зонде, а горизонтальные пластины контролируются генератором развертки. Поскольку отклонение луча быстро изменяется, на экране появляется сплошная линия. Эта линия на дисплее отображает напряжение (как видно на датчике), изменяющееся во времени.

В 1980-х годах компания Nicolet Test Instrument создала первый цифровой запоминающий осциллограф (DSO), использующий относительно медленный (1 МГц) аналого-цифровой преобразователь (ADC). По мере развития цифровых технологий цифровые осциллографы становились быстрее, меньше и популярнее.

Современные DSO — это, по сути, компьютеры с высокопроизводительными АЦП, используемыми для измерения напряжения. Однако многие функции и интерфейс такие же, как и в старых аналоговых осциллографах, как показано на рисунке 6.

Рисунок 6: Использование современного цифрового запоминающего осциллографа

На Рисунке 7 показано внутреннее устройство цифрового запоминающего осциллографа.

Рисунок 7: Блок-схема цифрового запоминающего осциллографа

Пробник: Осциллографу требуется способ измерения напряжения между двумя точками в проверяемой цепи. У большинства пробников есть два наконечника, которые вы прикрепляете к разным узлам в вашей цепи.

Усилитель / аттенюатор: Большинство осциллографов имеют схемы, которые усиливают или ослабляют захваченные электрические сигналы, чтобы их можно было эффективно отобразить для пользователя и избежать повреждения компонентов внутри осциллографа.

Выбор триггера: Многие современные осциллографы позволяют выбирать между внутренним или внешним сигналом (от отдельного источника) для запуска отображения формы сигнала.

Управляющая логика: Логика или программное обеспечение, которое позволяет пользователю настраивать способ захвата и отображения сигналов. Логика управления аналогична горизонтальным элементам управления аналоговым осциллографом, но часто предлагает больше возможностей.

ADC: Аналого-цифровой преобразователь производит выборку электрического сигнала из тестовой схемы через равные промежутки времени, заданные управляющей логикой. Эти выборки преобразуются в двоичные числа, которые хранятся в памяти.

Память: Цифровая информация, представляющая дискретизированный сигнал, хранится в памяти. Эта информация используется для восстановления близкого приближения к исходному электрическому сигналу на дисплее в графическом формате.

Развертка времени: Как установлено логикой управления, развертка времени управляет горизонтальной осью на дисплее. Пользователь может установить одну или несколько точек запуска, чтобы настроить временную развертку для захвата спорадических сигналов или удержания периодических сигналов, таких как синусоидальные волны, на дисплее.

Дисплей: Осциллограф берет данные из памяти, объединяет их с информацией из временной развертки и отображает форму сигнала на экране. Часто эта форма волны будет близким представлением первоначально дискретизированного сигнала с напряжением по оси Y и временем по оси X. В некоторых старых цифровых осциллографах в качестве дисплеев используются ЭЛТ, тогда как в большинстве современных цифровых осциллографов используются ЖК-дисплеи.

Эволюция осциллографов

С момента своего изобретения осциллографы превратились в более интеллектуальное и мощное испытательное оборудование.Осциллографы на базе ПК очень портативны и используют вычислительную мощность компьютера для анализа и отображения сигналов. Осциллографы с цифровым люминофором (DPO) добавляют функции, имитирующие способность аналогового осциллографа отображать частоту появления сигнала.

Осциллографы открыли путь для логических анализаторов, которые специализируются на отображении цифровых сигналов. В конце концов, эти две мощные части оборудования будут объединены в осциллограф смешанных сигналов (MSO). MSO могут отображать аналоговые сигналы так же хорошо, как осциллограф, при анализе цифровых сигналов, как логический анализатор.

Как работают осциллографы — объясните, что интересного

Криса Вудфорда. Последнее изменение: 29 ноября 2020 г.

Blip … blip … blip … blip … woooooooooooooooo …. «Быстро медсестра, она разбилась … весла! »Никакая телевизионная больничная драма не быть полным без взгляда и звука кардиомонитора со стороны у постели больного. Мы все видели эти ярко освещенные следы прыгает вверх и вниз — но вы когда-нибудь задумывались, как именно они работают? Подобные кардиомониторы основаны на чем-то вроде электронного машина для рисования графиков, называемая осциллографом, которая очень похожа на старомодный телевизор.Давайте подробнее рассмотрим эти удобные инструменты и узнайте, как они работают!

Фото: Взрыв из прошлого! Представьте, что вы пытаетесь построить компактный осциллограф до того, как миниатюрные электронные компоненты были легко доступны. Это было проблемой, которую ученые из Национального Бюро стандартов и Бюро аэронавтики ВМС США (BuAer) столкнулись еще в 1950-х годах до того, как они могли заполучить транзисторы. То, что они придумали, — это удивительно компактный прибор, Субминиатюрный радарный индикатор-осциллограф, который был выпущен в 1954–1956 годах.Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Что такое осциллограф?

Фото: Типичная диаграмма / график. Это показывает устойчивый рост электронной коммерции в последние годы. Ось X (время) проходит горизонтально по странице; ось Y (доход) проходит вертикально вверх по странице. Предоставлено Бюро переписи населения США.

Вы почти наверняка рисовали диаграммы в школе и видели их в газеты. Многие из них показывают, как определенное количество чего-то (например, пульс, цена акций корпорации или обменный курс страны) меняется со временем: у них есть количество наносится в вертикальном направлении (известном как ось Y) и период времени, нанесенный в горизонтальном направлении (ось x). Проблема с такими диаграммами в том, что на их создание могут уйти годы. сюжет — если, конечно, вы не осциллограф! Это удобный маленький гаджет, который автоматически рисует диаграммы, используя сигналы, которые вы ему подаете. зонды, подключенные к электронной схеме, научному прибору, или часть медицинского оборудования для наблюдения.

Для чего можно использовать осциллографы?

Фото: Электрик ВМС США использует осциллограф для проверки работоспособности электродвигатель на борту авианосца. Фото Паоло Баяса любезно предоставлено ВМС США.

Мы можем использовать осциллографы для просмотра всех видов сигналов во всех виды способов. Если вы когда-нибудь изучаете электронику, вы будете использовать осциллографы, чтобы наблюдать за изменением сигналов в цепях с течением времени; ты также могут найти неисправности в сломанных телевизорах, радиоприемниках и т. д. виды аналогичного оборудования.Пробники на типичном осциллографе позволяют вы подаете электрический ток через коаксиальные кабели, но это не значит, что осциллограф может измерять только электричество. Подключите датчик (который преобразует один вид энергии в другой), и вы можете использовать осциллограф для измерения практически всего. Например, вы можете использовать микрофон (тип преобразователя, который преобразует звуковую энергию в электрический сигнал) для изучения звука сигналы с осциллографа; вы можете использовать термопару ( преобразователь, преобразующий тепло в электричество) для измерения температуры изменения; или вы можете использовать пьезоэлектрический преобразователь (который генерирует электричество, когда вы его сжимаете) для изучения вибраций, таких как сердцебиение человека.

Одна из действительно полезных особенностей осциллографов — это то, как они превращают невидимые сигналы в то, что мы можем видеть и понимать. Так, например, вы не можете слышать ультразвук — звук за пределами диапазона человеческого слуха — по определению. Но вы можете очень легко увидеть и изучить его с помощью осциллографа. Точно так же осциллографы предоставляют людям с нарушениями слуха очень полезный способ видеть и изучать звуки. они могут быть не в состоянии оценить другими способами.

Фото: Сделать звук видимым.Вы можете использовать осциллографы как звуковые «визуализаторы». Фактически, это след от компьютерного визуализатора, в который я загрузил фрагмент Бетховена, но ничто не мешает вам делать аналогичные вещи с физическим осциллографом, подключенным к Hi-Fi (или приложением на вашем телефоне). .

Как работает осциллограф

Традиционный осциллограф работает почти так же, как и традиционное (с электронно-лучевой трубкой) телевидение; действительно, вы иногда увидите осциллографы, называемые электронно-лучевыми осциллографами или CRO.В телевизоре электронные лучи заставляются сканировать вперед и назад через экран с покрытием на спине специальными химическими веществами, называемыми люминофором. Каждый раз Луч попадает на экран, от него загораются люминофоры. За меньшее время чем нужно моргнуть, электронные лучи проходят через весь экран и создайте картинку, которую вы можете видеть. Затем они это делают все сначала. И опять. И опять. Итак, вы видите движущееся изображение вместо неподвижного. (Взгляните на нашу телевизионную статью, чтобы увидеть диаграмму, показывающую Вы, как все это работает на практике.) В осциллографе электрон лучи работают точно так же, но вместо построения изображения они рисуют граф. Когда вы смотрите на линию на экране осциллографа, что вы на самом деле это электронный луч, качающийся вверх и вниз!

Вот что нужно отметить: электрические сигналы, поступающие в соединения x и y, эффективно становятся значениями x и y на вашей экранной диаграмме. Поскольку есть индивидуальный соответствие между этими двумя вещами, традиционный осциллограф аналоговое устройство.(Другой способ смотреть это значит, что след на экране — это аналог того, что вы изучения или измерения.)

Фотография: осциллограф рисует кривую (график) некоторой величины (нанесенной на ось y), которая изменяется со временем (нанесена на ось x). Один из распространенных паттернов, который вы увидите, — это плавно волнистая, змееподобная линия вверх и вниз, которая называется синусоидальной волной или синусоидальной волной (зеленая верхняя линия). Другой довольно распространенный паттерн — это пилообразная волна (синяя ступенчатая кривая, показанная под синусоидой).Это демонстрационный снимок экрана Oscium, подключаемого осциллографа, который воспроизводит некоторые функции традиционного осциллографа на вашем смартфоне или планшете.

Графики электронные

Как на самом деле осциллограф рисует кривую? Представьте, что вы осциллограф! Представьте, что вы держите в руке карандаш в нулевой точке на кусочке. миллиметровой бумаги. Теперь предположим, что ваша рука привязана к двум электродвигатели, один из которых может перемещать его на точное количество по вертикали (y) направление (то есть вверх и вниз по странице), а другой может переместите его в горизонтальном (x) направлении (поперек страницы из стороны в боковая сторона).Двигатели подключены к электронной схеме, которая может дискретизировать сигналы разных типов.

Для начала предположим, что мы подключить x-цепь к электронному кварцу Часы. Каждый раз часы тикают, он посылает сигнал на двигатель x, который перемещает вашу руку немного правее. Итак, в течение нескольких секунд ваша рука постепенно перемещается вправо, по ходу рисуя горизонтальную линию. Теперь предположим, что мы подключили Y-цепь к какой-то электронной прибор, определяющий сердцебиение человека.Если схемы x и y связаны одновременно, ваша рука будет перемещаться по странице, как и прежде, но подпрыгивайте вертикально каждый раз, когда сердце бьется, рисуя классический след сердцебиения, который вы видите в сериалах о больницах. Замените карандаш и миллиметровку электронным луч и экран телевизора, и вы можете точно увидеть, как осциллограф рисует его следы. Каждый раз, когда сигнал проходит через цепь y, электронный луч подпрыгивает. Все это время сигнал времени подает кривая перемещается слева направо по горизонтальной оси (x).

Иллюстрация: Как осциллограф рисует синусоидальную волну. 1) Внутри электронно-лучевой трубки (ЭЛТ) электронная пушка (желтая) испускает пучок электронов (зеленые точки) в направлении люминофорного экрана. 2) При отсутствии сигнала, подключенного к осциллографу, схема синхронизации питает катушки электромагнита (синие), которые заставляют электронный луч медленно перемещаться по экрану слева направо (эффективно запитывая ось x графика). 3) Когда вы подаете волнообразный сигнал (оранжевый) на щупы осциллографа, другая схема питает перпендикулярную пару катушек (красный), которые заставляют луч качать вверх и вниз.4) Действуя вместе, катушки заставляют электронные лучи перемещаться по восходящей и нисходящей, извивающейся дорожке (синусоидальная волна).

Как пользоваться осциллографом?

Все просто! Вы подключаете сигнал, который хотите изучить, к y-схему и используйте x-схему (иногда называемую временной разверткой), чтобы изучите, как сигнал меняется со временем. В качестве альтернативы вы можете подключить второй сигнал для x-цепи, а затем изучите, как y и x сигналы меняются вместе. Когда осциллограф включен и подключен в сигнал вы увидите след, образующийся на фоне экранная миллиметровка (известная как сетка, отмечены квадратами, называемыми делениями).

Если след слишком мал для правильного отображения, необходимо отрегулировать калибровка осей x и y — как при использовании другого размера масштабировать, когда вы рисуете диаграмму на бумаге. Если вы включите Контроль времени / деления (часто обозначается как Time / Div или Secs / Div), вы изменяете каждое деление экрана по оси X поэтому входящему сигналу требуется больше времени для прохождения. Например, если сердцебиение делает пульс каждую секунду и экран настроен до одной секунды на деление, вы получите пульс, появляющийся на каждом деление (линия) экрана.Если вы включите время / деление так что он установлен на 0,5 секунды на деление, импульсы будут распространяться на вдвое больше горизонтальной комнаты (потому что одна секунда времени сейчас представлен двумя делениями экрана). Вы можете настроить ось Y таким же образом (часто обозначается как Вольт / Деление или Вольт / Деление). Как правило, идея состоит в том, чтобы растянуть след и заполнить весь экран, чтобы вы могли использовать сетку для точных измерений.

Виды осциллографов

CRO и ЖК-дисплей

Фото: Типичный полноразмерный цифровой осциллограф.фото Брайан Рид любезно предоставил ВМС США.

Как мы уже видели, осциллографы изначально основывались на электронно-лучевые трубки (ЭЛТ), которые относительно громоздкие, тяжелые, энергоемкий, ненадежный и дорогой. Так же, как у ЭЛТ-телевизоров сейчас во многом заменен на более удобный LCD технологии, поэтому многие осциллографы с ЭЛТ были заменены плоскими ЖК-экранами. Вместо использования движущихся электронных лучей для рисования следов ЖК-дисплей осциллографы используют цифровую электронику, чтобы нарисовать кривую вместо этого — эффективно имитируя то, что происходит со старшими технология.ЖК-осциллографы, как правило, намного дешевле и дороже. компактные: их можно положить даже в карман!

Фото: Цифровые осциллографы намного меньше и портативнее, чем старомодные аналоговые. Это портативный осциллограф Fluke, который используется для проверки сигналы связи в стойке с электронным оборудованием сзади. Фото Эндрю Ли любезно предоставлено ВВС США.

В отличие от традиционных осциллографов, в которых используются полностью аналоговые технологии (отображение различных сигналов на экране, которые точно соответствуют к сигналам, которые вы в них подаете), ЖК-осциллографы обычно цифровой: они используют аналого-цифровые преобразователи для включения входящих (аналоговые) сигналы в числовую (цифровую) форму, а затем вместо этого выводят эти числа на экран.

Осциллографы с подключаемым модулем

(USB)

Поскольку на вашем компьютере, планшете или смартфоне уже есть ЭЛТ- или ЖК-дисплей, нет необходимости не покупайте осциллограф для случайного использования в хобби. Такие компании, как Cleverscope, продают недорогие съемные осциллографы. (с USB-разъемами или эквивалентными выводами для мобильных устройств), которые имитируют схему в традиционном осциллографе и отображают кривую на вашем ПК или экране мобильного телефона. Как это удобно!

Приложения осциллографа

Поищите в своем любимом магазине приложений, и вы найдете немало результатов по запросу «осциллограф», начиная от простых демонстрация трасс сигнала вплоть до полнофункциональных осциллографов, принимающих сигналы от подключаемых пробников.Основные приложения использовать микрофон как источник очень грубого сигнала. С помощью переходного кабеля USB для вашего мобильного телефона и вставного зонда, Ваш мобильный телефон мгновенно превращается в карманный осциллограф! Oscium производит самые известные съемные пробники осциллографов для iPhone / iPod Touch и Android, и, несомненно, они доступны и от других производителей.

Фото: вот скриншоты двух типичных приложений осциллографа. 1) Очень простое приложение Oscillo (доступное в обычных магазинах приложений) рисует простую кривую амплитуды любого звукового сигнала, который в настоящее время подается через микрофон вашего мобильного устройства.Это отличный способ продемонстрировать детям, как звуки разного тона и высоты создают волны разной формы. Здесь я напеваю один тон в свой мобильный телефон, чтобы сгенерировать приблизительную синусоидальную волну — и я могу изменять громкость и высоту звука и наблюдать, что происходит со следом, когда я это делаю. Что произойдет, если я свистну, напеваю или пытаюсь сделать свой голос похожим на трубу или флейту? Это отличное введение в осциллографы и гораздо более интересный интерактивный способ изучения волн, чем вы найдете в традиционных научных книгах. 2) Чуть более сложное приложение Sound Oscilloscope (от Denis Bolshoiden для Android) может рисовать ту же амплитудную кривую или, альтернативно (как показано здесь), частотную характеристику (FFT) звукового сигнала от вашего микрофона, что добавляет дополнительное измерение. к деятельности.

Как работают осциллографы — объясните, что такое

Криса Вудфорда. Последнее изменение: 29 ноября 2020 г.

Blip … blip … blip … blip … woooooooooooooooo …. «Быстро медсестра, она разбилась… весла! »Никакая телевизионная больничная драма не быть полным без взгляда и звука кардиомонитора со стороны у постели больного. Мы все видели эти ярко освещенные следы прыгает вверх и вниз — но вы когда-нибудь задумывались, как именно они работают? Подобные кардиомониторы основаны на чем-то вроде электронного машина для рисования графиков, называемая осциллографом, которая очень похожа на старомодный телевизор. Давайте подробнее рассмотрим эти удобные инструменты и узнайте, как они работают!

Фото: Взрыв из прошлого! Представьте, что вы пытаетесь построить компактный осциллограф до того, как миниатюрные электронные компоненты были легко доступны.Это было проблемой, которую ученые из Национального Бюро стандартов и Бюро аэронавтики ВМС США (BuAer) столкнулись еще в 1950-х годах до того, как они могли заполучить транзисторы. То, что они придумали, — это удивительно компактный прибор, Субминиатюрный радарный индикатор-осциллограф, который был выпущен в 1954–1956 годах. Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.

Что такое осциллограф?

Фото: Типичная диаграмма / график.Это показывает устойчивый рост электронной коммерции в последние годы. Ось X (время) проходит горизонтально по странице; ось Y (доход) проходит вертикально вверх по странице. Предоставлено Бюро переписи населения США.

Вы почти наверняка рисовали диаграммы в школе и видели их в газеты. Многие из них показывают, как определенное количество чего-то (например, пульс, цена акций корпорации или обменный курс страны) меняется со временем: у них есть количество наносится в вертикальном направлении (известном как ось Y) и период времени, нанесенный в горизонтальном направлении (ось x).Проблема с такими диаграммами в том, что на их создание могут уйти годы. сюжет — если, конечно, вы не осциллограф! Это удобный маленький гаджет, который автоматически рисует диаграммы, используя сигналы, которые вы ему подаете. зонды, подключенные к электронной схеме, научному прибору, или часть медицинского оборудования для наблюдения.

Для чего можно использовать осциллографы?

Фото: Электрик ВМС США использует осциллограф для проверки работоспособности электродвигатель на борту авианосца.Фото Паоло Баяса любезно предоставлено ВМС США.

Мы можем использовать осциллографы для просмотра всех видов сигналов во всех виды способов. Если вы когда-нибудь изучаете электронику, вы будете использовать осциллографы, чтобы наблюдать за изменением сигналов в цепях с течением времени; ты также могут найти неисправности в сломанных телевизорах, радиоприемниках и т. д. виды аналогичного оборудования. Пробники на типичном осциллографе позволяют вы подаете электрический ток через коаксиальные кабели, но это не значит, что осциллограф может измерять только электричество.Подключите датчик (который преобразует один вид энергии в другой), и вы можете использовать осциллограф для измерения практически всего. Например, вы можете использовать микрофон (тип преобразователя, который преобразует звуковую энергию в электрический сигнал) для изучения звука сигналы с осциллографа; вы можете использовать термопару ( преобразователь, преобразующий тепло в электричество) для измерения температуры изменения; или вы можете использовать пьезоэлектрический преобразователь (который генерирует электричество, когда вы его сжимаете) для изучения вибраций, таких как сердцебиение человека.

Одна из действительно полезных особенностей осциллографов — это то, как они превращают невидимые сигналы в то, что мы можем видеть и понимать. Так, например, вы не можете слышать ультразвук — звук за пределами диапазона человеческого слуха — по определению. Но вы можете очень легко увидеть и изучить его с помощью осциллографа. Точно так же осциллографы предоставляют людям с нарушениями слуха очень полезный способ видеть и изучать звуки. они могут быть не в состоянии оценить другими способами.

Фото: Сделать звук видимым.Вы можете использовать осциллографы как звуковые «визуализаторы». Фактически, это след от компьютерного визуализатора, в который я загрузил фрагмент Бетховена, но ничто не мешает вам делать аналогичные вещи с физическим осциллографом, подключенным к Hi-Fi (или приложением на вашем телефоне). .

Как работает осциллограф

Традиционный осциллограф работает почти так же, как и традиционное (с электронно-лучевой трубкой) телевидение; действительно, вы иногда увидите осциллографы, называемые электронно-лучевыми осциллографами или CRO.В телевизоре электронные лучи заставляются сканировать вперед и назад через экран с покрытием на спине специальными химическими веществами, называемыми люминофором. Каждый раз Луч попадает на экран, от него загораются люминофоры. За меньшее время чем нужно моргнуть, электронные лучи проходят через весь экран и создайте картинку, которую вы можете видеть. Затем они это делают все сначала. И опять. И опять. Итак, вы видите движущееся изображение вместо неподвижного. (Взгляните на нашу телевизионную статью, чтобы увидеть диаграмму, показывающую Вы, как все это работает на практике.) В осциллографе электрон лучи работают точно так же, но вместо построения изображения они рисуют граф. Когда вы смотрите на линию на экране осциллографа, что вы на самом деле это электронный луч, качающийся вверх и вниз!

Вот что нужно отметить: электрические сигналы, поступающие в соединения x и y, эффективно становятся значениями x и y на вашей экранной диаграмме. Поскольку есть индивидуальный соответствие между этими двумя вещами, традиционный осциллограф аналоговое устройство.(Другой способ смотреть это значит, что след на экране — это аналог того, что вы изучения или измерения.)

Фотография: осциллограф рисует кривую (график) некоторой величины (нанесенной на ось y), которая изменяется со временем (нанесена на ось x). Один из распространенных паттернов, который вы увидите, — это плавно волнистая, змееподобная линия вверх и вниз, которая называется синусоидальной волной или синусоидальной волной (зеленая верхняя линия). Другой довольно распространенный паттерн — это пилообразная волна (синяя ступенчатая кривая, показанная под синусоидой).Это демонстрационный снимок экрана Oscium, подключаемого осциллографа, который воспроизводит некоторые функции традиционного осциллографа на вашем смартфоне или планшете.

Графики электронные

Как на самом деле осциллограф рисует кривую? Представьте, что вы осциллограф! Представьте, что вы держите в руке карандаш в нулевой точке на кусочке. миллиметровой бумаги. Теперь предположим, что ваша рука привязана к двум электродвигатели, один из которых может перемещать его на точное количество по вертикали (y) направление (то есть вверх и вниз по странице), а другой может переместите его в горизонтальном (x) направлении (поперек страницы из стороны в боковая сторона).Двигатели подключены к электронной схеме, которая может дискретизировать сигналы разных типов.

Для начала предположим, что мы подключить x-цепь к электронному кварцу Часы. Каждый раз часы тикают, он посылает сигнал на двигатель x, который перемещает вашу руку немного правее. Итак, в течение нескольких секунд ваша рука постепенно перемещается вправо, по ходу рисуя горизонтальную линию. Теперь предположим, что мы подключили Y-цепь к какой-то электронной прибор, определяющий сердцебиение человека.Если схемы x и y связаны одновременно, ваша рука будет перемещаться по странице, как и прежде, но подпрыгивайте вертикально каждый раз, когда сердце бьется, рисуя классический след сердцебиения, который вы видите в сериалах о больницах. Замените карандаш и миллиметровку электронным луч и экран телевизора, и вы можете точно увидеть, как осциллограф рисует его следы. Каждый раз, когда сигнал проходит через цепь y, электронный луч подпрыгивает. Все это время сигнал времени подает кривая перемещается слева направо по горизонтальной оси (x).

Иллюстрация: Как осциллограф рисует синусоидальную волну. 1) Внутри электронно-лучевой трубки (ЭЛТ) электронная пушка (желтая) испускает пучок электронов (зеленые точки) в направлении люминофорного экрана. 2) При отсутствии сигнала, подключенного к осциллографу, схема синхронизации питает катушки электромагнита (синие), которые заставляют электронный луч медленно перемещаться по экрану слева направо (эффективно запитывая ось x графика). 3) Когда вы подаете волнообразный сигнал (оранжевый) на щупы осциллографа, другая схема питает перпендикулярную пару катушек (красный), которые заставляют луч качать вверх и вниз.4) Действуя вместе, катушки заставляют электронные лучи перемещаться по восходящей и нисходящей, извивающейся дорожке (синусоидальная волна).

Как пользоваться осциллографом?

Все просто! Вы подключаете сигнал, который хотите изучить, к y-схему и используйте x-схему (иногда называемую временной разверткой), чтобы изучите, как сигнал меняется со временем. В качестве альтернативы вы можете подключить второй сигнал для x-цепи, а затем изучите, как y и x сигналы меняются вместе. Когда осциллограф включен и подключен в сигнал вы увидите след, образующийся на фоне экранная миллиметровка (известная как сетка, отмечены квадратами, называемыми делениями).

Если след слишком мал для правильного отображения, необходимо отрегулировать калибровка осей x и y — как при использовании другого размера масштабировать, когда вы рисуете диаграмму на бумаге. Если вы включите Контроль времени / деления (часто обозначается как Time / Div или Secs / Div), вы изменяете каждое деление экрана по оси X поэтому входящему сигналу требуется больше времени для прохождения. Например, если сердцебиение делает пульс каждую секунду и экран настроен до одной секунды на деление, вы получите пульс, появляющийся на каждом деление (линия) экрана.Если вы включите время / деление так что он установлен на 0,5 секунды на деление, импульсы будут распространяться на вдвое больше горизонтальной комнаты (потому что одна секунда времени сейчас представлен двумя делениями экрана). Вы можете настроить ось Y таким же образом (часто обозначается как Вольт / Деление или Вольт / Деление). Как правило, идея состоит в том, чтобы растянуть след и заполнить весь экран, чтобы вы могли использовать сетку для точных измерений.

Виды осциллографов

CRO и ЖК-дисплей

Фото: Типичный полноразмерный цифровой осциллограф.фото Брайан Рид любезно предоставил ВМС США.

Как мы уже видели, осциллографы изначально основывались на электронно-лучевые трубки (ЭЛТ), которые относительно громоздкие, тяжелые, энергоемкий, ненадежный и дорогой. Так же, как у ЭЛТ-телевизоров сейчас во многом заменен на более удобный LCD технологии, поэтому многие осциллографы с ЭЛТ были заменены плоскими ЖК-экранами. Вместо использования движущихся электронных лучей для рисования следов ЖК-дисплей осциллографы используют цифровую электронику, чтобы нарисовать кривую вместо этого — эффективно имитируя то, что происходит со старшими технология.ЖК-осциллографы, как правило, намного дешевле и дороже. компактные: их можно положить даже в карман!

Фото: Цифровые осциллографы намного меньше и портативнее, чем старомодные аналоговые. Это портативный осциллограф Fluke, который используется для проверки сигналы связи в стойке с электронным оборудованием сзади. Фото Эндрю Ли любезно предоставлено ВВС США.

В отличие от традиционных осциллографов, в которых используются полностью аналоговые технологии (отображение различных сигналов на экране, которые точно соответствуют к сигналам, которые вы в них подаете), ЖК-осциллографы обычно цифровой: они используют аналого-цифровые преобразователи для включения входящих (аналоговые) сигналы в числовую (цифровую) форму, а затем вместо этого выводят эти числа на экран.

Осциллографы с подключаемым модулем

(USB)

Поскольку на вашем компьютере, планшете или смартфоне уже есть ЭЛТ- или ЖК-дисплей, нет необходимости не покупайте осциллограф для случайного использования в хобби. Такие компании, как Cleverscope, продают недорогие съемные осциллографы. (с USB-разъемами или эквивалентными выводами для мобильных устройств), которые имитируют схему в традиционном осциллографе и отображают кривую на вашем ПК или экране мобильного телефона. Как это удобно!

Приложения осциллографа

Поищите в своем любимом магазине приложений, и вы найдете немало результатов по запросу «осциллограф», начиная от простых демонстрация трасс сигнала вплоть до полнофункциональных осциллографов, принимающих сигналы от подключаемых пробников.Основные приложения использовать микрофон как источник очень грубого сигнала. С помощью переходного кабеля USB для вашего мобильного телефона и вставного зонда, Ваш мобильный телефон мгновенно превращается в карманный осциллограф! Oscium производит самые известные съемные пробники осциллографов для iPhone / iPod Touch и Android, и, несомненно, они доступны и от других производителей.

Фото: вот скриншоты двух типичных приложений осциллографа. 1) Очень простое приложение Oscillo (доступное в обычных магазинах приложений) рисует простую кривую амплитуды любого звукового сигнала, который в настоящее время подается через микрофон вашего мобильного устройства.Это отличный способ продемонстрировать детям, как звуки разного тона и высоты создают волны разной формы. Здесь я напеваю один тон в свой мобильный телефон, чтобы сгенерировать приблизительную синусоидальную волну — и я могу изменять громкость и высоту звука и наблюдать, что происходит со следом, когда я это делаю. Что произойдет, если я свистну, напеваю или пытаюсь сделать свой голос похожим на трубу или флейту? Это отличное введение в осциллографы и гораздо более интересный интерактивный способ изучения волн, чем вы найдете в традиционных научных книгах. 2) Чуть более сложное приложение Sound Oscilloscope (от Denis Bolshoiden для Android) может рисовать ту же амплитудную кривую или, альтернативно (как показано здесь), частотную характеристику (FFT) звукового сигнала от вашего микрофона, что добавляет дополнительное измерение. к деятельности.

Как работает осциллограф — Работа осциллографа — Учебное пособие по осциллографу

Чтобы лучше понять элементы управления осциллографа, вам нужно знать немного больше о том, как осциллографы отображают сигнал. Аналоговые осциллографы работают несколько иначе, чем цифровые осциллографы.Однако некоторые внутренние системы похожи. Аналоговые осциллографы несколько проще по своей концепции, и сначала они описываются, а затем следует описание цифровых осциллографов.

Аналоговые осциллографы

Когда вы подключаете пробник осциллографа к цепи, сигнал напряжения проходит через пробник в вертикальную систему осциллографа. На следующем рисунке представлена ​​простая блок-схема, которая показывает, как аналоговый осциллограф отображает измеренный сигнал.

Блок-схема аналогового осциллографа

В зависимости от того, как вы устанавливаете вертикальную шкалу (регулировка вольт / дел), аттенюатор снижает напряжение сигнала, а усилитель увеличивает напряжение сигнала.

Затем сигнал проходит прямо к вертикальным отклоняющим пластинам электронно-лучевой трубки (ЭЛТ). Напряжение, приложенное к этим отклоняющим пластинам, заставляет светящуюся точку двигаться. (Электронный луч, попадающий на люминофор внутри ЭЛТ, создает светящуюся точку.) Положительное напряжение заставляет точку двигаться вверх, а отрицательное напряжение заставляет точку двигаться вниз.

Сигнал также поступает в систему запуска для запуска или запуска «горизонтальной развертки». Горизонтальная развертка — это термин, относящийся к действию горизонтальной системы, заставляющей светящуюся точку перемещаться по экрану.Запуск горизонтальной системы заставляет горизонтальную шкалу времени перемещать светящуюся точку по экрану слева направо в течение определенного интервала времени. Многие развертки в быстрой последовательности заставляют светящуюся точку плавно переходить в сплошную линию. На более высоких скоростях точка может перемещаться по экрану до 500 000 раз в секунду.

Вместе горизонтальное движение и вертикальное отклонение отображают график сигнала на экране. Триггер необходим для стабилизации повторяющегося сигнала.Это гарантирует, что развертка начинается в той же точке повторяющегося сигнала, что приводит к четкому изображению, как показано на следующем рисунке.

Запуск стабилизирует повторяющуюся форму волны

В заключение, чтобы использовать аналоговый осциллограф, вам необходимо настроить три основных параметра для приема входящего сигнала:

  • Затухание или усиление сигнала. С помощью регулятора вольт / деление отрегулируйте амплитуду сигнала перед его подачей на пластины вертикального отклонения.
  • Временная база. Используйте элемент управления сек / дел, чтобы установить количество времени на деление, отображаемое по горизонтали на экране.
  • Запуск осциллографа. Используйте уровень запуска для стабилизации повторяющегося сигнала, а также для запуска по одному событию.

Кроме того, регулировка фокуса и яркости позволяет создавать четкое и видимое изображение.

Цифровые осциллографы

Некоторые системы, из которых состоят цифровые осциллографы, аналогичны системам аналоговых осциллографов; однако цифровые осциллографы содержат дополнительные системы обработки данных.С добавленными системами цифровой осциллограф собирает данные для всей формы сигнала и затем отображает их.

Когда вы подключаете пробник цифрового осциллографа к цепи, вертикальная система регулирует амплитуду сигнала, как и в аналоговом осциллографе.

Затем аналого-цифровой преобразователь (АЦП) в системе сбора данных производит выборку сигнала в дискретные моменты времени и преобразует напряжение сигнала в этих точках в цифровые значения, называемые точками выборки. Тактовая частота выборки горизонтальной системы определяет, как часто АЦП выполняет выборку.Скорость, с которой «тикают» часы, называется частотой дискретизации и измеряется в отсчетах в секунду.

Точки выборки от АЦП хранятся в памяти как точки сигнала. Более одной точки выборки могут составлять одну точку сигнала.

Вместе точки формы сигнала составляют одну запись сигнала. Количество точек сигнала, используемых для записи сигнала, называется длиной записи. Система запуска определяет начальную и конечную точки записи. Дисплей получает эти точки записи после сохранения в памяти.

В зависимости от возможностей вашего осциллографа может выполняться дополнительная обработка точек выборки, улучшающая отображение. Может быть доступен предварительный запуск, позволяющий видеть события до точки запуска.

Блок-схема цифрового осциллографа

По сути, с цифровым осциллографом, как с аналоговым осциллографом, вам необходимо отрегулировать настройки по вертикали, горизонтали и синхронизации для выполнения измерения.

Методы отбора проб

Метод выборки сообщает цифровому осциллографу, как собирать точки выборки.Для медленно меняющихся сигналов цифровой осциллограф легко собирает более чем достаточно точек выборки для построения точного изображения. Однако для более быстрых сигналов (скорость зависит от максимальной частоты дискретизации осциллографа) осциллограф не может собрать достаточное количество отсчетов. Цифровой осциллограф может делать две вещи:

  • Он может собирать несколько точек выборки сигнала за один проход (в режиме выборки в реальном времени), а затем использовать интерполяцию. Интерполяция — это метод обработки, позволяющий оценить, как выглядит форма волны, по нескольким точкам.
  • Он может создавать изображение формы волны с течением времени, пока сигнал повторяется (режим выборки эквивалентного времени).

Выборка в реальном времени с интерполяцией

Цифровые осциллографы

используют выборку в реальном времени в качестве стандартного метода выборки. При выборке в реальном времени осциллограф собирает столько выборок, сколько может, по мере появления сигнала. На следующем рисунке показаны однократные или переходные сигналы, вы должны использовать выборку в реальном времени.

Схема дискретизации в реальном времени

Цифровые осциллографы

используют интерполяцию для отображения сигналов, которые настолько быстрые, что осциллограф может собрать только несколько точек выборки.Интерполяция «соединяет точки».

Линейная интерполяция просто соединяет точки выборки прямыми линиями. Синусоидальная интерполяция (или интерполяция sin x по x) соединяет точки выборки с кривыми. (См. Следующий рисунок) Интерполяция sin x над x — это математический процесс, подобный «передискретизации», используемой в проигрывателях компакт-дисков. При синусоидальной интерполяции точки вычисляются, чтобы заполнить время между реальными выборками. Используя этот процесс, сигнал, который отбирается только несколько раз в каждом цикле, может быть точно отображен или, в случае проигрывателя компакт-дисков, точно воспроизведен.

Диаграмма линейной и синусоидальной интерполяции

Выборка в эквивалентном времени

Некоторые цифровые осциллографы могут использовать выборку с эквивалентным временем для захвата очень быстро повторяющихся сигналов. Выборка в эквивалентном времени создает изображение повторяющегося сигнала путем захвата небольшого количества информации из каждого повторения. (См. Следующий рисунок). Вы видите, что форма волны медленно нарастает, как гирлянда огней, загорающихся один за другим. При последовательной выборке точки появляются последовательно слева направо; при случайной выборке точки появляются на осциллограмме случайным образом.

Схема дискретизации эквивалентного времени

Основные функции осциллографа | Осциллографы (или осциллографы) Fluke

проверяют и отображают сигналы напряжения в виде осциллограмм, визуальных представлений изменения напряжения во времени. Сигналы нанесены на график, который показывает, как изменяется сигнал. Вертикальный (Y) доступ представляет собой измерение напряжения, а горизонтальная (X) ось представляет собой время.

Выборка

Выборка — это процесс преобразования части входного сигнала в несколько дискретных электрических величин с целью хранения, обработки и отображения.Величина каждой точки дискретизации равна амплитуде входного сигнала во время дискретизации сигнала.

Форма входного сигнала отображается на экране осциллографа в виде серии точек. Если точки расположены далеко друг от друга и их трудно интерпретировать как сигнал, их можно соединить с помощью процесса, называемого интерполяцией, который соединяет точки с линиями или векторами.

Выборка и интерполяция: выборка показана точками, а интерполяция показана черной линией.

Запуск

Элементы управления запуском позволяют стабилизировать и отображать повторяющийся сигнал.

Запуск по фронту — наиболее распространенная форма запуска. В этом режиме элементы управления уровнем запуска и наклоном обеспечивают основное определение точки запуска. Контроль наклона определяет, находится ли точка запуска на переднем или заднем фронте сигнала, а регулятор уровня определяет, где на фронте возникает точка триггера.

При работе со сложными сигналами, такими как серия импульсов, может потребоваться запуск по ширине импульса.При использовании этого метода и установка уровня запуска, и следующий задний фронт сигнала должны происходить в течение определенного промежутка времени. После выполнения этих двух условий осциллограф запускается.

Другой метод — запуск по одному импульсу, при котором осциллограф отображает кривую только тогда, когда входной сигнал соответствует установленным условиям запуска. Как только условия запуска выполнены, осциллограф регистрирует и обновляет отображение, а затем останавливает отображение, чтобы сохранить кривую.

Связанные ресурсы

Как работает осциллограф

Осциллограф — это испытательный прибор, который позволяет наблюдать шаблоны формы сигналов, представляющие напряжения в электронной схеме, Рисунок 1 . Это бесценный инструмент обслуживания. Сначала осциллограф может показаться очень сложным прибором, но после небольшого ознакомления вы увидите, что им действительно очень легко пользоваться.

Все осциллографы имеют схожие функции, но между разными моделями есть некоторые различия. Основные принципы и элементы управления, описанные в этом устройстве, будут одинаковыми для большинства осциллографов.

Рисунок 1. Типовой осциллограф . (Knight Electronics)

Осциллографы отображают сигналы на электронно-лучевой трубке (ЭЛТ).Электронный луч испускается из катодной пушки в трубке ЭЛТ. Луч проходит между двумя наборами пластин отражателя луча. Одна пластина дефлектора предназначена для горизонтального отклонения электронного луча, а другая пластина — для вертикального отклонения.

Электронный луч попадает на внутреннюю поверхность ЭЛТ-дисплея. Эта поверхность покрыта светящимся материалом, например фосфором. Когда на светящийся экран дисплея попадает электронный луч, он излучает свет. Свет оставляет рисунок на экране дисплея, который представляет амплитуду (высоту) и период времени (ширину) наблюдаемой и изучаемой электрической волны.См. Рисунок 2 .

Рисунок 2. Электронно-лучевая трубка (ЭЛТ) используется в осциллографе. Он состоит из катода, который испускает пучок электронов, попадающих на люминесцентный экран дисплея. Вертикальные отклоняющие пластины и горизонтальные отклоняющие пластины определяют, где луч попадает на экран дисплея.

Если на прицел подается переменное напряжение, цепь вертикального отклонения регулирует магнитную напряженность вертикальной отклоняющей пластины. Вертикальная пластина заставляет пучок электронов создавать на экране дисплея световую волну, аналогичную амплитуде входного напряжения.Эта волна представляет собой мгновенные напряжения во время циклов входа переменного тока.

Генератор строчной развертки можно настраивать в широком диапазоне частот до тех пор, пока он не будет совпадать с частотой входного напряжения. После того, как развертка по горизонтали соответствует частоте входного напряжения, на экране ЭЛТ отображается серия световых волн с шириной, которая графически представляет частоту входного напряжения. Предположим, что горизонтальная развертка настроена на 60 Гц.Затем он производит 60 прямых линий в секунду на лицевой стороне ЭЛТ. Время на одну развертку составит 1/60 секунды.

Теперь на вертикальные входные клеммы подается переменное напряжение 60 Гц. Эта волна начинается с нуля, поднимается до максимального положительного значения и возвращается к нулю. Затем он уменьшается до максимального отрицательного значения и возвращается к нулю. Все это происходит в течение одного цикла. Период этого цикла составляет 1/60 секунды. Следовательно, строчная развертка и напряжение входного сигнала синхронизированы.На экране появляется одна волна.

Если бы горизонтальная развертка была установлена ​​на 120 Гц, что в два раза быстрее, чем входной сигнал 60 Гц, то на экране появятся две полные волны. Горизонтальную частоту можно настроить так, чтобы сигналы выглядели неподвижными (не движущимися).

Экран дисплея типичного осциллографа представляет собой сетку. Шаблон сетки используется, чтобы помочь наблюдателю в измерении или сравнении волнового рисунка. Посмотрите на Рисунок 3 .

На сетке отображается синусоида.Используя сетку и настройку переключателя вертикального диапазона, можно выполнить измерение напряжения. Селекторный переключатель используется вместе с сеткой для определения амплитуды напряжения сигнала. Сетка также используется вместе с настройкой временной развертки осциллографа.

Рис. 3. Напряжение и частота сигнала могут быть определены с помощью сетки ЭЛТ и настроек, указанных на вольтах / дел. и время / дел. селекторные переключатели.

Измерение напряжения

Чтобы измерить напряжение волны, отображаемой на экране, просто используйте сетку, как обычную линейку. Если переключатель напряжения (обычно обозначенный вольт / дел. Или вольт / см.) Установлен на 0,2, то расстояние по каждому квадрату сетки сверху вниз равно 0,2 вольт.

Если вольт / дел. установлен на 0,005, тогда то же пространство сетки равно пяти милливольтам. Маленькие линии, идущие вверх и вниз по центру дисплея, используются для помощи в проведении точных измерений.Маленькие линии делят каждый квадрат сетки на пять равных частей. Посмотрите еще раз на Рисунок 3 .

Шаблон синусоидальной волны покрывает расстояние в четыре ячейки сетки сверху вниз. Если вольт / дел. переключатель установлен на 0,2, тогда амплитуда напряжения формы волны равна 0,8 вольт от пика до пика.

Пробник используется для подключения осциллографа к испытательной цепи. Типичный пробник осциллографа показан на рис. 4 . Он состоит из экранированного кабеля с разъемом на одном конце и наконечником зонда на другом.

Экранированный кабель используется для предотвращения помех от паразитных электромагнитных полей. Большинство датчиков также оснащены переключателем для усиления считываемых показаний. Две настройки переключателя обычно обозначаются X1 и X10, что означает «раз» один и «раз» десять.

Когда ползунковый переключатель на датчике установлен в положение X10, значение напряжения в сети следует умножить на десять. Когда пробник оснащен умножителем, например, умноженным на десять, тогда пробник называется пробником с аттенюатором.Показание, умноженное на десять, связано с внутренним резистором, который подключен последовательно с проводом зонда.

Рис. 4. Типовой пробник осциллографа.

Период времени и частота

Период времени для волны может быть определен аналогично тому, как это используется для определения напряжения. Период времени развертки задается с помощью параметра время / дел. Переключатель. Переключатель выбора периода времени отмечен целыми секундами, миллисекундами и микросекундами.

Если время / дел. Переключатель селектора установлен на 0,1 мс, тогда каждый интервал сетки равен 0,1 миллисекунде. Если время / дел. переключатель установлен на 2 с, тогда каждый шаг сетки равен двум целым секундам. Посмотрите еще раз на Рисунок 3 . Селекторный переключатель время / дел. установлено на 0,5 миллисекунды. Шаблон синусоидальной волны покрывает четыре ячейки сетки для завершения одного полного цикла. Период времени равен 0,002 секунды.

Чтобы найти частоту волны, мы делим единицу на период времени.В примере , рис. 3 , частота равна 500 Гц (1 ÷ 0,002 = 500).

Калибровка

Чтобы обеспечить точные показания осциллографа, его следует откалибровать перед использованием. Точный метод калибровки зависит от осциллографа. Описанная здесь методика калибровки носит общий характер и может не точно соответствовать тому прицелу, который вы будете использовать. Всегда читайте руководство пользователя, чтобы узнать, как правильно откалибровать осциллограф.

Прямоугольный узор обычно отображается на экране для калибровки амплитуды и периода времени. Прямоугольную волну можно также использовать для коррекции любых искажений, вызванных пробниками осциллографа.

Сначала найдите точку на лицевой стороне осциллографа, обычно обозначаемую CAL., Что является сокращением для калибровки. К этой точке вы подключите наконечник зонда. Напряжение, период времени и форма волны предоставляются осциллографом в качестве идеального эталона для операции калибровки.На экране появится прямоугольная волна. С этого момента соответствующие поправки могут быть сделаны, чтобы сделать волны на экране соответствует ожидаемому опорной волны. В большинстве осциллографов в качестве эталона используется прямоугольный сигнал 0,5 В при частоте 1000 Гц.

См. Рисунок 5 . На показаны три примера прямоугольной волны. Закругленные или острые углы прямоугольной формы волны указывают на то, что датчик нуждается в настройке.

Обычно сбоку зонда или соединителя имеется небольшая головка винта.Отрегулируйте винт до тех пор, пока прямоугольная волна не будет иметь красивый квадратный угол, как показано в рамке с левой стороны Рисунок 5 .

Рисунок 5. Типичные шаблоны отображения калибровки

Интенсивность и фокус

Фокус и интенсивность управляют появлением волны на экране ЭЛТ. Focus позволяет сделать волну более резкой. Это устраняет любую нечеткую видимость волны.

Интенсивность регулирует яркость светового луча, падающего на переднюю часть экрана.Интенсивность никогда не следует устанавливать на уровень выше, чем это необходимо для комфортного наблюдения за волновой картиной.

Если установить слишком высокую интенсивность и оставить прицел без присмотра, экран дисплея может быть необратимо поврежден. Уменьшите интенсивность, когда вы не используете прицел.

Перед включением осциллографа и во время разогрева интенсивность должна быть установлена ​​на минимальное значение. После периода разминки (рекомендуемое время прогрева см. В руководстве пользователя) можно безопасно отрегулировать уровень интенсивности.

Дополнительные функции

Сегодня многие используемые осциллографы полностью цифровые и включают компьютер как часть системы осциллографа. Волновую картину можно наблюдать, а также сохранять в памяти компьютера с питанием от батареи. Многие прицелы также оборудованы для печати бумажной копии волнового рисунка.

Некоторые используемые сегодня осциллографы представляют собой комбинацию VOM и осциллографа с экраном дисплея. На экране дисплея не только отображается волновая картина, но и в цифровом виде отображаются значения частоты и напряжения.

Осциллографы также могут быть подключены напрямую к персональному компьютеру. Это называется сбором и передачей данных. Для этого приложения обычно требуется карта расширения для компьютера, программное обеспечение для запуска программы и интерфейсный кабель для подключения осциллографа к компьютеру.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *