Как работает плавкий предохранитель: виды и типы, выбор плавкой вставки, маркировка и обозначение

Содержание

Как работает плавкий предохранитель. Принцип действия плавкого предохранителя

Современные электрические сети и устройства отличаются сложностью и нуждаются в защите от перегрузок и коротких замыканий, которые могут случаться по самым разным причинам. Для того чтобы обеспечить защиту используют предохранители разного типа и дополнительные устройства.

Современный рынок предлагает большой выбор самого разного оборудования, но потребитель предпочитает использовать плавкие предохранители. Это связано с тем, что устройство обладает высокой степенью надежности, и отличается простотой в использовании. К тому же доступная цена радует каждого потребителя. Разумеется, для начала нужно узнать, как работает плавкий предохранитель.

как работает плавкий предохранитель

Даже не смотря на то, что сегодня широко используются автоматические выключатели, плавкие предохранители все также привлекают внимание и сохраняют актуальность. Часто используется устройство для

защиты автомобильной электросети, системы энергосбережения, электрической аппаратуры, промышленных электрических установок.

Во многих жилых домах можно до сих пор встретить подобное устройство. Интерес сохранится в первую очередь благодаря надежной работе, также немаловажную роль играет компактность изделия и стабильные характеристики. При необходимости произвести замену можно в самые сжатые сроки. И все же как работает плавкий предохранитель и для чего он нужен?

Для чего применяются плавкие предохранители

Назначение плавких предохранителей заключается в защите элементов и дополнительных устройств электроустановок, для этих же целей используется автоматические выключатели. При ненормальном режиме работы электрооборудования часто наблюдаются повреждения отельных узлов оборудования или всей системы. Часто плавкий предохранитель используют для защиты электрических кабелей и проводки, для того чтобы избежать перегрузок и короткого замыкания.

Принцип действия плавкого предохранителя заключается в том, что он сгорает ранее, чем успевают повреждаться другие элементы системы вследствие перегрузок. И это, несомненно, преимущество, так как намного проще произвести замену небольшого элемента, чем заниматься заменой электрической проводки, микросхем и дополнительных устройств. Нужно сказать, что ни один элемент не застрахован от перегрузок, и как следствие перегорания.

счетчик с предохранителями

Плавким устройство называют потому, что в основе имеется плавкий элемент – специальная вставка. Она состоит из сплава с низкой температурой возгорания, и при незначительном замыкании теплоты хватает, чтобы расплавить данный элемент. Таким образом, цепь является разомкнутой и больше ничего не угрожает целостности всей системы.

Перегорание может происходить по самым разным причинам, это и просто короткое замыкание, и перегрузка, и скачки напряжения, что наблюдается весьма часто.

промышленный предохранители

Помимо того что данный элемент защищает систему от повреждения, он еще и является защитой от возникновения возгорания и пожара. Плавкий предохранитель перегорает непосредственно в корпусе, в то время как электрическая проводка может соприкасаться с горючими и легковоспламеняющимися элементами.

назначение плавких предохранителей

Некоторые умельцы изготавливают жучок, чаще всего это просто кусок проволоки, который используется в качестве предохранителя. Это делается потому, что под рукой нет предохранителя, который будет соответствовать всем требованиям, а защиту каким-либо образом нужно обойти. Но специалисты не рекомендуют такой метод, потому как такой жучок может и вовсе не перегореть, а это повлечет за собой поломку системы и может довольно серьезную, или вовсе возникнет возгорание.

жучок вместо предохранителя защиты

Принцип работы плавкий предохранителей

Перед приобретением нужно более детально узнать, как работает плавкий предохранитель. Великие ученые Ленц и Джоуль установили законы взаимных связей между величиной проходящего тока в проводнике и выделением теплоты. Зависимость сопротивления цепи при определенном промежутке времени помогла создать наиболее простые, но невероятно эффективные способы защиты. Принцип данного предохранителя заключается в тепловом воздействии тока на металл электрического провода. Через довольно тонкую вставку из металла проводится полный эклектический ток всей схемы.

При нормальном режиме работы специальная вставка удачно справляется со своим предназначением, но если же норма превышается, то проволока перегорает, тем самым цепь разрывается и напряжение снимается с потребителя. Заменив перегоревший элемент можно восстановить работоспособность всей системы при минимальных затратах как денежных средств, так и времени.

принцип действия плавкого предохранителя

Изделие можно увидеть на конструкции радио или телеаппаратуры, где часто стеклянный и прозрачный корпус.

На концах изделия предусмотрены специальные металлические площадки, они в свою очередь создают контакт при монтаже в гнездо. Подобный принцип работы наблюдается в электрических пробках с плавкими вставками. Многолетняя практика показывает, что подобный метод действительно является невероятно эффективным и действенным.

Как работает плавкий предохранитель

Как известно, по принципу действия предохранители разделяют на автоматические и плавкие. Последний вариант – это обыкновенные пробки, и в быту они встречаются довольно часто. Это наиболее эффективный способ защиты и тут нет никаких причин для монтажа другого оборудования. Вкручивают их непосредственно возле счетчика, особенность изделия состоит в том, что цоколь такой же как и на обычной лампочке.

Уже после счетчика электрический ток расходится по всей квартире. Но стоит знать, что не только главный ввод, но и каждый отдельный контур следует защитить от короткого замыкания. Если речь идет о старых постройках, то тут зачастую используются пробки с тонкими токопроводящими вставками. И если нет никаких перепадов, и все работает в нормальном режиме, то данная вставка успешно работает и выполняет свои функции.

Если значение превышает номинал, то вставка просто перегорает, тем самым разрывается цепь. Для того чтобы восстановить нормальную работу, стоит просто произвести замену перегоревшего элемента. Для этого не нужно обращаться к специалисту, даже человек без особых навыков в состоянии произвести замену.

Что касается автоматики, то они сделаны в аналогичной форме. Но отличие заключается в том, что если наблюдаются скачки напряжения, то пробки отключаются в автоматическом режиме, и для восстановления работоспособности следует просто нажать кнопку.

Автоматический предохранитель типа ПАР изготовлен по аналогии с классическими пробками, и ввинчивается в патрон вместо плавкой модели. Наиболее популярная модель предохранителя ПАР в активном состоянии замыкает цепь центральным контактом и резьбовой гильзой посредствам электрического провода.

автоматическая пробка

устройство плавких предохранителей

Проводка навивается на катушку электромагнита и связывается с биметаллической пластиной. Если наблюдается перегруз, и как следствие повышение температуры, пластина изгибается, а провод освобождается, тем самым происходит отключение. Кнопка автомата поднимается вверх, и это говорит о том, что механизм сработал и выполнил свою защитную функцию.

Устройство предохранителей

В составе изделия имеется патрон или корпус, который в обязательном порядке отличается электроизоляционными характеристиками. И дополнительно присутствует плавкая вставка. Концы последнего элемента соединяются с клеммами, а они в свою очередь отвечают за последовательное включение предохранителя в электрическую цепь.

Отталкиваясь от особенностей конструкции, плавкие предохранители разделяют на трубочные, патронные, пробочные, пластичные. На корпусе устройства имеется расчетная сила тока, которое может выдержать изделие.

плавкий предохранитель

Конструкция оснащается керамическим изолятором, иногда в качестве материала используется стекло, этот элемент предотвращает попадание газа и жидкого металла в окружающую среду. Корпус устойчив к высоким температурам и высокому давлению. Замена неисправных плавких вставок осуществляется весьма быстро, это предусмотрено особенностью конструкции.

Иногда предохранитель заполняют кварцевым песком, который предназначен для того чтобы в короткое время погасить дугу. В процессе перегорания плавкой вставки между проводниками возникает дополнительный разряд. Он в свою очередь ионизирует воздух, что поддерживает дугу. Кварцевый песок предотвращает возгорание.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

Как устроен плавкий предохранитель и для чего используется

Плавкий предохранитель необходим для того, чтобы обеспечить безопасность и защиту различным элекроцепям, от возможно возникших в них замыканий или опасных перегрузок. Такие предохранители очень дешевые, так как имеют самую простейшую конструкцию своего строения. Также они являются самыми популярными защитными устройствами, придуманные для защиты электрооборудования.

Он состоит из корпуса, обычно из металла или керамики и проволоки из плавкого металла. Ее выводы соединены с контактами, то есть имеет последовательное включение в электроцепь. При возрастании тока до критического уровня, проволока расплавляется, тем самым размыкая цепь. В статье будет рассмотрено устройство этих предохранителей и как их использовать на практике. В качестве бонуса, статья содержит несколько видеороликов и одну подробную статью по электротехнике.

Плавкие предохранители с керамическим корпусом

Плавкие предохранители с керамическим корпусом

Два основных типа

В теории и практике плавкие предохранители разделяются на два основных типа. Такое деление происходит по величине напряжения рабочей сети, для которой предназначен предохранитель. Разделяют низковольтные и плавкие высоковольтные предохранители. Низковольтные предохранители рассчитаны на напряжение до 1000 Вольт. Маркируются плавкие низковольтные предохранители, как ПН или ПР. Материал плавких вставок предохранителей представлен в таблице ниже.

материал плавких вставок предохранителей таблица

Устройство плавкого предохранителя

Предохранители ПН это низковольтные предохранители с мелкозернистым наполнителем вокруг плавкой медной вставки. Рассчитаны предохранители ПН до тока 630 Ампер. Предохранители ПР рассчитаны на токи 15-60 ампер. Они проще предохранителей ПН, но все равно гасят электрическую дугу при коротком замыкании.

Применение предохранителей ПН и ПР

Предохранители ПН и ПР предназначены для защиты кабельных и воздушных линий электропередач и защиты электрических машин. Устанавливаются предохранители во вводных, вводно-распределительных щитах, в различных сборках. С помощью предохранителей защищаются силовые трансформаторы со стороны высокого напряжения. В быту вы сталкивались с плавкими предохранителями этого типа, если делали электрику своими руками в доме или на даче.

В зависимости от мощности потребления, на вводе электропитания в дом, ставится вводной щит с плавкими предохранителями. Уже после вводного щита, устанавливается распределительный щит для разделения электропроводки на группы и защитой групп розеток и групп освещения автоматами защиты.

Предохранитель со стеклянным корпусом

Предохранитель со стеклянным корпусом

Устройство предохранителей

Основой предохранителя является так называемая плавкая вставка. Именно она перегорает при перегрузке или коротком замыкании. Для погашения дуги, образующейся при перегорании вставки, вставку окружают дугогасящим приспособлением. В предохранители ПН это камера с мелкозернистым кварцевым песком. В предохранители ПР это фибровый трубчатый патрон.

Плавкий предохранитель представляет собой однополюсный коммутационный аппарат, предназначенный для защиты электрических цепей от сверхтоков; действие его основано на плавлении током металлической вставки небольшого сечения и гашении образовавшейся дуги.

типы плавких предохранителей

Предохранители пробочного типа

Отдельно хочется остановиться на предохранителях пробочного типа. Вы их могли встречать, в старых, да и не очень старых, квартирах и домах. По конструкции это стационарно установленный патрон, в который вворачивается плавкий предохранитель с цоколем. При аварийной ситуации пробка перегорает. В современном исполнении пробка может быть с кнопкой, которая является аналогом выключателя. После аварии, кнопка взводит предохранитель в рабочее положение.

Интересно по теме: Как проверить стабилитрон.

Подключение пробочного предохранителя

В подключении пробочного предохранителя своими руками нет ничего сложного. У предохранителя две клеммы. На вводную клемму подключается фазный провод питания, на вторую фазный провод подающий питание в квартиру или дом.

Устройство плавкого предохранителя

Важно! Особенностью подключения плавкого пробочного предохранителя, является следующее. Если вы вывинтите пробку предохранителя, на рубашке патрона не должно быть напряжения.

Номиналы устройства

Номиналы плавких предохранителей выбираются по наименьшим расчетным токам электросети или отдельных электрических цепей. Если вы меняете плавкие предохранители на автоматические выключатели (АВ), то номинал АВ должен быть на шаг больше номинала предохранителя. Все плавкие предохранители, должны быть подписаны с указанием их номиналов и назначения.

Предохранители с проволокой из плавкого металла.

Предохранители с проволокой из плавкого металла.

Классификация аппаратов

Плавкий предохранитель представляет собой однополюсный коммутационный аппарат, предназначенный для защиты электрических цепей от сверхтоков; действие его основано на плавлении током металлической вставки небольшого сечения и гашении образовавшейся дуги. Ценными свойствами плавких предохранителей являются:

  • простота устройства и, следовательно, низкая стоимость;
  • исключительно быстрое отключение цепи при КЗ;
  • способность предохранителей некоторых типов ограничивать ток КЗ.
  • Следует, однако, указать, что:
  • характеристики предохранителей таковы, что они не могут быть использованы для защиты цепей при перегрузках;
  • избирательность отключения участков цепи при защите ее предохранителями может быть обеспечена только в радиальных сетях;
  • автоматическое повторное включение цепи после ее отключения предохранителем возможно только при применении предохранителей многократного действия более сложной конструкции;
  • отключение цепей плавкими предохранителями связано обычно с перенапряжениями;
  • возможны однополюсные отключения и последующая ненормальная работа участков системы.

Поэтому в электроустановках свыше 1 кВ предохранители имеют ограниченное применение; их используют в основном для защиты силовых трансформаторов, измерительных трансформаторов напряжения и статических конденсаторов. Плавкий предохранитель состоит из следующих основных частей: изолирующего основания или металлического основания с изоляторами, контактной системы с зажимами для присоединения проводников, патрона с плавкой вставкой. Большинство предохранителей имеет указатели срабатывания той или иной конструкции.

Предохранители различного номинала.

Предохранители различного номинала.

Предохранители характеризуют номинальным напряжением, номинальным током и номинальным током отключения. Следует различать номинальный ток плавкой вставки и номинальный ток предохранителя (контактной системы и патрона). Последний равен номинальному току наибольшей из предназначенных к нему вставок. Для предохранителей переменного тока с номинальным напряжением от 3 до 220 кВ включительно установлены следующие значения номинальных токов:

  • Номинальные токи предохранителей, А……8; 10; 20; 32; 40; 50; 80; 160; 200; 320; 400
  • Номинальные токи плавких вставок, А……2; 3,2; 5; 8; 10; 16; 20; 32; 40; 50; 80; 160; 200; 320; 400
  • Номинальные токи отключения, кА……2,5; 3,2; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40

Под номинальным током отключения следует понимать наибольшее допускаемое действующее значение периодической составляющей тока КЗ, отключаемого предохранителем при определенных условиях. Отечественные аппаратные заводы выпускают плавкие предохранители для напряжений до 110 кВ включительно. Наибольшая температура частей предохранителя, заряженного любой из предназначенных для него плавких вставок, не должна превышать значений, указанных в табл.1 при температуре воздуха +40°С.

Полезный материал: что такое полупроводниковый диод.

Расчет мощности

Плавкая вставка выбирается с таким расчетом, чтобы она плавилась раньше, чем температура проводов линии достигнет опасного уровня или перегруженный потребитель выйдет из строя. По конструктивным особенностям различают пластинчатые, патронные, трубочные и пробочные предохранители. Сила тока, на который рассчитана плавкая вставка, указывается на ее корпусе. Оговаривается также максимально допустимое напряжение, при котором может использоваться предохранитель.

Данная кривая снимается экспериментально: берется партия одинаковых предохранителей, которые последовательно пережигаются при разных токах. Замеряются время, по истечении которого вставка перегорает, и ток, проходящий через вставку. Каждому току соответствует определенное время перегорания вставки. По этим данным и строится временная характеристика.

Наверное, все из нас видели керамические «пробки», которые заворачиваются в щиток электросчётчика. До недавнего времени, а иногда и сейчас они ещё служат в качестве устройств защиты. По личному опыту – неоднократно сталкивался с такой схемой включения – в щитке две пробки, одна стоит в фазном проводе, вторая – в нулевом. Но какая схема включения категорически неправильна! Ни в коем случае нельзя включать предохранитель в нулевой провод. Ведь что происходит, если именно он выйдет из строя – цепь разоврётся и будет защищена, но потребители всё равно будут под потенциалом сети – фаза-то присутствует. А это уже вопросы электробезопасности.

Плавкий предохранитель, изготовленный в СССР.

Плавкий предохранитель, изготовленный в СССР.

Несмотря на то, что плавкие предохранители отслужили свой срок и морально устарели в качестве устройств защиты во вводах бытового сектора, на протяжении всего времени существования они достойно выполняли данную функцию. Плавкие предохранители, конечно справляются со своими функциями защиты от превышения потребляемого тока или короткого замыкания. Однако, на сегодняшний день, особенно в бытовом секторе, плавкие вставки становятся раритетом.

Плюс ко всему – это довольно опасные в пожарном плане устройства. Ведь сегодня многие считают себя электриками и при перегорании «пробки» некоторые «специалисты» устанавливают «жучки» из некалиброванной проволоки. Причём, иногда, довольно экзотические. Характерный пример я описывал в предыдущем обзоре. А чем всё это чревато – далеко ходить не нужно – посмотрите хронику ЧП по любому телеканалу. Поэтому вполне закономерно, что на смену плавким вставкам пришли более надёжные устройства – автоматические выключатели.

Устройство плавкого предохранителя

Кварцевые предохранители

Кварцевые предохранители изготовляют для напряжений 6, 10 и 35 кВ для внутренней и наружной установки. Они относятся к группе токоограничивающих предохранителей. Патрон предохранителя типа ПКТ для напряжений 3-35 кВ (рис.4) представляет собой фарфоровую или стеклянную трубку 1, плотно закрытую металлическими колпачками 2. Внутри трубки помещена плавкая вставка 3 в виде одной или нескольких параллельно включенных тонких медных проволок. В нижнем колпачке предусмотрен указатель срабатывания предохранителя 4. Патрон заполнен мелким кварцевым песком.

Длина проволок и, следовательно, длина патрона определяются номинальным напряжением. Поскольку градиент восстанавливающейся электрической прочности промежутка в кварцевом песке относительно невелик, длина проволоки должна быть велика. Чтобы поместить ее в патроне, приходится навивать проволоку винтообразно.

Характеристики тугоплавких вставок из меди (температура плавления 1080°С) могут быть улучшены напайкой капель олова или свинца, температура плавления которых значительно ниже (соответственно 200 и 327°С). При расплавлении металла напайки он растворяет в себе медь, вследствие чего вставка быстро разрушается при температуре значительно более низкой, чем температура плавления основного материала вставки.

Свойства материала, наполняющего патрон токоограничивающего предохранителя, существенно влияет на работу последнего. Наполнитель должен удовлетворять следующим требованиям:

  • отводить тепло от плавкой вставки в нормальном рабочем режиме;
  • не выделять газа под действием высокой температуры дуги;
  • обладать достаточной электрической прочностью после разрыва цепи.

Как показал опыт, этим требованиям в наибольшей мере отвечает кварцевый песок. Процесс отключения цепи токоограничивающим предохранителем при КЗ протекает следующим образом. При большом токе тонкая проволока плавится и испаряется в течение долей полупериода почти одновременно по всей длине. Зажигается дуга. Вследствие высокой температуры газа в канале дуги образуется местное давление (давление в патроне практически не повышается). Ионизованные частички металла выбрасываются в радиальном направлении в зазоры между песчинками кварца. Здесь они быстро охлаждаются и деионизуются.

Как видно из осциллограммы, напряжение у зажимов предохранителя превышает напряжение сети вследствие появления ЭДС самоиндукции, направленной согласно с напряжением сети. Коммутационные перенапряжения, возникающие при отключении цепи плавкими предохранителями, не должны превышать следующих значений:

Номинальное напряжение, кВ……3..6..10..20..35

Наибольшее допустимое перенапряжение по отношению к земле, кВ……16..26..40..82..126

Плавкие предохранители с корпусом из стекла и керамики

Плавкие предохранители с корпусом из стекла и керамики

Для ограничения перенапряжения принимают различные меры: применяют вставки ступенчатого сечения по длине, что затягивает процесс их плавления и удлинения дуги; параллельно основным рабочим вставкам включают вспомогательные вставки с искровым промежутком. В последнем случае при расплавлении рабочих вставок и резком повышении напряжения пробивается искровой промежуток вспомогательной вставки, которая также сгорает. Максимальное напряжение при этом уменьшается.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Принцип работы плавкого предохранителя крайне прост – повышается мощность тока, происходит размыкание контакта путем плавки проволоки, рассчитанной на определенный номинал. Подробнее о работе таких предохранителей можно узнать из статьи Вся информация о плавких предохранителях.

Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.electrik.info

www.gigavat.com

www.ehto.ru

www.electrono.ru

Следующая

ПредохранителиПринцип работы самовосстанавливающегося предохранителя

инструкция по подключению и замене своими руками. Обзор лучших производителей

От опасных замыканий сложная конструкция электрических приборов защищается специальными приспособлениями. Сайты торгующих электрическими товарами интернет-магазинов содержат многочисленные фото плавкого предохранителя, позволяющие выбрать подходящий вариант среди огромного ассортимента предлагаемой продукции.

Эти надежные устройства обладают компактными габаритами, относительно дешево стоят, быстро заменяются после повреждения. Они применяются в электронной аппаратуре, промышленном оборудовании, автомобильном транспорте, системах энергоснабжения, распределительных щитах.

Основное назначение плавкого предохранителя состоит в предотвращении повреждения электрических приборов при внезапном скачке напряжения. После соприкосновения друг с другом оголенных кабелей, подключенных к используемому источнику питания, возникает замыкание. Тогда материал проводов с относительно малым параметром сопротивления вынужден пропускать через себя слишком сильный ток, вызывающий возгорание изоляции.

Увеличенная мощность электричества поднимает температурные показатели, расплавляющие находящуюся внутри корпуса проволоку. Это событие приводит к размыканию сети и отключению пострадавших приборов.


Краткое содержимое статьи:

Устройство и функционирование

Большинство предохранителей состоит из корпуса или патрона, куда вставлен перегорающий проводник. Диаметр его круглого сечения контролируется мощностью тока, вызывающего расплавление материала. К защищаемому прибору соединенные с клеммами концы предохранителей подключаются последовательным способом.

Поверхность оболочки производители обязательно оснащают информацией о силе тока, неспособной расплавить основной металлический элемент.

Керамический корпус предотвращает проникновение перегретых газов и жидкого металла в окружающее пространство. Его материал отлично сопротивляется влиянию повышенной температуры, а оба края оборудованы защитными крышками.

Унифицированными рукоятками захватываются элементы с вышедшими из строя вставками. Оболочка имеет стенки, предотвращающие расширение коммутационной электрической дуги и взрыв аппарата. Мощность энергии уменьшается кристаллами кварцевого песка, обладающими конкретными размерами и лишенными посторонних примесей.

Материал насыпается в изделие и утрамбовывается до предусмотренной нормативами плотности. С удерживающими основаниями плавящаяся вставка соединяется посредством контактных медных ножей с серебряным покрытием. Дальше повествуется о том, как работает плавкий предохранитель.

Когда повышается мощность подаваемой энергии, проводник начинает нагреваться до определенной температуры под воздействием сформировавшейся дуги. Тогда возникают условия, при которых проволока начинает плавиться и испаряться.

Времятоковая характеристика определяет длительность периода, за который металлическая вставка разжижается под влиянием силы тока. Параметр этого свойства должен превышать напряжение защищаемой техники. Например, если используемый для 220 вольтовой цепи предохранитель облает напряжением в четыреста вольт, при возникновении нештатных ситуаций он вовремя разорвет схему и погасит дугу.

Конструкционные разновидности

Наибольшее распространение сегодня получили такие типы плавких предохранителей:

Трубочные. Основные детали монтируются внутри закрытого фибрового корпуса, получившего способность к газогенерации. Когда запускается процесс увеличения температуры, внутри предохранителя начинается повышение давления. После достижения определенного значения происходит отключение цепи.


Пробочные. Фарфоровое основание содержит пластины с винтом и резьбовой гильзой, на концах которых присоединены связанные металлическим проводником контакты. Чтобы закрепить пластмассовый чехол на аппарате, необходимо завинтить кольцо. Перегоревшая пробка утилизируется, так как ее собственноручное восстановление невозможно осуществить.

Самовосстанавливающиеся. При изготовлении деталей используются полимерные материалы, структура которых изменяется в зависимости от показателей температуры. Нагревание увеличивает сопротивление, запускает процесс расплавления вставки и разрывает электроцепь. При остывании происходит уменьшение сопротивления и восстановление сети.

Способ закрывания расплавляющегося проводника управляет типом внешних эффектов, возникающих после отключения энергии. Этот признак позволяет существовать таким видам предохранителей, среди которых популярны:

Открытые. Возникающая дуга обладает неограниченными размерами. Частицы расплавленного металла свободно проникают в окружающую среду, увеличивая вероятность возгорания окружающих поверхностей.

Полузакрытые. Аппарат оборудован оболочкой, которая закрывается максимум с двух сторон. Присутствующие возле сработавшего предохранителя люди рискуют получить травмы от пламени и разлетающегося металла.

Закрытые. Сгоревшие элементы расположенной в сплошном корпусе проволоки неспособны выбраться за пределы стенок, а также навредить человеческому здоровью.

Перед тем, как выбрать плавкий предохранитель, необходимо знать, что при гашении дуги могут применяться различные методы. Первый разрешает использовать порошки, волокна и зернистые фракции совместимых материалов. Второй предлагает организовать перемещение газов или управлять возникающим в патроне давлением.

Разборные патроны позволяют заменить расплавившуюся вставку, а не разборные полностью утилизируются после повреждения, но иногда могут перезаряжаться в специализированных мастерских.


Некоторые модели заменяются без отключения электрической энергии. При совершении этих действий запрещается касаться руками находящихся под высоким напряжением элементов. При невозможности выполнения операций прибор принудительно обесточивается.

Маркировка изделий

Любой плавкий предохранитель на схеме помечается определенным индексом, в составе которого наблюдается присутствие двух букв. Первой из них отмечается защитный интервал:

  • a – короткие замыкания;
  • g – перегрузки и замыкания.

Предусмотренная производителем маркировка плавких предохранителей также содержит вторую букву, указывающую разновидность защищаемого устройства:

  • G – все электрические приборы.
  • L – токопроводящие кабели и распределители энергии.
  • M – электрические моторы.
  • Tr – трансформаторные системы.

Фото плавкого предохранителя

Плавкий предохранитель

Плавкий предохранитель – это элемент электрической цепи, основное назначение которого – защита её от повреждения.

Принцип действияСгоревший плавкий предохранитель

Предохранитель устроен таким образом, что сгорает раньше, чем повреждаются другие элементы. Ведь проще вставить новый предохранитель, чем заменить провода, микросхемы и другие элементы которые могут сгореть при скачке тока в цепи.

Плавким предохранитель называется потому, что в его основе лежит плавкая вставка. Эта плавкая вставка  состоит из сплава, который имеет низкую температуру плавления и при возникновении тока опасного для цепи, количества теплоты которое выделяется при протекании такого тока через эту вставку достаточно, чтобы её расплавить. Когда вставка расплавляется — “перегорает”, то цепь оказывается разомкнутой.

Причинами перегорания предохранителя могут быть короткое замыкание, перегрузка и резкие скачки тока.

Мало того, что предохранитель предохраняет цепь от повреждений, так он еще и служит защитой от пожаров и возгораний, так как плавкая вставка перегорает в корпусе предохранителя, в отличие от провода, который может соприкасаться в момент сгорания с горючими материалами.

Случается так, что люди изготавливают так называемый жучок. Обычно это обыкновенный кусочек проволоки, который вставляется взамен предохранителя. Делается это потому, что под рукой нету, предохранителя нужного номинала или с целью обхода защиты. Зачастую, такие жучки приводят к пожарам, так как неизвестно при каком токе такой жучек перегорит и перегорит ли вообще.

Устройство предохранителя

Как было сказано выше, простейший плавкий предохранитель  состоит из основной своей части – плавкой вставки (проволока)Сгоревший плавкий предохранитель и корпуса, который предназначен для соединения с электрической цепью и служащий крепежом для вставки.

Преимущества и недостатки

К плюсам плавких предохранителей можно отнести относительно невысокую стоимость.

Основным недостатком плавкого предохранителя является относительно долгое срабатывание по сравнению с автоматическими предохранителями. За время перегорания предохранителя в высоковольтных сетях может выйти из строя оборудование. Кроме того, плавкий предохранитель является одноразовым элементом, то есть, однажды сгорев, дальнейшему использованию он не подлежит, в то время как автоматические предохранители могут довольно долго служить, так как принцип их работы основан на размыкании цепи без повреждения конструкции самого предохранителя.

Основные параметры

Параметры, которые характеризуют плавкий предохранитель – это номинальный ток, номинальное напряжение, мощность, скорость срабатывания.

Рассчитать номинальный ток срабатывания предохранителя можно по формуле 

Сгоревший плавкий предохранитель

Где U – напряжение в сети, а Pmax – максимальная мощность нагрузки с запасом около 20 %.

Скорость срабатывания плавких предохранителей различна. Например, в схемах, где присутствуют полупроводниковые приборы, лучше если предохранитель сгорит быстрее, чтобы не повредить приборы, но если это мощный предохранитель который используется в цепи электродвигателя, то намного полезнее будет, если он не будет каждый раз разрывать цепь в момент броска пусковых токов.

Замена предохранителяСгоревший плавкий предохранитель

Заменить предохранитель, например, в автомобиле не составит труда обычному человеку. Но для того чтобы заменить предохранитель в силовой цепи, нужно обязательно снять напряжение, иначе при вставке предохранителя в держатель, может появиться электрическая дуга, которая может вызвать электрический ожог и другие травмы человека. В особых случаях в высоковольтных установках замену предохранителя следует проводить при закороченном на землю питании сети и только квалифицированным персоналом.

  • Просмотров:
  • Принцип действия предохранителей

    Определение и назначение

    Плавкий предохранитель — это коммутационный электрический элемент, предназначенный для отключения защищаемой цепи путем расплавления защитного элемента. Изготовляют плавкие элементы из свинца, сплавов свинца с оловом, цинка, меди. Предназначены для защиты электрооборудо­вания и сетей от токов короткого замыкания и недопустимых длительных перегрузок.

    Режимы работы предохранителя

    Работа предохранителя протекает в двух резко различающихся режимах: в нормальных условиях; в условиях перегрузок и коротких замыканий.

    Первый этап работа в штатном режиме сети. В нормальных условиях нагрев плавкого элемента имеет характер установившегося процесса, при котором все выделяемое в нем количество теплоты отдается в окружающую среду. При этом, кроме элемента, нагреваются до установившейся темпера­ туры и все другие детали предохранителя. Эта температура не должна превышать допустимых значений.

    Силу тока, на которую рассчитан плавкий элемент для длительной рабо­ ты, называют номинальной силой тока плавкого элемента (1Ном)- Она может быть отлична от номинальной силы тока самого предохранителя. Обычно в один и тот же предохранитель можно вставлять плавкие элементы на раз­ личные номинальные значения силы тока.

    Номинальная сила тока предохранителя, указанная на нем, равна наи­ большему значению тока плавкого элемента, предназначенного для данной конструкции предохранителя. При номинальной силе тока избыточное ко­ личество теплоты вследствие теплопроводности материала элемента успева­ ет распространиться к более широким частям, и весь элемент практически нагревается до одной температуры.

    Второй этап возрастание силы тока в сети. Чтобы значительно сокра­ тить время плавления вставки при возрастании силы тока, элемент выпол­няют в виде пластинки с вырезами, уменьшающими ее сечение на отдель­ ных участках. На этих суженных участках выделяется большее количество теплоты, чем на широких.

    При коротком замыкании нагревание суженных участков происходит на­столько интенсивно, что отводом количества теплоты практически можно пренебречь Плавкий элемент расплавляется («перегорает») одновременно во всех или в нескольких суженных местах, причем сила тока в цепи при коротком замыкании не успевает достичь установившегося значения.

    В момент расплавления элемента в месте разрыва цепи возникает электри­ ческая дуга. Гашение дуги в современных предохранителях происходит в ограни­ ченном объеме патрона предохранителя. При этом плавкие предохранители делают такими, чтобы жидкий металл не мог повредить окружающие предметы.

    Общее устройство и конструкция

    В общем случае современный предохрани­ тель состоит из двух основных частей: фарфо­ рового основания с металлической резьбой; сменной плавкой вставки (рис. 21.1).

    Плавкая вставка такого предохранителя рас­считана на номинальные токи 10, 16, 20 А. По своей конструкции предохранители могут быть резьбового типа (пробочные) или трубчатые. На рис. 21.2 представлен предохранитель ППТ-10 с плавкой вставкой ВТФ (вставка трубчатая фар­форовая) на 6 или 10 А для установок до 250 В. Основание пластмассовое, крепится к несущей конструкции винтом. Внутри трубки (ВТФ) на­ ходится сухой кварцевый песок. Трубка уста­ навливается в отверстие крышки предохраните­ ля. К основным параметрам предохранителей относятся: номинальный ток; номинальное на­ пряжение;        предельно отключаемый ток.

    Принцип действия

    Плавкая вставка при протекании по ней тока нагревается. Во время протекания через нее боль­ шого тока за счет перегрузки или короткого за­ мыкания она перегорает. Время перегораний пре­ дохранителей зависит от силы тока, проходящего через нить. Так, при коротком замыкании, пре дохранители перегорают достаточно быстро, и в этом наиболее опасном случае служат простой, дешевой и надежной защитой. Чтобы при перегора­нии плавкой вставки в предохранителе не проявилось опасное явление элек­ трической дуги, вставка помещается в фарфоровую трубку.

       Пример. Введем в цепь на рис. 21.3 предохраняющий участок длиной 30 мм из медной проволочки диаметром 0,2 мм. Площадь ее поперечного сечения; S = π • r 2 = π /4 • d 2 = 3,14 • 0,22: 4 = 0,0031 мм2.

    Сопротивление предохраняющего участка составляет 0,029 Ом. Затем мысленно выделим участок такой же длины, сопротивление рабочего алюминиевого провода сече­ нием 2,5 мм2 такой же длины равно 0,00063 Ом. Так как при равных условиях количество теплоты пропорционально сопротивлению, в проволочке предохранителя вы­ делится в 0,029 : 0,00063 = 46 раз больше теплоты.

    Выводы. При длительно допустимом для данного провода токе, он нагревается умерен­ но, а температура проволочки значительно выше, но она при этом не перегорает. При коротком замыкании проволочка настолько быстро нагревается, что перегорает. За это время рабочий провод не успевает нагреться до температуры, опасной для его изоляции.

    Важнейшая характеристика предохраните­ ля — зависимость времени перегорания плав­кого элемента от силы тока — времятоковая характеристика представлена на рис. 21.4.

    Достоинства плавких предохранителей

    1. Время перегорания предохранителей зави­ сит от силы тока, проходящего через нить. Так, при коротком замыкании, когда ток очень велик, предохранители перегорают достаточно быстро, и в этом наиболее опасном случае служат простой, дешевой и надежной зашитой.

    2. В большинстве плавках предохранителей предусмотрена возможность безопасной заме­ ны плавкой вставки под напряжением.

    1. Если ток в цепи незначительно превышает допустимый, плавкие предохранители плохо выполняют защитную роль.

      Примеры. При перегрузках до 30% срок службы проводки заметно сокращается, а предохранители не перегорают. При больших величинах перегрузок (до 50…70%) время перегорания предохранителей составляет от минуты до десятков минут. За это время изоляция перегруженных проводов успевает сильно перегреться.

    2. Другим недостатком предохранителей является их повреждаемость.
    После перегорания пробку нужно заменять новой (перезаряжать). Для про­ стоты восстановления в конструкции плавких предохранителей применяют­ ся сменные калиброванные плавкие вставки.

    как работают и где применяются, достоинства и недостатки приборов

    Плавкие предохранителиПредохранитель — защитный элемент, который помогает предотвратить развитие какой-либо аварии. Вариантов этого прибора существует несколько: электромеханические, электронные, самовосстанавливающиеся и плавкие. Последние являются одним из самых распространенных вариантов. Чтобы понять, для чего применяются плавкие предохранители, необходимо изучить их свойства и особенности использования.

    Общие характеристики

    Плавкий предохранитель — это одноразовый компонент, который защищает источник тока от излишней нагрузки, являясь самым слабым звеном в сети. Элементы такого типа используются почти во всех электросетях.

    Чтобы понять, как работает плавкий предохранитель, следует изучить его строение и функции.

    Этот небольшой прибор состоит из отрезка проволоки, который рассчитан на прохождение тока не выше определенного значения. Если сила тока увеличивается, то специальная плавкая вставка начинает расплавляться или даже испаряется. Таким образом, происходит разрыв в электрической цепи.

    Характеристики плавких предохранителейПлавкие компоненты — это надежный и дешевый способ защитить свою технику. Конструкция такого защитного элемента включает в себя корпус — базовую деталь, которая обеспечивает подключение предохранителя к электрической цепи. Изготавливается обычно из специальных сортов керамики или стекла. Основа предохранителя — особая плавкая вставка, токопроводящий элемент, который состоит из сплава таких металлов, как цинк, медь, свинец и железо.

    Помимо плавкого участка, на корпусе также расположено устройство для управления расплавляющимся элементом, датчик срабатывания, небольшая табличка с указанием модели и типа. Кроме всего прочего, корпус имеет функцию камеры гашения электрической дуги.

    Любой предохранительный элемент обладает специальной маркировкой, которая указывает:

    1. Степень или интервал защиты. Например, а — защита от короткого замыкания, g — защита от перегрузки.
    2. Вид и устройства и основные сферы его применения. Например, G — универсальное устройство, B — для защиты горного оборудования, Tr — для трансформаторов и так далее.

    Разновидности приборов

    Плавкие предохранители с успехом используются в качестве защитной аппаратуры среди систем электроснабжения. Чаще всего их применяют в домах старого жилищного фонда, а также на производстве.

    Главное преимущество этого прибора — низкая стоимость и простота в обслуживании. Классификаций очень много и единой системы не существует.

    Разновидности приборов

    Но все же плавкие предохранительные элементы различаются:

    1. По типу исполнения — разборные и неразборные.
    2. По наполнению: наполненные и ненаполненные. Наиболее часто для наполнения используют кварцевый песок, так как он хорошо гасит дугу.
    3. Плавкие предохранительные элементы По рабочим характеристикам: полупроводниковые, низковольтные, на среднее или высокое напряжение. Полупроводниковые или быстродействующие имеют очень быстрое время срабатывания, поэтому очень популярны. Низковольтные модели используются для контроля цепей с напряжением до 1 кВ. Видами, рассчитанными на низкое напряжение, пользуются для защиты трансформаторов, двигателей и батарей от излишней нагрузки до 30 кВ. Что касается промышленных объектов, то там практикуется эксплуатация предохранителей, которые рассчитаны на высокое напряжение.
    4. По виду: вилочные, пробковые, ножевые, кварцевые и т. д. Вид прибора определяется в основном сферой использования. Например, вилочные используют в автомобилях, пробковые — для приборов освещения и маломощных двигателей.

    Преимущества и недостатки

    Плавкие предохранители, как и все приборы, используемые в нашей жизни, имеют достоинства и недочеты. К положительным характеристикам этого маленького, но такого важного элемента, можно отнести:

    1. Преимущества и недостатки предохранителейПростую конструкцию, которая исключает поломку механизма.
    2. Слабую скорость действия, поэтому плавкие вставки используют для избирательности.
    3. Сохранение свойств после замены предохранителя, в то время как подгоревшие контакты автомата значительно изменяют характеристики защиты.
    4. Отключение тока только в одной фазе — аварийной (если в асимметричной цепи имеется 3 фазы). В других фазах питание сохранится.

    Что касается недостатков, то они тоже имеются. Например:

    1. Одноразовое применение без возможности ремонта.
    2. Конструкция предохранителя, позволяющая недобросовестным мастерам производить шунтирование, что повышает вероятность возгорания проводки.
    3. Перекос фаз при значительных токах.
    4. Возможность незаконной установки предохранителя на повышенное значение тока.

    Несмотря на все изъяны данных элементов, плавкие предохранители — это незаменимая деталь многих приборов электрической сети. При правильном выборе элемент обеспечит защиту оборудования не только от короткого замыкания и повреждений, но и от возгорания и пожара.

    Гарантированный разрыв цепи при сверхтоках: плавкие предохранители

    19 декабря 2014

    На первый взгляд, плавкие предохранители – одно из простейших изделий электротехники. Однако это одно из ответственнейших ее изделий, при выборе которых необходимо принимать в расчет не менее десятка различных параметров. Компания Littelfuse производит широчайшую линейку плавких предохранителей трех основных типов – быстродействующие, сверхбыстродействующие и Slo-Blo® (с дополнительной тепловой инерцией), а также предлагает облегчить процесс выбора с помощью онлайн- сервиса iDesign.

    Плавкие предохранители, появившиеся на заре развития электротехники, и сегодня продолжают оставаться важными элементами защиты электронных компонентов от сверхтоков – принцип их действия не изменился. На фоне стремительно сменяющих друг друга поколений процессоров, появления и исчезновения целых классов электронных устройств, плавкий предохранитель, на первый взгляд, кажется раритетом, которому самое место в одном ряду с триодом, гальваническим элементом Вольта и когерером. На самом же деле, современные плавкие предохранители являются высокотехнологичными устройствами, характеристики которых значительно отличаются от характеристик прототипов из ХХ века, и даже бурное развитие полупроводниковых защитных приборов не вытеснило их из электронных схем.

    Плавкие предохранители по-прежнему остаются самыми надежными элементами «последней ступени», когда для защиты от серьезных повреждений и последствий необходимо физически разорвать электрическую цепь.

    О плавких предохранителях производства известной американской компании Littelfuse и пойдет речь в этой статье.

    Общие принципы

    Компания Littelfuse по праву считается производителем №1 в области защиты электрических цепей. Она предлагает наибольший выбор самых разных плавких предохранителей, включая предохранители для поверхностного монтажа, радиального и аксиального типов, стеклянные или керамические, тонкопленочные, быстродействующие, с фирменными характеристиками Slo-Blo® и так далее.

    Фактически некоторые из серий предохранителей Littelfuse на сегодняшний день являются промышленным стандартом.

    По этой причине продукцию компании можно встретить как в бытовой электронике, например, в MP3-плеерах, мобильных телефонах и цифровых видеокамерах, так и в составе телекоммуникационного, промышленного оборудования и в ответственных медицинских приборах.

    Плавкий предохранитель является устройством, чувствительным к протекающему току, и намеренно устанавливается в качестве элемента для разрыва электрической цепи. Таким образом можно обеспечить защиту от повреждения отдельных компонентов или функциональных блоков, при этом защита будет надежная, поскольку под воздействием сверхтока предохранитель разрушается и размыкает цепь.

    Вся обширная линейка плавких предохранителей производства компании Littelfuse условно подразделяется по своим характеристикам на три основные категории:

    • быстродействующие;
    • сверхбыстродействующие;
    • Slo-Blo®.

    Slo-Blo® – это семейство предохранителей с дополнительной тепловой инерцией, что позволяет использовать их в цепях с высокими пусковыми токами, временными перегрузками и так далее.

    В целом, данная градация продукции Littelfuse согласуется со стандартами, которые определяют требования к предохранителям в различных областях применения. Перечень стандартов, которым соответствует продукция Littelfuse и краткая сводка их требований приведены в [1(fusecatalog)].

    Так, к примеру, в стандарте IEC 60127-1 (ГОСТ Р 601127-1 – 2005 [2]) приводится следующая классификация предохранителей:

    • FF — сверхбыстродействующие, Very Quick Acting;
    • F — быстродействующие, Quick Acting;
    • M —полузамедленные, Medium Time Lag;
    • T — замедленные, Time Lag;
    • TT — сверхзамедленные, Long Time Lag.

    В стандарте IEC 60127-4 приводятся обобщенные параметры некоторых классов предохранителей.

    Время срабатывания при токе перегрузки в 10IN (1000%):

    • Type FF: Менее 0,001 с;
    • Type F: 0,001…0,01 с;
    • Type T: 0,01…0,1 с;
    • Type TT: 0,1…1,00 с.

    Основными конкурентами плавких предохранителей в современных электронных устройствах являются PTC (Positive Temperature Coefficient) – термисторы. Это полупроводниковые приборы, сопротивление которых существенно возрастает с повышением температуры. Данное свойство позволяет использовать PTC в качестве защитных элементов в электрических цепях по аналогии с традиционными предохранителями. В случае возникновения повышенных токов температура PTC повышается, сопротивление существенно возрастает, и ток в цепи снижается до безопасного уровня.

    Рис. 1. Характеристика PTC-термистора

    Рис. 1. Характеристика PTC-термистора

    Характеристика PTC приведена на рисунке 1.

    Главным отличием PTC от традиционных предохранителей является их способность многократно выполнять защитную функцию, в то время как плавкий предохранитель после перегорания нуждается в замене. В обиходе PTC часто называют самовосстанавливающимися предохранителями.

    Тем не менее, и традиционные предохранители, и PTC имеют свои достоинства и недостатки, что предоставляет разработчику богатый выбор устройств защиты от сверхтоков. Основные характеристики и отличия плавких и полупроводниковых предохранителей приведены в таблице 1.

    Таблица 1. Предохранители и PTC

    ПараметрПлавкие предохранителиPTC-термисторы
    Возможность восстановления после прекращения перегрузкиНет. В случае срабатывания предохранителя требуется заменаДа. Замена не требуется, уменьшается стоимость гарантийного и сервисного обслуживания, допускается установка в труднодоступных узлах конструкции
    Ток утечкиНет. После срабатывания предохранителя ток утечки отсутствует, цепь физически разорванаДа. В состоянии «Trip», когда PTC нагрет, присутствует ток утечки от сотен миллиампер при номинальном напряжении до нескольких сотен миллиампер при пониженном напряжении
    Максимально возможный ток прерывания, АImax = 10…10000, в зависимости от типаТипичный PTC: Imax = 40;PTC для батарейного питания: Imax = 100
    Рабочее напряжение Ur, В≤600≤60
    Рабочий ток Ir, А≤30≤14
    СопротивлениеRfuseRptc ≥ (2*Rfuse)
    Характеристика «время-ток»В зависимости от типа предохранителяСкорость срабатывания похожа на характеристику предохранителей Slo-Blo®
    Максимальная рабочая температура окружающей среды Tmax, °С<125<85

    При выборе в качестве устройства защиты плавкого предохранителя приходится учитывать множество факторов:

    • Номинальный рабочий ток предохранителя, указанный в техническом описании, является пороговым значением, при достижении которого вероятность срабатывания многократно повышается. При этом, температура окружающей среды напрямую влияет на этот процесс. Для предотвращения ложных срабатываний существует правило: нормальный рабочий ток в цепи (для температуры окружающей среды 25°С) не должен превышать 75% от номинала предохранителя. К примеру, предохранитель, рассчитанный на ток в 10 А, обычно не рекомендуется использовать при токах более 7,5 А при температуре окружающей среды 25°С.
    • Номинальное действующее напряжение (переменного или постоянного тока). Напряжение, действующее в цепи, не должно превышать максимально допустимого напряжения предохранителя.
    • Температура окружающей среды. Номинальный рабочий ток предохранителя, приведенный к температуре окружающей среды 25°С, существенным образом зависит от ее изменения. Чем выше окружающая температура, чем более нагрет предохранитель – тем быстрее и при более низких значениях протекающего тока он срабатывает. И наоборот, при низких температурах предохранитель срабатывает позднее.Кроме того, предохранитель нагревает сам себя, когда рабочий ток в цепи приближается или превышает номинальный ток выбранного предохранителя. Практический опыт показывает, что предохранители при комнатной температуре работают без ложных срабатываний в случае, если ток в цепи не превышает 75% от их номинала.
    • Режим перегрузки по току – уровень тока, для которого требуется срабатывание защиты. Может указываться просто значение тока в амперах или комплексная характеристика тока перегрузки и максимального времени, в течение которого предохранитель еще не срабатывает. При выборе предохранителя полезно ориентироваться на график зависимости допустимого тока от времени воздействия. Однако следует учитывать, что данные графики приводятся производителем на основании усредненных данных.
    • Максимально возможный ток прерывания предохранителя должен соответствовать или превышать максимально возможный аварийный ток в цепи. Невыполнение этого условия может привести к серьезным последствиям из-за неконтролируемого разрушения предохранителя, возникновения электрической дуги, воспламенения и тому подобного.
    • Импульсы тока, пусковой ток, переходные процессы в цепях. Термин «импульсы» применяется для описания широкой категории возмущений в электрической цепи, например, ударных и пусковых токов, переходных процессов и так далее.

    Собственно, электрические импульсы могут существенным образом отличаться в каждом конкретном типе схем, и разные типы предохранителей могут реагировать на них по-своему.

    Одна из главных особенностей воздействия импульсов заключается в том, что во время этого воздействия в структуре предохранителя возникают локальные перегревы, что приводит к механической усталости, а это, в свою очередь, приводит к сокращению времени жизни предохранителя и к изменению его параметров.

    В практических случаях, если в цепях действуют значительные стартовые токи, хорошо подходят предохранители класса Slo-Blo®.

    Предохранители с характеристикой Slo-Blo® имеют нормированную тепловую инерцию, которая позволяет им быть нечувствительным к значительным стартовым токам, обеспечивая при этом защиту при более продолжительных нагрузках.

    Разработчику необходимо определить параметры стартовых токов и сравнить их с такими характеристиками предохранителя как «время-ток» и I²t. Кроме того, рекомендуется тестировать на макете способность предохранителя выдерживать импульсные воздействия в реальных условиях.

    Номинальная энергия расплавления (Н.Р.) I²t – это энергия, требуемая для расплавления защитного элемента. Величина выражается в амперах2 в секунду. Номинальная энергия расплавления I²t является константой для каждого из различных типов защитных элементов, и приводится обычно для интервала воздействия 8 миллисекунд (или 1 миллисекунда для тонкопленочных предохранителей). По сути, величинаI2t является характеристикой предохранителя и обеспечивается материалом защитного элемента и его конфигурацией. Если выбирать предохранитель, опираясь на базисные параметры, такие как номинальный рабочий ток, коррекция параметров (re-rating), температура окружающей среды, необходимо также пользоваться и параметром I²t, который является не только постоянной величиной для каждого типа предохранителей, но и независим от температуры и напряжения.

    Наиболее часто номинальная энергия расплавления I²t как критерий выбора используется в случаях, когда предохранитель должен выдерживать большие импульсы тока в течение коротких интервалов времени. Такие токи, вызывающие выделение значительной мощности на элементах электрической цепи, являются распространенным явлением, и их оценка (с последующим правильным выбором элементов защиты) критически важна.

    Рис. 2. Форма импульсов тока для предохранителя PICO®II

    Рис. 2. Форма импульсов тока для предохранителя PICO®II

    Рис. 3. Типовые импульсы тока в электрических цепях

    Рис. 3. Типовые импульсы тока в электрических цепях

    Вышесказанное можно проиллюстрировать следующим примером:

    Выберем быстродействующий предохранитель PICO®II 125 В, который должен выдерживать 100000 импульсов тока, форма которых показана на рисунке 2.

    Номинальный рабочий ток данного предохранителя составляет 0,75 А при температуре окружающей среды 25°С.

    Шаг 1. Обратимся к рисунку 3 и выберем наиболее подходящую форму импульса тока, который действует в проектируемой электрической схеме. Форма импульса наибольшим образом соответствует графику «Е» на этом рисунке.

    Подставим значения пикового тока и времени в формулу, соответствующую форме тока «Е» на рисунке 3:

    I²t = 0,2×8²×0,004 = 0,0512 А²с;

    Обозначим это значение как «I²t импульса».

    Рис. 4. Циклическая импульсная нагрузочная способность

    Рис. 4. Циклическая импульсная нагрузочная способность

    Шаг 2. Определим требуемую величину номинальной энергии расплавления I²t, обратившись к рисунку 4 (между импульсами должен присутствовать интервал времени (~10 сек), для рассеивания тепла от предыдущего события).

    Согласно этому рисунку, значение I²t импульса, рассчитанное в шаге 1, для 100000 импульсов не должно превышать 22% от значения номинальной энергии расплавления.

    Можно сформулировать требования к номинальной энергии расплавления предохранителя следующим образом:

    I²t Н.Р. = I²t импульса/0,22 = 0,0512/0,22 = 0,2327 А²с.

    Шаг 3. Проверка соответствия сверхбыстродействующего предохранителя серии PICO®II, 125 В, на соответствие требованиям данного примера выглядит так:

    Артикул предохранителя – 0251001, номинальный ток – 1 А, номинальная энергия расплавления I²t = 0,256 А²с, что больше, чем значение 0,2327 А²с, вычисленное в шаге 2.

    При этом номинальный ток предохранителя не должен превышать значения 0,75 А, несмотря на то, что в характеристиках фигурирует цифра 1 А, запас по току в 25% необходим для надежной работы устройства.

    Шаг 4. Ограничения в физических размерах, таких, как длина, диаметр или высота;

    Шаг 5. Требования регулирующих или сертифицирующих органов, таких как UL, CSA, VDE, METI, MITI или Military;

    Шаг 6. Форм-фактор, удобство замены, визуальная индикация и так далее;

    Шаг 7. Тип держателя предохранителя – зажимы, монтажный блок, монтажная панель, монтаж на печатную плату и так далее.

    Таким образом, выбор предохранителя превращается в нетривиальную задачу, при решении которой нужно учитывать не менее десятка различных параметров, и, если имеются какие-либо ограничения по габаритным размерам или температуре окружающей среды, то еще и выполнить несколько итераций расчетов перед тем, как подходящий элемент защиты будет выбран. Понимая это, инженеры компании Littelfuse запустили сервис iDesign, который значительно упрощает процесс выбора не только плавких предохранителей и держателей для них, но и PTC-термисторов. В интерактивном режиме разработчику предоставляется возможность оценить все требуемые параметры, включая форму импульса пускового тока, что существенно ускоряет процесс разработки и позволяет минимизировать количество ошибок.

    Предохранители Littelfuse

    Традиционная система обозначений предохранителей Littelfuse показана на рисунке 5.

    Рис. 5. Система обозначений предохранителей Littelfuse

    Рис. 5. Система обозначений предохранителей Littelfuse

    Помимо вышеуказанной системы обозначений, в номенклатуре компании Littelfuse имеется также система обозначений Littelfuse-Wickmann. Wickmann – это немецкая компания, более 80 лет являющаяся лидером в производстве схем защиты для бытовой и промышленной электроники, телекоммуникационного оборудования и рынка обработки данных. В 2004 году была приобретена компанией Littelfuse. Продукция Wickmann пополнила продуктовую линейку Littelfuse, система обозначений Littelfuse-Wickmann показана на рисунке 6.

    Рис. 6. Система обозначений Littelfuse-Wickmann

    Рис. 6. Система обозначений Littelfuse-Wickmann

    Предохранители Littelfuse в исполнении для поверхностного монтажа приведены в таблице 2.

    Таблица 2. Предохранители Littelfuse в исполнении для поверхностного монтажа

    НаименованиеСерияТипоразмерTime lagFast ActingVery Fast ActingДиапазон рабочих токов, АМаксимальное рабочее напряжение, ВТок прерывания при Vmax, АДиапазон рабочих температур, °C
    Ceramic Chip4371206+0,25…8125/63/3250-55…150
    4380603+0,25…632/2450
    4401206+1,75…83250
    4410603+2…63250
    4691206+1…824/3224…63
    5011206+10; 12; 15; 2032150
    Thin Film4661206+0,125…5125/63/3250-55…90
    4291206+72435
    4681206+0,5…363/3235…50
    4670603+0,25…53235…50
    4940603+0,25…53235…50
    4350402+0,25…53235
    Nano2® Fuse4482410+0,062…15125/6535…50-55…125
    4492410+0,375…512550
    451/4532410+0,062…15125/6535…50
    452/4542410+0,375…12125/7250
    4564012+20; 25; 30; 40125100
    4581206+1,0…1075/6350
    4434012+0,5…525050
    4644818+0,5…6,3250100
    4654818+1…6,3250100
    4624118+0,500…5350100-40…80
    4854818+0,500…3,15600100-55…125
    Telelink® Fuse46140120,500…2,060060
    461Е40121,2560060
    OMNI-BLOK®
    Fuseholder
    154+0,062…10,012535…50
    154Т+0,375…512550
    PICO® SMF
    Fuse
    459+0,062…512550…300
    460+0,5…512550

    Предохранители серии Ceramic Chip предназначены для использования в схемах широкого профиля, но разрабатывались специально для применения в условиях с высокой температурой окружающей среды. Некоторые модели из линейки Ceramic Chip могут иметь рабочую температуру до 150°С. Серия отличается прекрасной температурной стабильностью и высокой надежностью, кроме того, выполнена на 100% по бессвинцовой технологии и не содержит галогенов. Полностью соответствует стандарту RoHS.

    Серия Thin Film (тонкопленочные предохранители) разработана для вторичной защиты цепей, которые используются в ограниченном пространстве, например, в носимых и мобильных электронных устройствах. Данная серия – низкопрофильная, что делает ее особенно привлекательной для приложений, в которых такой параметр как высота критичен. Защитный элемент, основанный на специальных сплавах, позволяет этой серии иметь отличную характеристику I2t, что означает высокую стойкость к пусковым токам. По этому параметру серия Thin Film превосходит керамические или стеклонаполненные предохранители, упакованные в корпуса аналогичного типоразмера.

    Серия Nano2® отличается очень маленькими размерами, пакуется в SMD-корпуса квадратного сечения. Серия выполняется по бессвинцовой технологии, и среди ее особенностей, помимо малых габаритных размеров – широкий диапазон номинальных токов (0,062…15 А), широкий диапазон рабочих температур, низкий температурный дерейтинг (ограничение допустимого тока относительно номинального значения из-за поправки на температуру окружающей среды). Серия находит применение в бытовой электронике, промышленной, медицинской и автомобильной технике.

    Серия Telelink® – плавкие предохранители поверхностного монтажа, обеспечивающие защиту от сверхтоков для широкого круга телекоммуникационных приложений. Серия предназначена для совместного применения с защитным тиристорами, например, из линейки Littlefuse SIDACtor®, или газоразрядниками из серии Greentube. Такая комбинация обеспечивает соответствие стандартам GR-1089-Core, TIA-968-A, UL/EN/IEC 60950, и ITUK.20/K.21. По своей структуре является предохранителем с повышенной тепловой инерцией, соответствует временным характеристикам Slo-Blo®.

    Предохранители серии OMNI-BLOCK® – это комбинация предохранителя и держателя в корпусе для поверхностного монтажа. Технология, по которой изготовлены компоненты, позволяет устанавливать их на печатную плату методом автоматической сборки «за один шаг», что экономит время и уменьшает стоимость установки.

    Если в процессе эксплуатации потребуется замена предохранителя – ее можно осуществить простым способом, не подвергая печатную плату процедуре пайки, нагрева и тому подобного. В держатель форм-фактора OMNI-BLOCK® устанавливаются предохранители серии Nano2®, предназначенные для поверхностного монтажа.

    Держатели предохранителей также можно приобретать и устанавливать как отдельные компоненты.

    Серия PICO®SMF разработана как продолжение серии PICO® для монтажа в отверстия, но предназначена для поверхностного монтажа. Обладает широкими диапазонами допустимых токов и температур, соответствует требованиям RoHS. Предохранители серии PICO®SMF чаще всего находят применение в базовых станциях беспроводной связи, телекоммуникационном и сетевом оборудовании.

    Предохранители Littelfuse с радиальным и аксиальным типом выводов приведены в таблице 3.

    Таблица 3. Предохранители Littelfuse с радиальным и аксиальным типом выводов

    НаименованиеСерияTime lagMedium ActingFast ActingVery Fast ActingДиапазон рабочих токов, АМаксимальное рабочее напряжение, ВТок прерывания при Vmax, АДиапазон рабочих температур, °C
    Micro™
    Fuse/TR3 Fuse
    262/268+0,002…512510000-50…125
    269+0,002…512510000
    272/278+0,002…512510000
    273/279+0,002…512510000-55…85
    274+0,002…512510000
    303+0,5…512550-55…70
    TR5® Fuse370+0,4…6,325035…50-40…85
    372+0,4…6,325035…50
    373+0,5…1025050
    374+0,5…1025050
    382+1…10250100
    383+1…1030050…100
    5×20 mm217+0,032…1525035…150-55…125
    218+0,032…1625035…100
    213+0,2…6,325035…63
    219XA+0,04…6,3250150
    216+0,05…16250750…1500
    215+0,125…20250400/1500
    232+1…10250/125300/10000
    235+0,1…7250/12535…10000
    233+1…1012510000
    234+1…10250100…200
    239+0,08…7250/12535…10000
    285+0,125…20250400…1500
    477+0,5…16400 DC/500 AC100…1500
    977+0,5…16450 DC/500 AC200/100
    TE5369+1…6,330050-40…85
    385+0,35…1,512550
    3910,125…46550
    392+0,8…6,325025…63
    395+0,05…6,3125100
    396+0,05…6,3125100
    397+0,35…1,512550
    398+0,125…46550
    399+0,125…46550
    400+0,5…6,3250130
    804+0,8…6,3250150-40…125
    808+2…5250100-40…85
    PICO®
    Fuse/
    PICO® II
    Fuse Axial
    251+0,062…15125300 DC/50 AC-55…125
    253+0,062…15125300 DC/50 AC
    275+20…3032300 DC/50 AC
    263+0,062…525050
    471+0,5…512550
    472+0,5…512550
    473+0,375…712550
    265/266/267+0,062…15125300 DC/50 AC

     

    Серии TR3® и TR5® – предохранители для монтажа в отверстия печатной платы с проволочными выводами радиального типа. Помимо пайки, допускается установка в держатель. Позволяют экономить место на печатной плате, имеют низкое внутреннее сопротивление. Ударопрочный корпус предохраняет защитный элемент от повреждений и обеспечивает предохранителю высокую вибрационную стойкость. Эти предохранители выполнены по бессвинцовой и безгалогенной технологии, часто применяются в батарейных зарядных устройствах, источниках питания, промышленных контроллерах.

    Предохранители типоразмера 5х20 мм с выводами аксиального типа разработаны для полного соответствия стандарту IEC и предназначены для повсеместного применения без ограничений. Используются для защиты цепей в оборудовании различных классов и широкой номенклатуры.

    Предохранители серии TE5® упаковываются в негорючие, заполненные компаундом корпуса, что гарантирует необратимое физическое разделение цепи в случае срабатывания. Занимают меньше места на печатной плате. Кроме того, для этой серии характерен малый разброс времени срабатывания и низкое внутреннее сопротивление. Производитель рекомендует ее для глобального применения без ограничений.

    Серии PICO® и PICO®II разработаны для реализации широкого спектра характеристик в малогабаритных субминиатюрных корпусах. Среди предохранителей данной серии можно встретить и малогабаритные – на напряжение 250 В (серия 263, PICO®II), и сверхбыстродействующие высоконадежные – для защиты конечного оборудования (серии 265/266/267 PICO® Very Fast Acting fuse).

    Предохранители серии 473 (PICO®II, Slo-Blo®) сочетают в себе временные характеристики категории Slo-Blo® и высокую надежность серии PICO®.

     

    Заключение

    Несмотря на кажущуюся простоту, правильный выбор и использование плавкого предохранителя является нетривиальной задачей. Разработчик электрической схемы должен учитывать и конструкционные параметры, и номинальные и интегральные токи, и влияние температуры окружающей среды. Наличие в ассортименте Littelfuse широчайшей гаммы предохранителей, несомненно, облегчает решение этой задачи, а сервис iDesign позволяет значительно ускорить принятие правильного решения.

     

    Литература

    1. Техническая документация Littelfuse
    2. Каталог по плавким предохранителям Littelfuse
    3. Руководство по выбору плавких предохранителей Littelfuse

    Получение технической информации, заказ образцов, заказ и доставка.

    LTF_OMNI-BLOK_NE_14_14_opt

    •••

    Наши информационные каналы

    Как работают сетевые фильтры и предохранители?

    Криса Вудфорда. Последнее изменение: 23 января 2020 г.

    При ударе молнии захватывающе и волнительно, но это страшно слишком. Страшно, потому что опасно: прыгающие молнии содержат огромное количество электрической энергии которые выпущены в доли секунды. Если рядом с вашим домом ударит молния, все это электричество должно куда-то уходить. Один место, куда он может пойти, это через система электропроводки в вашем доме, повреждая или разрушая любые электрические элементы, которые подключены в то время.Почти невозможно не дать молнии повредить ваши вещи, и это как правило, лучше всего отключать все, что можно, перед бурей прибывает. Еще одна полезная вещь, которую вы можете сделать, — это установить Surge протекторы . Эти дешевые компактные кубики и удлинители помогают выровнять внезапные пики электричества в электросети и уменьшить вероятность повреждения чувствительного электронного оборудования. Давайте подробнее рассмотрим как они работают.

    Фото: Электрический огонь! Хотя цифры меняются от страны к стране и из года в год, электрические сбои или неисправности обычно вызывают от четверти до половины всех пожаров; сетевые фильтры и предохранители помогают снизить риск.Фотография стажера-пожарного, тушащего электрический огонь с помощью углекислый газ от Уильяма Кенни любезно предоставлен ВМС США.

    Что такое скачки напряжения?

    Фото: Типичный британский сетевой фильтр, встроенный в куб. Это сделано Belkin, вероятно, самой известной марки; другие популярные марки включают APC, Ativa и Hubbell. Обратите внимание на световые индикаторы наверху, оба из которых должны быть освещены, чтобы подтвердить, что протектор работает. Тот самый слева горит зеленым светом, показывая, что прибор защищен.Тот, что справа (с пометкой «Заземлен» или «Питание») подтверждает, что питание включено.

    Если вы читали нашу длинную статью об электричестве, вы будете знать, что электрический ток — это поток электронов (крошечных частиц внутри атомов), переносящих энергию через металл или другое вещество в петле, называемой схемой . Вы также знайте, что электричество может быть чрезвычайно опасным: это не что-то возиться, если вы цените свою жизнь. Электричество, которое приходит наши дома от электростанций путешествуют по невероятно высокое напряжение, потому что это помогает экономить энергию.Трансформеры на подстанциях рядом со зданиями преобразует мощность высокого напряжения в более низкое напряжение, чем бытовой техникой в ​​наших домах можно спокойно пользоваться. Различная техника нужна большее или меньшее количество электроэнергии. Вещи, которые становятся горячими (электрические души, тостеры и печи) нуждаются в больших токах, которые одновременно обеспечивают большую мощность, тогда как электронное оборудование (проигрыватели компакт-дисков, телевизоры и т. д.) требует гораздо меньших токов и потребляет меньше энергии. Все эти устройства предполагают, что электричество, поступающее в в вашем доме достаточно постоянное напряжение .

    Фото: еще один снимок сетевого фильтра Belkin в его розничной упаковке.

    Но иногда напряжение колеблется из-за резких изменений в способе подачи энергии из сети. Или это может случиться если кто-то на соседнем заводе включает или выключает огромный прибор с мощным электродвигателем внутри него, что может вызвать внезапный скачок или падение напряжения во всей цепи в вашем доме. Очень Кратковременное изменение напряжения называется скачком .Более продолжительное изменение называется скачком . Скачок или скачок напряжения, вероятно, не повлияет на другие крупные приборы, но может повредить крошечные компоненты чувствительного электронного оборудования. Нам нужно что-то, что сглаживает любые пики напряжения — и это то, что делают устройства защиты от перенапряжения.

    Как работают сетевые фильтры

    Приборы, которые вы используете, питаются от розеток в стене. Электроэнергия от розеток подается прямо в прибор по длина кабеля.В устройстве защиты от перенапряжения основная линия электропередачи (известная как провод под напряжением или провод под напряжением ) имеет дополнительное соединение (a своего рода «проселочная дорога»), связанная с ней, которая ведет к земле провод (иногда также называемый Заземляющий провод ; защитный провод в электрической цепи, которая безопасно передает любой нежелательный ток в землю). Обычно импульсное соединение неактивно. Тем не мение, если появляется напряжение, превышающее нормальное, и производит слишком много электрический ток, избыточный ток безопасно отводится в сторону дорога к земле.Это означает, что в ваш прибор, поэтому он лучше защищен от повреждений.

    Как устройство для защиты от перенапряжения узнает, когда нужно отвести ток? это фактически устройство, называемое варистором (зависящее от напряжения резистор), сделанный из вещества, называемого оксидом металла полупроводник что обычно плохо проводник (переносчик) электричества. Когда чрезмерное напряжение Полупроводник в варисторе становится хорошим проводником и начинает нормально проводить электричество.Пока волна напряжение сохраняется, полупроводник направляет опасный ток на землю. Как только все возвращается в норму, полупроводник снова переключается.

    Все это означает, что ваш прибор защищен не только во время скачок напряжения — он должен продолжать нормально работать.

    Изображение: Изображение слева: Без сетевого фильтра соединения «горячий / активный» (коричневый) и нейтральный (синий) обеспечивают питание вашего прибор. Заземление (зеленое) обычно подключается к металлический корпус, чтобы обеспечить безопасный способ выхода паразитных токов, но это не участвует в подаче питания на прибор.Правое изображение: с сетевым фильтром есть дополнительное соединение токоведущего / токоведущего провода на землю. Если всплеск ток течет по горячему / находящемуся под напряжением проводу, любой избыточный ток безопасно отведен вокруг импульсного провода (красный) на землю. NB: Это пример показывает типичную британскую проводку.

    Почему сетевые фильтры не обеспечивают полную защиту

    Важно отметить, что сетевые фильтры не дают вам полной защита. Прямой удар молнии — это абсолютно массивный разряд электричество; сетевой фильтр, вероятно, не остановит такой огромный скачок напряжения от повреждения вещей в вашем доме.Защита от перенапряжения также имеет ограниченную ценность, когда скачки напряжения длятся некоторое время. и они не защищают от более высоких, чем ожидалось, токов от Энергосистема.

    Что такое предохранители?

    Фото: Предохранитель внутри электрической вилки (подключен к электросети Великобритании). Предохранитель — коричневый вертикальный цилиндр справа. Он находится последовательно между коричневым (живым) проводом. и источник питания: другими словами, ток от источника должен пройти через предохранитель, чтобы пройти по коричневому проводу.Этот конкретный предохранитель рассчитан на 13 ампер, что является максимально возможным током, который должен выдерживать любой подобный прибор. Для небольших бытовых приборов чаще используются предохранители на 3 или 5 А.

    Когда перегорает предохранитель, часто можно услышать, как он перегорел с резким ТРЕЩИНА! это погружает ваш дом во внезапную тьму. Когда это происходит поздно ночью, это очень неприятно, но есть альтернатива. хуже. Если бы у нас не было предохранителей, электрические неисправности могли вызвать возгорание в наших домах и сожгите их дотла.Слава богу, за эти крошечные электрические протекторы, которые защищают нас. Давай узнаем что они есть и как они работают!

    Зачем нужны предохранители?

    По целому ряду непредсказуемых причин кабели, идущие к электроприборам, могут внезапно оказаться имеют гораздо больший ток, чем следовало бы. Если бы у нас не было предохранителей, эти высокие токи могли бы повредить наши телевизоры, радио, компьютеры, и электрические лампочки, которые могут вызвать пожары и, возможно, даже поставить под угрозу жизнь.Предохранитель защищает электроприборы блокируя токи, которые больше, чем они должны быть.

    Как работают предохранители

    Фото: Внутри предохранителя. Если вы сломаете предохранитель картриджа, вы обнаружите вот что: тонкий проводящий провод посередине, пропускающий ток, окруженный довольно толстым изолирующим керамическим корпусом. Керамика предназначена для защиты вилки (или другое оборудование, внутри которого установлен предохранитель) от тепла и возгорания при протекании сильного тока.

    Вы, наверное, знаете, что провода нагреваются, когда идет электричество. через них.Так работают обычные лампы накаливания. Электричество течет по очень тонкому проводу, который называется нитью . он такой горячий, что испускает свет. Та же идея работает в электрический тостер. Здесь электричество протекает через серию тонких металлические ленты, делая их такими горячими, что они выделяют достаточно тепла, чтобы приготовить хлеб. Предохранитель точно такой же. Это тонкий кусок проволоки разработан для проведения ограниченного электрического тока. Если вы попытаетесь пройти более высокий ток через провод, он нагревается так сильно, что горит или тает.Когда он тает, он разрывает цепь, к которой подключен, и останавливает ток.

    Мы устанавливаем предохранители в разных местах дома. В некоторых странах, например, в Великобритании, предохранители вставляются в вилки на всех устройствах, подключается к электрической розетке. Разные приборы рисуют разные количество тока, поэтому электрическому тостеру потребуется более мощный предохранитель (обычно 13 ампер), чем электрический свет (обычно всего 3 ампера).

    Виды блоков предохранителей

    Фото: Старомодный блок предохранителей.У этого есть четыре плавких предохранителя внутри четырех коричневых бакелитов. держатели предохранителей, каждый предохранитель защищает отдельную цепь внутри дома. Если один предохранитель перегорит, остальные три останутся нетронутыми. Все питание можно включать и выключать с помощью маленького красного переключателя справа. Это переключает все четыре цепи включено или выключено одновременно.

    Есть также предохранители, установленные на стыке, где главный в ваш дом поступает электричество. Это перекресток . блок , блок предохранителей , или иногда (более неопределенно) потребительский блок .Он делит входящую электроэнергию на ряд разделяет цепи и питает их в разных частях вашего дома. А мощная цепь питает большие предметы, такие как электрические плиты, в то время как цепи с более низким номиналом питают лампы и другие приборы. Имея разные части вашего дома на отдельных цепях означает, что сбой в одной цепи не останавливает работу других.

    Обычно каждая электрическая цепь в вашем доме оснащена собственным предохранителем. В старых блоках предохранителей плавкий предохранитель представляет собой просто подключенный голый кусок провода. между двумя терминалами.Более свежие блоки предохранителей имеют заменяемые патронные предохранители с плавким проводом, встроенным в стеклянный или керамический цилиндр, который вы можете легко вставлять и снимать. Новейшие блоки предохранителей избавляются от плавкие предохранители и вместо них есть выключатели. В случае неисправности блок предохранителей мгновенно обнаруживает проблему, а аварийный выключатель автоматически отключает все затронутые цепи. однажды вы определили и решили проблему, вы можете просто перевернуть переключитесь обратно, чтобы питание снова заработало.


    Фото: В современном блоке предохранителей, подобном этому, производства Wylex, вместо него используются выключатели. провода предохранителя или патронов.На первом фото показан весь блок предохранителей; второй показывает крупный план выключателей отключения. Если в одной из цепей течет слишком большой ток, переключатель для этого цепь переворачивается и отключает электричество. Вы можете восстановить питание, снова повернув выключатель (после исправление того, что вызвало проблему). Половина цепей в этом блоке предохранителей оснащена автоматическими УЗО (устройство остаточного тока), которое значительно снижает риск поражения электрическим током при случайном разрезании силовых кабелей.

    Какой предохранитель использовать?

    Фото: два стеклянных цилиндрических предохранителя на 30 ампер из бытового блока предохранителей. Вы Никогда не нужны такие большие предохранители в одиночной бытовой технике.

    Если вам нужно заменить предохранитель, как правило, можно заменить тот, который вы вынули. другой такой же номинал (13 ампер на 13 ампер, 3 ампер на 3 ампер или 5 ампер на 5 ампер). Но это всегда полезно проверить: большинство приборов (или их инструкции по эксплуатации) подскажут, какой предохранитель вам нужен. необходимость.Иногда можно работать инстинктивно: большие приборы, которые нагревают предметы, например, электрические чайники или электрические камины, потребляют большой ток и требуют больших предохранителей; небольшая техника, которая Используйте меньшие токи, например настольные лампы или зарядные устройства для мобильных телефонов, потребуются только небольшие предохранители. Если вы вставили небольшой предохранитель в прибор, который потребляет большой ток, предохранитель сгорит довольно быстро и остановите работу вашего прибора; если вы поместите большой предохранитель в прибор, тока, вы мешаете предохранителю работать и подвергаете себя риску.

    Вы также можете рассчитать требуемый предохранитель, исходя из номинальной мощности вашего устройства и напряжения. источника питания, поскольку мощность, напряжение и ток связаны простым уравнением: мощность (ватт) = напряжение (вольты) × ток (амперы). Итак, чтобы найти номинал предохранителя (который должен быть выше, чем ток прибор рисует), просто разделите номинальную мощность вашего прибора на напряжение. Например, если вы живете в Великобритании и у вас есть электрический чайник на 2500 ватт и источник питания на 240 вольт, вы можете видеть, что ваш чайник будет используйте ток 2500, разделенный на 240 или приблизительно 10.5 ампер, значит вам понадобится предохранитель на 13 ампер. Если у вас есть настольная лампа со старомодной лампочкой на 60 Вт, она будет использовать 60/240 = 0,25 А, поэтому предохранитель на 3 ампера — это то, что вам нужно. Вот краткое описание того, как это работает для источников питания 240 вольт:

    Номинал предохранителя Номинальная мощность (при питании 240 В)
    3 А До 720 Вт.
    5 ампер 720–1200 Вт
    13 А Более 1200 Вт

    В случае сомнений всегда используйте предохранитель наименьшего размера ; худшее, что случится в том, что предохранитель перегорит, если ток будет слишком большим.Если вы используете слишком большой предохранитель, он не защитите свой прибор от чрезмерных токов, и вы можете поставить себя, свой дом и свою жизнь рискованно.

    В чем разница между сетевым фильтром и предохранителем?

    Предохранитель

    A предназначен для предотвращения внезапного возникновения больших электрических токов от повреждения оборудование в вашем доме. Звучит так же, как сетевой фильтр, не так ли? Но на самом деле это работает иначе. Большинство предохранителей очень тонкие куски проволоки, рассчитанные на пропускание только большого тока через них.Чем толще провод, тем больше тока может течь; так предохранители рассчитанные на более высокие токи, обычно имеют внутри более толстые куски провода их.

    Как работает предохранитель? Если ток слишком большой (например, если вы поставили слишком много приборов на одну розетку) предохранитель буквально сгорает выход: провод становится настолько горячим, что плавится и прерывает цепь, чтобы защитить тебя. Иногда предохранители действительно «перегорают»: ток протекает через них настолько велико, что они мгновенно выгорают с громким треском.Таким образом, предохранитель — это очень радикальная форма защита: в случае чего отключает электричество полностью. Сетевой фильтр предназначен для сглаживания небольших колебания напряжения, и он обычно не отключает цепь когда возникает проблема. Вам нужны как предохранители, так и сетевые фильтры. защита от электрических проблем. Действительно, если вы посмотрите на спину типичный сетевой фильтр, вы, скорее всего, найдете … заменяемый предохранитель!

    .

    Объяснение работы автомобильных предохранителей менее чем за 5 минут

    Описание

    Автомобильный предохранитель предназначен для ограничения потребляемой силы тока. через определенную цепь. Когда в электрической цепи есть проблема, например короткое замыкание на массу вызовет перегрев цепи и возгорание, предохранитель устраняет эту угрозу. Эти предохранители собраны внутри панели или коробки предохранителей в виде многие называют это и могут сопровождаться реле управления системой.Также появились интеллектуальные панели с предохранителями. в передовую электронику современных легковых и грузовых автомобилей. Их можно назвать TIPM (полностью встроенный силовой модуль) или IPM (независимый силовой модуль) и т. д. у каждого производителя есть собственное описание устройства, хотя работа тот же самый. Все предохранители имеют номинальную мощность, указанную сбоку. предохранителя, обычно от 7,5 до 100 ампер в зависимости от нагрузки. цепь несёт.

    Что не так?

    В связи с характером эксплуатации любого транспортного средства вероятность отказа подражать. Сегодня электромобили стали мейнстримом, и предохранители и реле никогда не были лучше. Вибрация от дороги и двигателя может изнашиваться через защитную изоляцию проводки, что приведет к «срыву» предохранителя. точно так же, как электродвигатель, переключатель или контроллер могут вызвать ту же проблему. Как проверить автомобильный предохранитель

    СПОНСИРУЕМЫЕ ССЫЛКИ

    Где это?

    У каждого производителя есть свои представления о том, каким должно быть расположение панели предохранителей. но в большинстве случаев есть две панели, основная панель будет находиться под капотом автомобиль, а вторичная панель будет внутри салона.Некоторые автомобили есть дополнительная панель в задней части автомобиля.

    1. Вот типичная панель предохранителей, расположенная под капотом, спроектированная с крышка для защиты от влаги, на новых автомобилях она называется PDC или (power распределительный центр)
    2. Внутри PDC есть много предохранителей для тяжелых и легких условий эксплуатации, которые защищают различные цепи, требующие определенной силы тока.
    3. Все предохранители сконструированы с элементом, который плавится, если сила тока в цепи превышает номинал предохранителя. который разрывает соединение и защищает цепь.
    4. Предохранитель
    5. А обычно определяется номинальной силой тока, на которую он рассчитан. защитить, например, этот предохранитель на 30 ампер.
    6. Питание панели предохранителей подается от плюса. аккумуляторный кабель, который присоединяется к положительной стороне аккумулятор.
    7. Для снятия предохранителя для проверки используется инструмент, который обычно входит в комплект. внутри PDC. Предохранитель может протестирован также с использованием тестовой лампы.
    8. Ниже показан отказавший предохранитель, на что указывает сгоревший элемент. внутри предохранитель

    Посмотрите видео!

    Вот как заменяется предохранитель — Замена предохранителя

    Вопросы?

    Наша команда сертифицированных механиков готова бесплатно ответить на ваши вопросы.

    Статья опубликована 26.01.2020

    .

    Как работает предварительный просмотр предохранителя — документация предохранителя

    • Начало работы
    • Документация
    • Форумы
    • Примеры
    • Витрины
    • Интеграции
    • Предохранитель
      • Основы предохранителей
        • Поддерживаемые платформы
        • Установка и быстрый запуск
        • Введение в Fuse
        • Предварительный просмотр и экспорт
        • Компонентизация
        • Адаптивный макет
        • Безопасный макет
        • Декларативная анимация
        • Предохранитель для дизайнеров
        • Структурирование ресурсов приложения
        • Обзор возможностей
        • Вопросы-Ответы
        • Пакеты сообщества
      • Учебник (Использование API моделей)
        • 1.Изменить вид похода
        • 2. Несколько походов.
        • 3. Разделение компонентов
        • 4. Навигация и маршрутизация
        • 5. Издевательство над нашим сервером
        • 6. Настройка внешнего вида
        • 7. Заставка.
        • 8. Заключительные мысли
      • Учебник (Использование Observables API)
        • 1. Изменить вид похода
        • 2. Несколько походов.
        • 3.Разделение компонентов
        • 4. Навигация и маршрутизация
        • 5. Издевательство над нашим сервером
        • 6. Настройка внешнего вида
        • 7. Заставка.
        • 8. Заключительные мысли
      • Fuse Studio
      • Ссылка на проект (.unoproj)
      • Ресурсы
        • Шрифты
        • Источники изображений
        • Связанные файлы
        • Импорт из эскиза
        • Символы эскиза (бета)
        • Импортировать шрифты значков
      • API моделей (новый)
      • Observables API
        • Полный справочник API
        • Узоры
      • API-интерфейсы FuseJS (JavaScript)
        • Полифиллы
        • EventEmitter
        • Файловая система
        • Место хранения
        • Связка
        • Жизненный цикл
        • InterApp
        • доля
        • HTTP
          • Работа с REST API
        • Окружающая среда
        • Телефон
        • Камера
        • Фотопленка
        • Вибрация
        • GeoLocation
        • Всплывающее уведомление
        • Местные уведомления
        • Датчики
        • Base64
        • Таймер
        • ImageИнструменты
        • Сторонние модули
      • Сценарии и данные
        .

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *