Как сделать динамо машину: Динамо-машина своими руками

Содержание

Динамо-машина своими руками: сложно не будет

Использование множества электронных устройств делают человека зависимым от источников питания. Поэтому авария на централизованной сети или быстро севшие батарейки приобретают масштаб глобальной катастрофы. Приобрести свободу от посторонних факторов и всегда иметь под рукой энергонезависимое зарядное устройство позволит сборка динамо-машины своими руками. Может показаться, что ее проще купить на Алиэкспресс. Но, чтобы разобраться с тонкостями физики процесса, лучше все же собрать динамо-машину, подогнав и заботливо отрегулировав каждый элемент.

Конструктивные элементы динамо-машины и их особенности

Небольшое количество деталей упрощает процесс сборки модели, но требует тщательности и внимания.

Подойдет консервная банка достаточного диаметра или отрезок металлической трубы. Оба варианта требуют утяжеления. Для этого на поверхность изделия приваривается небольшая металлическая полоса аналогичной ширины. Одновременно из остатков металла следует сделать сердечники для электромагнитов. Для этого несколько полос железа под размер корпуса взаимно скрепляют и соединяют паяльником по бортам. Готовые сердечники крепят к отверстиям в корпусе, проделанным друг против друга. Для закрепления вращающегося якоря, который будет изготовлен на следующем этапе, в корпусе делаются две подшипниковые полосы и стойка из латуни или жести.

  • Вращающийся якорь

Эта деталь – одна из самых сложных в устройстве. Потребуется несколько жестяных пластин, из которых вырезается около 120 кругов диаметром чуть меньше диаметра корпуса. Их следует разметить: разметить круг на 8 секторов и провести окружность относительно центра диаметром около 38-40 мм. В точках пересечения окружности и секторов сверлят отверстия 8 мм. Пластины фиксируются гайками и надеваются на ось.

Эту деталь проще изготовить из трубы. Фрагмент размерами 25 см длиной и таким же диаметром распиливается на 4 равные части. Из сухой древесины, эбонита или фибры вырезается цилиндр с диаметром и длиной около 25 мм. В его центре высверливается отверстие, чтобы деталь села на ось якоря. Фрагменты трубы крепятся к цилиндру шурупами так, чтобы концы крепежей не подходили к оси якоря во избежание замыкания. Расстояния между фрагментами труб заполняются канифолью.

  • Щеткодержатель со щетками

Щеткодержатель применяется для снятия напряжения с поверхности коллектора. Его основание толщиной около 10 мм изготавливается из диэлектрика. В нем необходимо сделать три отверстия под щетки и одно в центре для надевания на ось подшипника. Щетки изготавливаются из медных или латунных пластин длиной около 40-50 мм со сквозным отверстием под болты. Благодаря его наличию по мере приближения к коллектору сила нажима будет меняться. Щетки фиксируют шайбами, а их концы затачиваются под небольшим углом, чтобы они плотно касались поверхности коллектора.

Как сделать обмотку

Чтобы сделать динамо-машину своими руками, потребуется около 0,5 кг медной проволоки с бумажной изоляцией 0,5 — 0,8 мм толщиной. При толщине 0,5 мм будет вырабатываться напряжение 25 В с силой тока в 1 ампер, при толщине 0,8 мм — 8 вольт и 3 ампера. Для электромагнита следует отмерить 450 гр проволоки, остаток пойдет на обмотку якоря. Намотка выполняется обычным способом с плотным прилеганием витков и надежной фиксацией концов.

Сборка конструкции

Последовательность работ выглядит так:

  • Для основания берется доска размером 150*200-30 мм.
  • К ней крепится корпус с помощью двух шурупов.
  • По бокам от корпуса плотно прикручивают два небольших деревянных бруска.
  • Свободный конец оси якоря вставляется через подшипник на корпусе.
  • Изнутри на ось подшипника надевается щеткодержатель.
  • Якорь устанавливается так, чтобы при вращении он не задевал стенки корпуса и другие элементы конструкции.

Есть и более простой вариант сборки, позволяющий получить общее представление о конструкции динамо-машины:

На заключительном этапе необходимо отрегулировать щетки, расположив их края вплотную к коллектору. Важно, чтобы его вращение не затрудняли расположенные рядом элементы. К собранному устройству можно подключить батарею на 20 Вт: если якорь будет вращаться, а мотор – работать, сборка проведена верно.

Динамо машина на велосипед или как сделать велогенератор своими руками

Я сделал этот фрикционный велогенератор для велосипеда, чтобы питать фонарик и задние лампочки. Идею и много информации для этого проекта педального генератора я нашел в интернете.

Недавно я купил велосипед, для того, чтобы ездить на работу и по городу, и решил, что ради безопасности мне нужна подсветка. Мой передний фонарь питался от двух батареек АА, а задняя лампочка от 2 батареек ААА, в инструкции было сказано, что передний свет будет работать 4 часа, а задний — 20 часов в режиме мигания.

Хотя это и неплохие показатели, но все же требуют некоторого внимания, чтобы батарейки не сели в неподходящий момент. Я купил этот байк за его простоту, единственная скорость означает, что я могу просто сесть и поехать, но постоянная замена батарей становится дорогой и усложняет его использование. Добавив динамку для велосипеда, я могу подпитывать батарейки прямо во время езды.

Шаг 1: Собираем запчасти

Если вы хотите собрать динамо машину своими руками, то вам понадобится несколько вещей. Вот их список:

Электроника:

  1. 1x шаговый двигатель — я достал свой из старого принтера
  2. 8 диодов — я использовал персональную силовую установку использовала 1N4001
  3. 1x Регулятор напряжения — LM317T
  4. 1x Макетная плата с печатная платой
  5. 2х резистора — на 150 Ом и на 220 Ом
  6. 1x радиатор
  7. 1x Разъем для батареи
  8. Цельная проволока
  9. Изоляционная лента

Механические части:

  • 1x держатель для велосипедного отражателя — я снял его с велосипеда, когда подключал свет.
  • Алюминиевая угловая заготовка, вам понадобится кусок длиной примерно 15 см
  • Маленькие гайки и болты — я использовал винты от принтера и некоторые другие б/у детали
  • Маленькое резиновое колесо — прикрепляется к шаговому двигателю и трется о колесо при его вращении.

Инструменты:

  • Дремель — он не совсем необходим, но делает вашу жизнь намного проще
  • Сверла и биты
  • Напильник
  • Отвертки, гаечные ключи
  • Макетная плата для тестирования схемы до того, как вы поставите всё на велосипед.
  • Мультиметр

Шаг 2: Создаём схему

Давайте сделаем схему динамомашины для велосипеда. Неплохой идеей является проверить все перед тем, как спаять все вместе, поэтому сначала я собрал всю схему на макетной плате без припоя. Я начал с разъема двигателя и диодов. Я распаял разъем от печатной платы принтера. Размещение диодов в такой ориентации изменяет поступающий от двигателя переменный ток, на постоянный ток (выпрямляет его).

Шаговый двигатель имеет две катушки, и вам необходимо убедиться, что каждая катушка подключена к одному набору диодных групп. Чтобы узнать, какие провода от двигателя подключены к одной и той же катушке, вам просто нужно проверить контакт между проводами. Два провода связаны с первой катушкой, и два со второй катушкой.

Как только схема будет собрана на макетной плате без припоя — проверьте ее. Мой мотор вырабатывал до 30 вольт при нормальной езде на велосипеде. Это 24-вольтный шаговый двигатель, так что его эффективность кажется мне разумной.

При установленном регуляторе напряжения выходное напряжение составляло 3,10 вольт. Резисторы контролируют выходное напряжение, и я выбрал варианты на 150 и 220 Ом для получения 3,08 вольт. Проверьте этот калькулятор напряжения LM317, чтобы увидеть, как я рассчитал свои показатели.

Теперь всё нужно спаять на печатной плате. Чтобы сделать аккуратные соединения, я использовал маленький калибровочный припой. Он быстрее нагревается и обеспечивает лучшее соединение.

В файле .Pdf вы найдёте, как все связано на печатной плате. Изогнутые линии — это провода, а короткие черные прямые линии – это то, где вам нужно спаять перемычки. Файлы

Файлы

Шаг 3: Установка мотора

Крепление двигателя было выполнено из алюминиевого уголка и кронштейна отражателя. Чтобы смонтировать двигатель, в алюминии были просверлены отверстия. Затем, чтобы освободить место для колеса, была вырезана одна сторона угла.

Колесо было прикреплено путем наматывания изоленты вокруг вала двигателя до тех пор, пока соединение не будет достаточно плотным, чтобы надеть колесо прямо на изоленту. Этот метод неплохо работает, но в будущем его нужно доработать.

Как только мотор и колесо были присоединены к алюминию, я нашел на раме подходящее место, чтобы все установить. Я прикрепил заготовку к трубке сиденья. Рама моего велосипеда — 61 см, поэтому площадь, на которой установлен генератор, довольно велика по сравнению с велосипедами меньшего размера. Просто найдите на своем велосипеде лучшее место для установки генератора.

После того, как я нашел подходящее место, я сделал отметки под алюминиевый кронштейн с установленным кронштейном отражателя, чтобы его можно было обрезать по нужному размеру. Затем я просверлили отверстия в кронштейне и алюминии, и смонтировал конструкцию на байке.

Я закончил сборку велосипедного генератора на 12 вольт, прикрепив двумя стойками проектную коробку к алюминиевому креплению.

Шаг 4: Подцепляем провода

Динамомашина для велосипеда собрана, теперь все что нужно – просто подключить провода к лампочкам. Я протолкнул концы проводов за клеммами аккумулятора к передней фаре, затем просверлил отверстие в её корпусе, чтобы пропустить провода внутрь. Затем провода были подключены к разъему аккумулятора. В проектной коробке также нужно будет сделать отверстия для проводов.

Генератор электрического тока или динамо машина

  • Главная
  • блог
  • Генератор электрического тока или динамо машина

Динамо-машина, или генератор электрического тока, — это устройство, которое преобразует в электрическую энергию другие состояния энергии: тепловую, механическую, химическую. До сегодняшнего дня остаются популярными велосипедные генераторы, питающие фары и задние фонари.

Принцип работы генератора электрического тока

Динамо-машина генерирует электрическую энергию благодаря принципу электромагнитной индукции. Обычно такое устройство конвертирует именно механические воздействия прямо в электрические импульсы. В его составе — ротор (открытая проволочная обмотка) и статор, в котором расположены полюса магнита. Ротор, не прекращая движения, все время вращается в силовом магнитном поле, что неизбежно приводит к возникновению тока в обмотке.
Схему своего устройства динамо-машина представляет следующую. Вращающийся проводник, или ротор, пересекает магнитное поле и в нем генерируется ток. Концы ротора подведены к кольцу (коллектор), через них и прижимные щётки ток перемещается в электрическую сеть. 

Электрический ток в динамо-машине

Образующийся ток в проводнике будет иметь наибольшее значение при условии, если ротор располагается перпендикулярно магнитным линям. Чем больше поворот проводника, тем сила тока будет меньше. И наоборот. То есть, процесс вращения проводника в магнитном поле вынуждает генерируемый электрический ток менять направление за один оборот ротора два раза. Благодаря этому свойству такой род тока стали называть переменным.
Динамо-машина для выработки постоянного тока построена на таком же принципе, как и для переменного тока. Разницу можно заметить лишь в деталях, когда концы металлического провода закрепляют не к кольцам, а подсоединяют к полукольцам. Такие полукольца обязательно изолируются между собой, что при вращении проводника делает возможным контактировать со щёткой переменно то одно полукольцо, то другое. Значит, в щётки вырабатываемый ток будет поступать исключительно в одном направлении, одним словом — ток будет постоянным.

Как собрать динамо-машину?

Динамо-машина своими руками собирается быстро. Основанием для будущего генератора будет служить деревянная доска толщиной около 30 мм и площадью 150 на 200 мм. Двумя шурупами на неё крепится корпус так, чтобы электромагниты располагались по горизонтали, один против другого. Затем, сквозь прикреплённый к корпусу подшипник продевается ось якоря, который закрепляется на своём месте между электромагнитами. С внутренней стороны подшипниковой стойки продевают щётки, вставляют второй конец оси якоря. На этом конце закрепляют коллектор.
Перед прикреплением подшипниковой стойки к основанию, якорь нужно выровнять таким образом, чтобы его вращение между электромагнитами не задевало их. Щётки должны располагаться поперёк башмаков электромагнитов и закрепляться на подшипнике. На свободном конце ротора прикрепляется небольшой шкив.
Электромонтаж устройства заключается в соединении концов обмоток для электромагнитов со щётками. Также к ним соединяют отрезки гибкого провода для сообщения устройства с внешней цепью.

Генератор и велосипед

Свою мощность динамо-машина для велосипеда демонстрирует в зависимости от скорости вращения. Например, недостаточно быстрое вращение или остановка велосипеда прекращает питать фонарь или иное устройство. Но при высокой скорости лампочки способны перегореть раньше срока выработки ресурса.
Различают несколько разновидностей велосипедных электрических генераторов:
Втулочный тип встраивается во втулку колеса. Конструктивно состоит из статичного сердечника на оси и обращающегося многополюсного магнита в форме кольца. Их стоимость больше, она компенсируется бесшумной работой и эффективностью.
Бутылочный тип наиболее популярный. Схожее с формой бутылки устройство оснащено небольшим колёсиком, что приводится в движение посредством трения о боковину резиновой покрышки колеса.
Кареточный генератор устанавливается рядом с кареточным стаканом, ниже перьев рамы. Движение подпружиненного ролика осуществляется благодаря трению о протектор покрышки. Следует упомянуть, что кареточная и бутылочная динамо машина перестают работать, попадая в мокрые условия.

Динамо машина. Виды и работа. Применение и особенности

Динамо-машина – это генератор постоянного тока, который вырабатывает электрическое напряжение в результате вращения специального приводного механизма. Такое устройство широко применялось до появления генераторов переменного тока. Сейчас динамо-машины встречаются значительно реже. Их в основном используют для питания осветительного оборудования на велосипедах, а также как часть конструкции некоторых видов ручных фонариков, радиоприемников, а также портативных зарядных устройств для мобильных телефонов, MP3 плееров и планшетов.

Как работает динамо-машина

Устройство состоит из катушки индуктивности, которая при вращении в магнитном поле вырабатывает электрическую энергию. Получаемый ток может передаваться оборудованию напрямую или заряжать аккумуляторную батарею, которая уже в дальнейшем будет питать потребителей. Принцип работы машины объясняется физическим законом Фарадея. Эффективность устройства напрямую зависит от скорости вращения катушки. Чем она выше, тем большее напряжение и силу тока можно получить.

Для подключения к простейшей динамо-машине можно использовать только такое оборудование, которое нормально переносит резкие скачки параметров напряжения. В первую очередь это светодиодные лампы. Для питания более чувствительного оборудования в конструкции предусматривается специальный контроллер, который предотвращает передачу критического заряда, способного навредить. Особенно это важно, если машина предназначена для подзарядки мобильного телефона.

Динамо машины для велосипедов

Самым эффективным и функциональным решением использования генератора постоянного тока (велогенератор) является его установка на велосипед. Такая динамо-машина позволяет получать электричество во время движения, поскольку подключается к переднему или заднему колесу. В ночное время без дополнительных усилий можно освещать дорогу впереди. Это повышает комфорт и безопасность движения. Кроме переднего фонаря генератор может питать и заднюю подсветку.

У таких динамо-машин может иметься встроенная батарея, которая сначала накапливает электричество, а уже потом передает его потребителям. Это исключает пульсацию света. Если аккумулятора нет, то яркость зависит только от скорости вращения колеса. При езде под гору, когда велосипед сильно замедляется, свет становится очень тусклым и практический не позволяет просматривать дорогу впереди. Современные велосипедные генераторы в основном выдают напряжение 6В. Это обусловлено тем, что они питают светодиоды, для которых этого вполне достаточно. Старые динамо-машины, известные велосипедистам советских времен, создавали напряжение 12В.  Это было вызвано тем, что они питали обыкновенные лампы накаливания, которые встречаются на мотоциклах или автомобилях.

Для велосипедов применяются различные конструкции динамо-машин. Среди самых популярных разновидностей можно отметить:
  • Бутылочная.
  • Втулочная.
  • Цепная.
  • Бесконтактная.
Бутылочные

Такая динамо-машина получила свое название в связи со своей схожестью по форме с обыкновенной стеклянной бутылкой. В ее конструкции предусматривается специальное колесико, которое прикладывается к боковой стороне протектора колеса велосипеда. В результате трения оно поворачивается, что приводит к выработке электричества. Такой вариант весьма распространен в связи с простотой установки и невысокой стоимостью. Эта конструкция имеет откидной механизм, благодаря которому генератор можно при необходимости прикладывать к покрышке колеса или убирать в дневное время, когда свет не нужен.

Эта конструкция не лишена и недостатков. В первую очередь она очень шумная, а кроме этого ускоряет износ шины. При долгом пользовании на покрышке остается глубокая борозда истертая колесиком генератора. Также создается сопротивление движению оборотам велосипедного колеса, что снижает накат. В сырую погоду, когда шины мокрые, колесико динамо-машины проскальзывает, и эффективность выработки электричества снижается.

Втулочные

Такая динамо-машина монтируется в колесо. Это конструкция весьма удачна, поскольку практически не создает шума. Кроме того, она не останавливает вращение колес, что сохраняет набранную скорость езды. Втулочная машина имеет недостаток в виде большой стоимости, а также сложности установки. Не во всех велосипедах возможно провести монтаж миниатюрного генератора без необходимости сложных ухищрений и переделок.

Цепные

Цепные динамо-машины имеют внутри специальную звездочку, которая при контакте с цепью начинает вращать катушку генератора. Такая конструкция весьма хлипкая и если ее плохо зажать, то может отклониться и попасть в спицы, в результате повредив колесо и вызвав аварийную ситуацию. Положительным моментом таких динамо-машин является наличие USB-порта, что позволяет подзаряжать от него мобильный телефон.

Бесконтактные

Самой совершенной является бесконтактная динамо-машина. Она довольно дорогая. В ней нет трущихся элементов, поэтому генератор вообще не создает никакого звука. Зачастую в ней имеется встроенный аккумулятор, что позволяет накапливать энергию наперед, и сохранять хорошее освещение даже при медленном движении в гору. Такое устройство обычно фиксируется на оси переднего колеса. Для обеспечения его работы на спицы устанавливается ободок из магнитов, который вращается изменяя параметры магнитного поля воздействующего на катушку. Обычно ободок имеет 28 магнитов с разными полюсами. Благодаря тому, что в такой динамо-машине применяется индукционная катушка, то энергия вырабатывается даже при низкой скорости, всего в 15 км в час.

Фонарик с динамо-машиной

Весьма распространенными являются ручные фонарики с встроенным генератором постоянного тока. Чтобы получить свет необходимо вращать специальную откидную рукоятку, которая для удобства прячется в корпус. Такие устройства бывают двух видов. В одних имеется встроенный батарея, а вторые передают заряд напрямую на светодиоды. При использовании первых можно предварительно подзарядить аккумулятор и пользоваться им на протяжении определенного времени без применения физического воздействия на генератор. Такие устройства дают ровный не пульсирующий свет, но стоят немного дороже и имеют больший вес. Самыми простыми являются фонарики без АКБ, у которых динамо-машина сразу передает заряд на диоды. Такие устройства светятся только при вращении рукояти. Если снизить интенсивность оборотов, то яркость уменьшается. Кроме этого наблюдается постоянная пульсация свечения, что вызывает усталость глаз.

Фонарики создают много шума при работе генератора, поэтому при приближении человека, который пользуется таким устройством, об этом скорее узнают по звуку, чем свечению слабенького светодиода. Для работы динамо-машины кроме вращения рукояти может предусматриваться специальный рычаг, который необходимо нажимать и отпускать, как спортивный эспандер для кисти. Это менее эффективная конструкция, но позволяет получать свет используя одну руку.

Радиоприемник с динамо-машиной

На рынке можно встретить радио, которое оснащено рукояткой для выработки энергии. Чтобы немного послушать трансляцию радиостанции необходимо предварительно поработать динамо-машиной и зарядить тем самым встроенный аккумулятор. Стоит отметить, что это малоэффективное устройство, создающее много шума. Одновременно слушать музыку и вращать рукоятку не удастся, поскольку динамик не сможет перекричать скрежет генератора. Единственным положительным моментом радио является создание нагрузки на мышцы. Он больше выступает тренажером для рук, чем полноценным FM-приемником. По этой причине многие производители предусматривают возможность подзарядки встроенного в устройство аккумулятора от электрической сети. Иногда в корпусе может предусматриваться место для установки обыкновенных пальчиковых батареек типа АА.

Зарядное устройство для мобильных телефонов с динамо-машиной

Для любителей активного отдыха или жителей удаленных местностей, где наблюдаются проблемы с электроснабжением, полезным устройством будет зарядное устройство с встроенным генератором постоянного тока. Внешне оно представляет собой небольшую коробку с откидной рукояткой, которая при вращении вырабатывает электрический ток подходящих параметров для питания мобильного телефона или другого портативного устройства. Для этого в корпусе предусматривается USB порт, с помощью которого можно подключить зарядной кабель смартфона.

Обычно такие устройства имеют встроенную аккумуляторную батарею, что позволяет сначала накапливать заряд на нее, а уже потом передавать его на телефон, как с повербанка. Обычно динамо-машина способна вырабатывать на максимальных оборотах ручки около 600 мАч в час. Это довольно скромный показатель, поэтому рассчитывать на полноценную полную зарядку смартфоном не приходится. Потребуется непрерывная работа рукояткой часами, чтобы восполнить всю емкость батареи. Несмотря на это устройство сможет выручить в сложной ситуации, ведь для совершения срочного звонка, когда телефон полностью разряжен, достаточно потрудиться над динамо-машиной 5-6 минут.

Обычно производители монтируют на корпусе таких устройств солнечную батарею. Благодаря этому выставив динамо-зарядку на открытый участок, где на нее попадает дневной свет, можно понемногу восполнять зарядку встроенного аккумулятора без необходимости вращать ручку. К сожалению, небольшая площадь солнечной батареи выдает поток электричества примерно 40 мАч, что естественно очень мало. При решении приобрести подобное устройство необходимо учитывать, что она очень шумное, поэтому будет не лучшей альтернативой восполнить зарядку смартфона для рыбаков или охотников.

Похожие темы:

Самодельная ручная динамо-машина

Канал Игорь Круч представил вашему вниманию новую самоделку, которую уже давным-давно автор видео сделал, но все время не было снять и выложить на YouTube. Наконец-то самодельная большая динамо-машина. Творение, на которое ушел где-то месяц работы, неспешно, продумано, все делалось, качественно, на совесть.

Посмотрите на выбор ручных генераторов и неодимовых магнитов в этом китайском магазине.
Она изготовлена из того, что было в наличии: движок, ремень и натяжитель из струйного принтера. Кроме того: тумблер, литий-ионная акб 18650. Добавилось ребро жёсткости. Из дисков сделан шкив. На холостом ходу производит напряжение до 11 вольт и ток 1,5 Ампера. Мощности хватает на светодиодные фонари, маломощный усилитель, смартфон. Для ноутбука данной динамо машины, сделанной своими руками, недостаточно.
Итак, обзор. Стенка и днище сделано из ламината, оставшийся лишний после ремонта. Шкив для ремня сделан из оптических дисков, ненужных, как можно заметить, они были просверлены и скручены. Ремень большой, длинный, желтого цвета, из старого принтера, ровно как и натяжитель из старого принтера, он был побольше. Отпилил ненужную часть.
Генератор остался тот же самый, ручка тоже, была изогнута, это необходимо, чтобы не цеплялась за ремень и натяжитель. Она была изогнутая, и позиция расположения этой рукоятки изменилась, так удобнее. В данном случае достигается оптимальное передаточное число. Также нововведение – ребро жесткости, потому что стенки из ламината слишком высокие получились, и она начала сильно раскачиваться, благодаря ему все надежно, ничего не шатается.

Электроника самодельного генератора с ручным приводом

Стоит сказать следующее. Генератор, диод и конденсаторы остались совершенно те же самые, как и в предыдущей динамо-машине. Также добавился один тумблер и блок аккумуляторов. Добавил разъемы соответственно, чтобы можно было к ней нагрузку подключать, удобно через разъемы. Слева кусочек отпиленной материнской платы ноутбука, неисправной материнской платы. У нас получилось 3 USB-порта для подключения питания. Чуть правее самодельная платка, макетная плата с 5-ю штырями. Соответственно можно подключить 5 потребителей энергии и к 3-ем USB-портам можно подключить 3 потребителя энергии.
В итоге суммарно параллельно вместе одновременно можно запитывать от этой динамо-машины 8 потребителей, но пока эксплуатируются лишь 2 потребителя, о них тоже скоро скажу. Тумблер спереди находится, а так динамо-машина выглядит снизу. Особо смотреть ничего: 4 резиновые ножки на двухсторонний скотч приклеены и 2 винтика от ребра жесткости.

Примечание. Винты, которыми скручены диски – с потайной головкой; на шкиве нанесены поперечные насечки (иначе ремень проскальзывал) и “железка”, на которой вращается шкив – это керн от старого динамика. Аккумуляторы скреплены с металлическими пластинами неодимовыми магнитами, которые благодаря покрытию из никеля прекрасно проводят ток. Сами металлические пластины – от сердечника трансформатора. Между шкивом и “железкой”, а также между шкивом и ламинатом густая смазка.

Далее на видео с 4 минуты. А еще простая модель из подручных материалов тут.

Делаем походную динамо-машинку для зарядки телефона своими руками


Привет всем! Сегодня в статье я попытаюсь вам подробнейшим способом описать изготовление полезной самоделки. А именно сегодня мы подробно рассмотрим, как сделать компактную динамо-машину для зарядки различных электронных устройств. Конечно, рассматривать данную самоделку как зарядку, которой вы будете постоянно заряжать ваш смартфон, не стоит. Но в какой-нибудь экстремальной ситуации где-нибудь в дороге или в лесу, экстренно зарядить пару процентов аккумулятора для звонка или просмотра своего местоположения по навигатору, отлично подойдет. Я считаю, что такая страховка должна валяться в рюкзаке каждого туриста. Тем более + ко всему этот девайс будет иметь функцию фонарика. Ну, что ж, думаю не стоит тянуть с длинным предисловием, погнали.

Ссылки на некоторые компоненты конструкции вы может найти в конце статьи.

Для динамо-машины понадобятся:
— Электродвигатель с металлическим редуктором
— Провода
— Micro BEC на 5 В
— Стандартное гнездо USB
— Светодиод 5 В
— Отрезок от ПВХ трубы (таким же диаметром как у редуктора двигателя)
— Тонкая фанера (лучше всего будет использовать бамбуковую фанеру) или пластик листовой
— Выключатель


Из инструментов также понадобится.
— Канцелярский нож
— Суперклей
— Термоклей
— Паяльник с паяльными принадлежностями
— Линейка
— Маркер
— Канцелярский нож
— Ножовка по металлу
— Изолента.

Изготовление динамо-машинки для зарядки устройств.
Первым делом необходимо раздобыть основной компонент самоделки. А именно основным компонентом у нас является электродвигатель с металлическим редуктором. Конечно, можно использовать и более простые версии движков с редукторами, где внутренние шестерни будут выполнены из пластика, но в таком случае самоделка потеряет свою надёжность и сможет подвести вас тогда когда она вам будет действительно необходима. Такие двигатели можно приобрести, как и в местных радио рынках, так и в интернет магазинах китайских коллег.

После того как раздобыли электродвигатель, переходи дальше. Сейчас нужно припаять пару проводов к контактам электродвигателя. Провода можно брать самые тонюсенькие, так как большой нагрузки они испытывать не будут. Длиной провода должны быть не более чем 10 см каждый, такой длинны будет более чем достаточно. Убираем изоляцию с кончиков проводов и припаиваем.


Для следующего шага необходимо приобрести micro BEC, ссылку на него вы можете обнаружить в конце данной статьи. Этот модуль является простейшим стабилизатором напряжения, который на вход принимает от 7 до 21 В. А на выходе он выдаёт 5 или 12 В, как переключить выходное напряжение смотрите в инструкции продавца к конкретно вашему модулю. Конечно, можно использовать и другие преобразователи, которые, стоят в 3-4 раза дешевле. Но основной особенностью micro моделей является их компактность, которая позволит максимально уменьшить корпус.

С micro BEC-ом следует сделать следующее. А именно другие концы проводов, что ранее припаяли к электродвигателю необходимо припаять во вход micro BAC-а (обычно эти контакты обозначаются как «IN» и «GND»).



Следующим шагом добавим в начинку классический USB разъём и светодиод. Для этого понадобится сам разъем, найти который я думаю, ни у кого не составит труда, а светодиод тем более. Возьмём два выше перечисленных компонента, снимем изоляцию с концов их проводов и параллельно соединим их между собой самым лучшим способом, скруткой.

Заготовку, состоящую из светодиода и USB разъёма, припаиваем к выходу на micro BEC-е. В итоге, на данном этапе у нас все должно получаться точно также как на изображение данном ниже.

Переходим к немаловажной части самоделки, а именно к корпусу. В качестве корпуса лучше всего использовать ПВХ трубу, в ней можно будет все аккуратно и компактно разложить. Трубу следует взять с внутренним диаметром 40 мм, так как внешний диаметр редуктора равен 39 мм, что позволит просто и плотно закрепить двигатель в корпусе, намотав на него пару витков изоленты.

Для корпуса из пластиковой трубы необходимо изготовить две заглушки. Эти заглушки можно вырезать из листового пластика, но автор решил их сделать из бамбуковой фанеры. Это хороший материал, с которым очень легко работать, он сам по себе как боле плотный картон.

Прикладываем ПВХ трубу к фанере и обводим её маркером, начерчивая при этом окружность необходимого для нас размера. Таких окружностей необходимо вырезать две. Вырезать можно при помощи обыкновенного канцелярского ножа. Вырезав окружности, их следует выронить, чтобы окружности были «идеальными».

Сначала необходимо взять одну из только что вырезанных окружностей и сделать с ней следующее. А именно на ней нужно будет расположить USB разъём и светодиод. Прикладываем USB разъём к фанере, обводим его маркёром и уже по конторы вырезаем отверстие при помощи того же канцелярского ножа. Затем то же самое проделываем и со светодиодом. Компоненты на заглушке вы можете располагать как угодно, а точнее как вам удобнее.


На второй заглушке тоже необходимо вырезать отверстие, но уже для вала редуктора. Для этого маркером отмечаем расположение непосредственно самого вала и вырезаем отверстие канцелярским ножом. И у нас должно получаться как на фото ниже. Также автор для предания более опрятного вида обклеил заглушки с внешней стороны самоклеящейся пленкой под карбон.


После чего на корпусе необходимо расположить выключатель. Рекомендую использовать миниатюрный выключатель. Прикладываем выключатель к той части ПВХ трубы, где мы хотим его расположить, маркером оставляем метки и аккуратно вырезаем отверстие канцлерским ножом.

Далее необходимо все компоненты засунуть в корпус. Для этого как я уже упоминал ранее необходимо сделать шире корпус редуктора, для этого используем изоленту. Наматываем изоленту на сам корпус так, чтобы двигатель плотно зашёл в корпус и сидел в нём надёжно.

Просовываем через отверстие провод от светодиода через отверстие и прикусываем его. К концам перекусанного провода припаиваем выключатель. Выключатель в данном случае будет служить только для включения и выключения светодиода. Это нужно для того чтобы светодиод не забирал часть энергии и ток зарядки не терялся.


Устанавливаем заглушки. Приклеиваем к заглушке разъём USB и светодиод, при помощи термоклея в свои посадочные места. Саму заглушку к корпусу приклеиваем на суперклей, смазав сначала ПВХ трубу клеем и подождав пару секунд пока клей подплавит пластик. Вторую заглушку крепим к корпусу с другой стороны и делаем это точно так же как и с первой заглушкой.

После чего необходимо изготовить рукоятку для удобного вращения вала. Для этого автор использовал 3Д принтер, сделав примитивную модельку, и распечатал её. Я вам рекомендую сделать также, тем более в настоящее время цены на услуги 3Д печати упали, и такая рукоятка обойдётся в пару копеек. К этой рукоятке необходимо прикрутить винтик и закрепить его гайкой.

Надеваем ручку на вал и все готово! Остаётся лишь протестировать самоделку. Для этого возьмём телефон и попробуем его зарядить, результаты тестов вы можете наблюдать ниже.

Приобрести комплектующие, которые могут пригодиться для сборки данной самоделки можно тут:
— Электродвигатель с металлическим редуктором
— Micro BEC на 5 v
— Стандартное гнездо USB
— Выключатель

Вот видео автора самоделки (сборка данной самоделки начинается с 3:50 и длится по 6:15) :


Ну и всем спасибо за внимание и удачи в будущих проектах самодельщики!
Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Как сделать электрический генератор своими руками из велосипеда и динамо-машины автомобильного двигателя

Существует много способов сделать педальный электрический генератор своими руками. За основу для генератора можно взять старый велосипед или велотренажёр. Существует множество вариантов более совершенных самодельных педальных генераторов, но данный вариант педального генератора на основе шоссейного велосипеда не потребует от вас серьёзного опыта по созданию электрических генераторов и наличия токарного станка или сварочного оборудования. Взятый за основу генератор от автомобильного двигателя способен вырабатывать значительное количество электроэнергии и в результате у нас получится достаточно мощный велогенератор. Генератор переменного тока и шоссейный велосипед не обязательно покупать новыми — их можно за копейки найти по объявлениям в интернете или в бесплатной газете объявлений. Проблема автоматической регуляции напряжения решается с помощью собственной схемы генератора переменного тока и простой самодельной схемы подключения генератора к аккумулятору.

Здесь не только приведены схемы велогенератора, но и даны рекомендации по его дополнительному совершенствованию. Если же вы хотите максимально упростить создание электрического педального генератора, то рекомендуем вам просто купить велогенератор в виде мотор-колеса на велосипед.

Даже если спортсмены и могут ограниченное время выдавать большую мощность, следует учесть, что максимальная непрерывная мощность среднестатистического человека составляет всего лишь одну восьмую от лошадиной силы или чуть менее 100 Вт. Если вам требуется больше электроэнергии, то вам разве что придётся задуматься о том, как сделать электрический генератор с лошадью. Но даже эти 100 Вт механической энергии не полностью превращаются в электричество — в аккумулятор поступает только около 60 Вт.

Самодельный электрический генератор вырабатывает автоматически регулируемое напряжение, которое позволяет заряжать обслуживаемые или необслуживаемые свинцовые аккумуляторы. Генератор переменного тока в отличии от генераторов постоянного тока и шаговых двигателей работает только в связке с аккумулятором и даже при включении без него может получить повреждения. В схеме педального генератора необходимо снизить его частоту вращения с 3000 оборотов в минуту, рассчитанную на его применение в автомобиле, до показателей, выдаваемых среднестатистическим человеком. Это проблема легко решается с помощью шоссейного велосипеда с большим задним колесом, с которого снимается покрышка и оно используется в качестве гигантского шкива. Большой ремень несложно найти на рынке и он недорогой.

Проблема максимальной мощности немного сложней — если просто скопировать автомобильную схему зарядки аккумулятора, то можно заметить, что в некоторых условиях невозможно крутить педали (разряженная батарея или высокая нагрузка, например, подключение усилителя на 12 В на высокой громкости). Хорошим решением проблемы станет перемотка генератора переменного тока или создание электронного блока управления, включающегося вместо родного на высоких токах. Но ни один из этих способов не походит для создания электрического генератора своими руками дома. К счастью существует более простой способ, заключающийся в небольшом разрегулировании электрического генератора с помощью подключения резистора между генератором и аккумулятором.

Конечно глупо впустую тратить часть энергии (от 6-ти до 10-ти процентов), но с подключенным к аудиосистеме разряженным аккумулятором среднестатистический человек не сможет крутить педали.

Даже с резистором при подключение тяжёлой нагрузки иногда трудно начать педалирование. Чем быстрее ты вращаешь педали, тем легче их крутить. Это странное ощущение совсем не соответствует езде на обычном велосипеде. При разряженном аккумуляторе на низкой частоте вращения педалями трудно начать генерировать электричество. Грубый способ решения этой проблемы состоит в стартовой кнопке, используемой для пуска тока в обмотку возбуждения, или электронной схеме, вырабатывающей регулярные импульсы тока.

Более простой и элегантный способ обойти эту проблему — это подсоединить маленькую индикаторную лампочку заряда. Ток протекает через индикаторную лампочку и обмотку возбуждения, тем самым предоставляя начальное магнитное поле, необходимое для старта генерации электроэнергии. С соответствующей лампочкой, к примеру рассчитанной на 24 В 3 Вт, генератор переменного тока вращается намного быстрее и легче.

В продолжении читайте, что понадобиться для сборки мощного самодельного генератора электроэнергии.

Как работают генераторы и динамо-машины

Как работают генераторы и динамо-машины — объясните это Рекламное объявление

Криса Вудфорда. Последнее изменение: 10 августа 2020 г.

Нефть может быть любимым топливом в мире, но ненадолго. В современных домах в основном используется электричество. и скоро большинство из нас тоже станет водить электромобили. Электричество очень удобно. Вы можете производить его самыми разными способами, используя все, от угля и нефти до ветра и волн.Вы можете сделать это в в одном месте и используйте его на другом конце света, если хотите. И, как только вы его изготовите, вы можете хранить его в батареях и использовать это дни, недели, месяцы или даже годы спустя. Что делает электрический возможная мощность — и действительно практичная — это превосходный электромагнитный устройство, называемое электрогенератором: разновидность электродвигателя. работа в обратном направлении, которая преобразует обычную энергию в электричество. Давайте подробнее рассмотрим генераторы и узнаем, как они работают!

Фото: Дизельный электрогенератор середины 20 века, сделанный в музее электростанции REA недалеко от Хэмптона, штат Айова.Любезно предоставлены фотографиями в Кэрол М. Хайсмит Архив, Библиотека Конгресса, Отдел эстампов и фотографий.

Откуда берется электричество?

Лучший способ понять электричество — начать с того, что его собственное название: электрическая энергия. Если вы хотите запустить что-нибудь электрические, от тостера или зубную щетку MP3-плеер или телевидение, вам необходимо обеспечить его постоянным запасом электроэнергии. Откуда ты это возьмешь? Есть основной закон физики называется закон сохранения энергии, который объясняет, как можно получить энергия — и как вы не можете.Согласно этому закону существует фиксированный количество энергии во Вселенной и некоторые хорошие новости и некоторые плохие новости о том, что мы можем с этим сделать. Плохая новость в том, что мы не можем создавать больше энергии, чем у нас уже есть; хорошая новость в том, что мы не можем уничтожить любую энергию. Все, что мы можем сделать с энергией, это преобразовать из одной формы в другую.

Фото: Большой электрогенератор, приводимый в движение паром, на геотермальной электростанции «Кожа» компании CalEnergy в округе Империал, Калифорния.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Если вы хотите найти электричество для питания своего телевизора, вы не будет производить энергию из воздуха: сохранение энергии говорит нам, что это невозможно. Вы будете использовать энергию преобразуется из какой-либо другой формы в необходимую вам электрическую энергию. Обычно это происходит на электростанции. на некотором расстоянии от вашего дома. Подключите телевизор к розетке, и электрическая энергия течет в него через кабель.Кабель намного длиннее, чем вы думаете: на самом деле он проходит от вашего телевизора — под землей или по воздуху — до электростанция, на которой для вас подготавливается электроэнергия из богатое энергией топливо, такое как уголь, нефть, газ или атомное топливо. В этих экологически чистые времена, часть вашей электроэнергии также будет поступать из ветряные турбины, гидроэлектростанции (которые вырабатывают энергию, используя энергию плотин рек) или геотермальную энергию (внутренняя нагревать). Откуда бы ни пришла ваша энергия, она почти наверняка будет превратился в электричество с помощью генератора.Только солнечные элементы и топливные элементы производить электричество без использования генераторов.

Рекламные ссылки

Как мы можем производить электричество?

Фото: Типичный электрогенератор. Он может вырабатывать до 225 кВт электроэнергии и используется для испытаний прототипов ветряных турбин. Фото Ли Фингерша любезно предоставлено Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Если вы читали нашу подробную статью о электродвигатели, вы уже довольно много знают, как работают генераторы: генератор — это просто электродвигатель, работающий в обратном направлении.Если ты не прочтите эту статью, вы можете быстро взглянуть, прежде чем читать на — но вот краткое изложение в любом случае.

Электродвигатель — это, по сути, просто плотный моток медной проволоки, намотанный на железный сердечник, который свободно вращается с высокой скоростью внутри мощного постоянного магнита. Когда вы подаете электричество в медную катушку, она становится временный магнит с электрическим приводом — другими словами, электромагнит — и создает вокруг себя магнитное поле. Этот временное магнитное поле противодействует магнитному полю, которое постоянный магнит создает и заставляет катушку вращаться.Немного продуманная конструкция, катушка может непрерывно вращаться в в том же направлении, вращаясь вокруг и вокруг и приводя в действие что-нибудь из электрическая зубная щетка к электричке.

Фотография: Вращающаяся часть (ротор) типичного небольшого электродвигателя. Электрогенератор имеет точно такие же компоненты, но работает противоположным образом, превращая движение в электрическую энергию.

Так чем же генератор отличается? Предположим, у вас есть электрический зубная щетка с аккумулятором внутри.Вместо того, чтобы позволить батарее питать двигатель, который толкает щетку, что, если бы вы сделали противоположный? Что, если вы несколько раз поворачиваете щетку вперед и назад? То, что вы делали бы, было бы вручную крутить электродвигатель. ось вокруг. Это заставит медную катушку внутри двигателя повернуться постоянно внутри его постоянного магнита. Если вы переместите электрический провод внутри магнитного поля, вы заставляете течь электричество через провод — по сути, вы производите электричество. Так что держи поворачивая зубную щетку достаточно долго, и теоретически вы получите электричества достаточно для подзарядки аккумулятора.По сути, вот как генератор работает. (На самом деле, это немного сложнее, чем это и вы не можете зарядить зубную щетку таким образом, хотя добро пожаловать!)

Как работает генератор?

Изображение: простой генератор, подобный этому, вырабатывает переменный ток (электрический ток, который периодически меняет направление на противоположное). Каждая сторона генератора (зеленая или оранжевая) движется вверх или вниз. Когда он движется вверх, он будет генерировать односторонний ток; когда он движется вниз, ток течет в обратном направлении.Если вы измеритель, подключенный к проводу, вы не знаете, в какую сторону движется провод: все, что вы видите, — это то, что направление тока периодически меняется на противоположное: вы видите переменный ток.

Возьмите кусок провода и подсоедините его к амперметру (то, что измеряет ток) и поместите его между полюсами магнита. Теперь резко проведите проволокой сквозь невидимое магнитное поле, создаваемое магнитом, и через провод на короткое время протекает ток (регистрируемый на измерителе). Это фундаментальная наука, лежащая в основе электрогенератора, продемонстрированная в 1831 году британским ученым Майклом Фарадеем. (прочитать краткая биография или длинная биография).Если вы переместите провод в противоположном направлении, вы создадите ток, который течет в обратном направлении. (Если вам интересно, вы можете выяснить направление, в котором течет ток, используя то, что называется правило правой руки или правило генератора, которое является зеркальным отображением правила левой руки, используемого для определения того, как работают двигатели.)

Важно отметить, что вы генерируете ток только тогда, когда вы перемещаете провод через магнитное поле (или когда вы перемещаете магнит мимо провода, что равносильно тому же).Недостаточно просто поднести провод к магниту: для выработки электричества провод должен пройти мимо магнита или наоборот. Предположим, вы хотите производить много электроэнергии. Поднимать и опускать провод в течение всего дня не будет особенным удовольствием, поэтому вам нужно придумать способ, как провести провод мимо магнита, установив один или другой из них на колесо. Затем, когда вы поворачиваете колесо, проволока и магнит перемещаются друг относительно друга, и возникает электрический ток.

А теперь самое интересное.Предположим, вы сгибаете проволоку в петлю, помещаете ее между полюсами магнита и размещаете так, чтобы она постоянно вращалась, как на схеме. Вероятно, вы увидите, что при повороте петли каждая сторона провода (оранжевая или зеленая) иногда будет двигаться вверх, а иногда — вниз. Когда он движется вверх, электричество течет в одну сторону; когда он движется вниз, ток будет течь в обратном направлении. Таким образом, базовый генератор, подобный этому, будет производить электрический ток, который меняет направление каждый раз, когда петля провода переворачивается (другими словами, переменный ток или переменный ток).Однако большинство простых генераторов на самом деле вырабатывают постоянный ток — так как же им управлять?

Генераторы постоянного тока

Так же, как простой электродвигатель постоянного тока использует электричество постоянного тока (DC) для создания непрерывного вращательного движения, так и простой генератор постоянного тока производит стабильную подачу электричества постоянного тока, когда он вращается. Как двигатель постоянного тока, Генератор постоянного тока использует коммутатор. Звучит технически, но это всего лишь металлическое кольцо с трещинами в нем, которое периодически меняет местами электрические контакты катушки генератора, одновременно меняя направление тока.Как мы видели выше, простая проволочная петля автоматически меняет направление тока, которое он производит каждые пол-оборота, просто потому, что он вращается, а задача коммутатора — нейтрализовать эффект вращения катушки, обеспечивая создание постоянного тока.

Иллюстрация: Сравнение простейшего генератора постоянного тока с простейшим генератором переменного тока. В этой конструкции катушка (серая) вращается между полюсами постоянного магнита. Каждый раз, когда он поворачивается на пол-оборота, ток, который он генерирует, меняется на противоположный.В генераторе постоянного тока (вверху) коммутатор меняет направление тока на противоположное каждый раз, когда катушка перемещается на пол-оборота, отменяя реверсирование тока. В генераторе переменного тока (внизу) нет коммутатора, поэтому выходная мощность просто поднимается, опускается и меняет направление вращения при вращении катушки. Вы можете увидеть выходной ток от каждого типа генератора на диаграмме справа.

Генераторы переменного тока

Что, если вы хотите генерировать переменный ток (AC) вместо постоянного тока? Тогда вам понадобится генератор, который представляет собой просто генератор переменного тока.Самый простой вид генератора переменного тока похож на генератор постоянного тока без коммутатора. Когда катушка или магниты вращаются мимо друг друга, ток естественным образом растет, падает и меняет направление, давая на выходе переменный ток. Так же, как есть Асинхронные двигатели переменного тока, в которых для создания вращающегося магнитного поля используются электромагниты, а не постоянные магниты, поэтому существуют генераторы, которые работают за счет индукции аналогичным образом.

Генераторы в основном используются для выработки электроэнергии от двигателей транспортных средств. В автомобилях используются генераторы, приводимые в движение их бензиновые двигатели, которые заряжают свои аккумуляторов во время движения (переменный ток преобразуется в постоянный диоды или выпрямительные схемы).

Генераторы в реальном мире

Фотография: Генератор переменного тока — это генератор, который вырабатывает переменный ток (переменный ток) вместо постоянного (постоянного). Здесь мы видим механика, снимающего генератор с двигателя подвесной моторной лодки. Фото Есении Росас любезно предоставлено ВМС США.

Производство электричества звучит просто — и это так. Сложность в том, что нужно приложить огромное количество физических усилий. для выработки даже небольшого количества энергии. Вы поймете это, если у вас есть велосипед с динамо-машиной. фары, работающие от колес: вам нужно немного крутить педали, чтобы фары светились — и это просто для производства крошечного количества электричества, необходимого для питания пара лампочек.Динамо — это просто очень маленькое электричество генератор. Напротив, на реальных электростанциях гигантские генераторы электричества приводятся в действие паровыми турбинами. Это немного похоже на вращающиеся пропеллеры или ветряные мельницы, приводимые в движение паром. Пар производится путем кипячения воды с использованием энергии, выделяемой при сжигании угля, масло или другое топливо. (Обратите внимание, как применяется сохранение энергии здесь тоже. Энергия, питающая генератор, поступает от турбина. Энергия, питающая турбину, поступает от топлива.А также топливо — уголь или нефть — изначально поступало с заводов, работающих на энергия Солнца. Суть проста: энергия всегда должна исходить от где-то.)

Какую мощность вырабатывает генератор?

Генераторы указаны в ваттах (измерение мощности, указывающее, сколько энергии производится каждую секунду). Как и следовало ожидать, чем больше генератор, тем большую мощность он производит. Вот приблизительное руководство от самого маленького до самого большого:

Тип Мощность (Вт)
Велосипед динамо 3
Генератор USB с ручным приводом 20
Микро-ветряная турбина 500
Малый дизель-генератор 5000 (5 кВт)
Ветряная турбина 2 000 000 (2 МВт)

Переносные генераторы

Фото: Переносной электрогенератор, работающий от дизель.Фото Брайана Рида Кастильо любезно предоставлено ВМС США.

В большинстве случаев мы принимаем электричество как должное. Мы включаем светильники, телевизоры или стиральные машины, не переставая думать, что электрическая энергия, которую мы используем, должна откуда-то поступать. А вдруг вы работаете на улице, в глуши, и нет источник электроэнергии, который вы можете использовать для питания вашей бензопилы или вашего электрическая дрель?

Одна из возможностей — использовать аккумуляторные инструменты с перезаряжаемые батарейки. Другой вариант — использовать пневматические инструменты, такие как отбойные молотки.Они полностью механические и питаются от сжатый воздух вместо электричества. Третий вариант — использовать переносной электрогенератор. Это просто небольшой бензиновый двигатель (бензиновый двигатель), похожий на компактный двигатель мотоцикла, с прилагается электрогенератор. Когда двигатель пыхтит, дожигая бензин, он толкает поршень взад и вперед, поворачивая генератор и вырабатывающий на выходе постоянный электрический ток. С участием с помощью трансформатора вы можете использовать такой генератор для производите практически любое необходимое напряжение в любом месте, где оно вам нужно.В виде пока у вас достаточно бензина, вы можете производить собственное электричество поставка на неопределенный срок. Но помните о сохранении энергии: кончится газа, и у вас кончится электричество!

Artwork: Генераторные технологии быстро развивались в 19 веке. Английский химик и физик Майкл Фарадей построил первый примитивный генератор в 1831 году. В течение нескольких десятилетий многочисленные изобретатели создавали практические электрические генераторы. Эта («динамо-электрическая машина») была разработана Эдвардом Уэстоном в 1870-х годах как способ «преобразовывать механическую энергию в электрическую с большей эффективностью, чем прежде.«Он имеет статическое внешнее кольцо магнитов (синий) и вращающийся якорь (катушки) в центре (красный). Коммутатор (зеленый) преобразует генерируемый ток в постоянный. Из патента США 180 082, переиздание 8141 Эдварда Уэстона, любезно предоставлено Управлением по патентам и товарным знакам США.

Рекламные ссылки

Узнать больше

На этом сайте

Вам могут понравиться эти другие статьи на нашем сайте по смежным темам:

Видео

  • Демонстрация электрического генератора ?: Превосходное короткое видео доктора Джонатана Хэра и Vega Science Trust очень ясно показывает, как перемещение катушки через магнитное поле может производить электричество.
  • Простой генератор: электрический генератор для научной выставки: Уильям Бити дает пошаговое руководство по созданию простого генератора с использованием простых для поиска компонентов (эмалированный провод, магниты, картон и т. Д.).
  • Велогенератор: Как привести в действие кухонный комбайн с помощью велосипеда, приводящего в действие генератор переменного тока (разновидность электрогенератора). Довольно изящный эксперимент, хотя комментарий мог бы быть немного яснее.

Книги

Для читателей постарше
Для младших читателей

статей

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис.(2009/2020) Генераторы. Получено с https://www.explainthatstuff.com/generators.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Испытание динамо-машины и проверка продукции

Динамо-машина — это простой генератор постоянного тока с двумя выходными клеммами.

Динамо-машина — это прочный и простой тип генератор который был установлен на многих более ранних автомобилях. Большинство современных автомобилей оснащены генератор .

Если вы подозреваете, что динамо-машина неисправна, проверьте все соединения с ней с помощью схема тестер.

Убедитесь также, что динамо-машина действительно вращается, когда двигатель работает, и что приводной ремень отрегулирован на правильное натяжение и не проскальзывает (см. Проверка, регулировка и установка приводных ремней ).

Проверка выхода с помощью вольтметра или тестера

Проверка мощности динамо

Подключите положительный провод вольтметра к клемме D, а отрицательный провод к земле.

Сделайте эти проверки с вольтметр если возможно. В противном случае используйте тестер цепей или контрольную лампу.

Инструкции для автомобиля с отрицательной (-) системой заземления. Для положительный (+) система заземления: отрицательное считывание означает положительный, а положительный — отрицательный.

Подключите вольтметр к аккумулятор терминалы в то время как двигатель это работает. Попросите помощника увеличить обороты двигателя до холостого хода.

напряжение батареи должен загореться, либо лампа тестера (или фары) должна загореться.

Если это не так и проверки соединений и приводного ремня удовлетворительны, выключатель выключите двигатель и отсоедините два кабеля от концевой панели динамо-машины.

Клеммы обычно имеют маркировку D и F. Они бывают разных размеров, но при необходимости промаркируйте их, чтобы избежать путаницы.

Используйте небольшой отрезок довольно тяжелого кабеля, чтобы соединить клеммы D и F динамо-машины. Запустите двигатель и дайте ему поработать на холостом ходу не более 1000 об / мин .

Подключите положительный провод вольт метр к клемме D, а отрицательный провод — к земле.Счетчик должен показывать около 14 вольт (или лампочка на 12 вольт должна ярко светить). Если так, динамо-машина работает.

Тестирование кабелей

Испытательные динамо-тросы

Подсоедините тросы динамо-машины, оставив короткий мостовой кабель на месте. Отсоедините кабели со стороны блока управления, где они также обозначены буквами D и F.

Запустите двигатель и дайте ему поработать на холостом ходу не более 1000 об / мин. Подключите положительный провод вольтметра к кабелю, отсоединенному от клеммы D на блоке управления, чтобы проверить, исправен ли он.

Затем проделайте то же самое с кабелем от клеммы F на блоке управления.

Если кабели исправны и динамо-машина заряжается, как было проверено ранее, счетчик должен показывать около 14 вольт, и любая неисправность должна быть в блоке управления.

Проверка низкой скорости зарядки или невозможности зарядки

Тестирование клеммы D без кабельной перемычки между D и F должно привести к низкому показанию.

Если первая проверка выхода (см. Слева) показала, что динамо-машина не заряжается, снова отсоедините клеммы D и F на концевой пластине динамо-машины, но удалите перемычку между клеммами.

Запустите двигатель и попросите помощника разогнать его до 2000 об / мин (средняя скорость).

Если автомобиль не оборудован тахометр (тахометр), 2000 об / мин — это частота вращения двигателя, когда автомобиль движется со скоростью 30 миль / ч наверху механизм .

Подключите вольтметр между клеммой D и массой.

Если показание напряжения составляет от 2 до 4 В — достаточно, чтобы зажечь лампу фонарика, но не автомобильную лампу на 12 В в тестере цепей, неисправность заключается в поле катушка или кисти .

Если нет напряжения, значит неисправность арматура или выходные кисти.

Из

автомобильных генераторов получаются отличные электродвигатели; Вот как

Скромный автомобильный генератор скрывает интересный секрет. Известные как часть, преобразующая энергию внутреннего сгорания в электричество, необходимое для работы всего остального, они также сами могут использоваться в качестве электродвигателя.

Схема простого автомобильного генератора переменного тока из патента США 3329841A, поданного в 1963 году для Robert Bosch GmbH.

Эти устройства почти всегда представляют собой трехфазный генератор переменного тока с магнитным компонентом, питаемым от электромагнита на роторе, и поставляются с блоком выпрямителя и регулятора для преобразования более высокого переменного напряжения в 12 В для электрических систем автомобиля. Внутри они имеют три соединения с катушками статора, которые, как представляется, универсально соединены треугольником, и пару соединений с набором щеток, питающих катушки ротора через набор контактных колец. Они обладают удивительно высокой мощностью, а их возможности как двигателей оцениваются в несколько лошадиных сил.Лучше всего, что они легко доступны из вторых рук и к тому же удивительно дешевы, Ford Focus, показанный здесь, был получен от автомата eBay и стоил всего 15 фунтов стерлингов (около 20 долларов).

Мы уже слышим, как вы кричите «Почему ?!» на своем волшебном интернет-устройстве, пока вы это читаете. Давайте перейдем к этому.

Эти люди думают, что создание собственных электромобилей — это весело!

Одна из интересных сторон наблюдения за тем, как серия UK Hacky Racer вырастает из группы друзей, создающих глупые электромобили, до чего-то, приближающегося к формальной гоночной серии, — это наблюдение за эволюцией искусства создания Hacky Racer.Как немного более грязный двоюродный брат серии US Power Racing, он в некоторой степени извлек выгоду из унаследованного ими эволюционного опыта, но это не остановило Hacky Racers придумывать собственные разработки автомобилей. Они перешли от утилизированной мобильности и моторов для гольф-багги к китайским электродвигателям для электровелосипедов и трехколесных мотоциклов, и теперь более смелые конструкторы начинают искать движущую силу дальше. Одним из многообещающих источников недорогого двигателя с приличной мощностью является автомобильный генератор переменного тока.

Наш генератор переменного тока Ford Focus

При поиске переоборудованных автомобильных генераторов можно найти множество страниц, HOWTO и руководств, многие из которых могут быть чрезвычайно запутанными и сложными. В частности, есть предложения, касающиеся трех соединений статора, с советами разорвать отдельные обмотки и применить к ним особые конфигурации проводки. Судя по опыту преобразования довольно большого количества генераторов переменного тока, это кажется удивительным, поскольку все различные модели, которые мы преобразовали, имели одинаковую готовую к работе дельта-конфигурацию, которая вообще не нуждалась в замене проводки.Возможно, пришло время представить руководство Hackaday с настоящим генератором переменного тока и развенчать все оставшиеся мифы, пока мы работаем над этим.

Итак, воодушевленные перспективой дешевого бесщеточного двигателя в приведенном выше отрывке, перед вами на стенде стоит генератор переменного тока Ford Focus. Как его преобразовать?

Бессмысленное уничтожение невинной машины Часть

Снятие узла регулятора и щетки

На задней панели современного генератора всегда есть пластиковая пылезащитная крышка, которая крепится набором болтов.Эти устройства предназначены для ремонта, поэтому (возможно, что удивительно для современных автомобильных компонентов) их обычно очень легко демонтировать. Если вы снимете пылезащитный чехол, вы увидите регулятор, выпрямители и щетки, иногда объединенные в единый блок, но чаще, как в случае с генератором Focus с регулятором и щетками как отдельный узел с выпрямителем.

Часто бывает большое количество силиконового герметика, который необходимо срезать, но все гайки или болты, фиксирующие регулятор, должны быть откручены, и осторожно, чтобы не повредить сами щетки, их можно снять целиком. .Затем выпрямительный блок может быть удален — процесс, при котором иногда проще атаковать его боковыми ножами, чем пытаться удалить его целиком.

Задняя панель генератора со снятыми регулятором и выпрямителем, на которой показаны соединения обмотки статора.

Вы должны уметь идентифицировать три пучка толстых эмалированных медных проводов, идущих от катушек статора, и отсоединить от них ремни выпрямителя. В некоторых генераторах они припаяны, но в некоторых других особенно неприятных конструкциях они приварены точечной сваркой.В конце процесса демонтажа у вас должен быть оголенный генератор с тремя наборами выступающих проводов статора и оголенный вал с двумя контактными кольцами, независимо от того, что осталось от блока выпрямителя, и блока регулятора / щеток.

Следующим шагом является снятие схемы регулятора с сохранением формы узла регулятор / щетка, а также поиск и сохранение соединений щеток там, где они встречаются с регулятором. И снова потребуется обильное количество силиконового герметика, но в конечном итоге регулятор придется обнажить.Это универсальная гибридная схема на керамической или металлической подложке, при этом соединения, выходящие из формованного пластика, окружающего их, припаяны к контактным площадкам на их краях. Определить пару соединений щеток, аккуратно распаять их и вытолкнуть цепь регулятора должно быть относительно просто.

Открытая цепь регулятора с контактами контактного кольца вверху справа.

Контактные контактные кольца прикреплены к их проводам.

Готовый мотор.

Наконец, у вас должен быть чистый генератор, набор щеток с отсутствующей схемой регулятора и пластиковая крышка от пыли. Просто припаяйте три провода подходящего большого сечения к трем наборам проводов статора и закройте их термоусадочной пленкой, припаяйте пару более легких проводов к соединениям щеток и снова соберите комплект щеток к генератору. Возможно, вам придется приложить какое-нибудь приспособление для снятия натяжения на проводах к щеткам. Блок выпрямителя не требует повторной сборки, поэтому на некоторых моделях вам может потребоваться сделать проставку, чтобы заменить ее, поддерживающую одну сторону блока щеток.

В пылезащитной крышке можно сделать отверстия для всех различных проводов, а в пылезащитной крышке можно установить все проталкиваемые провода. На этом этапе вы переоборудовали свой генератор, и все, что осталось, — это привести его в движение. К счастью, это удивительно простой процесс с готовыми деталями.

За рулем вашего нового двигателя

Мотор и контроллер на стенде.

Так называемый бесщеточный двигатель постоянного тока — это просто двигатель переменного тока со связкой электроники, которая преобразует источник постоянного тока в источник переменного тока для его работы.Они имеют преимущество перед щеточными двигателями постоянного тока в надежности, эффективности и простоте регулирования скорости, но за счет большей сложности.

Хорошая новость для людей, перерабатывающих автомобильные генераторы переменного тока в электродвигатели, заключается в том, что за небольшие деньги можно приобрести целый ряд контроллеров бесщеточных двигателей в виде электронных регуляторов скорости (ESC), предназначенных для китайских электрических велосипедов и трехколесных мотоциклов. Они используют источник постоянного тока от аккумуляторной батареи и вырабатывают трехфазный переменный ток, подходящий для работы двигателя, подключенного по схеме треугольника, и они хорошо работают с преобразованными генераторами переменного тока.

У

ESC есть два режима: один для двигателей с датчиками обратной связи на эффекте Холла, а другой для двигателей без генератора, например. Обычно для этого требуется проводная связь, см. Инструкции для вашего контроллера. Мы обнаружили, что генератор переменного тока хорошо управляется, как двигатель, от источника питания 36 В или 48 В, и пока используется контроллер с достаточной мощностью, он работает надежно. Быстрый поиск на AliExpress по запросу «бесщеточный контроллер двигателя 1500 Вт» дает большой выбор.

При наличии контроллера существует еще одно требование, чтобы наш генератор переменного тока стал двигателем, он должен иметь постоянный ток на обмотке ротора.Он должен иметь ток около 2 или 3 А, для чего модуль блока питания с ограничением по току отлично справляется с этой задачей. Необходимость использовать эту мощность делает двигатель немного менее эффективным, чем двигатель с постоянным магнитом, но стоимость лома генератора трудно превзойти.

Мотор, изображенный на наших фотографиях, призван стать одним из пары, обеспечивающей тягу в новом автомобиле для штурма гонок этого года. Личный опыт работы с SMIDSY, робот Robot Wars, привел меня к тому, что я предложил им принудительное воздушное охлаждение, но, в отличие от трехколесных электрических двигателей, они, похоже, хорошо справляются с нагревом.Электродвигатель генератора переменного тока может не быть универсальным решением для любых ваших небольших потребностей в тяговом усилии, но даже в этом случае стоит знать, что это вариант без неожиданных ритуалов подключения. Если вы конвертируете его для проекта, обязательно напишите об этом и отправьте в нашу линию советов!

(PDF) Электромобили с помощью динамо-машин

Журнал IOSR по машиностроению и гражданскому строительству (IOSR-JMCE)

ISSN: 2278-1684 Том 3, выпуск 2 (сентябрь-октябрь.2012), PP 01-05

www.iosrjournals.org

www.iosrjournals.org 1 | Страница

Электромобили с динамо-машинами

Т. Аллен Прасад1, Локеш Рамеш3

1, 2 (Механический факультет, Технологический институт Шри Сайрама, Индия)

Аннотация: Наша основная цель в этой статье — активизировать электромобили с динамо-машинами. Главный недостаток

, с которым мы сталкиваемся в электромобиле, заключается в том, что заряд в аккумуляторе, который обеспечивает питание двигателя

, разряжается, и, следовательно, его следует остановить или припарковать в месте, где должен легко приниматься ток.

Но самая большая проблема заключается в том, что когда автомобиль теряет свой полный заряд во время движения в области, где текущая

не может быть легко взята или нет никакого тока в этой области, вы не сможете добраться до своей дворец

.Поэтому для решения этой проблемы используются динамо-машины. Динамо — это устройство, способное

преобразовывать механическую энергию в электрическую. Следовательно, используя этот характер динамо-машины, можно решить проблему

.Описание этого метода состоит в том, что при установке одного динамо-машины в каждое колесо так, чтобы каждое динамо-устройство

производило заряд посредством вращательного движения, создаваемого колесами автомобиля, и эти заряды составляют

, хранящиеся в отдельной батарее, и которые могут быть используется в аварийных целях, и этот процесс является циклическим. Когда автомобиль

теряет свой заряд во время работы от динамо-машины, динамо-машина не прекращает свою работу, она

снова производит заряд, так что вы можете проехать большее расстояние.

Ключевые слова — Динамо, Аварийное назначение, Электрический заряд, Аккумулятор, Система передач

I. Введение

Электромобиль — это автомобиль, который приводится в движение одним или несколькими электродвигателями, использующими электрическую энергию

, хранящуюся в батареях или другой энергии устройство хранения. Электромобили были популярны в конце 19-го века и в начале

20-го века, пока достижения в технологии двигателей внутреннего сгорания и массовое производство более дешевых бензиновых автомобилей

не привели к сокращению использования электромобилей.Энергетический кризис 1970-х и 80-х годов вызвал недолговечный интерес к электромобилям

, но в середине 2000-х годов возобновился интерес к производству электромобилей

, в основном из-за опасений по поводу быстрого роста цен на нефть и необходимость снижения выбросов парниковых газов

. По состоянию на июль 2012 года серийные модели для автомобильных дорог, доступные в некоторых странах, включают

Tesla Roadster, REVAi, Buddy, Mitsubishi i MiEV, Nissan Leaf, Smart ED, Wheego Whip LiFe, Mia

electric, BYD e6, Bolloré Bluecar. , Renault Fluence Z.E., Ford Focus Electric, BMW ActiveE, Coda, Tesla

Model S и Honda Fit EV. По состоянию на июнь 2012 года самыми продаваемыми в мире полностью электрическими автомобилями для шоссе являются Nissan Leaf

, продано более 30 000 единиц по всему миру, и Mitsubishi i-MiEV с глобальными поставками

20000 автомобилей, включая единицы. переименован в Peugeot iOn и Citroën C-Zero для европейского рынка. Электрические автомобили

имеют ряд преимуществ по сравнению с обычными автомобилями с двигателем внутреннего сгорания, в том числе

значительное сокращение местного загрязнения воздуха, поскольку они не имеют выхлопной трубы и, следовательно, не выделяют вредных выхлопных газов

загрязняющих веществ от бортового источника энергии на точка операции; сокращение выбросов парниковых газов от бортового источника энергии

, в зависимости от топлива и технологии, используемой для выработки электроэнергии для зарядки аккумуляторов

; и меньшая зависимость от иностранной нефти, что для США и других развитых или развивающихся стран

вызывает озабоченность по поводу уязвимости к волатильности цен на нефть и сбоям в поставках.

II. Преимущества владения электромобилем

Самым большим преимуществом электромобиля, очевидно, является полное отсутствие выбросов (при работе от батареи

— некоторые автомобили, такие как Chevy Volt, работают только от аккумулятора первые 40 миль или около того. из

ездят на бензине). Однако у полностью электромобиля, такого как совершенно новый Nissan Leaf 2011 года или Tesla Roadster

, не будет даже выхлопной системы, глушителя или топливного бака.Они не используют ископаемое топливо для внутренних нужд.

Они полностью питаются от аккумуляторной батареи, которую не нужно заряжать от газового двигателя. У многих гибридных автомобилей

есть газовый двигатель, который дополняет электрическую составляющую. Это приводит к еще одному хорошему пункту

: людям нравятся только электромобили, потому что они обеспечивают очень тихую езду. Отсутствуют шумы двигателя или рев

, даже когда приходится нажимать на педаль газа, просто жуткий (но крутой) вихревой звук, увеличивающийся по высоте.Когда электромобили

работают на очень низких скоростях, они практически бесшумны.

Техническое обслуживание электромобилей стало намного проще. Проще говоря, меньше движущихся частей

и меньше вещей, которые могут выйти из строя. В традиционных двигателях под капотом постоянно происходит движение. С

электромобиль гораздо больше неподвижен, только приводной вал главного двигателя и трансмиссия автомобиля вращаются.

Намного меньше изнашивается от чрезмерного использования.Например, в обычном автомобиле со временем все ремни в двигателе

изнашиваются, и их необходимо заменить, чтобы они не защелкнулись и не застряли. Нет таких вещей в

электромобилях

, хотите перейти на электромобиль? Еще одно преимущество батарейного питания заключается в том, что технология в этих автомобилях

прошла долгий путь. Хотя вы не можете проехать сотни и сотни миль на этих батареях, вы можете

автомобилестроение — Почему нельзя полностью восстановить энергию из вращающихся колес движущегося автомобиля?

У меня есть друг, который неправильно визуализирует потерю энергии в движущейся машине.

Его идея: Автомобили, которые могут работать вечно без подзарядки — -> пока двигатель вращает передние колеса, двигая автомобиль вперед, на задних колесах есть устройство, использующее вращение задних колес для выработки и хранения энергии. Двигатель потребляет эту восстановленную мощность для движения автомобиля вперед, и цикл продолжается. Это «идеальный» сценарий, при котором потери энергии на трение, тепло, звук и т. Д. Отсутствуют.

Сначала я сказал ему, что нечто подобное уже делается: рекуперативное торможение.Он сказал, что его идея заключалась в том, чтобы генерировать энергию ** во время * движения машины.

Мой счетчик тому, почему это было вздором: Я напомнил ему, что количество энергии в данной системе остается постоянным. Ничего не создано и не уничтожено, просто перенесено из одной формы в другую. Таким образом, он не мог «восстановить» энергию, которая была потрачена на движение машины вперед. Он перешел к уточнению, что будет два двигателя, один вращает передние колеса с прикрепленной динамо-машиной для восстановления энергии, а другой вращает задние колеса.Я попытался объяснить, что он добавил еще одного потребителя энергии, и у него нет возможности восстановить эту израсходованную энергию … и вот как все пойдет. Вы добавляете дополнительный двигатель, чтобы преодолеть сопротивление динамо-машины и двигать машину, вы тратите больше, чем восстанавливаете , и в конечном итоге вам придется заряжаться. Чтобы помочь ему визуализировать, я сделал набросок, пытаясь быть более реалистичным: (пожалуйста, не обращайте внимания на мое использование емкости батареи, это только для концепции, а не для реалистичности)

Я также упомянул ему, что в этом сценарии даже игнорировалось множество других проблем и опасностей, связанных с вращением колес с разной скоростью.Плюс износ медленно вращающихся стяжек, которые эффективно тащат по дороге. По какой-то непонятной причине он просто не мог понять, что для того, чтобы более медленные (передние) шины НЕ были проблемой, вы должны увеличить выходную мощность переднего двигателя, чтобы она соответствовала скорости вращения заднего колеса. колеса. Опять же, восстанавливая только часть этой энергии (куда делась остальная? Он не может понять, и я не могу понять, как ему это объяснить). Чтобы противостоять моей логике, он упомянул, что у грузовиков нет двигателя, прикрепленного ко всем колесам.Следовательно, некоторая энергия может быть получена от этих «свободно вращающихся» колес. Боже мой . Здесь применяется первый закон движения Ньютона: автомобиль с двигателем, вращающим колеса в заданном направлении, никуда не уедет, если, скажем, динамо-машина предлагает эквивалентное или большее сопротивление в противоположном направлении для захвата этой энергии (опять же, предполагая «идеальный» сценарий без потерь энергии). Я попытался уточнить, что для перемещения транспортного средства вы сначала прикладываете силу (выходную мощность двигателя), достаточно большую, чтобы переместить транспортное средство из его статического положения (сопротивление? Гравитация? Я недостаточно понимаю физику, чтобы знать, как это назвать), и что-нибудь вроде динамо-машины (трение, сопротивление) усложняет задачу, так что вы не можете одновременно «восстановить» затраченную энергию.Я начал объяснять, что рекуперативное торможение сработало, потому что генерируемая энергия восстанавливалась из импульса движущегося транспортного средства путем оказания сопротивления, поэтому машина замедляется и почему вы не можете использовать ее постоянно, пока машина находится в движении.

Этот парень очень упрям, когда в его голове загорается тусклая лампочка, и он считает это гениальной идеей, которую нельзя опровергнуть. Я ужасно умею учить конструктивно, и был бы признателен, если бы кто-нибудь объяснил, почему его идея является жертвой основных законов физики.

Я даже сказал, что если бы это было возможно, он уже нашел бы популярное применение в промышленности, например, в электромобилях.

Руководство по ремонту динамо-машины

Динамо-машина — это мощный, но простой тип генератора, который, что интересно, устанавливался на старые модели автомобилей. В настоящее время большинство современных автомобилей оснащено генератором переменного тока. Вы можете подумать, что аккумулятор обеспечивает питание вашего автомобиля, но это не всегда так. В то время как аккумулятор обеспечивает электричество для запуска автомобиля, именно динамо-машина вырабатывает энергию, питающую электрическую систему.

В этом посте мы обсудим все, что нужно, чтобы узнать, как починить динамо-машину. Мы также поговорим о том, как это работает, а также о том, как его удалить и проверить. Мы надеемся, что после того, как вы полностью прочитаете этот пост, вы сможете выполнить эту относительно простую задачу самостоятельно. Читайте дальше, если хотите узнать больше.

Руководство по ремонту динамо

Как работает динамо?

Прежде чем мы продолжим обсуждение, мы сначала должны поговорить о том, как работает динамо-машина.Динамо-машина — это генератор электроэнергии, вырабатывающий, в частности, постоянный ток. Обычно статор представляет собой постоянный магнит, а ротор, часто называемый якорем, намотан и подключен к коммутатору. Он также имеет набор электрических разъемов, известных как щетки, которые сделаны из угля.

Электромагниты, часто называемые катушками возбуждения, в динамо-машине неподвижны. Обычно ток генерируется в якоре, который обычно считается дополнительным набором катушек, прикрепленных к валу и вращающихся внутри катушек возбуждения.

В принципе, генератор работает так же, как и динамо-машина. Однако ток проходит в коммутатор, который представляет собой металлическое кольцо, разделенное на сегменты, соединенные со щетками, установленными в подпружиненных направляющих. При этом эти два фрагмента касаются пары угольных щеток и в конечном итоге подают ток на эти щетки.

Когда якорь вашего двигателя вращается, постоянный ток также меняет свое направление. Однако к тому времени под угольными щетками уже находятся другие пары сегментов, в которых новая пара теперь подключена в другом направлении.Этот процесс уступает место течению, выходящему в том же направлении.

Что вызывает отказ динамо?

Через: https://www.youtube.com/watch?v=HgYLnNhy7Oc

Вероятно, наиболее частой причиной выхода из строя динамо-машины является износ коллектора и угольных щеток. Обычно в первую очередь изнашиваются угольные щетки. Однако по мере того, как они становятся меньше, давление пружины, удерживающее их вместе с коммутатором, также ослабевает, что в конечном итоге приводит к непрерывному искрообразованию, называемому дугообразованием, между коммутатором и угольными щетками.

Это искрение, вероятно, является причиной быстрого износа коллектора, который имеет тенденцию к повреждению поверхностей его сегментов. В худших случаях припой, который находится между обмотками и сегментами коммутатора, плавится, что приводит к снижению выходной мощности. Потеря и уменьшение мощности динамо-машины, безусловно, истощат аккумулятор просто потому, что ток не заменяется.

Тускло светящаяся лампа зажигания обычно предупреждает об уменьшении мощности генератора.Вы можете проверить ремень вентилятора, если лампа зажигания горит и горит постоянно. Однако, если вы заметили, что проблема связана с угольными щетками, вам необходимо разобрать динамо-машину для дальнейшего осмотра и, при необходимости, ремонта.

Осмотр будет намного проще, если динамо-машина вашего автомобиля уже надежно закреплена, что гарантирует, что весь блок не будет поврежден. Чтобы проверить, нет ли износа щеток, вам необходимо снять торцевую пластину, в которой они были установлены.С другой стороны, в более старых моделях вам необходимо удалить металлическую полосу, которая находится на ее корпусе.

Динамо-машина обычно соединяется между собой длинными болтами по всей длине корпуса. Головки выступают из торцевой пластины и снабжены пазами для отверток. Вам нужно отвинтить эти головки, чтобы снять торцевую пластину, и слегка постучать по ней молотком с мягкой головкой, чтобы можно было ее снять. Вы также можете осторожно захватить его с помощью отвертки с тонким лезвием.

Как собрать динамо

Вот, что вам следует делать при повторной сборке динамо:

  • Перед повторной сборкой динамо всегда убедитесь, что внутренняя часть корпуса, а также катушки возбуждения чистые.Вы можете использовать щетку для эффективного удаления грязи и пыли с арматуры.
  • Кроме того, убедитесь, что концевая пластина, передняя пластина и вентиляционные отверстия очищены.
  • Вам также может потребоваться заменить полевой терминал, который часто имеет изолирующую оболочку в месте прохождения.
  • Также необходимо проверить, нет ли износа на втулке концевой пластины, а также на валу якоря. Если вы еще не знакомы, подшипники и втулки динамо-машины аналогичны подшипникам стартера.При необходимости для смазки можно использовать пластичную смазку с высокой температурой плавления.
  • Кроме того, вы должны проверить арматуру и поискать признаки трения, особенно на полевых опорах.
  • Вам также необходимо проверить подшипник на передней пластине динамо-машины. Сделайте этот шаг, вращая пластину, удерживая арматуру.
  • Затем необходимо проверить обмотки на непрерывность. Вы можете использовать тестер цепей, который загорается, если обмотки все еще целы.

Как снять динамо

Снятие динамо-машины может быть очень сложным процессом, и мы здесь, чтобы помочь вам выполнить эту работу правильно с первого раза.Вот что вам следует делать:

Через: https://www.youtube.com/watch?v=SM4LbGDCZn0

  • Прежде чем снимать динамо-машину с двигателя автомобиля, сначала следует снять аккумулятор. Это очень эффективная профилактическая мера против случайных коротких замыканий.
  • Вам может потребоваться ослабить как шарнирный болт, так и болт регулировочной планки.
  • После этого прижмите динамо-машину в сторону и снимите ремень со шкива.
  • Вам необходимо отключить полевой и выходной кабели.Вы должны знать, что эти кабели бывают разных размеров. Однако, если это не так, вам, возможно, придется заранее промаркировать их с помощью небольших кусочков ленты, чтобы избежать путаницы.
  • Затем отсоедините инструменты подавления радиосигналов и поддержите динамо-машину, полностью снимая болты и болты регулировочного ремня.
  • После выполнения этих действий вы можете безопасно снять динамо-машину из вашего автомобиля.

Заключение

Если вы обнаружили, что на вашей динамо-машине есть износ как угольных щеток, так и коллектора, в ваших интересах, чтобы это отремонтировал профессионал или самостоятельно.К счастью для вас, мы предоставили вам все, что вам нужно знать о том, как починить динамо-машину, а также пошаговые инструкции о том, как снять и собрать ее обратно в двигатель.

Ветряк своими руками — возобновляемые источники энергии

Может быть, вы живете на лодке, отдыхаете в уединенной хижине или живете вне сети, как я. Или, может быть, вы просто хотите снизить счет за электроэнергию. В любом случае, с помощью горстки недорогих и легких материалов, вы можете построить самодельный ветрогенератор, который сделает электричество вашим, пока дует ветер.Вы сможете осветить складское помещение, включить электричество в свой сарай или использовать генератор, чтобы поддерживать все аккумуляторные батареи в автомобиле.

Электроэнергия для моей автономной кабины поступает от солнечной и ветровой энергии, хранящейся в группе из четырех 6-вольтовых батарей для гольф-каров, подключенных к 12-вольтовой системе. Контроллер заряда и аккумуляторная батарея предохраняют мою систему от недостаточной или чрезмерной зарядки. Весь шебанг обошелся мне меньше чем в 1000 долларов, и у меня есть освещение, вентиляторы, телевизор и стереосистема, холодильник и диско-шар, который поднимают для особых случаев.

Если вы можете поворачивать гаечный ключ и работать с электродрелью, вы можете собрать этот простой генератор за два дня: один день на поиск деталей и один день на сборку компонентов. Четыре основных компонента включают автомобильный генератор переменного тока со встроенным регулятором напряжения, вентилятор и блок сцепления General Motors (GM) (я использовал один из двигателя GM 350 1988 года), опору или столб, на котором можно установить генератор (15 футы использованных 2-дюймовых трубок обошлись мне в 20 долларов) и металл для сборки кронштейна для крепления генератора на мачте или столбе.Если вы любитель Ford или Mopar, это нормально — просто убедитесь, что в вашем генераторе есть встроенный регулятор напряжения. Вам также понадобится электрический кабель или провода, чтобы подключить генератор к аккумуляторным батареям. Я использовал 3-жильный кабель 8-го калибра, украденный из масляного пятна. (И они сказали, что переход от ископаемого топлива к возобновляемым источникам энергии займет годы. Пфф!)



Узел муфты вентилятора к генератору

Лопасти ветрогенератора заменены на муфту вентилятора автомобиля.Чтобы прикрепить лопасти к генератору, вы можете приварить ступицу муфты вентилятора непосредственно к ступице генератора — просто убедитесь, что вентилятор точно совмещен с валом генератора. Кроме того, убедитесь, что разъемы для встроенных проводов генератора расположены в нижней части генератора. Если у вас нет доступа к сварочному аппарату, вы можете подключить муфту вентилятора к генератору, используя следующие материалы:

• Шайба 5/8 дюйма на 3 дюйма, толщина 3/16 дюйма
• Электродрель
• Метчик с резьбой 1/4 дюйма
• Сверло, соответствующее специальному метчику с резьбой
• (4) 1 / Болты от 4 дюймов на 1-1 / 2 дюйма до 2-1 / 2 дюйма с соответствующими гайками и стопорными шайбами ​​

Создайте соединение, используя 3-дюймовую шайбу и четыре болта, которые будут скреплять вместе муфту вентилятора и генератор.Просверлите четыре отверстия в шайбе, чтобы они совпадали с отверстиями в муфте вентилятора, а затем нарежьте резьбу в отверстиях с помощью метчика на 1/4 дюйма. Вкрутите болты в отверстия. Чтобы определить длину необходимых болтов, поместите вентилятор на верхнюю часть генератора так, чтобы шкив вентилятора опирался на шкив генератора и оба вала были расположены на одной линии. Измерьте длину по двум валам от задней части вентилятора генератора до задней части ступицы муфты вентилятора. Используйте эту длину для болтов. Отвинтите гайку шкива генератора и снимите шкив и небольшой вентилятор.Наденьте соединение, которое вы сделали из шайбы и четырех болтов на вал генератора, так, чтобы болты были направлены в сторону от генератора. Затем снова прикрепите вентилятор генератора и гайку к валу, не снимая шкив. Большая гайка удерживает соединение на месте. Присоедините узел муфты вентилятора к болтам, которые теперь выступают из генератора, и затяните гайки с установленными стопорными шайбами.

Кронштейн в сборе для установки генератора

Если у вас есть сварщик, сделать кронштейн несложно.Я использовал 1-дюймовую квадратную трубку для всех частей кронштейна и кусок 1-дюймовой трубы длиной 2 фута для вращающегося стержня, который помещается внутри стойки. Если у вас нет сварщика, не бойтесь. Кронштейн в сборе может быть соединен с оцинкованной трубой 1/2 дюйма и фитингами. Вот список фитингов, которые вам, скорее всего, понадобятся:

• (5) тройников 1/2 дюйма
• (2) колена 1/2 дюйма
• (2) штуцера 1/2 дюйма на 12 дюймов
• (2) 1/2 дюйма- ниппели размером 6 дюймов
• (2) ниппели 1/2 дюйма на 1 1/2 дюйма
• (2) ниппели 1/2 дюйма на 2 дюйма
• (3) 1 / 2-дюймовые соски

Хвостовой плавник должен быть прикреплен к 12-дюймовому ниппелю в задней части кронштейна, чтобы вращать генератор и выровнять его с направлением ветра.Вы можете вырезать плавник высотой около 1 фута и длиной 2 фута из старого оловянного сайдинга или кровли с помощью ножниц или резака — лучше всего подойдет прямоугольный треугольник. Если вы используете гофрированный металл, обязательно обрежьте ребро так, чтобы гофры проходили горизонтально. После того, как плавник будет вырезан, положите его поверх одного из 12-дюймовых ниппелей и просверлите три пилотных отверстия в нижней части хвостового плавника и в боковой части соска. Используйте три винта (подойдут стальные кровельные винты), чтобы прикрепить хвост к ниппелю.

Башня ветрогенератора

Я использовал старую телевизионную антенную вышку высотой 20 футов вместе с трубой диаметром 2-1 / 2 дюйма для верхней части. Вам также потребуется приварить или закрепить болтами упор в верхней части мачты, который будет контактировать с упором на вашем узле кронштейна. Ограничители позволяют генератору вращаться только на 360 градусов по часовой стрелке или против часовой стрелки, поэтому ваш кабель не перекручивается вокруг мачты и мачты.

Соединение 2–3 / 8-дюймовых толстостенных металлических труб длиной от 10 до 20 футов (или высотой после возведения) создает хорошую башню после ее присоединения к зданию или другой прочной, стационарной конструкции.Убедитесь, что он безопасен, и при необходимости рассмотрите возможность использования растяжек.

После того, как вы скрепили все компоненты генератора вместе и прикрепили к кронштейну в сборе, установите его на неизвлекаемую мачту или башню. Вставьте трубу на кронштейне генератора в опору или верх башни. Используйте две стальные шайбы, сложенные вместе, чтобы создать гладкую поверхность, которая будет служить опорой между генератором и башней. Присоедините положительный и отрицательный провода к генератору и закрепите их на кронштейне и вдоль опоры с помощью стяжек, тюков или изоленты.(На самом деле он не самодельный, если только на нем где-то не есть небольшая проволока и клейкая лента, не так ли?) Убедитесь, что провода достаточно провисают, чтобы ветрогенератор мог вращаться на 360 градусов.

Скорее всего, вам понадобится помощь, чтобы поставить башню и генератор в вертикальное положение, так как они будут довольно тяжелыми. Веревки и попутчик помогут, если вы поднимаетесь довольно высоко. Если в вашем районе всегда ветрено, вам нужно только подняться достаточно высоко над землей, чтобы движущиеся части находились над головой.Надежно закрепите башню на месте. Ветер может быть обманчиво сильным, поэтому не срезайте углы на этом этапе окончательной сборки. После того, как вы установили свой ветрогенератор, подключите провода к аккумуляторной батарее с контроллером заряда между ними, чтобы предотвратить недостаточную или чрезмерную зарядку.


Теперь вы готовы зажигать свет, заводить джемы и исполнять те старые дискотечные трюки, которые, я знаю, вы копили на электрическую горку с семьей и друзьями.

Небольшой отказ от ответственности: создавайте и используйте на свой страх и риск.Мой генератор работает нормально, но вы несете ответственность за свою работу. Удачи и сил!


Роберт Д. Коупленд разводит и продает мясной скот на травяном откорме и является владельцем автономного пансионата в Техасе под названием The Sunflower , в комплекте с кабинами из соломенных тюков и глиняной штукатурки, свежих органических питание, обучение пермакультуре, семинары и многое другое!

Другие статьи по ветроэнергетике:

Power From the Wind — это полностью переработанное и обновленное издание руководства для частных лиц и предприятий, заинтересованных в установке небольших ветроэнергетических систем.Это практическое руководство, написанное для непрофессионала, дает точное и беспристрастное представление обо всех аспектах малых ветроэнергетических систем, в том числе:

  • Опции ветроэнергетики и ветроэнергетики
  • Способы оценки ветровых ресурсов на вашем участке
  • Ветряные турбины и башни
  • Инверторы и батареи
  • Монтаж и обслуживание систем
  • Стоимость и преимущества установки ветряной системы

Читатели получат знания, необходимые для принятия мудрых решений при проектировании, покупке и установке небольших ветроэнергетических систем, а также для эффективного общения с установщиками ветряных систем, а также смогут помочь сделать наиболее разумный и экономичный выбор.Заказ в магазине новостей Матери-Земли или по телефону 800-456-6018.


Первоначально опубликовано: апрель / май 2017 г.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *