Какие бывают виды конденсаторов: Виды конденсаторов — какие типы конденсаторов существуют?

Содержание

Виды конденсаторов — какие типы конденсаторов существуют?

Конденсаторы очень широко применяются в электронных, радиотехнических устройствах и приборах. Они по количеству и ёмкости в электронных схемах может различаться, но они есть практически везде. Столь широкое использование приборов объясняется тем, что в схемах такие устройства могут выполнять различные функции и задачи.

В первую очередь, конденсаторы используются в фильтрах различных стабилизаторов и выпрямителей напряжения, кроме того, с их помощью осуществляется передача сигнала между каскадами, работают высокочастотные и низкочастотные фильтры, подбирается частота колебаний и интервалы выдержки времени на разных генераторах. Чтобы лучше разобраться в особенностях и применении таких устройств, следует подробно разобрать существующие типы и характеристики конденсаторов.

Характеристики и параметры

Исчерпывающую информацию о типе и технических характеристиках конденсатора любой пользователь может получить на корпусе устройства, где также иногда указывается производитель прибора и дата его изготовления.

Важнейшим параметром любого конденсатора является его номинальная ёмкость. Правила обозначения номиналов ёмкости описываются в действующих нормативах ГОСТа. Согласно положениям ГОСТа, номинальная ёмкость конденсаторов до 9999 пФ обозначается на схемах без указания единицы измерения. Ёмкость устройств номиналом более 9999 пФ и до 9999 мкФ обозначается на схемах с указанием единицы измерения. Следующая характеристика, указываемая на корпусе устройства – допустимое отклонение от номинальных значений.

Второй по важности величиной конденсатора является его номинальное напряжение. Они могут быть предназначены для работы в сетях с разным напряжением: от 5 до 1000 В и более. Специалисты рекомендуют выбирать устройства с запасом по номинальному напряжению. Использование устройств низкого номинала может приводить к возникновению пробоев диэлектрика и выходу из строя приборов.

Остальные параметры считаются дополнительными и не всегда важными, потому на корпусах некоторых устройств описание может ограничиваться ёмкостью и номинальным напряжением. Если дополнительные технические характеристики указаны, то на корпусе можно найти также рабочую температуру устройства, рабочий номинальный ток и другие данные.

Следует учитывать также, что представленные сегодня на рынке конденсаторы могут быть трехфазными и однофазными, предназначенными для внешней или внутренней установки.

Какие типы конденсаторов бывают?

Существуют различные варианты классификации конденсаторов, используемых в электронных схемах. Чаще всего такие устройства разделяют на типы по виду используемого в них диэлектрика. По особенностям диэлектрика можно выделить следующие типы:

  • с жидкими диэлектриками.
  • вакуумные, в которых отсутствует диэлектрик.
  • с твердым органическим диэлектриком.
  • с газовым диэлектриком.
  • электролитические или оксид-полупроводниковые с электрлитом или оксидным металлическим слоем.
  • с твердым неорганическим диэлектриком.

Второй вариант классификации – по вероятности колебания величины ёмкости. По этой характеристике можно выделить следующие устройства:

  • Переменные – которые могут менять ёмкость из-за воздействия напряжения или температурных условий.
  • Постоянные – величина ёмкости не изменяется на протяжении срока службы.
  • Подстроечные – с изменяемой ёмкостью, используемые для периодической или разовой подстройки схем.

По сфере эксплуатации все конденсаторы разделяются на следующие типы:

  • Низковольтные, используемые в сетях с малым напряжением.
  • Высоковольтные, применяемые в сетях высокого напряжения.
  • Импульсные – способные выделять краткосрочный импульс.
  • Пусковые – для стартового запуска электрического мотора.
  • Помехоподавляющие.

Существуют и другие классы по сферам применения, но на практике они встречаются крайне редко.

В таблице ниже представлены наиболее распространенные конденсаторы и их обозначения на схемах.

 

Следующая статья будет про соединение конденсаторов.

Какие бывают конденсаторы? Типы конденсаторов, их характеристики

Высокий уровень прочности этого материала дает возможность использовать тонкие заготовки. В итоге емкость конденсатора, пропорциональная показателю объема, резко возрастает.

Устройства КМ отличаются высокой стоимостью. Объясняется это тем, что при их изготовлении используются драгоценные металлы и их сплавы: Ag, Pl, Pd. Палладий присутствует во всех моделях.

Конденсаторы на основе керамики.

Дисковая модель обладает высоким уровнем емкости. Ее показатель колеблется от 1 pF до 220 nF, а самое высокое рабочее напряжение не должно быть выше 50 V.

К плюсам данного типа можно отнести:

— малые потери тока;
— небольшой размер;
— низкий показатель индукции;

— способность функционировать при высоких частотах;
— высокий уровень температурной стабильности емкости;
— возможность работы в цепях с постоянным, переменным и пульсирующим током.

Основу многослойного устройства составляют чередующиеся тонкие слои из керамики и металла.

Этот вид похож на однослойный дисковый. Но такие устройства обладают высоким показателем емкости. Максимальное рабочее напряжение на корпусе этих приборов не указывается. Так же как и на однослойной модели, напряжение не должно быть выше 50 V.

Устройства функционируют в цепях с постоянным, переменным и пульсирующим током.

Плюсом высоковольтных керамических конденсаторов является их способность функционировать под высоким уровнем напряжения. Диапазон рабочего напряжения колеблется от 50 до 15000 V, а показатель емкости может составлять от 68 до 150 pF.

Могут функционировать в цепях с постоянным, переменным и пульсирующим током.

Танталовые устройства.

Современные танталовые устройства являются самостоятельным подвидом электролитического вида из алюминия. Основу конденсаторов составляет пентаоксид тантала.

Конденсаторы обладают небольшим показателем напряжения и применяются в случае необходимости использования прибора с большим показателем емкости, но в корпусе малого размера. У данного типа есть свои особенности:

— небольшой размер;
— показатель максимального рабочего напряжения составляет до 100 V;
— повышенный уровень надежности при долгом употреблении;
— низкий показатель утечки тока; широкий спектр рабочих температур;
— показатель емкости может колебаться от 47 nF до 1000 uF;
— устройства обладают более низким уровнем индуктивности и применяются в высокочастотных конфигурациях.

Минус этого вида заключен в высокой чувствительности к повышению рабочего напряжения.

Следует отметить, что, в отличие от электролитического вида, линией на корпусе помечается плюсовой вывод.

Разновидности корпусов.

Какие разновидности имеют танталовые конденсаторы? Типы конденсаторов из тантала выделяются в зависимости от материала корпуса.

1. SMD-корпус. Для изготовления корпусных устройств, которые используются при поверхностном монтаже, катод соединяется с терминалом посредством эпоксидной смолы с содержанием серебряного наполнителя. Анод приваривается к электроду, а стрингер отрезается. После формирования устройства на него наносится печатная маркировка. Она содержит показатель номинальной емкости напряжения.

2. При формировании этого типа корпусного устройства анодный проводник должен быть приварен к самому выводу анода, а затем отрезается от стрингера. В этом случае терминал катода припаивается к основе конденсатора. Далее конденсатор заполняется эпоксидом и высушивается. Как и в первом случае, на него наносится маркировка.

Конденсаторы первого типа отличаются большей степенью надежности. Но все типы танталовых конденсаторов применятся:

— в машиностроении;
— компьютерах и вычислительной технике;
— оборудовании для телевизионного вещания;
— электрических приборах бытового назначения;
— разнообразных блоках питания для материнских плат, процессоров и т.д.

Конденсатор.Типы конденсаторов.

Типы конденсаторов

Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

  • Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). Ёмкость в 1 Фараду очень велика. К примеру, земной шар имеет ёмкость менее 1 Ф, а точнее около 710 мкф. Правда, тут надо понимать, что физики любят аналогии. Говоря про электрическую ёмкость земного шара, они имеют ввиду, что в качестве примера взят металлический шар размером с планету Земля и являющийся уединённым проводником. Это всего лишь аналогия. В технике существует электронный компонент, который обладает ёмкостью более 1 Фарады – это ионистор.

    В основном, в электронике и радиотехнике используются конденсаторы с ёмкостью равной миллионной доле фарады – микрофарада (1мкФ = 0,000001 Ф). Также находят применение конденсаторы с ёмкостями исчисляемыми десятками – сотнями нанофарад (1нФ = 0,000000001 Ф) и пикофарад (1пФ = 0,000000000001 Ф). Номинальную ёмкость указывают на корпусе конденсатора.

    Чтобы не запутаться в сокращениях (мкФ, нФ, пФ), и научиться переводить микрофарады в пикофарады, а нанофарады в микрофарады необходимо знать о сокращённой записи численных величин.

  • Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. При превышении допустимого значения конденсатор будет пробит, то есть, превратится в обычный проводник. Диапазон допустимых значений рабочих напряжений конденсаторов лежит в пределах от нескольких вольт до единиц киловольт (1 киловольт – 1 000 вольт). Номинальное напряжение маркируют на корпусе конденсатора.

  • Допуск. Также как у резисторов и у конденсаторов есть допустимое отклонение величины его реальной ёмкости от той, что указана на его корпусе. Допуск обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В технике, где требуется особая точность номинальных значений ёмкости, применяются конденсаторы с малым допуском (1% и менее).

Три указанных параметра являются основными. Знание этих параметров достаточно, чтобы самостоятельно подбирать конденсаторы для изготовления самоделок и ремонта электроники

.

Изображается конденсатор на принципиальных схемах так, как показано на рисунке.

Типы конденсаторов

Кроме обычных существуют ещё и электролитические конденсаторы. Емкость их намного больше, чем у обычных, следовательно, габариты также существенно больше. Отличительная особенность электролитических конденсаторов – полярность. Если обычные конденсаторы можно впаивать в схему не беспокоясь о полярности прикладываемого к конденсатору напряжения, то электролитический конденсатор необходимо включать в схему строго в соответствии с полярностью напряжения. У электролитических конденсаторов один вывод плюсовой, другой минусовой.

Обозначение электролитического конденсатора на схемах.

Также широкое применение получили подстроечные конденсаторы. Подстроечные конденсаторы необходимы в тех случаях, когда требуется точная подстройка ёмкости в электронной схеме. В таких конденсаторах подстройку ёмкости производят один раз или очень редко.

Обозначается так.

Наряду с подстроечными конденсаторами существуют и конденсаторы переменной ёмкости. В отличие от подстроечных, переменные конденсаторы служат для частой подстройки ёмкости. В простом (не цифровом) приёмнике настройка на радиостанцию как раз и осуществляется с помощью конденсатора переменной ёмкости.

Свойства конденсатора
  • Конденсатор не пропускает постоянный ток и является для него изолятором.

  • Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Свойство конденсатора оказывать разное сопротивление переменному току нашло широкое применение. Конденсаторы используют для фильтрации, отделения одних частот от других, отделения переменной составляющей от постоянной…

Вот так выглядят конденсаторы постоянной ёмкости.

Электролитический конденсатор. Длинный вывод – плюсовой, короткий – минусовой.

Планарный электролитический конденсатор. На корпусе указана номинальная ёмкость22 мкФ (22), номинальное напряжение16 Вольт (16V). Видно, что емкость обозначена только цифрами. Ёмкость электролитических конденсаторов указывается в микрофарадах.

Со стороны отрицательного вывода конденсатора на верхней части корпуса чёрный полукруг.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

классификация по характеристикам, параметрам и применению

Конденсаторы активно применяются в электрических схемах электрооборудования и радиоэлектронных приборах. В зависимости от целевого назначения и условий эксплуатации техники, используются различные виды конденсаторов. Для того чтобы лучше понимать, какая может быть классификация конденсаторов, надо иметь общее понятие, как они работают и где применяются.

Конденсаторы различных видов

Физический принцип работы конденсаторов

Независимо от того, какие типы конденсаторов, их практическое применение вызвано ценным свойством: способностью накапливать электрический заряд и освобождаться от него, другими словами, заряжаться и разряжаться.

Самая простая конструкция конденсатора

Бывают разные типы конденсаторов, но классическая конструкция очень простая: две пластины с отводными электродами, между которыми диэлектрический материал. В схемах колебательного контура приема передающей аппаратуры конденсаторы работают в совокупности с катушкой индуктивности. Сначала пластины заряжаются противоположными зарядами, после полной зарядки начинается разрядка, после полной разрядки начинается вторичный процесс зарядки, но при этом полярности на пластинах меняются. На этом принципе работают схемы аналоговых генераторов.

Емкость конденсаторов

Основные параметры конденсаторов – это емкость и напряжение. Независимо, какая классификация конденсаторов, его электрическая емкость характеризует величину заряда, который способен накопить конденсатор, измеряется она в Фарадах (F). Экспериментальным путем и расчетами установлено, что емкость планеты Земля составляет 1F, величина заряда конденсаторов ничтожно мала по отношению к этому значению. Поэтому для удобства расчетов в системе измерения величин СИ используются следующие порядки:

  • Микро – одна миллионная фарады 1х10-6 µF;
  • Нано – одна миллиардная фарады 1х10-9 nF;
  • Пико – одна триллионная фарады 1х10-12 pF.

На практике есть некоторые трудности определения емкости конденсаторов, для этого надо изучить правила маркировки различных видов и производителей. Эта тема требует отдельного более тщательного рассмотрения.

Назначение и область применения

Электронное оборудование содержит большое количество узлов различного назначения, где применяются конденсаторы. В таймерах они подключаются через резисторы, определяя время разряда или заряда. В блоках питания и преобразователях напряжения сглаживают пульсацию, стабилизируя напряжение после выпрямителя. В некоторых случаях конденсаторы используются в качестве фильтров, обладая свойством проводимости переменного тока и запиранием постоянного.

Пример бытовой техники, где применяются конденсаторы

Они эффективно могут ускорить или замедлить процесс увеличения или падения напряжений в различных электронных схемах.

Разновидности конденсаторов

Все виды конденсаторов можно разделить на несколько групп:

  1. По функциональному назначению:
  • Общего назначения, которые применяются в бытовой электронной аппаратуре, эксплуатируемой при обычных условиях, к этим моделям нет особых требований по защите от окружающей среды;
  • Специального назначения, здесь учитываются условия эксплуатации и функциональное назначение, повышены требования к защите корпуса и пределы допустимых электрических величин;
  • Низковольтные изделия используются при напряжении до 1600В;
  • Высоковольтные – выше 1600В;
  • Конденсаторы с низкой индуктивной составляющей – для подавления радиопомех в электромагнитном поле;
  • В высокочастотной аппаратуре ставят конденсаторы с газовым, воздушным или вакуумным заполнением в качестве диэлектрической прокладки, они обладают малыми диэлектрическими потерями.
  1. По состоянию характеристики емкости:
  • С фиксированной величиной емкости;
  • Конденсаторы с переменной емкостью разделяют на три группы:
  1. Подстроечьные используются для одноразовой подстройки аппаратуры при вводе в эксплуатацию или периодической настройки в процессе длительной эксплуатации приборов, когда некоторые электрические параметры изменяют свои значения;
  2. С переменной емкостью, когда емкость меняется от температуры или напряжения, такие приборы называются термоконденсаторами и варикапами;
  3. Когда емкость меняется за счет изменения расстояния между пластинами или площади пластин, расположенных друг против друга.
  4. По степени защиты:
  • Без защиты – для эксплуатации в обычных условиях;
  • С элементами защиты корпуса – для работы в условиях повышенных температур и большой влажности;
  • Конденсаторы без корпуса и изоляционного слоя с открытой конструкцией;
  • Уплотненные конденсаторы под корпусом имеют уплотнительный изоляционный наполнитель;
  • С элементами повышенной герметизации.
  1. По способу монтажа в конструкцию схемы:
  • Навесные конденсаторы с ленточными, круглыми электродами и опорным винтом для крепления на платы или другие конструкции, охлаждающие радиаторы в силовых цепях;

Конденсаторы с опорным винтом для крепления на радиаторы

  • Модели конденсаторов с электродами круглого сечения для установки в печатные платы;
  • SMD конденсаторы сделаны по специальной технологии для поверхностной пайки на дорожки печатной платы;

SMD конденсаторы для поверхностной пайки на печатные платы

  • Современные разработки предусматривают конденсаторы с защелкивающимися электродами на конструкции схем.
  1. По виду материала диэлектрической прокладки между пластинами конденсатора:
  • Конденсаторы, в которых в качестве диэлектрика ставят материал неорганического происхождения. Используется керамика, слюда или стекло, эмалированные прокладки;
  • В низкочастотных моделях используются органические пленки, в которых диэлектрические свойства зависят от частоты проходящего через них тока;
  • Высокочастотные конденсаторы имеют фторопластовые или полистирольные прокладки, газовое, вакуумное или воздушное наполнение;
  • Электролитические конденсаторы подключаются обязательно с учетом полярности цепи, диэлектрическая прокладка в них содержит оксидные материалы, производимые электрохимическим путем. На электроде анода используется алюминий или тантал, в качестве катода применяют электролитический состав желеобразной массы (гель) или жидкость.

Особенности и характеристики востребованных конденсаторов

Несмотря на простоту классической конструкции, отдельные виды имеют некоторые особенности, это важно учитывать при выборе конденсаторов.

Электролитические алюминиевые конденсаторы

Конструкция этих конденсаторов содержит внутри цилиндрического корпуса скрутку двух алюминиевых лент, между которыми бумажная лента пропитана электролитическим составом. Емкость таких конденсаторов составляет 0.1-100 000 µF, при максимальном напряжении 35В.

Конструкция электролитического конденсатора

Именно такие конденсаторы применяют на печатных платах оборудования, где есть элементы, работающие на постоянном токе.

Обратите внимание! При подключении таких конденсаторов обязательно надо учитывать полярность. Недостатком этой конструкции считают значительный ток утечки, емкость уменьшается на высоких частотах.

Конденсаторы с полипропиленом

В качестве диэлектрической прослойки между пластинами установлена пленка из полипропилена. Интервал величины емкости этого типа – от 100pF до 10 µF, максимальное напряжение – 3000В. Преимущество этого вида – в высокой точности емкости с погрешностью в 1%.

Конденсаторы с полиэстеровой пластиной:

  • Пределы емкости – 1nF-15uF,
  • Напряжение – 50-1500В;
  • Погрешность – производители делают конденсаторы различного класса точности: 5;10 и 20%.

Многослойные керамические конденсаторы

Имеют многослойную структуру с чередованием металла и керамики, величина их емкости не превышает нескольких µF.

Конструкция многослойных керамических конденсаторов

Напряжение даже не указывается на маркировке, все они работают в пределах 0-50В в схемах с постоянным, пульсирующим и переменным током.

Высоковольтные керамические конденсаторы

Эти конденсаторы работают в пределах напряжения от 50 до 15000В, емкость – 68pF-150nF. Так же работают в цепях с постоянным, переменным и пульсирующим током.

Керамические дисковые конденсаторы с одним слоем

Конструкция пластин этого конденсатора имеет круглую форму, с одной диэлектрической прослойкой между ними. Они имеют большую емкость – 1pF-220nF, напряжение – до 50В. Преимущества этого вида:

  • малые токи утечки,
  • низкая индуктивная составляющая,
  • способность работать при высоких частотах и температурах, сохраняя стабильные показатели емкости.

Танталовые конденсаторы

Танталовые изделия по конструкции и характеристикам напоминают алюминиевые электролитические конденсаторы, но меньшего размера. Диэлектрический слой состоит из пентаоксида тантала, рабочее напряжение –не более 100В, емкость – 47nF-1000uF.

Важно! Электрод положительной полярности указывается на корпусе линией. Эффективно работают на высоких частотах порядка сотен Khz.

Воздушные переменные конденсаторы

Такие модели конденсаторов используются в приемо-передающей аппаратуре для настройки частот. Диэлектриком между пластин является воздушная прослойка.

Конструкция переменного конденсатора с воздушным диэлектрическим слоем

Роторная часть с пластинами вращается по оси относительно статорной неподвижной части, таким образом, изменяется величина емкости.

Виды конденсаторов с переменной емкостью

Бумажные конденсаторы

Сделаны на основе конденсаторной бумаги в виде ленты, которая сматывается в плотный рулон. Конденсаторная бумага со специальной диэлектрической пропиткой устанавливается между фольгированными лентами.

Внешний вид одного из бумажных конденсаторов

Рулон помещается в герметичный металлический корпус прямоугольной или цилиндрической формы, иногда вместо фольги используется металлическое напыление. Чаще всего такие конденсаторы используют в силовых промышленных сетях 220/380В в схемах запуска электродвигателей.

Обозначение некоторых видов конденсаторов на схемах

Производители делают большое количество различных конденсаторов, поэтому при их использовании надо хорошо изучить назначение оборудования и условия его эксплуатации. Тогда выбор конденсаторов будет сделан осознанно, с учетом их конструктивных особенностей и технических характеристик, тогда и приборы будут работать эффективно и долговременно.

Видео

Оцените статью:

Разновидности конденсаторов: плюсы и минусы

Конденсатор является электронным прибором, который позволяет накапливать и затем отдавать электрический разряд. Основной характеристикой элемента является его емкость, определяющая зависимость заряда от напряжения.

Классификация конденсаторов

Различные технологии выпуска устройств позволяют производить разные виды приборов. К воздушным конденсаторам относят изделия, в которых диэлектриком является воздух. Достоинствами данного типа приспособлений являются простота изготовления. Они предназначаются для механического регулирования емкости и рассчитаны на механические постоянные воздействия. К недостаткам данного вида устройств относят нестабильность, слабую надежность, зависимость от влажности и температуры среды, большие габариты, относительно низкую электрическую прочность, которая ограничивается пробоем между платинами воздуха, а также невысокую емкость.

Существуют бумажные виды конденсаторов, в которых в качестве диэлектрика выступает пропитанная трансформаторным маслом бумага. Данные устройства обладают высокой надежностью и электрической прочностью. При высоком напряжении они имеют достаточно высокую емкость и низкую утечку тока.

Многие конденсаторы для силовых установок производят по бумажному принципу. Для этого складывают вместе две пластины, между которыми располагают бумагу. Затем устройство сворачивают в рулон и помещают в банку, которую заполняют трансформаторным маслом, и затем запаивают. К недостаткам приспособления можно отнести большой вес, высокую собственную индуктивность и сопротивление.

Электролитические виды конденсаторов имеют диэлектрик, представленный в форме оксидного слоя, возникающего на поверхности активного металла (чаще алюминия). Устройство производят путем помещения в электролит изготовленной из активного металла ленты, на поверхности которой образуется пленка из прочного окисла, позволяющая изолировать металл.

Основной особенностью электролитических видов конденсаторов является наличие полярности, при одном значении которой они держат расчетное напряжение, а при его изменении быстро разрушаются. Это происходит в результате химических процессов, возникающих между электролитом и металлом пластины. Оксидная пленка постепенно трескается и разрушается.

Однако при соблюдении правильной полярности микротрещины быстро затягиваются новым оксидом. К достоинствам данных устройств относят высокую емкость, к недостаткам – полярность, потерю свойств, быстрый износ, высокую внутреннюю индуктивность.

Виды конденсаторов и их применение

Существуют также устройства, в которых в качестве диэлектрика выступает слюда, их используют в различных электроустановках. Поскольку слюда способна самостоятельно накапливать энергию, данные виды конденсаторов обладают высокой емкостью и электрической прочностью. К недостаткам относят нестабильность параметров, нелинейность, высокую цену и зависимость емкости от силы тока.

Кроме этого применение нашли керамические виды конденсаторов, пленочные, тефлоновые, полипропиленовые и другие устройства.

Электрический конденсатор. Виды конденсаторов. Маркировка конденсаторов

На сегодняшний день существует множество типов конденсаторов и каждый из них обладает своими преимуществам и недостатками.
Одни могут работать при высоких напряжениях, другие обладают большой ёмкостью, третьи малой утечкой, четвёртые малой индуктивностью — эти факторы определяют область применения конденсаторов конкретного типа.
В этой статье будут рассмотрены основные, но далеко не все типы конденсаторов.

Алюминиевые электролитические конденсаторы .

Алюминиевые электролитические конденсаторы, состоят из двух скрученных тонких алюминиевых полосок, между которыми помещается бумага, пропитанная электролитом. Ёмкость этого типа конденсаторов может быть от 0.1uF до 100 000uF, что является их главным преимуществом перед другими типами, а максимальное рабочее напряжение может доходить до 500V. Максимальное рабочее напряжение и ёмкость обычно указываются на конденсаторе, максимальное рабочее напряжение конденсатора, изображенного на картинке, составляет 35 вольт , а ёмкость или заряд приходящийся на 1 вольт, составляет 680uF . Недостатком этого типа конденсаторов является относительно высокий ток утечки и то, что ёмкость их уменьшается с ростом частоты, именно поэтому на платах часто можно встретить алюминиевый электролитический конденсатор, параллельно которому ставят керамический или как горят “шунтируют керамикой”. Также надо сказать, что этот тип конденсаторов имеет полярность, это значит, что вывод конденсатора, обозначенный минусом на корпусе, должен всегда находиться под более отрицательным напряжением, чем другой вывод конденсатора. При несоблюдении этого правила конденсатор скорее всего взорвётся и именно поэтому применять их можно только в цепях с постоянным и пульсирующим током, но не переменным.

Танталовые конденсаторы .

Танталовые конденсаторы изготавливаются из пентаоксида тантала и схожи по свойствам с алюминиевыми электролитическими конденсаторами, но обладают некоторыми особенностями. Они меньшего размера, максимальное рабочее напряжение до 100V, ёмкость этого типа конденсаторов может быть от 47nF до 1000uF, обладают меньшей индуктивностью и могут применяться в более высокочастотных схемах, работающих на частотах в сотни Khz. К недостаткам можно отнести чувствительность к превышению рабочего напряжения. Надо отметить, что в отличии от алюминиевых электролитических конденсаторов, линией на корпусе помечают плюсовой вывод.

Керамические однослойные дисковые конденсаторы .

Дисковые керамические конденсаторы обладают достаточно большой ёмкостью при их размерах, она может быть от 1pF до 220nF, а максимальное рабочее напряжение не должно превышать 50V. Значение ёмкости на данном типе конденсаторов указывается в pF, например ёмкость конденсатора изображенного на картинке равна 100 000 pF или 100nF или 0.1uF, данное значение получается следующим образом, первые две цифры надо умножить на 10, возведенную в степень третьей цифры, в нашем случае надо 10 х 10^4 = 10^5 или 100 000pF. К достоинствам можно отнести, незначительные токи утечки, небольшие габаритные размеры, низкую индуктивность и способность работать на высоких частотах, а также высокую температурную стабильность ёмкости. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Керамические многослойные конденсаторы

Керамические многослойные конденсаторы представляет собой структуру с чередующимися тонкими слоями керамики и металла.
Этот тип конденсаторов схож по свойствам с однослойными дисковыми, но обладает в несколько раз большей ёмкостью, достигающей нескольких uF. Максимальное рабочее напряжение на корпусе этих конденсаторов не указывается и так же как для однослойных дисковых, не должно превышать 50V. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Керамические высоковольтные конденсаторы

Преимущество этого типа конденсаторов понятно из названия, их отличительной особенностью является способность работать под высоким напряжением. Диапазон рабочих напряжений от 50 до 15000V, а ёмкость может 68pF до 150nF. Максимальное напряжение конденсатора, изображенного на картинке конденсатора равно 1000V, а ёмкость 100nF, выше описывалось как её узнать. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Полиэстеровые конденсаторы .

Ёмкость этого типа конденсаторов может быть от 1nF до 15uF, диапазон рабочих напряжений от 50 до 1500V. Они изготавливаются с разными допуском(допустимое отклонение номинальной ёмкости), 5%, 10% и 20%, обладают высокой температурной стабильностью, достаточно большой ёмкостью при их размерах, низкой ценой и как следствие находят широкое применение. Ёмкость конденсатора, изображенного на картинке равна 150 000pF или 150nF, буква К после числа 154 означает допуск, то есть на сколько реальное значение ёмкости может отличаться от указанной на конденсаторе. В данном случае допуск составляет 10%, подробнее об этом будет написано ниже. Нас больше интересует, что в маркировке этого конденсатора означает 2J и чему равно его максимальное рабочее напряжение. Для того чтобы ответить на два эти вопроса можно воспользоваться таблицей, буквенной маркировки напряжения.


Из таблицы становится понятно, что максимальное рабочее напряжение конденсатора равно 630V

Полипропиленовые конденсаторы .

В конденсаторах этого типа в качестве диэлектрика применяется полипропиленовая плёнка, а их ёмкость может быть от 100pF до 10uF. Одним из главных преимуществ этого типа конденсаторов является высокое рабочее напряжение, которое может достигать 3000V, также преимуществом является возможность изготовления этого типа конденсаторов с допуском в 1%. На картинке изображён конденсатор ёмкость которого 5600pF, а максимальное рабочее напряжение равно 630V. Буква J после числа 562 обозначает допуск и в данном случае он равен 5%. Допуск можно определить, пользуясь таблицей, изображенной ниже.


То есть реальное значение ёмкости может отличаться на 5% той, что указана на конденсаторе. Могут работать на частотах до 100KHz.

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты .

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах , помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах , а от 0,1 мкФ и выше — в микрофарадах .

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования . Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах , определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью . Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы , у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы . Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы , в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы , представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические ). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны , т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие «конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы . Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

Неполярный конденсатор изображение на схеме

На фото ниже изображены пленочный и керамический конденсаторы:

Пленочный


Керамический

Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы


Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.

На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:

Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

На следующем рисунке изображено строение подстроечного конденсатора:

Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV .

Обсудить статью КОНДЕНСАТОР

Многие интересуются, имеют ли конденсаторы типы? Конденсаторов в электронике существует множество. Такие показатели, как емкость, рабочее напряжение и допуск, являются основными. Не менее важен тип диэлектрика, из которого они состоят. В этой статье будет рассмотрено подробнее, какие типы конденсаторов бывают по виду диэлектрика.

Классификации конденсаторов.

Конденсаторы являются распространенными компонентами в радиоэлектронике. Они классифицируются по множеству показателей. Важно знать, какими моделями, в зависимости от характера изменения величины, представлены разные конденсаторы. Типы конденсаторов:

1. Устройства с постоянной емкостью.
2. Приборы с переменным видом емкости.
3. Построечные модели.

Тип диэлектрика конденсатора может быть разным:

Бумага;
— металлическая бумага;
— слюда; тефлон;
— поликарбонат;
— электролит.

По способу установки данные приборы предназначены для печатного и навесного монтажа. При этом типы корпусов конденсаторов SMD-модификации бывают:

Керамическими;
— пластиковыми;
— металлическими (алюминиевыми).

Следует знать, что приборы из керамики, пленки и неполярные виды не обладают маркировкой. Показатель их емкости колеблется от 1 пф до 10 мкф. А электролитные типы имеют форму бочонков в корпусе из алюминия и маркируются. Танталовый же тип производится в корпусах прямоугольной формы. Такие устройства бывают разного размера и расцветки: черные, желтые и оранжевые. На них также присутствует кодовая маркировка.

Электролитические конденсаторы из алюминия.

Основой электролитических конденсаторов из алюминия являются две тонкие скрученные алюминиевые полоски. Между ними расположена бумага, содержащая электролит. Показатель емкости этого прибора равен 0,1-100 000 uF. Кстати, в этом и заключается его основное преимущество перед другими видами. Максимальное напряжение равно 500 V.

К минусам относятся повышенная утечка тока и уменьшение емкости с возрастанием частоты. Поэтому в платах часто вместе с электролитическим конденсатором используется и керамический.

Также следует отметить, что данный тип отличается полярностью. Это означает, что вывод устройства с минусовым показателем находится под отрицательным напряжением, в отличие от противоположного вывода. Если не придерживаться этого правила, то скорее всего, приспособление выйдет из строя. Поэтому рекомендуется применять его в цепях с наличием постоянного или пульсирующего тока, но ни в коем случае не переменного.

Электролитические конденсаторы: типы и предназначение.

Типы электролитических конденсаторов представлены широким рядом. Они бывают:

Полимерными;
— полимерными радиальными;
— с низким уровнем утечки тока;
— стандартной конфигурации;
— с широким диапазоном температур;
— миниатюрными;
— неполярными;
— с наличием жесткого вывода;
— низкоимпедансными.

Источник:

Где применяются электролитические конденсаторы? Типы конденсаторов из алюминия используются в разных радиотехнических устройствах, деталях компьютера, периферийных приборах типа принтеров, графических устройствах и сканерах. Также они применяются в строительном оборудовании, промышленных приборах для измерения, в сфере вооружения и космоса.

Конденсаторы КМ

Существуют и глиняные конденсаторы типа КМ. Они используются:
— в промышленном оборудовании;
— при создании приборов для измерения, отличающихся высокоточными показателями;
— в радиоэлектронике;
— в сфере военной индустрии.

Устройства подобного типа отличаются высоким уровнем стабильности. Основу их функциональности составляют импульсные режимы в цепях с переменным и неизменным током. Их характеризует высокий уровень сцепления обкладок из керамики и долгая служба. Это обеспечивается низким значением коэффициента емкостного непостоянства температур.

Конденсаторы КМ при маленьких размерах имеют высокий показатель емкости, достигающий 2,2 мкФ. Изменение ее значения в интервале рабочей температуры у данного вида составляет от 10 до 90%.

Типы керамических конденсаторов группы Н, как правило, применяются как переходники или же блокирующие устройства и т. п. Современные приборы из глины изготавливаются при помощи прессовки под давлением в целостный блок тончайших металлизированных керамических пластинок.

Высокий уровень прочности этого материала дает возможность использовать тонкие заготовки. В итоге емкость конденсатора, пропорциональная показателю объема, резко возрастает.

Устройства КМ отличаются высокой стоимостью. Объясняется это тем, что при их изготовлении используются драгоценные металлы и их сплавы: Ag, Pl, Pd. Палладий присутствует во всех моделях.

Конденсаторы на основе керамики.

Дисковая модель обладает высоким уровнем емкости. Ее показатель колеблется от 1 pF до 220 nF, а самое высокое рабочее напряжение не должно быть выше 50 V.

К плюсам данного типа можно отнести:

Малые потери тока;
— небольшой размер;
— низкий показатель индукции;
— способность функционировать при высоких частотах;
— высокий уровень температурной стабильности емкости;
— возможность работы в цепях с постоянным, переменным и пульсирующим током.

Основу многослойного устройства составляют чередующиеся тонкие слои из керамики и металла.

Этот вид похож на однослойный дисковый. Но такие устройства обладают высоким показателем емкости. Максимальное рабочее напряжение на корпусе этих приборов не указывается. Так же как и на однослойной модели, напряжение не должно быть выше 50 V.

Устройства функционируют в цепях с постоянным, переменным и пульсирующим током.

Плюсом высоковольтных керамических конденсаторов является их способность функционировать под высоким уровнем напряжения. Диапазон рабочего напряжения колеблется от 50 до 15000 V, а показатель емкости может составлять от 68 до 150 pF.

Могут функционировать в цепях с постоянным, переменным и пульсирующим током.

Танталовые устройства.

Современные танталовые устройства являются самостоятельным подвидом электролитического вида из алюминия. Основу конденсаторов составляет пентаоксид тантала.

Конденсаторы обладают небольшим показателем напряжения и применяются в случае необходимости использования прибора с большим показателем емкости, но в корпусе малого размера. У данного типа есть свои особенности:

Небольшой размер;
— показатель максимального рабочего напряжения составляет до 100 V;
— повышенный уровень надежности при долгом употреблении;
— низкий показатель утечки тока; широкий спектр рабочих температур;
— показатель емкости может колебаться от 47 nF до 1000 uF;
— устройства обладают более низким уровнем индуктивности и применяются в высокочастотных конфигурациях.

Минус этого вида заключен в высокой чувствительности к повышению рабочего напряжения.

Следует отметить, что, в отличие от электролитического вида, линией на корпусе помечается плюсовой вывод.

Разновидности корпусов.

Какие разновидности имеют танталовые конденсаторы? Типы конденсаторов из тантала выделяются в зависимости от материала корпуса.

1. SMD-корпус. Для изготовления корпусных устройств, которые используются при поверхностном монтаже, катод соединяется с терминалом посредством эпоксидной смолы с содержанием серебряного наполнителя. Анод приваривается к электроду, а стрингер отрезается. После формирования устройства на него наносится печатная маркировка. Она содержит показатель номинальной емкости напряжения.

2. При формировании этого типа корпусного устройства анодный проводник должен быть приварен к самому выводу анода, а затем отрезается от стрингера. В этом случае терминал катода припаивается к основе конденсатора. Далее конденсатор заполняется эпоксидом и высушивается. Как и в первом случае, на него наносится маркировка.

Конденсаторы первого типа отличаются большей степенью надежности. Но все типы танталовых конденсаторов применятся:

В машиностроении;
— компьютерах и вычислительной технике;
— оборудовании для телевизионного вещания;
— электрических приборах бытового назначения;
— разнообразных блоках питания для материнских плат, процессоров и т.д.

Поиск новых решений.

На сегодняшний день танталовые конденсаторы являются самыми востребованными. Современные производители находятся в поисках новых методов повышения уровня прочности изделия, оптимизации его технических характеристик, а также существенного понижения цены и унификации производственного процесса.

С этой целью пытаются снизить стоимость на основе составляющих компонентов. Последующая роботизация всего процесса производства также способствует падению цены на изделие.

Важным вопросом считается и уменьшение корпуса устройства при сохранении высоких технических параметров. Уже проводятся эксперименты на новых типах корпусов в уменьшенном исполнении.

Конденсаторы из полиэстера.

Показатель емкости этого типа устройства может колебаться от 1 nF до 15 uF. Спектром рабочего напряжения является показатель от 50 до 1500 V.

Существуют устройства с разной степенью допуска (допустимое отклонение емкости составляет 5%, 10% и 20%).

Это вид обладает стабильностью температуры, высоким уровнем емкости и низкой стоимостью, что и объясняет их широкое применение.

Конденсаторы с переменной емкостью.

Типы переменных конденсаторов обладают определенным принципом работы, который заключается в накоплении заряда на пластинах-электродах, изолированных посредством диэлектрика. Пластины эти отличаются подвижностью. Они могут перемещаться.

Подвижная пластина называется ротором, а неподвижная — статором. При изменении их положения изменятся и площадь пересечения, и, как следствие, показатель емкости конденсатора.

Конденсаторы бывают с двумя типами диэлектриков: воздушным и твердым.

В первом случае в роли диэлектрика выступает обыкновенный воздух. Во втором случае применяют керамику, слюду и др. материалы. Для увеличения показателя емкости устройства статорные и роторные пластины собираются в блоки, закрепленные на единой оси.

Конденсаторы с воздушным типом диэлектрика применяются в системах с постоянной регулировкой емкости (например, в узлах настройки радиоприемников). Такой тип устройства обладает более высоким уровнем стойкости, чем керамический.


Электрический конденсатор — один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические

Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.


В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!


Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы

Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 — 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.


Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее «ходовых» ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы

Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 — 100 нФ.


Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.


Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы

Например К52-1 или smd А. Основным веществом служит — пентоксид тантала, а в качестве электролита — диоксид марганца.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.


Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы

Например K73-17 или CL21, на основе металлизированной пленки…
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.


Ёмкость таких конденсаторов идет порядка 1 нф — 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы

Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф — 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт!

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.

Виды конденсаторов и проверка мультиметром на исправность

Конденсатор (лат. condensare — «сгущать», «уплотнять») популярная двухполюсная система, которую применяют в различных электрических цепях. Устройство способно накапливать и быстро отдавать электрический заряд. Величина емкости может быть, как постоянная, так переменная.

Описание и принцип работы кондесатора

В самом простом случае конденсатор представляет собой две противоположно заряженные пластины с диэлектрической (изолирующей) прокладкой между ними. Диэлектрик имеет очень малую толщину, в сравнении с площадью пластин. Роль диэлектрика может выполнять даже воздух.

В реальном производстве большинство конденсаторов представляют собой многослойные рулоны из токопроводящих электродов, разделенные диэлектриком. Собраны рулоны в цилиндрическом корпусе.

Трудно найти электрическую схему, в которой бы не принимал участия конденсатор.

В различных схемах этот элемент выполняет роль накопителя энергии. Классическая схема, объясняющая действие конденсатора, представлена на рисунке.

Обычная лампочка подсоединена к конденсатору, который с помощью переключателя, через сопротивление, может заряжаться от гальванической батареи. При изменении положения переключатель отсоединяет батарею от конденсатора и соединяет его с лампочкой. Устройство отдает накопленный заряд лампе и можно наблюдать кратковременную вспышку.

На первый взгляд, он напоминает действие батарейки, но отличается от нее по принципу зарядки, скорости разрядки, емкости.

Когда конденсатор подключают к заряжающему устройству, на электродах оказывается много места и ток зарядки сначала максимальный. По мере того как пластины заряжаются, ток уменьшается и исчезает при полной зарядке. На одной пластине собираются электроны — отрицательно заряженные частицы, на другой — ионы, положительные частицы. Чтобы они не перескакивали с одной пластины на другую нужен диэлектрик.

Напряжение, в отличие от тока, растет по мере насыщения конденсатора. Когда от него отключают батарею он сам, как батарейка, становится источником тока. Но, в отличие от батареи, конденсатор разряжается быстро.

Характеристики параметров устройства

Все важные значения параметров конденсатора расположены на корпусе. На нем также указывается тип элемента, дата выпуска, изготовитель.

Самой важной характеристикой является емкость.

Емкость – это величина заряда, который может накопить и отдать элемент. Емкость измеряется в Фарадах. Один Фарад равен емкости, при которой за одну секунду и силе тока в один ампер между прокладками создается напряжение один вольт. Это довольно большая величина и на практике в магнитофонах, плеерах используются миллионные и тысячные части фарады.

После значения ёмкости на корпусе показываются допустимые отклонения от неё.

Следующий важный параметр — номинальное напряжение. Всегда необходимо брать радиодеталь с запасом по напряжению, иначе, может случиться пробой диэлектрика и элемент выйдет из строя.

Кроме того, у каждого конденсатора есть еще различные характеристики: рабочая температура, ток номинальный переменный или постоянный.

Они бывают однофазные и трехфазные.

Классификация конденсаторов

В основном они различаются по типу диэлектрика. Именно от него зависят максимальное напряжение, сопротивление, стабильность.

По диэлектрику

По особенностям диэлектрика можно выделить следующие типы:

  • Жидкий.
  • Вакуумный. Когда пластины находятся в вакууме, и он же выступает диэлектриком.
  • Газовый.
  • Электролитический и оксид-полупроводниковый. Непроводящим слоем здесь выступает оксидный слой анода. У этого типа самая большая удельная емкость.
  • Твердый органический диэлектрик. Изолятором выступает пленка, бумага, метало — бумага.
  • Твердый неорганический диэлектрик. Керамические, слюдяные, стеклянные и комбинированные непроводящие элементы.

По изменению емкости

По этой характеристике можно выделить следующие устройства:

  • Постоянные. Во время работы их емкость не меняется.
  • Переменные. Обладают способностью изменять свою емкость. Это может быть механический метод — реостат. Либо изменение электрического напряжения, либо температуры.
  • Подстроечные. Подстраиваются механически вручную при настройке схемы прибора. Чтобы устройство работало нормально.

По назначению и использованию

По сфере эксплуатации все конденсаторы разделяются на следующие типы:

  • Низковольтные. Часто используемые в схемах бытовых устройств.
  • Высоковольтные. Способные выдержать повышенное напряжение.
  • Импульсные. Применяются в фотовспышках, лазерах.
  • Пусковые. При помощи их запускают электродвигатели.
  • Помехоподавляющие.

Различают конденсаторы полярные и неполярные. Полярными бывают только электролитические кондеры.

Области применения

Конденсаторы находят применение практически во всех областях электротехники:

  • Фильтры выпрямителей и стабилизаторов в источниках питания.
  • Передача сигналов в усилителях.
  • Различные частотные фильтры. Разделяют звуки на низкие, средние, высокие.
  • В таймерах. Они устанавливают временные отрезки пускового механизма стиральной машины, микроволновки.
  • В переходниках. Например, можно подключить электродвигатель, рассчитанный на 380 вольт к сети с напряжением в 220 вольт. Конденсатор подсоединяется к третьему выводу, сдвигая фазу на 90 градусов на третьем выводе. В результате можно трехфазный мотор включать в однофазную сеть 220 вольт.
  • В генераторах. Подбор частоты колебаний и т. д.

В настоящее время сложно встретить электрическую схему, где бы ни использовались конденсаторы.

Несложные конденсаторы практически не выходят из строя, поломка может возникнуть только при механическом воздействии. Электролитические кондеры могут со временем «высыхать». Если прибор продолжительное время не эксплуатируется, то диэлектрический слой ухудшает непроводимость тока.

Если полярные конденсаторы неправильно подсоединить в схеме, перепутав полюса, то элемент тоже может выйти из строя или даже привести к короткому замыканию на плате.

При замене конденсаторов, их обязательно надо тестировать и проверять. Поскольку даже в неиспользуемых ранее элементах, при длительном хранении может высохнуть диэлектрик.

Способов проверки радиоэлементов несколько. В одних случаях достаточно внешнего осмотра. Лучше всего подходит тестирование прибором LC-метром. Но если его нет под рукой, то проверить исправность кондера можно тестером или мультиметром. Последний способ подходит для конденсаторов, с емкостью, превосходящей 0.25 микрофарад.

Проверка конденсатора тестером

Перед проверкой, как и перед любой работой с конденсатором, его следует разрядить. Если он маломощный, то достаточно отверткой замкнуть ножки элемента. Ручка отвертки должна быть изолирована.

Мощные конденсаторы разряжаются лампочкой накаливания. После вспыхивания лампочки он полностью разрядится.

Теперь можно проводить внешний осмотр. Определить испорченные радиодетали иногда можно невооруженным глазом. Если обнаружены коррозия, вздутие корпуса, подтеки, то деталь требует замены.

В некоторых импортных электролитических конденсаторах в верхней части размечен и выдавлен крест. Стенка корпуса в этом месте элемента тоньше. При пробое, именно там и рвется.

Перед прозвонкой нужно обязательно выпаять ножки. Иначе, остальные детали повлияют своим сопротивлением на показатели. В принципе, можно отпаять только одну ножку, но на практике, особенно у электролитических кондеров, ножки короткие. И технически это трудно сделать.

Для проверки детали на 220 вольт подходит простой способ тестирования:

  • Проверяем степень разрядки.
  • Проверяем тестером нет ли внутри короткого замыкания.
  • Заряжаем конденсатор от сети. Обязательно надо соблюдать технику безопасности.
  • Отключаем деталь от сети.
  • Подключаем лампочку или просто соединяем ножки элемента. Если лампочка вспыхнула или появилась искра, то радиодеталь в порядке.

Тестирование с помощью мультиметра

Мультиметр является универсальным средством измерения различных параметров электрических цепей, узлов и деталей.

Он позволяет измерить:

  • Величину тока как постоянного, так и переменного.
  • Значение напряжения.
  • Параметры сопротивления и прочие параметры.

Мультиметры, в зависимости от способа вывода данных, бывают аналоговые и цифровые. Если мультиметр цифровой, то измеренные параметры выводятся на жидкокристаллическом экране.

При аналоговом варианте, параметры отображаются на дисплее со стрелочкой. Вариант с градуировкой удобнее для измерения и проверки конденсаторов. Визуально проще увидеть отклонение стрелки, чем быстроменяющиеся цифры.

Если конденсаторы переменные, то они пропускают ток в различных направлениях, а постоянные, то только в одном, до тех пор, пока не зарядятся.

Мультиметры имеют свой источник питания, то есть обладают номинальным напряжением и полярностью. Эти качества и используются при диагностике радиоэлементов.

Как проверить мультиметр на работоспособность

Надо перевести переключатель в положение для измерения сопротивления. Обычно это положение обозначается ОНМ. Прибор следует отградуировать механической градуировкой так, чтобы стрелка совместилась с крайней риской.

Замкнуть хвостики отверткой, ножом, одним из щупальцев мультиметра для снятия заряда с конденсатора. На этом этапе надо действовать аккуратно и осторожно. Даже небольшой бытовой элемент может нанести удар по человеческому телу.

После включения прибора, необходимо перевести переключатель в режим измерения сопротивления и соединить щупы. На дисплее должно отразиться нулевое значение сопротивления или близко к нему.

Ход проверки

Определяют визуально на предмет физических нарушений. После чего пробуют крепление ножек на плате. Несильно раскачивают элемент в разные стороны. При обрыве одной из ножек или отслаивании электродорожки на плате, это сразу будет заметно.

Если внешних признаков нарушений нет, то сбрасывают возможный заряд и прозванивают мультиметром.

Если на приборе показано практически нулевое сопротивление, то элемент начал заряжаться и исправен. По мере зарядки, сопротивление начинает расти. Рост значения должен быть плавно, без рывков.

При нарушенной работоспособности:

  • При зажиме разъёмов показания тестера сразу безразмерно велики. Значит, обрыв в элементе.
  • Мультиметр на нуле. Иногда сигнализирует звуковым сигналом. Это признак короткого замыкания или, как говорят, «пробой».

В этих случаях элемент надо заменить на новый.

Если надо проверить работоспособность неполярного конденсатора, то выбирают предел измерения мегаомы. При тестировании исправная радиодеталь не покажет сопротивление выше 2 мОм. Правда, если номинальный заряд элемента меньше 0,25 мкФ, то требуется LC-метр. Мультиметр здесь не поможет.

После проверки на сопротивление следует проверка на ёмкость. Для того чтобы знать, способен ли радиоэлемент накапливать и удерживать заряд.

Тумблер мультиметра переводится в режим СХ. Выбирается предел измерения исходя из емкости элемента. К примеру, если на корпусе обозначена ёмкость в 10 микрофарад, то пределом на мультиметре может быть 20 микрофарад. Значение ёмкости указано на корпусе. Если показатели измерения сильно отличаются от заявленных, то конденсатор неисправен.

Этот вид измерения лучше всего проводить цифровым прибором. Стрелочный покажет лишь быстрое отклонение стрелки, что лишь косвенно говорит о нормальности проверяемого элемента.

Как проверить устройство не выпаивая

Для того чтобы случайно не сжечь паяльником какую-нибудь микросхему на плате, существует способ проверки конденсатора мультиметром не выпаивая.

Перед тем как прозвонить, электродетали разряжаются. После чего тестер переводится в режим проверки сопротивления. Щупальца прибора подключаются к ножкам проверяемого элемента, с соблюдением необходимой полярности. Стрелка прибора должна отклонится, поскольку по мере зарядки элемента его сопротивление увеличивается. Это свидетельствует о том, что конденсатор исправен.

Иногда приходится проверять на плате и микросхемы. Это сложная процедура, не всегда выполнимая. Поскольку микросхема представляет собой отдельный узел, внутри которого находится большое количество микродеталей.

Проверка микросхемы

Мультиметр ставится в режим измерения напряжения. На вход микросхемы подается напряжение в пределах допустимой нормы. После чего необходимо проконтролировать поведение на выходе микросхемы. Это очень сложный прозвонок.

Перед выполнением всех видов работ, связанных с электричеством, проверки, тестирования радиоэлементов, очень важно соблюдать правила безопасности. Мультиметр должен тестировать только обесточенную электрическую плату.

Различные типы конденсаторов и их применение

Конденсатор

Конденсаторы широко используются в качестве электронного компонента в современных схемах и устройствах. Конденсатор имеет долгую историю и используется более 250 лет назад. Конденсаторы являются старейшим электронным компонентом, который изучается, проектируется, разрабатывается и используется. С развитием технологий конденсаторы выпускаются разных типов в зависимости от их характеристик. В этой статье мы обсудим самые популярные и полезные типы конденсаторов.Конденсатор является компонентом, и он обладает способностью накапливать энергию в виде электрического заряда, который создает электрическую разность между его пластинами, и он похож на небольшую перезаряжаемую батарею.

Что такое конденсатор?

Конденсатор является пассивным компонентом и накапливает электрическую энергию в электрическом поле. Эффект конденсатора известен как емкость. Он состоит из двух близких проводников и разделен диэлектрическим материалом. Если пластины подключены к источнику питания, они накапливают электрический заряд.Одна пластина накапливает положительный заряд, а другая пластина — отрицательный. Электрический символ конденсатора показан ниже.

Обозначение конденсатора

Емкость

Емкость — это отношение электрического заряда (Q) к напряжению (В), математическое разложение приведено ниже.

C = Q / V

Где

  • Q — электрический заряд в кулонах
  • C — емкость в фарадах
  • V — напряжение между пластинами в вольтах

Различные типы конденсаторов

Ниже перечислены различные типы конденсаторов.

  1. Электролитический конденсатор
  2. Слюдяной конденсатор
  3. Бумажный конденсатор
  4. Пленочный конденсатор
  5. Неполяризованный конденсатор
  6. Керамический конденсатор
Электролитический конденсатор

Как правило, при конденсаторах используются большие электролитные конденсаторы . являются обязательными. Слой тонкой металлической пленки используется для одного электрода, а для второго электрода (катода) используется полужидкий раствор электролита, который находится в желе или пасте.Диэлектрическая пластина представляет собой тонкий слой оксида, который в процессе производства проявляется электрохимическим способом, толщина пленки составляет менее десяти микрон.

Электролитический конденсатор

Этот изолирующий слой очень тонкий, можно изготавливать конденсаторы с большим значением емкости для физического размера, который мал, а расстояние между двумя пластинами очень мало. Типы конденсаторов в большинстве электролитических являются поляризованными, то есть на клемму конденсатора подается постоянное напряжение, и они должны иметь правильную полярность.

Если положительный полюс к положительному выводу и отрицательный к отрицательному выводу из-за неправильной поляризации сломает изолирующий оксидный слой, что приведет к необратимому повреждению. Все поляризованные электролитические конденсаторы имеют четкую полярность с отрицательным знаком, указывающим на отрицательный вывод, и полярность должна соблюдаться.

Электролитические конденсаторы обычно используются в цепи питания постоянного тока, потому что они имеют большую емкость и малы для снижения пульсаций напряжения.Эти электролитические конденсаторы используются для связи и развязки. Недостатком электролитических конденсаторов является их относительно низкое напряжение из-за поляризации электролитического конденсатора.

Слюдяной конденсатор

Этот конденсатор представляет собой группу природных минералов, а в конденсаторах из серебряной слюды используется диэлектрик. Существует два типа слюдяных конденсаторов: фиксированные конденсаторы и серебряные слюдяные конденсаторы . Фиксированные слюдяные конденсаторы считаются устаревшими из-за их худших характеристик.Серебряные слюдяные конденсаторы изготавливаются путем прослоения листа слюды, покрытого металлом с обеих сторон, и затем этот узел покрывается эпоксидной смолой для защиты окружающей среды. Слюдяные конденсаторы используются в конструкции, требующей стабильного, надежного конденсатора относительно небольшого размера.

Слюдяные конденсаторы

Слюдяные конденсаторы — это конденсаторы с низкими потерями, используемые на высоких частотах, и этот конденсатор очень стабилен химически, электрически и механически из-за его специфической кристаллической структуры, связывающей, и это обычно слоистая структура.Чаще всего используются слюда мусковит и флогопит. Мусковитовая слюда лучше по электрическим свойствам, а другая слюда обладает стойкостью к высоким температурам.

Бумажный конденсатор

Конструкция бумажного конденсатора находится между двумя листами оловянной фольги, отделенными от бумаги, или промасленной бумагой и тонкой вощеной. Сэндвич из тонкой фольги и бумаги затем скатывается в цилиндрическую форму и помещается в пластиковую капсулу.Две тонкие фольги бумажных конденсаторов прикрепляются к внешней нагрузке.

Бумажный конденсатор

На начальном этапе, если конденсаторы использовались между двумя фольгами конденсатора, бумага использовалась, но в наши дни используются другие материалы, такие как пластмассы, поэтому он называется бумажным конденсатором. Диапазон емкости бумажного конденсатора составляет от 0,001 до 2 000 мкФ, а напряжение очень высокое, до 2000 В.

Пленочный конденсатор

Пленочные конденсаторы также являются конденсаторами, и в качестве диэлектрика они используют тонкий пластик.Пленочный конденсатор изготавливается чрезвычайно тонким с использованием сложного процесса вытягивания пленки. Если пленка производственная, она может быть металлизирована в зависимости от свойств конденсатора. Для защиты от воздействия окружающей среды электроды добавляются и собираются.

Пленочный конденсатор

Имеется различных типов пленочных конденсаторов. доступны, например, полиэфирная пленка, металлизированная пленка, полипропиленовая пленка, пленка из ПТЭ и полистирольная пленка. Основное различие между этими типами конденсаторов заключается в том, что материал, используемый в качестве диэлектрика, и диэлектрик следует выбирать в соответствии с их свойствами.Применение пленочных конденсаторов — стабильность, низкая индуктивность и низкая стоимость.

Емкость пленки PTE является термостойкостью и используется в аэрокосмической и военной технике. Конденсатор с металлизированной полиэфирной пленкой используется там, где требуется длительная стабильность при относительно низком уровне.

Неполяризованные конденсаторы

Неполяризованные конденсаторы подразделяются на два типа конденсаторов с пластиковой фольгой, а другой — электролитический неполяризованный конденсатор.

Неполяризованный конденсатор

Конденсатор из пластиковой фольги неполяризован по своей природе, а электролитические конденсаторы, как правило, представляют собой два последовательно соединенных конденсатора, которые расположены спина к спине, поэтому в результате получается неполяризованный конденсатор с половинной емкостью. Неполяризованный конденсатор требует подключения переменного тока последовательно или параллельно с сигналом или источником питания.

Примерами являются фильтры кроссовера громкоговорителей и схема коррекции коэффициента мощности. В этих двух приложениях на конденсатор подается большой сигнал переменного напряжения.

Керамический конденсатор

Керамические конденсаторы являются конденсаторами и используют керамический материал в качестве диэлектрика. Керамика — один из первых материалов, используемых в производстве конденсаторов в качестве изолятора.

Керамический конденсатор

В керамических конденсаторах используется множество геометрических форм, и некоторые из них представляют собой керамический трубчатый конденсатор. Конденсаторы с барьерным слоем устарели из-за своего размера, паразитных эффектов или электрических характеристик.Два распространенных типа керамических конденсаторов — это многослойный керамический конденсатор , (MLCC) и керамический дисковый конденсатор.

Многослойные керамические конденсаторы изготавливаются по технологии поверхностного монтажа (SMD), они меньше по размеру, поэтому широко используются. Номиналы керамических конденсаторов обычно находятся в диапазоне от 1 нФ до 1 мкФ, и возможны значения до 100 мкФ.

Керамические дисковые конденсаторы изготавливаются путем покрытия керамического диска серебряными контактами с обеих сторон, и для достижения большей емкости эти устройства состоят из нескольких слоев.Керамические конденсаторы будут иметь высокочастотные характеристики из-за паразитных эффектов, таких как сопротивление и индуктивность.

Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о конденсаторах MCQ

В этой статье мы объяснили различные типы конденсаторов и их использование. Я надеюсь, что, прочитав эту статью, вы получили некоторые базовые знания о типах конденсаторов. Если у вас есть какие-либо вопросы об этой статье или о реализации, пожалуйста, не стесняйтесь оставлять комментарии в разделе ниже.Вот вопрос к вам в конденсаторах, в которых хранится заряд электролита?

Типы конденсаторов — Engineer-Educators.com

Конденсаторы бывают всех форм и размеров, и обычно их значение указывается в фарадах. Их также можно разделить на две группы: фиксированные и переменные. Конденсаторы постоянной емкости, которые имеют приблизительно постоянную емкость, затем могут быть дополнительно разделены в соответствии с типом используемого диэлектрика. Некоторые разновидности: бумажные, масляные, слюдяные, электролитические и керамические конденсаторы.На рисунке 111 показаны схематические символы для постоянного и переменного конденсатора.

Рисунок 111. Условные обозначения для постоянного и переменного конденсатора.
Фиксированные конденсаторы

Слюдяные конденсаторы
Фиксированные слюдяные конденсаторы изготовлены из пластин из металлической фольги, разделенных листами слюды, образующими диэлектрик. Вся конструкция покрыта формованным пластиком, который не пропускает влагу. Слюда является отличным диэлектриком и выдерживает более высокие напряжения, чем бумага, без образования дуги между пластинами.Обычные значения слюдяных конденсаторов колеблются от примерно 50 мкФ до примерно 0,02 мкФ.

Керамика
Керамический конденсатор изготовлен из таких материалов, как титановая кислота и барий в качестве диэлектрика. Внутри эти конденсаторы не имеют катушки, поэтому они хорошо подходят для использования в высокочастотных приложениях. Они имеют форму диска, доступны с очень маленькими значениями емкости и очень маленькими размерами. Этот тип довольно небольшой, недорогой и надежный.И керамический, и электролитический конденсаторы являются наиболее широко доступными и используемыми конденсаторами.

Электролитический
Используются два типа электролитических конденсаторов: (1) мокрый электролитический и (2) сухой электролитический.

Мокрый электролитический конденсатор состоит из двух металлических пластин, разделенных электролитом с диэлектриком электролита, который в основном представляет собой проводящую соль в растворителе. Для емкостей, превышающих несколько микрофарад, площади пластин бумажных или слюдяных конденсаторов должны стать очень большими; поэтому вместо них обычно используются электролитические конденсаторы.Эти блоки обеспечивают большую емкость при небольших физических размерах. Их значения колеблются от 1 до примерно 1500 микрофарад. В отличие от других типов, электролитические конденсаторы обычно поляризованы, с положительным выводом, отмеченным знаком «+», и отрицательным проводом, отмеченным знаком «-», и на них следует воздействовать только постоянным напряжением или только пульсирующим постоянным напряжением.

Электролит, контактирующий с отрицательной клеммой, в пастообразной или жидкой форме, составляет отрицательный электрод. Диэлектрик представляет собой чрезвычайно тонкую пленку оксида, нанесенную на положительный электрод конденсатора.Положительный электрод, который представляет собой алюминиевый лист, сложен для достижения максимальной площади. Конденсатор во время изготовления подвергается процессу формования, при котором через него пропускают ток. Прохождение тока приводит к осаждению тонкого оксидного покрытия на алюминиевой пластине.

Близкое расстояние между отрицательным и положительным электродами приводит к сравнительно высокому значению емкости, но допускает большую вероятность пробоя напряжения и утечки электронов от одного электрода к другому.

Электролит установки сухого электролиза представляет собой пасту, содержащуюся в сепараторе, изготовленном из абсорбирующего материала, такого как марля или бумага. Сепаратор не только удерживает электролит на месте, но и предотвращает короткое замыкание пластин. Сухие электролитические конденсаторы изготавливаются как в цилиндрической, так и в прямоугольной блочной форме и могут находиться внутри картонных или металлических крышек. Поскольку электролит не может пролиться, сухой конденсатор можно установить в любом удобном месте.Электролитические конденсаторы показаны на рисунке 112.

Рисунок 112. Электролитические конденсаторы.

Тантал
Эти конденсаторы, как и электролитические, изготовлены из материала, называемого танталом, который используется для изготовления электродов. Они превосходят электролитические конденсаторы, обладая лучшими температурными и частотными характеристиками. Когда танталовый порошок спекается для его затвердевания, внутри образуется трещина. Эта трещина используется для хранения электрического заряда.Как и электролитические конденсаторы, танталовые конденсаторы также поляризованы и обозначены символами «+» и «-».

Полиэфирная пленка
В этом конденсаторе тонкая полиэфирная пленка используется в качестве диэлектрика. Эти компоненты недорогие, термостабильные и широко используются. Допуск составляет примерно 5–10 процентов. Он может быть довольно большим в зависимости от емкости или номинального напряжения.

Масляные конденсаторы
В радио- и радиолокационных передатчиках часто используются напряжения, достаточно высокие, чтобы вызвать искрение или пробой бумажных диэлектриков.Следовательно, в этих применениях предпочтительны конденсаторы, в которых в качестве диэлектрического материала используется бумага, пропитанная маслом или маслом. Конденсаторы этого типа значительно дороже обычных бумажных конденсаторов, и их использование обычно ограничивается радио- и радиолокационным передающим оборудованием. [Рисунок 113]

Рисунок 113. Масляный конденсатор.
Переменные конденсаторы

Переменные конденсаторы в основном используются в схемах радионастройки, и их иногда называют «настраивающими конденсаторами».«У них очень маленькие значения емкости, обычно от 100 пФ до 500 пФ.

Триммеры
Триммер фактически представляет собой регулируемый или переменный конденсатор, в котором в качестве диэлектрика используется керамика или пластик. Большинство из них имеют цветовую кодировку, чтобы легко узнать их настраиваемый размер. На керамическом типе напечатано значение. Цвета: желтый (5 пФ), синий (7 пФ), белый (10 пФ), зеленый (30 пФ) и коричневый (60 пФ).

Варакторы
Конденсатор или варактор переменного напряжения также известен как диод переменной емкости или варикап.В этом устройстве используется изменение ширины барьера в диоде с обратным смещением. Поскольку ширина барьера диода действует как непроводник, диод образует конденсатор при обратном смещении. По сути, материал N-типа становится одной пластиной, а переходы — диэлектриком. Если напряжение обратного смещения увеличивается, ширина барьера увеличивается, эффективно разделяя две обкладки конденсатора и уменьшая емкость.

Типы конденсаторов и их применение

Конденсатор можно рассматривать как резервуар, в котором хранится электрический заряд.Чем больше емкость, тем больше зарядов способен накапливать конденсатор. Он бывает разных форм, размеров и, конечно же, разных рейтингов. По сути, он состоит из двух пластин, разделенных изолятором или диэлектриком, и имеет множество применений, и даже в нашей повседневной жизни мы используем его, даже не подозревая об этом.

Эта статья призвана дать вам некоторое представление о типах и использовании одного из наиболее часто используемых пассивных электрических компонентов: конденсатора.

Конденсаторы (Источник: flickr Эрик Шрейдер)

Прежде чем мы углубимся в его применение, давайте познакомимся с конденсаторами типа .

Типы конденсаторов

При разработке схемы для конкретного использования тип конденсатора играет ключевую роль в ее правильном функционировании. Каждый конденсатор имеет определенный набор характеристик, таких как допуск, номинальное напряжение и т. Д.

Конденсаторы

можно условно разделить на две категории: конденсаторы переменной емкости и конденсаторы постоянной емкости.

Переменный конденсатор , с другой стороны, будет иметь значение емкости, которое можно изменить. Этот конденсатор имеет две пластины, одна из которых неподвижна, а другая подключена к подвижному валу, а емкость изменяется путем изменения подвижной пластины.

Конденсатор постоянной емкости , как следует из названия, этот тип конденсатора имеет фиксированное значение емкости. Обе проводящие пластины неподвижны, поэтому значение ее емкости нельзя изменить.

Из них чаще используется фиксированный тип. В этой статье рассматриваются некоторые из хорошо известных типов конденсаторов постоянной емкости.

Конденсаторы керамические:

В керамических конденсаторах в качестве диэлектрика используется керамический материал. Вы можете легко идентифицировать его, так как большая часть из них имеет форму диска.Диск покрыт керамическим материалом и помещается между двумя выводами. Когда требуется более высокое значение емкости, несколько слоев керамических материалов сплавлены вместе, чтобы сформировать диэлектрик.

Основным преимуществом этого типа конденсатора является то, что это неполяризованный конденсатор. Это означает, что вы можете подключить его в любом направлении в вашей цепи.

В зависимости от номинальных значений температуры и допусков они подразделяются на три категории: керамические конденсаторы класса 1, класса 2 и класса 3.

Конденсаторы

класса 1 являются наиболее стабильными с точки зрения температурной устойчивости и имеют хорошую точность, в то время как конденсаторы класса 3 имеют относительно низкую точность и наименьшую стабильность.

Алюминиевые электролитические конденсаторы:

Алюминиевые электролитические конденсаторы имеют широкий диапазон допусков и, следовательно, являются одними из наиболее часто используемых конденсаторов. Здесь жидкий или гелевый материал, наполненный ионами, действует как электролит. Этот электролит отвечает за большие значения емкости конденсаторов этих типов.Это поляризованные конденсаторы и, следовательно, их необходимо аккуратно подключать к печатной плате, учитывая их положительные / отрицательные выводы. Они имеют цилиндрическую форму с двумя выводами разной длины.

Более короткий вывод обозначает отрицательный вывод, а более длинный вывод обозначает положительный вывод. Поэтому, когда вы используете его в своей цепи, помните золотое правило: «Напряжение на положительной стороне должно быть выше, чем на отрицательной стороне».

Электролит может быть твердым полимером или влажным электролитом и состоять из ионов алюминия.Электролитический конденсатор с более высокими значениями емкости имеет и недостатки. Сюда входят большие токи утечки, высокие допуски и эквивалентное сопротивление.

Танталовые электролитические конденсаторы:

Танталовые электролитические конденсаторы — это еще один тип электролитических конденсаторов, в которых анод сделан из тантала. Использование тантала дает конденсаторам более высокие значения допуска, но более низкое максимальное рабочее напряжение, чем алюминиевый электролитический конденсатор, его нельзя использовать в качестве прямой замены того же самого.

Танталовые конденсаторы

имеют очень тонкий диэлектрический слой и, следовательно, более высокое значение емкости на единицу объема. Он показывает сравнительно хорошую стабильность и частотные характеристики по сравнению с конденсаторами других типов.

Однако танталовые конденсаторы создают риск потенциального отказа, который может возникнуть во время скачков напряжения, когда анод входит в прямой контакт с катодом. Это может привести к химической реакции в зависимости от силы энергии, производимой во время процесса. Поэтому при использовании этого конденсатора вам придется использовать ограничители тока или плавкие предохранители в качестве предохранительной схемы.

Пленочные конденсаторы:

Пленочные конденсаторы, как следует из названия, имеют диэлектрики из тонкой пластиковой пленки. Этот фильм создается с помощью сложного процесса рисования пленки. Пленка может быть металлизированной или необработанной, в зависимости от требований характеристик конденсатора. Этот тип конденсатора имеет хорошую стабильность при низкой индуктивности и сравнительно дешевле, чем его аналоги. В зависимости от типа используемого диэлектрика эти пленочные конденсаторы подразделяются на различные категории, такие как полиэфирная пленка, пластиковая пленка и т. Д.

Это неполяризованные конденсаторы с желаемыми характеристиками. По сравнению с электролитным конденсатором он имеет более длительный срок хранения и срок службы, что делает его более надежным.

Серебряные слюдяные конденсаторы:

В конденсаторах

Silver Mica в качестве диэлектрика используется слюда, группа природных минералов, которая зажата между двумя металлическими листами. Специфическое кристаллическое связывание слюды помогает в производстве очень тонких слоев диэлектрика. Этот конденсатор популярен своей надежностью и стабильностью при небольшом значении емкости.Эти конденсаторы с малыми потерями не поляризованы и могут быть изготовлены со многими высокими допусками.

Теперь, когда вы получили представление о некоторых конденсаторах и их сильных сторонах, давайте обсудим основные области применения этих конденсаторов.

Какой конденсатор и где можно использовать?

Конденсаторы керамические

Это, вероятно, наиболее широко производимые конденсаторы из-за их бесконечного применения. Наиболее заметная область, где используются эти конденсаторы, — это резонансный контур передающей станции, который требует высокой точности и высокой мощности конденсатора.Благодаря своей неполярности и доступности в широком диапазоне емкостей, номинальных напряжений и размеров, он также популярен как конденсатор общего назначения. Чтобы уменьшить радиочастотный шум в двигателе постоянного тока, на щетках двигателя могут использоваться керамические конденсаторы.

Конденсаторы электролитные

Электролитические конденсаторы находят свое применение в приложениях, где требуется высокая емкость без поляризации переменного тока (например, схема фильтрации). Другие области включают в себя импульсный источник питания, сглаживание входа и выхода в фильтрах нижних частот.В схемах с большой амплитудой и высокочастотными сигналами их нельзя использовать, поскольку они будут иметь высокие значения ESR.

Конденсаторы танталовые

Эти конденсаторы обладают преимуществом низкого тока утечки наряду с высокой емкостью, а также лучшей стабильностью и надежностью. Это делает их хорошим выбором для выборки и удержания цепей, цепей фильтрации источников питания компьютеров и сотовых телефонов. Они доступны в военных версиях, которые не высыхают со временем и, следовательно, действуют как замена электролитическим конденсаторам в военных приложениях.

Пленочные конденсаторы

Эти конденсаторы популярны среди энтузиастов силовой электроники. Они используются почти во всех силовых электронных устройствах, рентгеновских аппаратах, фазовращателях и импульсных лазерах. Даже в импульсном блоке питания используется пленочный конденсатор для коррекции коэффициента мощности. Варианты с более низким напряжением используются в качестве развязывающих конденсаторов, фильтров и аналого-цифровых преобразователей. Их можно использовать как часть обычных цепей, а также для сглаживания скачков напряжения.

Серебряные слюдяные конденсаторы

В областях, где требуется низкая емкость, но требуется высокая стабильность, например, в силовых радиочастотных цепях, можно использовать конденсаторы из серебряной слюды.Высокое напряжение пробоя делает его пригодным для работы с высоким напряжением. Они обладают низкими потерями и поэтому широко используются в схемах с высокочастотной настройкой, таких как генераторы.

В этой статье рассмотрены наиболее известные типы конденсаторов. Помимо этого, существует несколько других типов, таких как подстроечный конденсатор, воздушный конденсатор, суперконденсатор и т. Д. Подстроечный конденсатор — это переменный тип, который обычно не используется. Суперконденсаторы представляют собой комбинацию нескольких электролитических конденсаторов, образующих конденсатор более высокого номинала, который проявляет свойства как конденсаторов, так и аккумуляторной батареи.

На этом мы подошли к концу статьи. Надеюсь, вы получили ясное и ясное представление о типах конденсаторов и их различных применениях.

Спасибо за внимание!


Автор: Cicy имеет степень магистра электротехники и электроники по специальности «Силовая электроника». Она писатель-фрилансер, который пишет, чтобы упростить сложные концепции понятным языком.

Типы конденсаторов и их применение

Большинство современных электронных схем и устройств состоят из различных конденсаторов .Новички в области электроники и опытные инженеры считают эти компоненты весьма интересными благодаря своему применению.

В радиотехнике конденсаторы можно разделить на конденсатор постоянной емкости и переменный конденсатор . Конденсаторы постоянной емкости можно снова разделить на поляризованные или электролитические конденсаторы и неполяризованные конденсаторы.

Неполяризованные конденсаторы имеют малую емкость и малый ток утечки. Примеры включают керамические, слюдяные, пленочные конденсаторы и т. Д., представляют собой некоторые типы неполяризованных конденсаторов. Поляризованный конденсатор имеет большой ток утечки. Электролитические и суперконденсаторы являются примерами поляризованных конденсаторов.

Типы конденсаторов

Существуют разные конденсаторы в зависимости от материала диэлектрика, который бывает разной формы и размера. Наиболее широко используются керамические, электролитические, танталовые и суперконденсаторы. Давайте посмотрим на категории и типы конденсаторов.

Конденсаторы переменной емкости

Переменные конденсаторы не что иное, как работает как потенциометр.Это тип конденсатора, емкость которого можно изменять механически или электронно. Его также называют подстроечным конденсатором.

Емкость конденсатора зависит от трех факторов.

  1. Площадь плит, обращенных друг к другу. Изменяя площадь, мы можем изменять емкость.
  2. Расстояние между пластинами. Чем больше расстояние, тем меньше емкость, и наоборот.
  3. Вид диэлектрика.

На практике при конструировании конденсаторов переменной емкости обычно используется первая возможность: i.е., вариация площади обращенных друг к другу пластин. Переменные конденсаторы далее подразделяются на конденсаторы для непрерывного изменения ( настроечных конденсаторов ) и конденсаторы, которые необходимо регулировать только время от времени ( подстроечных резисторов ).

Этот конденсатор дает значение от 10 пФ до 500 пФ. Типы переменных конденсаторов — это настроечные и подстроечные конденсаторы. Используется для настройки в радиосхемах, передатчиках. Важная способность настроечного конденсатора выдерживать механические удары и вибрации.

Вторая группа конденсаторов состоит из полужестких или подстроечных. Здесь емкость переменная, но не предназначена для частого использования. Триммеры используются только для настройки различных настроенных схем. После того, как эти конденсаторы были отрегулированы, они в основном покрываются лаком, так что во всех смыслах они являются фиксированными конденсаторами. Триммеры снова делятся на триммеры для воздуха, керамические триммеры и триммеры для проволоки, триммеры для слюды и т. Д.

  1. Триммер воздуха:

Триммер Air состоит из цилиндрического статора, в котором такой же цилиндрический ротор может вращаться на небольшом резьбовом стержне.

Минимальная емкость — около 3 пФ, максимальная — 30 или 60 пФ. Поскольку в качестве диэлектрика используется воздух, потери в этих триммерах очень низкие. Регулировка производится с помощью подрезного ключа из изоляционного материала (в виде накидного ключа).

  1. Керамический триммер:

Триммер состоит из небольшой керамической трубки, которая выполняет роль диэлектрика. Электроды (пластины) образованы гильзой из луженой меди и штырем из луженой меди, который может ввинчиваться в керамическую втулку.

Потери в конденсаторах этого типа также очень низкие.

  1. Триммер для проволоки:

Устройство для обрезки проволоки состоит из небольшой керамической трубки, посеребренной внутри, и нескольких витков проволоки, намотанных близко друг к другу снаружи.

Слой серебра и внешний слой проволоки образуют емкость, которую можно уменьшить путем поворота проволоки. Преимущество этого типа подстроечного конденсатора состоит в том, что он легкий и небольшой по размеру, поэтому его можно устанавливать непосредственно в проводку установки.Кроме того, емкость из-за керамического диэлектрика довольно велика и составляет несколько сотен Пф. Недостатком является то, что емкость можно только уменьшить, а не увеличивать, поэтому они обычно используются только для некоторых целей настройки.

Конденсаторы постоянной емкости

Как видно из названия, эти конденсаторы имеют фиксированную емкость, которую нельзя изменить. Различные типы конденсаторов фиксированной емкости различаются по своей диэлектрической проницаемости, как описано здесь.

  1. Пленочные конденсаторы:

В пленочных конденсаторах в качестве диэлектрика используется пластиковая пленка.Существует множество пластиковых пленок, в том числе полиэстер, полистирол, полипропилен, поликарбонат, металлизированная бумага и тефлон, используемые в качестве диэлектрика. В зависимости от типа пленки они классифицируются как бумажные и металлопленочные.

Доступны в диапазоне от 5 пФ до 100 мкФ. Конденсаторы этого типа имеют меньшие допуски и работают при высоких температурах. Их можно использовать в схемах выборки и хранения, в демпфирующих схемах, используемых для подавления переходных процессов напряжения (всплесков).

  1. Конденсаторы бумажные:

Ранее эти конденсаторы использовались в радиоприемниках и усилителях. Они бывают двух видов: плоской формы, называемой блочными конденсаторами, и круглой формы, называемой трубчатыми конденсаторами.

Конструкция одинакова для обоих. Они состоят из двух алюминиевых фольг (это очень тонкие слои), между которыми заменены несколько слоев пропитанной бумаги.

Алюминиевая фольга — электроды конденсатора, а бумага — диэлектрик.Из-за утечки и большого допуска их заменяют на полиэфирные конденсаторы.

  1. Конденсаторы полиэфирные:

Эти конденсаторы отличаются небольшими размерами, низкими диэлектрическими потерями и высоким сопротивлением изоляции. Это очень подходящие радиочастотные схемы и радиоприемники.

Их конструкция аналогична бумажным конденсаторам, но здесь чередуются алюминиевая и полиэфирная фольга, намотанные слоями. Они доступны для номиналов 160 В и 400 В с допусками 10% и 20% в диапазоне от 1 кПФ до 1 мкФ

  1. Конденсаторы керамические:

Одним из широко используемых конденсаторов являются керамические конденсаторы.Это неполяризованный конденсатор. Также называется дисковыми конденсаторами. При этом керамический материал используется в качестве диэлектрика. Он имеет небольшой ток и небольшой ток утечки. Они доступны в диапазоне от пико фарада до 1 микрофарада. Используется для высокочастотных приложений в аудиосхемах. Это недорогие конденсаторы, обладающие высокочастотными характеристиками.

Классифицируются как усилители класса 1, класса 2. Приложения включают фильтрацию, настройку генератора, подавление электромагнитных помех, схемы сглаживания и сопряжения.

  1. Слюдяные конденсаторы:

Диэлектрик слюдяных конденсаторов изготовлен из тонких слюдяных пластин высокого качества, одна сторона которых частично покрыта слоем серебра.

Величина емкости определяется количеством пластин, соединенных параллельно. После сборки конденсатор погружается в специальный воск, чтобы защитить его от воздействия влаги и перепадов температуры. Поскольку потери в этом конденсаторе низкие, они особенно подходят для цепей на высоких частотах ( цепей генератора, I.Трансформаторы F и т. Д.) Или там, где важны низкие потери утечки. Они доступны в диапазоне от 50 пФ до 500 пФ и имеют рабочее напряжение до 500 В. Общие приложения используются в цепях связи, фильтрах пульсаций, резонансных цепях. В связи с недавней тенденцией к миниатюризации их заменяют керамические, полистирольные или стиропластовые конденсаторы.

  1. Воздушные конденсаторы:

Воздух используется в качестве диэлектрика в воздушных конденсаторах. Проводящие металлы разделены воздушным зазором.Доступны воздушные конденсаторы постоянной емкости и воздушные конденсаторы переменной емкости. Его можно использовать при настройке радиосхем, а также в схемах, где требуются низкие потери.

  1. Стеклянные конденсаторы:

Стекло используется в качестве диэлектрического материала в этих конденсаторах, и эти типы конденсаторов стоят дорого. Наряду со стеклянным диэлектриком в конденсаторах этих типов присутствуют алюминиевые электроды. В конце делается пластиковая инкапсуляция.Этот тип имеет относительно низкое значение емкости и может колебаться от долей пикофарад до двух тысяч пикофарад.

Его можно использовать в цепях приложений большой мощности, где цепи нужны высокотемпературные зоны, цепи, требующие высоких допусков.

Конденсаторы электролитические:

Электролитические конденсаторы поляризованы. Они также широко используются во многих приложениях и имеют высокие значения емкости. Металлическая пластина (анод), образующая изолирующий оксидный слой путем анодирования, называется диэлектриком.Твердый или полутвердый электролит действует как катод. Они имеют более высокую емкость из-за большей поверхности анода и тонкого диэлектрического оксидного слоя. Они используются, когда есть потребность в высоком заряде.

В алюминиевых электролитических конденсаторах алюминиевая фольга действует как анод, изолируя оксидный слой, который является диэлектриком и покрыт электролитом в качестве катода. Это можно увидеть в схемах питания для развязки и импульсного источника питания. Это дешевле.

В конденсаторах танталового типа тантал используется в качестве анода, а электролит — в качестве катода, покрывающего оксидный слой.Это немного выше, чем у конденсаторов алюминиевого типа.

Суперконденсаторы:

Заключение

Хорошо. Я надеюсь, что это руководство дало краткий обзор различных типов конденсаторов и их применения. Их также можно использовать в аудиосхемах для блокировки постоянного тока в звуковых волнах. Следовательно, они используются в качестве сглаживающих фильтров для удаления нежелательной ряби, которая может повредить электронные схемы.

Конденсаторы 101

Конденсаторы известны многим инженерам-электронщикам как «рабочая лошадка» компонента электрической цепи.Эти пассивные компоненты с двумя выводами когда-то были известны как «конденсаторы», потому что первые предшественники современных компонентов использовались еще в 18 веке для конденсации пара в конструкциях паровых двигателей. По мере развития технологий на протяжении веков было разработано множество типов конденсаторов для использования в широком диапазоне электрических цепей во всех отраслях промышленности.

От крошечных конденсаторов на печатной плате, используемых в персональных электронных устройствах, до больших суперконденсаторов, используемых в гибридных электромобилях, конденсаторы бывают самых разных форм и размеров.Для предприятий OEM и EMS, которые хотят покупать конденсаторы для своих проектов, будет полезно знать, какие типы конденсаторов доступны на рынке и как эти конденсаторы лучше всего использовать в электрическом дизайне. Вот наше подробное руководство по основам выбора и покупки конденсаторов.

Конденсаторы электролитические

Также известные как электролитические конденсаторы или «электронные конденсаторы», эти типы конденсаторов используются, когда требуется большое значение емкости, например, в цепях питания постоянного тока.Электролитические конденсаторы обычно бывают трех разных форм: алюминиевые электролитические конденсаторы, танталовые электролитические конденсаторы и ниобиевые электролитические конденсаторы. Эти конденсаторы уникальны тем, что вместо использования тонких металлических слоев на обоих электродах в качестве катода обычно используется желеобразный или пастообразный полужидкий раствор.

Электролитические конденсаторы поляризованы, с четкой маркировкой, указывающей положительные и отрицательные клеммы. Диэлектрик, или изолирующий слой конденсатора, состоит из оксидной пленки шириной менее 10 микрон.Из-за большой емкости и небольшого размера электролитические конденсаторы широко используются в цепях постоянного тока для уменьшения пульсаций напряжения. Поскольку электролитические конденсаторы в основном поляризованы, они имеют относительно низкое напряжение и не могут использоваться в источниках переменного тока.

Слюдяные конденсаторы

Эти типы конденсаторов получили свое название от природных кристаллических минералов, таких как мусковит и флогопит, используемых в их составе. С годами слюдяные конденсаторы с зажимом устарели, а серебряные слюдяные конденсаторы являются основным типом слюдяных конденсаторов на рынке.Серебряные слюдяные конденсаторы являются одними из самых стабильных и надежных конденсаторов из-за минеральных слоев слюды, расположенных по всему компоненту.

Конденсаторы

Silver слюдяные сконструированы таким образом, что устраняют воздушные зазоры между слоями слюды и серебра, защищая их от влаги и коррозии, обеспечивая постоянное значение емкости, которое редко колеблется. Известно, что они имеют низкое значение емкости при низких потерях, что делает стабильность его ключевой характеристикой.

Эти типы конденсаторов используются в силовых радиочастотных схемах и высокочастотных настраиваемых схемах, таких как фильтры и генераторы. Хотя они являются одними из самых стабильных конденсаторов на рынке, они также являются одними из самых дорогих. Они могут быть заменены в некоторых схемах керамическими конденсаторами класса 1, но в некоторых приложениях, например, в радиопередатчиках, они не могут быть заменены.

Бумажные конденсаторы

Как видно из названия, в этих типах конденсаторов используется бумага в качестве диэлектрических слоев, зажатых между полосками проводников из металлической фольги, таких как алюминий.Чтобы защитить диэлектрик от эффектов коронного разряда и вспышек, бумагу часто замачивают в масле или воске. Однако существуют и другие типы бумажных конденсаторов, такие как металлизированные бумажные конденсаторы, в которых используются покрытия из металлов, таких как цинк или медь, для защиты бумажного диэлектрического слоя.

Бумажные конденсаторы

идеально подходят для обеспечения фиксированной емкости цепи. Таким образом, они используются в высоковольтных и сильноточных устройствах, таких как радиопередатчики и приемники. Эти типы конденсаторов экономичны, но они подвержены повреждениям из-за пористой природы бумаги, которая может поглощать водяной пар из воздуха.Металлизированные бумажные конденсаторы лучше выдерживают воздействие окружающей среды, но стоят дороже за единицу.

Пленочные конденсаторы

Конденсаторы этого типа сконструированы аналогично бумажным конденсаторам, но вместо этого диэлектрический слой сделан из пластиковой пленки. Эти типы конденсаторов в основном используются в качестве заменителей бумажных конденсаторов, поскольку они более стабильны и способны противостоять факторам окружающей среды. Пленочные конденсаторы бывают двух различных категорий: пленочные конденсаторы и металлизированные пленочные конденсаторы.

В разновидности пленки-фольги диэлектрические слои обычно изготавливаются из полиэфира, полипропилена, полиэтилентерефталата или полифениленсульфидных пластиков с электродами из алюминиевых листов. В металлизированных пленочных конденсаторах алюминиевые электроды заменены слоем металла, который нанесен в вакууме на слой пластиковой пленки. Это позволяет сделать металлизированные пленочные конденсаторы более компактными, что делает их идеальными для схем с низким током и высоким импедансом.

Конденсаторы керамические

Эти типы конденсаторов чаще всего используются в личных электронных устройствах.Керамические конденсаторы были предметом разговоров в полупроводниковой промышленности, потому что в настоящее время на мировом рынке многослойных керамических конденсаторов не хватает . Тем не менее, керамические конденсаторы бывают однослойной дисковой керамики и многослойной (MLCC) разновидностей. Диэлектрические слои этих конденсаторов состоят из керамических материалов с различными геометрическими формами. MLCC пользуются большим спросом, потому что они используются в персональных вычислительных устройствах, таких как смартфоны и ноутбуки. Наряду с электролитическими конденсаторами, керамические конденсаторы являются наиболее часто используемыми типами конденсаторов на рынке.

Куплю конденсаторы

Конденсаторы

бывают всех типов и размеров, и иногда их бывает трудно отследить из-за нехватки. Sensible Micro имеет надежную сеть поставщиков и может поставлять широкий спектр электронных компонентов, включая все типы конденсаторов. Мы также можем предоставить нашим клиентам индивидуальные пакеты складирования и планирования, которые сократят время выполнения компонентов и защитят их от нехватки. Не говоря уже о нашей лаборатории тестирования и проверки компонентов на месте, которая каждый раз обеспечивает качественные поставки.Нужны конденсаторы? Поговорите с одним из наших экспертов по закупкам сегодня.

Типы конденсаторов и их применение

В области бытовой электроники существуют различные типы компонентов, используемых в электронных схемах для многих приложений, и одним из наиболее распространенных пассивных компонентов, которые существуют почти в каждом устройстве, является конденсатор. Конденсатор, изобретенный около 260 лет назад ученым из Германии, использовался в качестве устройства, которое аккумулирует потенциальную энергию, которая в основном представляет собой электрический заряд, электростатически.В отличие от аккумуляторов, которые хранят свой заряд в виде химической энергии, конденсаторы заряжаются и разряжаются довольно быстро в магнитном поле с помощью двух параллельных проводящих пластин, разделенных диэлектриком. Лейденская банка, первоначально построенная голландским профессором Питером ван Мушенбруком, известна как первый в мире конденсатор, состоящий из простой стеклянной емкости, частично заполненной водой и алюминиевой фольгой внутри. Стеклянный сосуд действует как изолятор для двух проводников, представляющих собой алюминиевую фольгу, в то время как внутри сосуда подвешена металлическая цепь, соединенная с латунным стержнем, расположенным над крышкой сосуда.Оттуда будет применен источник заземления, и все это, по сути, составляет основу конденсатора. Чтобы зарядить лейденскую банку, напряжение просто прикладывают к банке и к латунному стержню, который также разряжается таким же образом. Что касается различных типов конденсаторов, все они имеют одну и ту же функцию, которая заключается в хранении энергии, чтобы ее можно было использовать позже, но они бывают в различных формах и упаковках, которые будут объяснены ниже.

Конденсатор электролитический

Это одни из наиболее распространенных конденсаторов, емкость которых может варьироваться от различных значений, используемых в бесчисленных приложениях.При использовании двух металлических пленочных пластин в качестве проводников и электродов полужидкий раствор электролита служит диэлектриком. В большинстве случаев электролитические конденсаторы поляризованы и обозначаются маркировкой, указывающей правильную полярность при подаче напряжения. От операций сглаживания до простых схем синхронизации, электролитические конденсаторы могут быть как в алюминиевых, так и в танталовых формах, которые можно найти практически в любом устройстве.

Пленочный конденсатор

Другой распространенный поляризованный конденсатор — это пленочный конденсатор, а в качестве диэлектрика используется очень тонкая пластиковая пленка, которая может варьироваться от полиэфирной пленки, полистирольной пленки, полипропиленовой пленки и многих других.Основное отличие пленочных конденсаторов от любых других — это пленочный диэлектрик, который может принимать различные физические формы в зависимости от назначения. Пленочные конденсаторы, которые имеют полипропиленовую пленку, чаще всего используются для высокочастотных и мощных применений, особенно при работе с переменным напряжением и индукционным нагревом, но могут использоваться для многих других применений.

Слюдяной конденсатор

Одним из уникальных поляризованных конденсаторов является слюдяной конденсатор, в котором вместо воздуха или пластика в качестве диэлектрика используется слюда.Если вы не знали раньше, слюда относится к группе природных минералов, и когда вы слышите название «серебряный слюдяной конденсатор» или «демпфированный слюдяной конденсатор», это относится к слюде, покрытой металлическими пластинами из этого конкретного материала для производства желаемое значение емкости. В качестве завершающего штриха слюдяные конденсаторы обычно имеют эпоксидное покрытие для защиты внутренних частей от внешней среды. Что касается применений для слюдяных конденсаторов, благодаря своей высокой точности рабочих характеристик, они могут использоваться в фильтрах, передатчиках, радиоприемниках, телевизионных усилителях и т. Д.

Бумажный конденсатор

Один из конденсаторов, который вы, возможно, не видели так часто, — это бумажный конденсатор, конструкция которого чрезвычайно проста для понимания. Он использует два листа алюминиевой фольги в качестве проводников, а его диэлектрик состоит из бумаги, которую можно смазывать маслом или воском. После этого бумажные конденсаторы часто свертывают в форме цилиндра с капсулой, покрытой пластиком. Корпус бумажного конденсатора отличается от других тем, что его ножки выходят горизонтально, а не вертикально.Уникальным аспектом бумажного конденсатора является то, что он имеет путь с низким сопротивлением к напряжению переменного тока и путь с высоким сопротивлением к напряжению постоянного тока, поэтому его лучше всего использовать в цепях переменного тока или в любых приложениях с высоким напряжением / током.

Керамический конденсатор

Последним типом конденсатора является керамический конденсатор, и он отличается от остальных, поскольку является неполяризованным компонентом, а это означает, что нет специального входа для положительных и отрицательных проводов. Как сказано в названии, эти конденсаторы используют керамический материал в качестве диэлектрика и могут быть двух типов: многослойные керамические конденсаторы или керамические дисковые конденсаторы.Для проектов поверхностного монтажа, которые обычно меньше по размеру, многослойные керамические конденсаторы, как правило, отлично работают с конденсаторами меньшего размера. Однако в проектах со сквозными отверстиями широко известно использование керамических дисковых конденсаторов. Говоря о проектах, я настоятельно рекомендую использовать Seeed OPL, если вам требуются какие-либо электронные компоненты для ваших проектов, поскольку в их библиотеке есть невероятное разнообразие деталей, охватывающих почти все типы конденсаторов.После этого, если вы хотите, вы также можете изготовить и собрать свой проект в печатную плату с помощью Seeed PCB Assembly, поскольку детали, выбранные из OPL, можно затем использовать на вашей печатной плате несколькими щелчками мыши. Их обслуживание совершенно легкое и доступно для таких клиентов, как вы, и я действительно рекомендую проверить их, если вы еще этого не сделали.

В любом случае, с керамическими конденсаторами они имеют очень низкое максимальное номинальное напряжение и неполяризованы, поэтому подключение источника переменного тока к этим конденсаторам не проблема.Кроме того, керамические конденсаторы, как известно, обладают удивительной частотной характеристикой из-за низких паразитных эффектов, таких как сопротивление или индуктивность, что делает их идеальными практически для любого применения.

Подводя итог, можно сказать, что конденсаторы в области электроники играют важную роль во многих схемах с их широким разнообразием для удовлетворения ваших конкретных требований. Все они имеют свой индивидуальный аспект с тем, для чего они лучше всего подходят, поэтому, если вы хотите выбрать конкретный конденсатор для своего проекта, убедитесь, что сделали мудрый выбор, учитывая все другие возможные варианты.Однако вы обнаружите, что будете использовать много электролитических, пленочных и керамических конденсаторов, в основном при создании проектов, поскольку они являются наиболее распространенными конденсаторами общего назначения и довольно дешевы в приобретении. Но вы можете наткнуться на слюдяные конденсаторы или даже на бумажные конденсаторы, когда погружаетесь в более специализированные приложения, поэтому убедитесь, что вы всегда знаете, с чем вы работаете, его общие характеристики и то, как вы должны их правильно использовать.

различных типов конденсаторов: обзор

Конденсаторы в большом количестве используются в электронных компонентах, работающих как фильтрующие устройства.Они различаются по размеру и материалам, из которых сделаны. Существует 5 основных типов конденсаторов: электролитические, полиэфирные, танталовые, керамические и SMD.

Вот обзор различных типов конденсаторов, используемых в электронном оборудовании:

Электролитические конденсаторы Наиболее широко используемые конденсаторы для постоянного тока являются электролитическими из-за простоты использования и доступности. Его легко получить, и он используется для множества различных приложений. Несмотря на то, что эти конденсаторы бывают разных размеров и цветов, они выполняют одну и ту же функцию, хотя чем больше размер, тем возможна большая емкость.Электролитические конденсаторы обычно содержат следующую информацию на этикетке:

  • значение емкости
  • максимальное напряжение
  • максимальная температура
  • полярность

Емкость — это значение, измеряемое в мкФ. Диэлектрический материал внутри конденсатора обычно показывает максимальное рабочее напряжение до того, как риск повреждения становится высоким. Электролитический конденсатор нельзя использовать или хранить при температурах выше максимальной, так как это может привести к повреждению устройства.

При обращении с этими типами конденсаторов следует помнить, что они могут вызвать смертельный удар, если не будут полностью разряжены. Также важно убедиться, что конденсатор подключен в соответствии с его полярностью.

Конденсаторы из полиэстера Низкая емкость — это то, для чего используются конденсаторы из полиэстера, несмотря на высокое рабочее напряжение. Емкость измеряется в пикофарадах и может использоваться в цепях переменного или постоянного тока.

Танталовые конденсаторы Танталовые конденсаторы также используются в ситуациях с низкой емкостью.Отмечен положительный, а не отрицательный вывод.

Керамические конденсаторы В отличие от электролитических, керамический конденсатор не имеет полярности, что позволяет подключать его различными способами, поскольку он может использоваться как для переменного, так и для постоянного тока. Этот конденсатор также полезен для уменьшения шума и различных целей фильтрации. Значение емкости измеряется в пикофарадах.

Конденсаторы SMD Конденсаторы для устройств поверхностного монтажа (SMD) обычно встречаются во многих типах электронного оборудования, особенно в автоматизированном сборочном оборудовании, и обычно группируются с резисторами.

Связанное сообщение: Советы по использованию алюминиевого электролитического конденсатора наилучшим образом

Международный союз компонентов

Allied Components International специализируется на разработке и производстве широкого спектра стандартных магнитных компонентов и модулей, таких как индукторы для микросхем, магнитные индукторы на заказ и трансформаторы на заказ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *