Как работает осциллограф – принцип работы, устройство, назначение, особенности настройки

Содержание

Осциллографы.Виды и особенности.Устройство и работа.Применение

Для любого профессионального настройщика электронных устройств или для инженера по радиоэлектронным устройствам основным рабочим устройством является осциллограф. Без него нельзя обойтись при настройке телевизора, передатчика. Осциллографы служат для контроля и наблюдения за периодическими сигналами различных форм, в том числе синусоидальной. Благодаря широкому интервалу развертки он дает возможность развернуть импульс даже для контроля наносекундных промежутков времени. Осциллограф подобен работе телевизора, который изображает электрические сигналы.

Устройство и принцип действия

Для лучшего понимания действия прибора, разберем блок-схему типового осциллографа, так как все их основные виды имеют аналогичное устройство.

На этой схеме не изображены блоки питания: низковольтный блок, подающий питание для работы узлов, и источник повышенного напряжения, применяющийся для генерирования высокого напряжения, приходящего на электронно-лучевую трубку. Также на схеме нет калибратора для настройки и подготовки прибора к работе.

Тестируемый сигнал поступает на канал вертикального отклонения «Y», далее на аттенюатор, выполненный в виде многопозиционного переключателя, настраивающего чувствительность осциллографа. Его шкала размечена в вольтах на сантиметр или в вольтах на одно деление. Это обозначает одно деление сетки координат на экране лучевой трубки. Там же изображены сами величины. Если амплитуда сигнала неизвестна, то устанавливается наименьшая чувствительность. В этом случае даже большой сигнал на 300 В не повредит прибору.

Обычно в комплекте с осциллографом есть делители, в виде специальных насадок с разъемами. Они работают так же, как аттенюатор. Эти насадки компенсируют емкость кабеля при работе с малыми импульсами. На фото показан делитель. Коэффициент деления равен 1:10.

С помощью делителя возможности прибора расширяются, можно исследовать сигналы в несколько сотен вольт. После делителя сигнал проходит на предварительный усилитель, раздваивается и приходит на переключатель синхронизации и линию задержки, которая служит для компенсации времени сработки генератора развертки. Оконечный усилитель создает напряжение, поступающее на «Y» -пластины, и отклоняет луч в вертикальной плоскости.

Генератор развертки создает пилообразное напряжение, поступающее на пластины «Х» и горизонтальный усилитель, при этом луч отклоняется в горизонтальной плоскости.

Устройство синхронизации создает условия для работы генератора развертки в одно время с появлением сигнала. В итоге на дисплей осциллографа выводится изображение импульса.

Переключатель синхронизации работает в положениях синхронизации от:
  • Исследуемого сигнала.
  • Сети.
  • Внешнего источника.

Первое положение применяется чаще, так как оно более удобно.

Классификация

Осциллографы являются распространенным видом измерительных приборов. Существует несколько видов осциллографов, имеющих разные характеристики, устройство и работу.

Аналоговые осциллографы

Такие осциллографы являются классическими моделями этого типа измерительных приборов. Любые аналоговые осциллографы имеют делитель, вертикальный усилитель, синхронизацию и отклонение, блок питания и лучевую трубку.

Такие трубки имеют больший диапазон частоты. Отклонение луча на экране прямо зависит от напряжения пластин. Горизонтальная развертка работает по линейной зависимости от напряжения горизонтальных пластин.

Нижний предел частоты равен 10 герцам. Верхняя граница определяется емкостью пластин и усилителем. Сегодня аналоговые устройства вытесняются цифровыми приборами со своими достоинствами. Но аналоговые приборы пока не исчезают ввиду их малой стоимости.

Цифровые запоминающие

Если цифровые приборы сравнивать с аналоговыми, у них больше возможностей. Стоимость их постепенно снижается. Цифровой осциллограф включает в себя делитель, усилитель, преобразователь аналогового сигнала, памяти, блока управления и выведения на ЖК панель.

Принцип действия такого вида осциллографов придает им большие возможности. Входящий аналоговый сигнал модифицируется в цифровую форму, и сохраняется. Скорость сохранения определяется управляющим устройством. Ее верхняя граница задается скоростью преобразователя, а нижняя граница не имеет ограничений.

Преобразование сигнала в цифровой код дает возможность увеличить устойчивость отображения, сохранять данные в память, сделать растяжку и масштаб проще. Применение дисплея вместо электронной трубки позволяет отображать любые данные и осуществлять управление прибором. Дорогостоящие приборы оснащаются цветным экраном, что позволяет различать сигналы других каналов, курсоры, выделять цветом разные места.

Параметры цифровых осциллографов намного выше аналоговых моделей, в больших пределах находится растяжка сигнала. Кроме простых схем включения синхронизации, может использоваться синхронизация при некоторых событиях или параметрах сигнала. Синхронизацию можно увидеть непосредственно перед включением развертки.

Применяемые процессоры обработки сигнала дают возможность обработки спектра сигнала с помощью анализа преобразованием Фурье. Информация в цифровом виде позволяет записать в память экран с итогами измерения, а также распечатать на принтере. Многие приборы оснащены накопителями для записи изображения в архив и последующей обработки.

Цифровые люминофорные

Такой тип осциллографов работает на новой структуре построения, основанной на цифровом люминофоре. Он имитирует по подобию с аналоговыми приборами изменение изображения на экране. Люминофорные цифровые типы осциллографов дают возможность наблюдать на дисплее все подробности модулированных сигналов, как и аналоговые типы. При этом обеспечивается их анализ и хранение в памяти.

Люминофорные приборы, как и предыдущая рассмотренная модель, имеет свою память для хранения различной информации, в том числе хранится разница задержки времени между разными пробниками. Возможность люминофорных осциллографов выводить данные с изменяемой интенсивностью значительным образом упрощает поиск повреждений в импульсных блоках. Это выражено при вычислении глубины модуляции сигнала при регулировке напряжения на выходе, приводящее к нестабильному функционированию блоков.

В люминофорных цифровых осциллографах объединены достоинства цифровых и аналоговых устройств, а во многом превосходят их. Люминофорные приборы обладают всеми преимуществами запоминающих осциллографов, обеспечивая возможности аналоговых приборов: быструю реакцию на смену сигнала и его отображение с разной яркостью.

Цифровые стробоскопические

В этом виде осциллографов применяется эффект последовательного стробирования сигнала. При повторении сигнала выбирается мгновенное значение в определенной точке. При поступлении нового сигнала точка выбора смещается по сигналу. Так продолжается до полного стробирования сигнала. Модифицированный таким образом сигнал в виде огибающей линии мгновенных величин сигнала входа, повторяет форму сигнала.

Продолжительность модифицированного сигнала на много больше продолжительности тестируемого сигнала, а значит, имеется сжатие спектра. Это соответствует увеличению полосы пропускания. Стробоскопические виды осциллографов имеют большие полосы пропускания, и дают возможность производить исследования периодических сигналов с наименьшей продолжительностью. Стоимость стробоскопических осциллографов очень высока, поэтому их применяют чаще всего для сложных задач.

Виртуальные осциллографы

Новый вид приборов может быть отдельным устройством с параллельным портом для вывода или ввода информации, а также с портом USB, а также встроенным вспомогательным прибором на базе карт ISA. Программная оболочка виртуальных осциллографов позволяет полностью управлять устройством, и имеет несколько возможностей сервиса: импорт и экспорт информации, цифровая фильтрация, разнообразные измерения, обработка информации математическим способом и т.д.

Осциллографы с применением персонального компьютера могут применяться для широких возможностей измерения. Например, для обслуживания и разработки радиотехнической и электронной аппаратуры, в телекоммуникационной связи, при изготовлении компьютеризированного оборудования, при выполнении диагностических мероприятий средств автотранспорта на станциях технического обслуживания и для многих других случаев, где требуется оценка и тестирование неустойчивых переходных процессов.

Виртуальные модели осциллографов являются хорошим альтернативным вариантом для стандартных запоминающих цифровых осциллографов, так как они обладают достоинствами в виде малой стоимости, простоте применения, компактных размеров и высокого быстродействия. К недостаткам виртуальных осциллографов относится невозможность измерения и отображения постоянной величины сигналов.

Портативные осциллографы

Цифровые технологии быстро развиваются, в результате чего цифровые стационарные приборы модифицируют в портативные устройства с хорошими параметрами габаритных размеров и массы, а также низким расходом электрической энергии.

При этом портативные осциллографы с питанием от гальванических элементов не уступают по характеристикам стационарным приборам по количеству функций, имеют большие возможности использования в разных областях научных исследований, промышленном производстве.

Похожие темы:

electrosam.ru

Принцип действия электронного осциллографа

Электронный осциллограф используют для исследования быстропеременных периодических процессов. Например, с помощью осциллографа можно измерить силу тока и напряжение, рассмотреть их изменение во времени. Можно измерять и сравнивать частоты и амплитуды различных переменных напряжений. Кроме того, осциллограф при применении соответствующих преобразователей позволяет исследовать неэлектрические процессы, например, измерять малые промежутки времени, периоды колебаний и т. д. Достоинствами электроннолучевого осциллографа является его высокая чувствительность и безинерционность действия, что позволяет исследовать процессы, длительность которых порядка 10–6  10–8 с.

Основным элементом электронного осциллографа является электронно-лучевая трубка (ЭЛТ). Схематическое устройство такой трубки показано на

рис. 3. Электронно-лучевая трубка состоит из ряда металлических электродов, помещенных в стеклянный баллон. Из баллона выкачан воздух до давления порядка 10–6 мм рт. ст. На передней части баллона нанесен тонкий слой флуоресцирующего. Под воздействием электронного луча флуоресцирующий экран (8) начинает светиться.

Рассмотрим электроды электронно-лучевой трубки в порядке их следования. Нить накала (1), по которой идет переменный ток, разогревает катод (2). Из катода, вследствие термоэлектронной эмиссии, вылетают электроны.

Термоэлектронная эмиссия — это явление испускания электронов нагретыми телами.

За катодом расположен управляющий электрод (3) в виде сетки или цилиндра с отверстиями. Работа его аналогична работе управляющей сетки в электронной лампе. При изменении потенциала управляющего электрода относительно катода изменяется интенсивность электронного потока, тем самым проводится изменение яркости светового пятна на экране трубки.

Первый и второй аноды (4 и 5), в виде цилиндров с диафрагмами, обеспечивают необходимую скорость движения электронов и создают электрическое поле определенной конфигурации, фокусирующее электронный поток в узкий пучок (луч).

Затем сфокусированный электронный луч проходит между двумя парами взаимно перпендикулярных отклоняющих пластин. При разных потенциалах на одной из пар отклоняющих пластин луч отклоняется в сторону пластины с большим потенциалом. Отклонение луча пропорционально приложенному напряжению. Вертикальные пластины (7) обеспечивают горизонтальное перемещение электронного луча по экрану, а горизонтальные (6) дают вертикальное перемещение луча.

1 — нить накала, 2 — катод, 3 — управляющий электрод, 4 — первый анод, 5 — второй анод, 6- пластины вертикального отклонения, 7 — пластины горизонтального отклонения, 8 — флуоресцирующий экран

Блок-схема осциллографа представлена на рис.4. Осциллограф состоит из электронно-лучевой трубки (ЭЛТ), генератора напряжения развертки и двух усилителей. Один из усилителей, предназначенный для усиления исследуемого напряжения, обычно называют вертикальным усилителем, так как напряжение с него подается на горизонтально расположенные пластины электронно-лучевой трубки, которые обеспечивали вертикальное отклонение луча по экрану. Напряжение от второго усилителя подается на вертикальные пластины, обеспечивающие горизонтальное перемещение луча. Этот усилитель называется горизонтальным. Напряжение генератора развертки подается на пластины через горизонтальный усилитель.

Для исследования характера изменения электрических сигналов во времени используют специально вмонтированное в осциллограф устройство, называемое генератором развертки. Этот генератор вырабатывает пилообразное напряжение (рис.4), которое за время линейно нарастает от нуля до максимального значения, а затем за очень малое времяпадает до нуля. Частоту пилообразного напряжения можно изменять с помощью рукоятки «частота развертки«. Пилообразное напряжение подается обычно на вертикальные пластины. При этом луч откланяется по горизонтали на величину пропорциональную значению пилообразного напряжения в данный момент. Так как это напряжение линейно возрастает со временем, то по горизонтали луч движется равномерно, что соответствует ходу времени, и, значит, смещение луча по горизонтали пропорционально времени. Поэтому при включенном генераторе развертки горизонталь считают осью времени.

При малых частотах развертки можно увидеть поступательное равномерное движение точки по горизонтали. Если частота развертки большая, то на экране видна только горизонтальная линия. Это происходит в силу инерции зрительного восприятия и послесвечения трубки, т.е. зрительно при больших частотах мы не успеваем отметить последовательное перемещение луча по экрану слева направо при увеличении напряжения. От нуля до максимума и почти мгновенное возвращения луча в исходное положение. На каждом следующем «зубце пилы» луч движется по одному и тому же следу слева направо по горизонтали и обратно, и повторяется это с частотой равной частоте развертки.

Чтобы увидеть, как меняется со временем исследуемое напряжение, надо одновременно подать на»

Вход х» напряжение развертки, а на «Вход у» исследуемый сигнал . Пусть к моменту времениисследуемый сигнал достигает значения, а напряжение развертки значения. Луч, участвуя одновременно в двух взаимно перпендикулярных движениях: по горизонтали (под действием напряжения развертки) и по вертикали (под действием исследуемого напряжения), переместится в точку(рис.5). Если исследуемое напряжение меняется по гармоническому закону и его период совпадает с периодом развертки
, то в течение временина экране луч «выпишет» один период синусоиды. На каждом следующем зубце пилы при достижении напряжением значений,,и т.д. электронный луч будет попадать соответственно в те же точки,,
и т.д. синусоиды, что и на первом «зубце».

Изображение на экране осциллографа будет неподвижным, если период развертки равен или в целое число раз больше периода исследуемого сигнала. При невыполнении этого условия (часто случающегося из-за нестабильности частоты генератора развертки) изображение будет «плыть» по экрану.

Для измерения периода надо на горизонтальные пластины подать исследуемое напряжение и включить генератор развертки «Вход х«, подающий пилообразное напряжение на вертикальные пластины. Вращая ручку «генератор развертки«, получить на экране устойчивую картину – синусоиду. Посчитать количество клеток периода синусоиды и, помножив на цену деления генератора развертки, получить период колебаний.

studfile.net

Осциллограф. Часть 1. Основы работы

Осциллограф — 1. Применение на практике.

Если вы в своей практике используете мультиметр, то какое-то время тратили на изучение его возможностей. Потратьте немного времени и на осциллограф. Органов управления немногим больше. Главное понять, «что к чему». Кое-что попробую показать, остальное поймете самостоятельно. Также попробую объяснить понятия «основные режимы, характеристики и используемые термины» и как это выглядит на осциллограммах.

Развертка.

В большинстве осциллографов развертка изображения на экране происходит слева — направо по ширине экрана. Измеряется в единицах времени (сек). Иными словами, это «время, когда экран полностью заполнен сигналом». Дальше происходит смена картинки.

Классический пример развертки (справа). Импульсы «лежащие на боку» — есть не что иное, как пилообразные импульсы напряжения генератора развертки (именуемые в народе «пила»).

Но есть «но». Представьте «кашу», это когда на вход осциллографа подан сигнал, быстро меняющийся во времени, и есть генератор развертки, который работает сам по себе. И осциллограф начинает отображать сигнал с разных точек. Изображение будет, только понять что это — не получится.

Триггер.

Управляет генератором развертки и запускает его с одной и той же точки. Поэтому мы имеем устойчивое изображение. При этом может выполняться одно из условий:

— запуск генератора развертки по уровню сигнала. При достижении сигнала на входе определенного уровня происходит запуск развертки;

— запуск по времени нарастания амплитуды

в переднем фронте импульса, или по времени изменения амплитуды заднего фронта;

— запуск «на сбой» в импульсной последовательности. Когда устанавливается длительность импульса (нормального). Развертка в этом случае всегда будет запускаться с того места, где длительность импульса будет меньше или больше установленной; на экране вы будете видеть именно этот временной отрезок, где происходит сбой.

— Захват импульса при уменьшении амплитуды (и т.д.)

Это не все возможные варианты режимов работы триггера, некоторые модели осциллографов имеют их больше – все зависит от предназначения осциллографа и решаемых задач.

Осциллограф имеет органы управления, позволяющие не только посмотреть, но и рассмотреть сигнал. Об этом ниже.

К одному из таких органов управления относится и «Усиление» сигнала (пороговое значение входного сигнала). Это может быть и «крутилка» или кнопка — кто что имеет. Но есть обязательно. И совместно с органами управления развертки, это мощный инструмент.

Практическое применение

Применять будем осциллограф на фото справа.

Фото №1

На фото прибор, его экран. Подключен ёмкостной датчик. Автомобиль «Subaru Forester». Рассматриваем систему зажигания.

Фото №2

Прибор включен. Меню прибора, выбираю первый пункт. Следующие пункты позволяют выбрать количество каналов, а также при их выборе идет переход в следующее меню, где перечислены основные типы датчиков и исполнительные устройства автомобильных систем, которые можно выбрать на любой канал. Но тогда все установки прибора устанавливаются автоматически, исходя из конкретного сигнала, конкретного устройства. (Это первое отличие автомобильного осциллографа от осциллографа вообще. Он «заточен» на конкретные виды сигналов). Кроме этого имеются свободные выборки: для сигналов от 0 — 5В…0 -12В


Фото №3

Питание включено, датчик подключен, мотор работает. Сигнала нет. В чем причина?


Фото №4

Нет, сигнал есть. Смотрите, чем отличается фото № 3 от № 4. Вверху смотрите, пункт выделен, а внизу его значение. Время развертки 10ms осталось неизменным. Что изменилось?

На первом фото видно, к какой катушке совершено подключение. А давайте представим, что знаний «что такое триггер» — нет. Можно ли зафиксировать изображение так же, как на фото? Если этого не сделать, оно будет постоянно «бежать».


Фото№5

А здесь развёртка изменена: было 10 — стало 1ms. А экран вроде бы маленький.


Фото №6

* здесь не только развертку изменил, а и увеличил (фото 2-пункт 3). И уже есть возможность посмотреть участок, где ключ сработал и чуть дальше. В принципе, можно «прокрутить» сигнал до его окончания.


Фото №7

Вот так. Начало на фото №6, а конец вот:


Фото 8

Можно еще вывести курсоры (если надо посмотреть длительность горения искры или время насыщения).


Фото №9

Примерно так. Курсор А сплошной, курсор В – прерывистый. Длительность на экране — 4,60ms/


Фото №10

* курсоры стоят от момента включения ключа, до момента возникновения искры.


Фото №11

* длительность горения искры.

Показано всего процентов 20 от возможностей прибора, только на одной опции и в одном пункте меню (осциллоскоп)

ИМХО:

Не считаю, что работаю плохим прибором и считаю, что плохими приборами работать недопустимо. Данный прибор использую постоянно при входной диагностике. Он позволяет наблюдать и проводить измерения с достаточной степенью достоверности всех сигналов системы управления автомобиля.

Когда необходимо проводить анализ, когда машина «зависает», осциллоскоп и мотор- тестер данного прибора мною не используется. Хотя такая возможность в прибор заложена. Неудобно «прокручивать» сигнал, просматривая детали, растянув его разверткой и усилив, не видя полной фазы или цикла. Тем более, когда используется не один канал. Слишком много манипуляций, при выполнении переходов, что отвлекает от рассмотрения сигнала. Но это все, что я могу сказать о недостатках. Утверждение же о маленьких экранах и пр. считаю необоснованным и ведущим в заблуждение.

Но всегда использую просмотр графического изображения, выделенных пунктов из текущих параметров. Это тогда, когда прибор вкл. в режиме сканера и подключен к диагностическому разъему. Не всегда можно сравнить нужные параметры, они могут оказаться на разных «страничках». Надо «листать», или выделив нужные, перейти в режим просмотра только этих параметров, а в голове держать цифры. А если просто: выделил до 4-х датчиков (параметров), нажал кнопочку и пошло графическое изображение. Развертка очень медленная, рукой можно быстрее нарисовать, а рядом с каждой осциллограммой цифровые значения. Такие же, как в «дате». И все в одном месте — осциллограмму смотришь и цифровые значения видишь.

Продолжение следует

МАРКИН Александр Васильевич

г. Белгород

Таврово мкр 2, пер. Парковый 29Б (4722) 300-709

© 1999 – 2010 Легион-Автодата

autodata.ru

Цифровой осциллограф для начинающих. Ч1

Что такое осциллограф и для каких целей он нужен, ты можешь узнать из предудщих статей: Как пользоваться осциллографом и для чего он вообще нужен. Часть I и Как пользоваться осциллографом и для чего он вообще нужен. Часть II

Если же тебе их читать лень, то скажу, что главная задача этого прибора в том, чтобы отобразить на экране изменение электрического сигнала с течением времени. Для этого на экране осциллографа размечена координатная система. Обычная декартова система, на которой имеются ось X и ось Y. По оси X отмечается время, а по оси Y — напряжение.

Всякие управляющие ручки и кнопочки, которые расположены вокруг экрана прибора предназначены для того, чтобы можно было настраивать отображение сигнала: масштаб по Х, масштаб по Y, триггеры и курсоры. Таким образом можно как бы отдалить или приблизить сигнал, чтобы рассмотреть его по лучше.

Хочу также заметить, что современный осциллограф отличается от своих предшественников тем, что представляет собой компьютер, который собирает, преобразует, анализирует и манипулирует измеренными значениями сигнала, поданного на вход. Это современный вычислительный комплекс.

Осциллограф очень полезен при:

  • Измерении частоты и амплитуды сигнала, что может сильно помочь при отладке создаваемой тобой схемы.
  • Определении уровня шума в цепи
  • Визуальном контроле формы сигнала
  • Определение сдвига фаз между двумя сигналами
  • …и другие способы применения. Например, анализ работы датчиков автомобиля.

Осциллографы применяются при создании, наладке, ремонте различных электронных приборов:от сотовых телефонов, до эл. цепей автомобильных двигателей. От гражданских до военных. Они нужны везде.

В дополнение к описанным выше возможностям, многие современные приборы имеют дополнительные функции, с помощью которых можно быстро узнать частоту сигнала, его амплитуду и многие другие характеристики. Некоторые приборы уже предоставляют возможность провести с сигналами в реальном времени различные математические преобразования или, например, быстрое преобразование фурье. В целом, осциллограф позволяет наблюдать на экране временные и физические характеристики сигнала. Вот как выглядит такое меню функций у Siglent SDS 1202X-E (38 параметров!):


На мой взгляд, это очень удобно и полезно. Поэтому следует все таки обращать свое внимание на современный инструментарий. Благодаря хорошим измерительным приборам можно сильно сократить время поиска неисправности. Особенно это касается осциллографа, который является единственными «глазами», которые позволяют заглянуть внутрь происходящего в электронной цепи и оценить временные и физические характеристики сигналов в этой цепи.

→ Временные характеристики:

Частота и период, скважность и коэфф. заполнения (Duty cycle), время спада и нарастания сигнала.

→ Физические характеристики:

Амплитуда,  максимум и минимум сигнала, средне квадратичное, среднее значение напряжения и т.д.

Принцип работы цифрового осциллографа

Цифровые осциллографы, в отличие от аналоговых, не повторяют получаемый сигнал сразу на экран, а предварительно его преобразовывают в «цифровую» форму. Для этого входной сигнал замеряется определённое число раз в секунду, затем прибор после некоторых преобразований этих данных реконструирует сигнал и отображает его на экране. Оцифровка выполняется помощью блока аналогово-цифрового преобразования. 

 

 

Ключевые характеристики цифрового осциллографа

Еще 5-6 лет назад большинство радиолюбителей (а некоторые и по сей день) пользовались приборами, которые остались ещё от СССР. В свое время это были замечательные приборы со своими плюсами и минусами. Но СССР уже нет более четверти века, а технологии продолжали развиваться, совершенствоваться и дешеветь. Теперь у нас есть возможность

mp16.ru

Цифровой осциллограф | Практическая электроника

Цифровой осциллограф

Цифровой осциллограф – это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие в том, что внутри него идет цифровая обработка сигналов, в отличие от аналогового осциллографа. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять сигнал. В этом заключается его главное отличие от простого аналогового осциллографа.

Раньше у меня был аналоговый осциллограф, который мне служил верой и правдой. Но с бурным развитием электроники, я понял, что мне надо что-то получше. Листая журналы “Радио”, натыкался на рекламу очень крутых приборов – цифровых осциллографов. По тем временам они стоили как подержанный автомобиль иностранного производства.

Но прогресс не стоит на месте. Благодаря китайцам я все-таки осуществил мечту детства и на распродаже приобрел цифровой осциллограф OWON

Подготовка цифрового осциллографа к работе

Включаем осциллограф и цепляем щуп на любой из каналов. Я соединил щуп с первым каналом (Ch2)

На щупе есть делитель. Ставим его ползунок на 10Х.  В осциллографе по умолчанию также должен стоять делитель на 10Х. Если это не так, ищем в его настройках и ставим в характеристиках канала “10Х”.

Каждый нормальный цифровой осциллограф имеет в своем наличии встроенный генератор прямоугольных импульсов с частотой 1000 Герц (1кГц) и амплитудой напряжения в 5 Вольт. В основном этот генератор находится в нижнем правом углу. В нашем случае он называется Probe Comp. Цепляемся за него щупом.

Все должно выглядеть  приблизительно вот так:

На дисплее в это время происходит какой-то “кипеш”.

В этом осциллографе есть волшебная кнопка, от которой я без ума. Это кнопка автоматического позиционирования сигнала Autoscale. Нажал на эту кнопку

Согласился с условиями автоматического позиционирования сигнала

и вуаля!

Цифровой осциллограф

Но что такое? У нас должен быть ровный прямоугольный периодический сигнал! Вся проблема в том, что щуп осциллографа вносит искажения в сам сигнал, поэтому, его  желательно корректировать каждый раз перед работой.

В современных щупах есть маленький винтик, заточенный под тонкую отвертку.  С помощью этого винтика мы и будем корректировать щуп.

Крутим и смотрим, что у нас получается на дисплее.

Цифровой осциллограф

Ого, слишком сильно крутанул винт.

Крутим чуточку в обратную сторону и выравниваем горизонтально верхушки сигнала

меандр

Вот! Совсем другое дело! На дисплее у нас ровные прямоугольные сигналы ;-). На этом этапе осциллограф готов к работе.

Как измерить напряжение

После того, как мы откалибровали щуп осциллографа, можно приступать к измерениям. В  нашей статье пошагово рассмотрим, как измерять постоянное и переменное напряжение.

Переменный ток обозначается как “АС” – Alternating Current – с англ. переменный ток, а постоянный  – “DC” – Direct Current – с англ. постоянный ток. Думаю, тут ничего сложного нет. Имейте также ввиду,  что в  великом могучем русском языке постоянный ток и постоянное напряжение – это синонимы, переменный ток и переменное напряжение – аналогично. Просто так повелось.

Итак, первым делом выбираем, какой  ток будем измерять. Это делается с помощью кнопочки Coupling (нажимаем клавишу Н1)

Измерение постоянного тока

 Справа экрана сплывают окошки и мы выбираем DC (нажимаем клавишу F1)

На блоке питания для пробы выставляем напряжение в 5 Вольт.

Соединяем щупы блока питания и осциллографа. Сигнальный щуп осциллографа желательно соединить с красным плюсовым крокодилом щупа блока питания, а черный щуп (земля) соединить с минусовым черным крокодилом.

Смотрим на дисплей осциллографа

цифровой осциллограф осциллограма постоянного напряжения

Итак, что мы тут видим? А видим мы тут осциллограмму  постоянного напряжения.  Постоянное напряжение – это такое напряжение, которое не изменяется со временем.  А если вы в курсе, осциллограф показывает значение напряжение во времени.

Давайте подробнее разберем эту картинку. Смотрим, на что в основном надо обратить внимание (указано белой стрелкой).

Цифровой осциллограф

Так как  мы измеряем постоянное напряжение на первом  разъеме осциллографа, то и следовательно, осциллограмма будет помечена цифрой “1” в красном кружочке в красной рамке. Как мы с вами видим, весь экран осциллографа поделен  на кубики штриховой линией. В красной рамке  по оси Y обозначают напряжение одной стороны кубика. В данном случае 2 Вольта. Если посчитать от центра пересечения утолщенных штриховых линий, то осциллограмма находится на высоте 2,5  стороны кубика.  Значит напряжение будет 2,5х2=5 Вольт.

В зеленой рамке с помощью нехитрой кнопки  я вывел  точное значение напряжения, нажав  кнопку “Measure”, что с англ.  – измерять. Точное значение равно 5,085 Вольт.

Измерение переменного тока

Настало время измерить переменный ток (переменное напряжение). Для  опытов я взял ЛАТР (Лабораторный автотрансформатор). Как вы помните, ЛАТР понижает  или повышает переменное сетевое напряжение.

Ставим напряжение в 100 Вольт.

Ставим  на осциллографе измерение переменного напряжения AC

Цепляемся к щупам осциллографа крокодилами, идущими от ЛАТРа и смотрим картинку

цифровой осциллограф синусоида

Ну как? Похожа на синусоиду? С помощью кнопки “Measure” я вывел некоторые интересующие нас параметры. Vk – среднеквадратичное значение напряжения. В данном случае он  нам показывает напряжение, которое мы подавали с ЛАТРа – это 100 Вольт. F – частота  и T – период. Как мы с вами видим частота напряжения в сети 50 Герц. Все верно, в России частота в сетях электрического тока принята 50 Герц, в США  – 60 Герц. Период – 20 миллисекунд. Если единицу разделить  на 20 миллисекунд, то мы как раз получим частоту сигнала.

Автоматическое измерение параметров сигнала

Итак, будем рассматривать все наши измеряемые параметры на конкретном примере. Для этого мы будем использовать генератор частоты  с заранее выставленной частотой в 1 Мегагерц (ну или 1000 Килогерц)  с прямоугольной формой сигнала:

Вот так выглядит этот сигнал на осциллографе:

цифровой осциллограф прямоугольный сигнал

А где же правильный прямоугольный сигнал? Вот тебе и раз… Ничего с этим не поделаешь… Это есть, было и будет у всех прямоугольных сигналов. Это возникает вследствие несовершенства цепей и радиоэлементов. Особенно хорошо такая осциллограмма прорисовывается на высоких частотах.

Итак, что есть что? Смотрим на картинку ниже

Цифровой осциллограф

Думаю, тут все понятно.

Ладно, давайте выведем все параметры сигнала, которые может вывести наш осциллограф. Для этого нажимаем кнопочку “Measure” , что с англ. означает “измерять”

Далее нажимаем кнопочку “Add” ( с англ. – добавлять), с помощью вспомогательной клавиши h2

И потом нажимаем кнопку “Show All”англ. – показать всё) с помощью вспомогательной клавиши F3

В результате всех этих операций у нас выскочит табличка с измеряемыми параметрами сигнала:

Цифровой осциллограф

Ну что, думаю настало время поговорить, о том, какие бывают параметры сигналов. Как вы знаете, осциллограф нам показывает изменение напряжения сигнала во времени. Поэтому и параметры сигналов в основном делятся на два типа:

Амплитудные параметры сигнала

Временные параметры сигнала

Давайте для удобства  распишем все сигналы, как в нашей табличке. Начнем слева-направо.

Period – с англ. период. Период сигнала – это время, за которое сигнал повторяется. В нашем случае период обозначается буквой “Т”. На осциллограмме его можно показать вот так:

Цифровой осциллограф

Чтобы самостоятельно посчитать период, нам надо знать значение одной клетки по горизонтали. Снизу осциллограммы можно найти подсказку ;-). Я ее пометил в желтый прямоугольник

Цифровой осциллограф

Следовательно, одна клеточка равна 500 наносекунд. А так как у нас период длится ровно две клеточки, значит 500 х 2 = 1000 наносекунда или 1 микросекунда.

Сходятся ли наши расчетные показания с показаниями автоматических измерений? Смотрим…

Цифровой осциллограф

Стопроцентное попадание! Кстати, чтобы не было дальнейших вопросов:

“Пико” – буквой “p”

“Нано” – буквой “n”

“Микро” обозначается буквой “u”, как и в маркировке современных конденсаторов.

“Милли”  – буквой “m”.

Вот небольшая табличка, если кто забыл:

Цифровой осциллограф

Freq. Полное название frequency с англ. частота. Обозначается буквой “F”. Частоту очень легко можно вычислить по формуле, зная период Т.

F=1/T

В нашем случае получаем 1/1х10-6=106=1 Мегагерц (MHz).  Смотрим на наши автоматические измерения:

Цифровой осциллограф

Ну разве не чудо? 😉

Следующий показатель Mean. В нашем случае обозначается просто буковкой “V”. Он означает среднюю величину сигнала и используется для измерения постоянного напряжения. В данный момент этот параметр не представляет интереса, потому как измеряется переменный ток и в значении этого сигнала показывается какая-то вата. Постоянный ток меряет нормально, можно вывести этот параметр на дисплей, что мы и делали в прошлой статье:

Цифровой осциллограф

Еще один интересный параметр: PK-PK. Называется он Peak-to-Peak и показывает напряжение от пика до пика. Обозначается как Vp. Что это за напряжение от пика до пика, показано на осциллограмме ниже:

Цифровой осциллограф

Так как мы видим, что значение нашего квадратика  равно 1 Вольту (внизу слева)

Цифровой осциллограф

То можно высчитать и напряжение от пика до пика. Оно будет где-то эдак 5 Вольт. Сверяемся с автоматическим измерением

Цифровой осциллограф

Почти в тютельку!

Плюсы и минусы цифрового осциллографа

Начнем с плюсов

  • Запись, остановка, автоматические измерения и другие фишки – это еще не весь список, что умеет делать цифровой осциллограф
  • Габариты цифрового осциллографа намного меньше, чем аналогового
  • Потребление энергии меньше, чем у аналогового осциллографа
  • Жидкокристаллический дисплей, в отличие от кинескопного дисплея аналогового осциллографа

Минусы

  • Дороговизна
  • Дискретная прорисовка сигнала. Хотя дорогие модели ничуть не уступают аналоговым по прорисовке сигнала.

Про основные принципы измерений и использования цифровых осциллографов можно прочитать, скачав учебное пособие по цифровым осциллографам.

Где купить цифровой осциллограф

Естественно, на Алиэкспрессе, так как в наших интернет-магазинах их цена бывает завышена в два, а то и в три раза. Также очень хорошие отзывы об осциллографе Hantek, характеристики которого даже лучше, чем у моего OWON:

купить осциллограф

Посмотреть его можете на Алиэкпрессе по этой ссылке.

www.ruselectronic.com

Как пользоваться осциллографом и для чего он вообще нужен. Часть II

Это вторая часть ликбеза по осциллографам, а первая часть здесь.

 

  1. Вступление
  2. Амплитуда, частота, период
  3. Как измерить частоту
  4. Как измерить, оценить сдвиг фаз

Эта заметка будет постепенно пополняться простыми, но полезными приёмами работы с осциллографом.  

Вступление

Главный вопрос, на который следует ответить: «что можно измерить с помощью осциллографа?» Как ты уже знаешь, этот прибор нужен для изучения сигналов в электрических цепях. Их формы, амплитуды, частоты. По полученным данным можно сделать вывод и о других параметрах изучаемой цепи. Значит с помощью осциллографа в основном можно (я не говорю про супер функции супер-современных приборов):

  • Определить форму сигнала
  • Определить частоту и период сигнала
  • Измерить амплитуду сигнала
  • Не напрямую, но измерить ток тоже можно (закон Ома в руки)
  • Определить угол сдвига фазы сигнала
  • Сравнивать сигналы между собой (если прибор позволяет)
  • Определять АЧХ
  • Забыл что-то упомянуть? Напомните в комментариях!

Все дальнейшие примеры следует делались с рассчетом на аналоговый осциллограф. Для цифрового всё тоже самое, но больше умеет, чем аналоговый и в определённых вопросах снимает необходимость думать там, где можно просто показать цифру. Хороший инструмент таким и должен быть.

Итак, перед работой следует подготовить прибор: поставить на стол, подключить к сети =) Да ладно, шучу. Но если есть возможность, то следует его заземлить. Если есть встроенный калибратор, то по инструкции к прибору надо его откалибровать. (подсказка: инструкции есть в сети). 

Подключать свой осциллограф к исследуемой цепи ты будешь с помощью щупа. Это такой коаксильный провод, на одном конце которого разъем для подключения к осциллографу, а на втором щуп и заземление для подключения к исследуемой цепи. Какой попало провод в качестве щупа использовать нельзя. Только специальные щупы. Иначе вместо реальной картины дел увидишь чушь.


Я не буду рассматривать каждый регулятор осциллографа подробно. В сети есть море таких обзоров. Давай лучше учиться как проводить любительские измерения: будем определять амплитуду, частоту и период сигнала, форму, полосу пропускания усилителя, частоту среза фильтра, уровень пульсаций источника питания и т.д. Остальные хитрости и приёмы придут с практикой. Тебе понадобится осциллограф и генератор сигнала.

Виды сигналов

Буду говорить без барских штучек, по-мужицки. На экране осциллографа ты будешь видеть либо синусоидальный сигнал, либо пилу, либо прямоугольнички, либо треугольный сигнал, либо просто какой-нибудь безымянный график. 

Все виды сигналов не перечесть. Да и сами сигналы не знают, что относятся к какому-то там виду. Так что твоя задача не названия запоминать, а смотреть на экран и быстро соображать, что означает увиденное на нём, какой процесс идёт в цепи.

Амплитуда, частота, период

Осциллограф умеет измерять как постоянное, так и переменное напряжение. У всех приборов для этого есть два режима: измерение только переменного сигнала, измерение постоянного и переменного одновременно. 

Это значит, что если ты выберешь измерение переменного сигнала и подключишь щуп к батарейке, то на экране прибора ничего не изменится. А если выберешь второй режим и проделаешь тоже самое, то линия на экране прибора сместится приблизительно на 1.6В вверх (величина ЭДС пальчиковой батарейки). Зачем это нужно? Для разделения постоянной и переменной составляющей сигнала!

Пример. Решил ты измерить пульсации в только что собранном источнике постоянного напряжения на 30В. Подключаешь к осциллографу, а луч убежал далеко вверх. Для того, чтобы удобно наблюдать сигнал придется выбрать максимальное значение В/дел на клетку. Но тогда ты пульсаций точно не увидишь. Они слишком малы. Что делать? Переключаешь режим входа на измерение переменного напряжения и крутишь ручку В/Дел на масштаб в разы поменьше. Постоянная составляющая сигнала не пройдет и на экране будут показываться

mp16.ru

Как пользоваться осциллографом? Как пользоваться портативным цифровым осциллографом?

В статье будет подробно рассказано о том, как пользоваться осциллографом, что это такое и для каких целей он необходим. Никакая лаборатория не может просуществовать без измерительной аппаратуры или источников сигналов, напряжений и токов. А если вы планируете заниматься проектированием и созданием различных устройств (особенно если речь идет о высокочастотной технике, например, инверторных блоках питания), то без осциллографа сделать что-либо окажется проблематично.

Что такое осциллограф

как пользоваться осциллографом

Это такой прибор, который позволяет «увидеть» напряжение, а если точнее, то его форму в течение определенного промежутка времени. С его помощью можно измерить немало параметров – напряжение, частоту, силу тока, углы сдвигов фаз. Но чем хорош особенно этот прибор, так это тем, что он позволяет визуально оценить форму сигнала. Ведь в большинстве случаев именно она говорит о том, что конкретно происходит в цепи, в которой проводится измерение.

В некоторых случаях, например, напряжение может содержать не только постоянную, но и переменную составляющую. И форма второй может быть далека от идеальной синусоиды. Такой сигнал вольтметры, например, воспринимают с большими погрешностями. Стрелочные приборы будут выдавать одно значение, цифровые — намного меньшее, а вольтметры постоянного тока в — несколько раз больше. Самое точное измерение получается провести именно при помощи описываемого в статье прибора. И не имеет значения, применяется ли осциллограф Н3013 (как пользоваться, рассмотрено ниже) либо иной модели. Измерения происходят одинаково.

Особенности прибора

как пользоваться осциллографом с1 112а

Цифровые осциллографы могут не только показывать в режиме реального времени форму сигнала, но и сохранять все данные, которые впоследствии можно будет прочитать на персональных компьютерах. По осциллограмме, изображенной на рисунке выше, можно определить некоторые особенности сигналов:

  1. Характер сигнала импульсный.
  2. Отрицательных значений не имеет входящий сигнал.
  3. Происходит очень быстрое изменение значений от 0 до максимума и обратно.
  4. Длительность импульса выше длительности паузы более чем в три раза.

Как правило, при помощи осциллографа проводятся исследования периодических сигналов. Именно о них и пойдет речь в статье.

Как он функционирует

как пользоваться портативным цифровым осциллографом

Сердце всех осциллографов – электронно-лучевая трубка. Это, можно сказать, радиолампа, следовательно, внутри находится вакуум. На катоде происходит излучение электронов. При помощи фокусирующей системы производится формирование тонкого луча из этих электронов. Внутренняя часть экрана покрыта ровным слоем люминофора. Он при воздействии электронов начинает светиться. Глядя снаружи на экран, можно видеть посредине светлую точку.

В электронно-лучевой трубке имеется две пары пластинок, которые направляют электронный луч в нужную сторону. Причем его отклонение происходит в перпендикулярных (взаимно) направлениях. Если говорить проще, то получается две координатные системы. Чтобы наблюдать за напряжением на экране трубки, нужно:

  1. По горизонтали луч следует отклонять таким образом, чтобы значение отклонения было прямо пропорционально времени.
  2. В вертикальной плоскости необходимо, чтобы значение отклонения было пропорционально тому напряжению, исследование которого проходит.

Развертка

как пользоваться цифровым осциллографом

Напряжение развертки необходимо подавать на те пластины, которые расположены в вертикальной плоскости. Оно пилообразной формы, медленно нарастает линейно, и у него очень быстрый спад. При этом положительное напряжение приводит к тому, что луч отклоняется вправо. А отрицательное – к тому, что луч движется влево. Это в том случае, если наблюдатель находится перед экраном, и можно видеть, как луч совершает движение слева направо. При этом скорость его постоянна. После достижения крайней правой границы он быстро идет на исходную. Затем заново повторяется движение.

В данной статье будет максимально подробно рассказано о том, как правильно пользоваться осциллографом. Вышеизложенный процесс и носит название «развертка». Линия развертки – это линия (горизонтальная), прочерчиваемая лучом на экране. Когда проводятся измерения, ее называют линией нуля. Она же является осью времени на графике. Частота развертки – это не что иное, как частота, с которой происходит повторение импульсов пилообразной формы. В процессе измерений она не применяется. Важные параметры для измерений – это скорость.

Как подключить импортный осциллограф

как пользоваться осциллографом с1 73

Напряжение мерить нужно в двух точках, значит, вход осциллографа – это две клеммы. Обратите внимание на то, что функции у каждой из клемм разные:

  1. Первая подключается на вход усилителя, который отклоняет луч в вертикальной плоскости.
  2. Вторая клемма – это общий провод (земля, минус, корпус). Имеет электрическую связь непосредственно с корпусом прибора.

Отсюда вывод можно сделать о том, что при помощи осциллографа измеряется фазовое напряжение относительно земли. Причем необходимо знать, какой из входов — фаза. В приборах зарубежного производства применяются специальной конструкции щупы. В них общий провод сделан в виде зажима типа «крокодил». Наиболее разумное решение, так как именно этот провод чаще всего соединяется с металлическим корпусом устройства, на котором проходят измерения. А вот фаза выполняется в виде иглы. С ее помощью можно без труда ткнуть в любое место печатного монтажа, даже в одинокую ножку микропроцессора.

Как подключить отечественный осциллограф

цифровой карманный осциллограф как пользоваться

В России иные стандарты, поэтому на приборах отечественного производства все по-другому. Чаще всего используются штекеры диаметром 4 мм. Причем они одинаковые, приходится выяснять некоторые признаки, чтобы не спутать подключение:

  1. Минусовой вывод, как правило, имеет большую длину.
  2. Черный или коричневый цвет характерен для земляного провода.
  3. На земляном штекере нанесены УГО «заземление» или «общий провод».

Но такое можно не всегда встретить, так как кабели часто подвергаются ремонту, во время которого на провод устанавливают штекер, имеющийся в наличии. С вероятностью 100% можно определить, какой провод нулевой, а какой — фазовый, одним способом. Сначала коснитесь рукой одного штекера, затем — другого. И это не зависит от модели, неважно, это осциллограф С1-118А (как пользоваться приборами, рассказано будет ниже) или какой-либо другой.

В том случае, если вы будете держать в руке минусовой провод, на экране устройства можно наблюдать ровную горизонтальную линию. А если дотронетесь до фазового провода, то на экране появится искаженная синусоида с огромным количеством помех. Последние наблюдаются по причине того, что имеется некоторая емкость между проводами бытовой электросети в комнате и вашим телом (пространство в помещении – это диэлектрик).

Дальнейшие действия

как пользоваться осциллографом с1 49

Когда фаза и минус определены, можно проводить измерения. В том случае, если вы не можете визуально определить общий для всех элементов провод, необходимо подключаться к точкам, между которыми нужно измерить напряжение. Но чаще всего в цепи имеется общий провод, он может даже быть соединен с заземлением. Таким же образом подготавливается и осциллограф ОМШ-2М. Как пользоваться им для измерения величин, будет рассказано ниже. В этом случае земляной провод осциллографа необходимо соединять с ним.

По сути, осциллограф – это вольтметр, который показывает график изменения напряжения на определенном участке времени. Но он позволяет увидеть и форму электрического тока. Для осуществления этого нужно подключить специальное токовое сопротивление. Причем значение его должно быть меньше, нежели полное сопротивление самой цепи. В этом случае резистор не сможет оказывать влияние на работу цепи.

Двухканальный осциллограф

Еще его называют двухлучевым, он обладает одной особенностью – может выдавать на экране сигналы из двух различных источников одновременно. У него есть два канала, которые обозначаются римскими цифрами. Обратите внимание на то, что в обоих каналах минусовые клеммы соединены электрически с корпусом. Поэтому при проведении измерений не допускайте подключения этих проводов к различным участкам цепи. Вот как пользоваться осциллографом С1-68, например, для измерений тока и напряжения одновременно.

Кроме того, есть риск получить неверные сведения, так как цепь кардинально изменяется из-за этого короткого замыкания. Недостаток – это невозможность наблюдения за двумя различными напряжениями. Но он не очень существенный, так как в большинстве приборов один из полюсов (как правило, минусовой вывод источника питания) соединен с корпусом, и он общий. Следовательно, измерения всех напряжений происходят относительно этого общего провода.

Возможности двухканального прибора

осциллограф с1 67 как пользоваться

Воспользовавшись двухканальным осциллографом, вы получаете возможность контролировать ток и напряжение в цепи одновременно. Следовательно, без труда проводите замер сдвига фаз между напряжением и током. Один канал должен измерять ток, а второй — напряжение в исследуемой цепи. Для измерения тока, как вы помните, необходимо включить в схему некоторый резистор с определенным сопротивлением. Так как пользоваться осциллографом С1-94 и аналогами довольно сложно, нужно держать под рукой рекомендуемые схемы подключений для измерения того или иного параметра.

Стоит обращать внимание на конструкцию осциллографов – она немного несимметричная. Другими словами, синхронизация первого канала намного качественнее и стабильнее, нежели второго. Следовательно, нужно подключать выводы первого канала для измерения напряжения, а не тока. Это позволит получить более стабильное отображение осциллограммы на экране прибора. Никогда не подключайте минусовые клеммы двух каналов к разным точкам цепи! Всегда соединяйте их вместе.

Органы управления

как пользоваться осциллографом с1 94

На передней панели прибора имеется несколько рукояток, которые необходимы для проведения точной настройки осциллографа. Два потенциометра — для управления каналами 1 и 2. Также имеется функция управления синхронизацией, разверткой, присутствует возможность регулировки фокусировки, яркости, подсветки. Если присмотреться к экрану, то можно увидеть, что он разбит на небольшие квадраты — деления. Ими необходимо пользоваться при проведении измерений. Именно к этим квадратам следует привязывать масштабы по горизонтали и вертикали. Такие особенности имеет осциллограф С1-67. Как пользоваться приборами такого типа для измерений величин, будет рассказано ниже.

Обратите внимание, что по горизонтали масштаб измеряется в секундах на деление. А по вертикали — в вольтах на деление. Как правило, в осциллографе имеется примерно 6-10 квадратов в горизонтальной плоскости и 4-8 — в вертикальной. На центровые линии нанесены риски, они делят каждый отрезок на 10 частей (равных) или на 5. Благодаря этим делениям можно производить более точные расчеты.

Режим входа

как пользоваться осциллографом с1 68как пользоваться осциллографом с1 68

На передней панели имеется специальный переключатель, который переводит прибор в различные состояния. Обозначается символом — сверху прямая черта, ниже нее -волнистая. При переводе в верхнее положение на вход может поступать как переменное, так и постоянное напряжение. Вход открытый считается для постоянного тока. При переключении в нижнее положение допустима подача на вход только переменного напряжения. Благодаря этому появляется возможность проводить замеры очень маленького переменного напряжения (по отношению к очень большим значениям постоянного). Актуально для проведения измерений в усилительных каскадах.

Реализовать это довольно просто – необходимо ко входу усилителя подключить конденсатор. В данном случае вход закрыт. Обратите внимание на то, что в этом режиме измерения НЧ-сигналы с частотой менее 5 Гц ослабевают. Следовательно, измерять их можно лишь в режиме открытого входа.

Когда переключатель установлен в среднее положение, то от разъема входа отключается усилитель, и происходит замыкание на корпус. Благодаря этому имеется возможность установить развертку. Так как пользоваться осциллографом С1-49 и аналогами без знания основных органов управления невозможно, стоит о них более подробно поговорить.

Вход канала осциллографа

осциллограф омш 2м как пользоваться

На передней панели имеется масштаб в вертикальной плоскости – он определяется при помощи регулятора чувствительности того канала, по которому происходит измерение. Существует возможность сменить масштаб не плавно, а ступенчато, при помощи переключателя. Какие задать значения можно с его помощью, смотрите на корпусе рядом с ним. На одной оси с этим переключателем находится регулятор для плавной корректировки (вот как пользоваться осциллографом С1-73 и аналогичными моделями).

На передней панели можно найти ручку с изображением двунаправленной стрелки. Если вращать ее, то график этого канала начнет перемещаться в вертикальной плоскости (вниз-вверх). Обратите внимание на то, что возле этой ручки имеется графическое обозначение, которое показывает, в какую сторону необходимо ее вращать, чтобы изменить значение множителя в меньшую или большую сторону. Органы управления обоих каналов одинаковые. Кроме того, на передней панели имеются ручки регулировки контрастности, яркости, синхронизации. Стоит отметить, что цифровой карманный осциллограф (как пользоваться девайсом, мы рассматриваем) также имеет ряд настроек отображения графиков.

Как проводятся измерения

Продолжаем описывать, как пользоваться цифровым осциллографом или аналоговым. Важно отметить, что у них у всех есть недостаток. Стоит упомянуть одну особенность – все измерения осуществляются визуально, поэтому имеется риск того, что погрешность окажется высокой. Также следует учитывать тот факт, что напряжения развертки обладают крайне малой линейностью, что приводит к погрешности измерений сдвига фаз или частоты примерно на 5%. Чтобы минимизировать эти погрешности, требуется выполнить одно простое условие – график должен занимать примерно 90% площади экрана. Когда проводятся измерения частоты и напряжения (имеется временной интервал), следует регуляторы корректировки усиления сигнала на входе и скорости развертки выставить в крайние правые положения. Стоит заметить одну особенность: так как пользоваться цифровым осциллографом может даже новичок, приборы с электронно-лучевой трубкой потеряли актуальность.

Как измерить напряжение

осциллограф с1 118а как пользоваться

Чтобы провести измерение напряжения, необходимо использовать значения масштаба в вертикальной плоскости. Для начала нужно выполнить одно из этих действий:

  1. Соединить обе входные клеммы осциллографа между собой.
  2. Перевести переключатель режимов входа в положение, которое соответствует соединению с общим проводом. Затем регулятором, возле которого изображена двунаправленная стрелка, добиться того, чтобы линия развертки совпала с центральной (горизонтальной) чертой на экране.

Переводите прибор в режим измерений и подаете на вход сигнал, который необходимо исследовать. При этом в какое-либо рабочее положение устанавливается переключатель режимов. А вот как пользоваться портативным цифровым осциллографом? Немного сложнее — у таких приборов намного больше регулировок.

В результате можно видеть на экране некоторый график. Для точного измерения высоты следует использовать ручку с изображением горизонтальной двунаправленной стрелки. Добиваетесь того, чтобы верхняя точка графика попадала на вертикальную линию, расположенную в центре. На ней имеется градуировка, поэтому будет намного проще произвести расчет действующего напряжения в цепи.

Как измерить частоту

как правильно пользоваться осциллографом

При помощи осциллографа можно провести измерения временных интервалов, в частности, периода сигнала. Вы понимаете, что частота любого сигнала всегда пропорциональна периоду. Измерение периода можно провести в любой области осциллограммы. Но удобнее и точнее провести замер в тех точках, в которых график пересекается с горизонтальной осью. Следовательно, перед началом измерений обязательно установите развертку четко на горизонтальную линию, расположенную по центру. Так как пользоваться портативным цифровым осциллографом намного проще, нежели аналоговым, последние давно канули в лету и редко используются для измерений.

Далее, используя рукоятку, обозначенную горизонтальной двунаправленной стрелкой, необходимо сместить начало периода с крайней левой линией на экране. После вычисления периода сигнала можно, используя простую формулу, рассчитать частоту. Для этого нужно единицу разделить на вычисленный ранее период. Точность измерений бывает различной. Чтобы увеличить ее, необходимо как можно сильнее растягивать график по горизонтали.

Обратите внимание на одну закономерность: при увеличении периода уменьшается частота (пропорция ведь обратная). И наоборот – при уменьшении периода происходит увеличение частоты. Низкое значение погрешности – это когда она составляет менее 1 процента. Но такую высокую точность не каждый осциллограф способен обеспечить. Только на цифровых, в которых линейная развертка, можно получить такие точные измерения.

Как определяется сдвиг фаз

осциллограф н3013 как пользоваться

А теперь о том, как пользоваться осциллографом С1-112А для измерения сдвига фаз. Но для начала – определение. Сдвиг фаз – это характеристика, показывающая, как располагаются относительно друг друга два процесса (колебательных) в течение некоторого времени. Причем измерение происходит не в секундах, а в частях периода. Другими словами, единица измерения – это единицы угла. Если сигналы будут одинаково располагаться взаимно, то у них сдвиг фаз будет также одинаков. Причем это не зависит от частоты и периода – реальный масштаб графиков на горизонтальной (временной) оси может быть любым.

Максимальная точность измерения будет в том случае, если растянуть график на всю длину экрана. В аналоговых осциллографах график сигнала для каждого канала будет иметь одну яркость и цвет. Чтобы отличить эти графики друг от друга, необходимо сделать для каждого свою амплитуду. И напряжение, которое подается на первый канал, важно делать максимально большим. При этом получится намного лучше удерживать синхронизацией изображение на экране. Вот как пользоваться осциллографом С1-112А. Другие приборы отличаются в эксплуатации незначительно.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *