Какие конструктивные виды установлены для молниеотводов: Какие конструктивные виды установлены для молниеотводов. Молниезащита и заземление. Заземление частного дома

Содержание

Молниеотводы, мачты и опоры молниезащиты

Молниеотвод – конструкция, обязательная для большинства обособленных объектов и сооружений, где находятся люди.

Молниеотвод – это устройство, предназначенное для защиты объектов от прямых ударов молнии, приводящих к разрушению, возгоранию, взрыву. Молниеотводы применяются для защиты АЗС, складов с горючими и взрывоопасными материалами, нефтеперерабатывающих заводов, мест добычи жидких и газообразных топливных ресурсов. Аналогичная защита должна обеспечиваться в местах, связанных с массовым пребыванием людей: домах отдыха, санаториях и т.д.

Составными частями молниеотвода являются:

  • Молниеприемник, который преимущественно представлен металлическим стержнем, реже тросом или сеткой. Данная часть непосредственно на себя принимает удар молнии. Молниеприемник должен располагаться выше наиболее высокой части защищаемого объекта.
  • Несущая опора или поверхность (элемент сооружения), на которой расположен молниеприемник.
  • Токоотвод, передающий ток молнии в землю, который выполнен из стальной трубы, полосы или троса.
  • Заземлитель (горизонтальный или вертикальный), обеспечивающий растекание тока, изготовленный из стального стержня или уголка.

Особенности конструктивного исполнения молниеотводов

Молниеотводы могут являться как самостоятельной конструкцией, изготовленной на базе трубчатых и граненых опор или граненых мачт, так и конструкцией, совмещенной с коронами или кронштейнами мачт и осветительных опор.

  • Модели на базе опор, именуемые МОТ и МОГК, имеют высоту от 8 до 40 метров, в том числе высота штыревого молниеприемника, составляет от 1 до 10 метров. Молниеприемник вставлен в верхнюю часть опоры и зажат шпильками (болтами). Установка молниеотводов производится фланцевым способом, то есть фланец опоры совмещается с закладной деталью фундамента, что обеспечивает надежную установку и эксплуатацию. Область их применения: АЗС, нефтебазы, газохранилища, здания. Осветительные приборы могут быть закреплены на стволе молниеотвода с помощью кронштейнов. Сочетание двух функций способствует улучшению эстетического состояния объекта и сокращению общеэксплуатационных расходов.
  • Модель ВГМ оборудована на основе высокомачтовой опоры с мобильной короной и предназначена для защиты объектов, находящихся на больших открытых территориях: резервуары с мазутом, нефтехранилища, аэропорты. Молниеотводы ВГН, изготовленные на базе высокомачтовых опор со стационарной короной, применяются на объектах, используемых для хранения газа, нефти, мазута, легковоспламеняющихся и взрывоопасных химических веществ. Молниеприемник крепится над короной мачт. Высота молниеотводов обеих моделей формируется высотой молниеприемника и высотой ствола опоры и составляет от 20 до 70 метров. Их установка осуществляется на фундамент, состоящий из бетона и закладного элемента. Размер фундамента и тип закладного элемента определяются составом грунта, ветровой нагрузкой и количеством установленных на короне осветительных приборов. Функция защиты объекта сочетается с равномерным освещением большой территории.

Поверхность молниеотводов всех моделей защищена от коррозии методом горячего цинкования, что гарантирует их эксплуатацию в течение не менее 15 лет.

Молниеотводы, оборудованные на базе трубчатых и граненых опор и мачт, не только защищают объекты от прямого попадания молнии, но и обеспечивают защиту от перенапряжения в питающей сети. Данные типы молниеотводов имеют не только типовые решения, но и могут быть изготовлены в соответствии с техническим заданием заказчика.

Многофункциональность конструкций, применяемых для решения определенных технических задач, позволила эффективно сочетать функцию освещения и молниезащиты значимых объектов. Однако не исключены и самостоятельные конструктивные решения.

из каких конструктивных элементов состоит молниеотвод

Для защиты каждого объекта от разрядов молнии предусмотрена специальная система, которая включает в себя молниеотвод и заземление. Наличие данной коммуникации является очень важным показателем для любого сооружения. Это связано с тем, что молния может оказать существенное разрушающее воздействие:

  • вывести из строя электрическое и электронное оборудование;
  • стать причиной возгорания;
  • привести к сбою работы вычислительной техники.

Именно поэтому молниеотвод должен быть выполнен максимально качественно и грамотно. Такой прибор позволяет предотвратить все вышеперечисленные риски.

Компания «Алеф-ЭМ» оказывает услуги по расчету, проектированию и построению систем молниезащиты. Квалифицированные сотрудники учитывают при выполнении работы все особенности, а также предъявляемые требования и стандарты. Компания также специализируется на продаже комплектующих для этих систем.

Особенности и специфика устройства молниеотвода

Молниеотвод состоит из следующих конструктивных элементов: приемника, токоотвода и заземлителя.

Первый представляет собой стержень из стали. Его возвышают над кровлей объекта. Сечение элемента должно составлять 5 см. Это непосредственно проволока-катанка. Стержень может быть выполнен также из меди или алюминия, их сечения должны быть 3,5 см и 7 см соответственно. Иногда в качестве молниеприемника могут использоваться отдельные части сооружения. Для этих целей применяют непосредственно металлическую крышу или трубу водостока.

При необходимости такой прибор может быть установлен и на дереве, которое располагается рядом с объектом. Однако здесь важен один момент: дерево должно быть выше сооружения приблизительно на 15-20 м.

Что касается токоотвода, то он тоже выполнен в виде стального стержня. Его сечение точно так же равно 5 см. В случае с медным вариантом – 1,6 см. Для лучшего функционирования системы необходимо расположить устройство таким образом, чтобы оно от приемника шло напрямую к грунту. При этом следует исключить появления любых углов. В противном случае это чревато образованием искры, и как результат – пожар. Если стена кирпичная, то стержень можно расположить в ней. В остальных ситуациях следует располагать его на отдаленном расстоянии от оконных и дверных проемов. Когда стена возведена из горючего материала, то дистанция должна быть равной 15 см.

Сечение заземлителя, в свою очередь, – 8 см. Такой элемент чаще всего производится из стали. Также допускается применение меди, но при этом его сечение должно составлять 5 см. Как устроен молниеотвод в таком случае? Изначально требуется установить заземлитель. Для этого выкапывается траншея, размеры которой фиксированные. Так, ее глубина – 80 см, а длина – 3 м. В траншею забиваются пруты из металла, они в дальнейшем свариваются после соединения друг с другом. Потом к этой конструкции непосредственно крепится сам токоотвод.

Разновидности конструкции

Конструктивно молниеотводы разделяются на следующие виды:

Стоит отметить, что они имеют еще подвиды. Первый вариант представляет собой проводник из металла. Трос натягивают между двумя точками. С помощью этого метода можно значительно снизить общую высоту МЗС. Второй из них является наиболее распространенным. Его монтаж производится на пиковой точке кровли. Устройство молниеотвода с помощью сетки предполагает размещение наверху кровли.

Примечательно, что в данном случае выступающие элементы должны дополнительно оснащаться стержневыми молниеотводами.

Сетка включает прутики, диаметр которых составляет 0,6-0,8 см. Они могут выполняться из стали, алюминия, меди. Размеры ячеек варьируются в зависимости от класса системы – диапазон составляет от 5х5 до 20х20 м. Чаще всего сетку устанавливают поверх крыши.

Приложения 1,2 | Инструкция по устройству молниезащиты зданий и сооружений | Правила

Страница 6 из 8


ПРИЛОЖЕНИЕ 1
ОСНОВНЫЕ ТЕРМИНЫ
1. Прямой удар молнии (поражение молнией) — непосредственный контакт канала молнии с зданием или сооружением, сопровождающийся протеканием через него тока молнии.
2. Вторичное проявление молнии — наведение потенциалов на металлических элементах конструкции, оборудования, в незамкнутых металлических контурах, вызванное близкими разрядами молнии и создающее опасность искрения внутри защищаемого объекта.
3. Занос высокого потенциала — перенесение в защищаемое здание или сооружение по протяженным металлическим коммуникациям (подземным, наземным и надземным трубопроводам, кабелям и т.п.) электрических потенциалов, возникающих при прямых и близких ударах молнии и создающих опасность искрения внутри защищаемого объекта.
4. Молниеотвод — устройство, воспринимающее удар молнии и отводящее ее ток в землю.
В общем случае молниеотвод состоит из опоры; молниеприемника, непосредственно воспринимающего удар молнии; токоотвода, по которому ток молнии передается в землю; заземлителя, обеспечивающего растекание тока молнии в земле.
В некоторых случаях функции опоры, молниеприемника и токоотвода совмещаются, например при использовании в качестве молниеотвода металлических труб или ферм.
5. Зона защиты молниеотвода — пространство, внутри которого здание или сооружение защищено от прямых ударов молнии с надежностью не ниже определенного значения. Наименьшей и постоянной надежностью обладает поверхность зоны защиты; в глубине зоны защиты надежность выше, чем на ее поверхности.
Зона защиты типа А обладает надежностью 99,5% и выше, а тина Б — 95 % и выше.
6. Конструктивно молниеотводы разделяются на следующие виды:
стержневые — с вертикальным расположением молниеприемника;
тросовые (протяженные) — с горизонтальным расположением молниеприемника, закрепленного на двух заземленных опорах;
сетки — многократные горизонтальные молниеприемники, пересекающиеся под прямым углом и укладываемые на защищаемого объекта.
7. Отдельно стоящие молниеотводы — это те, опоры которых установлены на земле на некотором удалении от защищаемого объекта.
8. Одиночный молниеотвод — это единичная конструкция стержневого или тросового молниеотвода.
9. Двойной (многократный) молниеотвод — это два (или более) стержневых или тросовых молниеотвода, образующих общую зону защиты.
10. Заземлитель молниезащиты — один или несколько заглубленных в землю проводников, предназначенных для отвода в землю токов молнии или ограничения перенапряжений, возникающих на металлических корпусах, оборудовании, коммуникациях при близких разрядах молнии. Заземлители делятся на естественные и искусственные.
11. Естественные заземлители — заглубленные в землю металлические и железобетонные конструкции зданий и сооружений.
12. Искусственные заземлители — специально проложенные в земле контуры из полосовой или круглой стали; сосредоточенные конструкции, состоящие из вертикальных и горизонтальных проводников.
ПРИЛОЖЕНИЕ 2
ХАРАКТЕРИСТИКИ ИНТЕНСИВНОСТИ ГРОЗОВОЙ ДЕЯТЕЛЬНОСТИ И ГРОЗОПОРАЖАЕМОСТИ ЗДАНИЙ И СООРУЖЕНИЙ
Среднегодовая продолжительность гроз в часах в произвольном пункте на территории СССР определяется по карте (рис. 3), или по утвержденным для некоторых областей СССР региональным картам продолжительности гроз, или по средним многолетним (порядка 10 лет) данным метеостанции, ближайшей от места нахождения здания или сооружения.
Подсчет ожидаемого количества N поражений молнией в год производится по формулам:
для сосредоточенных зданий и сооружений (дымовые трубы, вышки, башни)
;
для зданий и сооружений прямоугольной формы
,
где h — наибольшая высота здания или сооружения, м; S, L — соответственно ширина и длина здания или сооружения, м; n — среднегодовое число ударов молнии в 1 км земной поверхности (удельная плотность , ударов молнии в землю) в месте нахождения здания или сооружения.
Для зданий и сооружений сложной конфигурации в качестве S и L рассматриваются ширина и длина наименьшего прямоугольника, в который может быть вписано здание или сооружение в плане.
Для произвольного пункта на территории СССР удельная плотность ударов молнии в землю n определяется исходя из среднегодовой продолжительности гроз в часах следующим образом:

Рис. 3. Карта средней за год продолжительности гроз в часах для территории СССР

Среднегодовая продолжительность гроз, ч

Удельная плотность ударов молнии в землю n, 1/(км2×год)

10 — 20

1

20 — 40

2

40 — 60

4

60 — 80

5,5

80 — 100

7

100 и более

8,5

РД 34.21.122-87 => 3. конструкции молниеотводов. Приложение 1. Основные термины. Приложение 2. Характеристики интенсивности грозовой…

3. КОНСТРУКЦИИ МОЛНИЕОТВОДОВ

 

3.1. Опоры стержневых молниеотводов должны быть рассчитаны на механическую прочность как свободно стоящие конструкции, а опоры тросовых молниеотводов — с учетом натяжения троса и действия на него ветровой и гололедной нагрузок.

3.2. Опоры отдельно стоящих молниеотводов могут выполняться из стали любой марки, железобетона или дерева.

3.3. Стержневые молниеприемники должны быть изготовлены из стали любой марки сечением не менее 100 мм2 и длиной не менее 200 мм и защищены от коррозии оцинкованием, лужением или окраской.

Тросовые молниеприемники должны быть выполнены из стальных многопроволочных канатов сечением не менее 35 мм2.

3.4. Соединения молниеприемников с токоотводами и токоотводов с заземлителями должны выполняться, как правило, сваркой, а при недопустимости огневых работ разрешается выполнение болтовых соединений с переходным сопротивлением не более 0,05 Ом при обязательном ежегодном контроле последнего перед началом грозового сезона.

3.5. Токоотводы, соединяющие молниеприемники всех видов с заземлителями, следует выполнять из стали размерами не менее указанных в табл. 3.

3.6. При установке молниеотводов на защищаемом объекте и невозможности использования в качестве токоотводов металлических конструкций здания (см. п. 2.12) токоотводы должны быть проложены к заземлителям по наружным стенам здания кратчайшими путями.

3.7. Допускается использование любых конструкций железобетонных фундаментов зданий и сооружений (свайных, ленточных и т.п.) в качестве естественных заземлителей молниезащиты (с учетом требований п. 1.8).

Допустимые размеры одиночных конструкций железобетонных фундаментов, используемых в качестве заземлителей, приведены в табл. 2.

3.8. Рекомендуемые конструкции и размеры сосредоточенных искусственных заземлителей приведены в табл. 2. Минимально допустимые сечения (диаметры) электродов искусственных заземлителей нормированы в табл. 3.

 

 

ПРИЛОЖЕНИЕ 1

 

ОСНОВНЫЕ ТЕРМИНЫ

 

1. Прямой удар молнии (поражение молнией) — непосредственный контакт канала молнии с зданием или сооружением, сопровождающийся протеканием через него тока молнии.

2. Вторичное проявление молнии — наведение потенциалов на металлических элементах конструкции, оборудования, в незамкнутых металлических контурах, вызванное близкими разрядами молнии и создающее опасность искрения внутри защищаемого объекта.

3. Занос высокого потенциала — перенесение в защищаемое здание или сооружение по протяженным металлическим коммуникациям (подземным, наземным и надземным трубопроводам, кабелям и т.п.) электрических потенциалов, возникающих при прямых и близких ударах молнии и создающих опасность искрения внутри защищаемого объекта.

4. Молниеотвод — устройство, воспринимающее удар молнии и отводящее ее ток в землю.

В общем случае молниеотвод состоит из опоры; молниеприемника, непосредственно воспринимающего удар молнии; токоотвода, по которому ток молнии передается в землю; заземлителя, обеспечивающего растекание тока молнии в земле.

В некоторых случаях функции опоры, молниеприемника и токоотвода совмещаются, например при использовании в качестве молниеотвода металлических труб или ферм.

5. Зона защиты молниеотвода — пространство, внутри которого здание или сооружение защищено от прямых ударов молнии с надежностью не ниже определенного значения. Наименьшей и постоянной надежностью обладает поверхность зоны защиты; в глубине зоны защиты надежность выше, чем на ее поверхности.

Зона защиты типа А обладает надежностью 99,5% и выше, а тина Б — 95 % и выше.

6. Конструктивно молниеотводы разделяются на следующие виды:

стержневые — с вертикальным расположением молниеприемника;

тросовые (протяженные) — с горизонтальным расположением молниеприемника, закрепленного на двух заземленных опорах;

сетки — многократные горизонтальные молниеприемники, пересекающиеся под прямым углом и укладываемые на защищаемого объекта.

7. Отдельно стоящие молниеотводы — это те, опоры которых установлены на земле на некотором удалении от защищаемого объекта.

8. Одиночный молниеотвод — это единичная конструкция стержневого или тросового молниеотвода.

9. Двойной (многократный) молниеотвод — это два (или более) стержневых или тросовых молниеотвода, образующих общую зону защиты.

10. Заземлитель молниезащиты — один или несколько заглубленных в землю проводников, предназначенных для отвода в землю токов молнии или ограничения перенапряжений, возникающих на металлических корпусах, оборудовании, коммуникациях при близких разрядах молнии. Заземлители делятся на естественные и искусственные.

11. Естественные заземлители — заглубленные в землю металлические и железобетонные конструкции зданий и сооружений.

12. Искусственные заземлители — специально проложенные в земле контуры из полосовой или круглой стали; сосредоточенные конструкции, состоящие из вертикальных и горизонтальных проводников.

ПРИЛОЖЕНИЕ 2
 
ХАРАКТЕРИСТИКИ ИНТЕНСИВНОСТИ ГРОЗОВОЙ ДЕЯТЕЛЬНОСТИ И ГРОЗОПОРАЖАЕМОСТИ ЗДАНИЙ И СООРУЖЕНИЙ

 

Среднегодовая продолжительность гроз в часах в произвольном пункте на территории СССР определяется по карте (рис. 3), или по утвержденным для некоторых областей СССР региональным картам продолжительности гроз, или по средним многолетним (порядка 10 лет) данным метеостанции, ближайшей от места нахождения здания или сооружения.

Подсчет ожидаемого количества N поражений молнией в год производится по формулам:

для сосредоточенных зданий и сооружений (дымовые трубы, вышки, башни)

;

для зданий и сооружений прямоугольной формы

,

где h — наибольшая высота здания или сооружения, м; S, L — соответственно ширина и длина здания или сооружения, м; n — среднегодовое число ударов молнии в 1 км земной поверхности (удельная плотность, ударов молнии в землю) в месте нахождения здания или сооружения.

Для зданий и сооружений сложной конфигурации в качестве S и L рассматриваются ширина и длина наименьшего прямоугольника, в который может быть вписано здание или сооружение в плане.

Для произвольного пункта на территории СССР удельная плотность ударов молнии в землю n определяется исходя из среднегодовой продолжительности гроз в часах следующим образом:

 

 

Рис. 3. Карта средней за год продолжительности гроз в часах для территории СССР

 

Среднегодовая продолжительность гроз, ч

Удельная плотность ударов молнии в землю n, 1/(км2·год)

10 — 20

1

20 — 40

2

40 — 60

4

60 — 80

5,5

80 — 100

7

100 и более

8,5

 

 

ПРИЛОЖЕНИЕ 3

 

ЗОНЫ ЗАЩИТЫ МОЛНИЕОТВОДОВ

 

1. Одиночный стержневой молниеотвод.

Зона защиты одиночного стержневого молниеотвода высотой h представляет собой круговой конус (рис. П3.1), вершина которого находится на высоте h0 < h. На уровне земли зона защиты образует круг радиусом r0. Горизонтальное сечение зоны защиты на высоте защищаемого сооружения hx представляет собой круг радиусом rx.

1.1. Зоны защиты одиночных стержневых молниеотводов высотой h £ 150 м имеют следующие габаритные размеры.

Зона A: h0 = 0,85h,

r0 = (1,1 — 0,002h)h,

rx = (1,1 — 0,002h)(hhx/0,85).

Зона Б: h0 = 0,92h;

r0 = 1,5h;

rx =1,5(hhx/0,92).

Для зоны Б высота одиночного стержневого молниеотвода при известных значениях h и может быть определена по формуле

h = (rx + 1,63hx)/1,5.

 

 

Рис. П3.1. Зона защиты одиночного стержневого молниеотвода:

1 — граница зоны защиты на уровне hx, 2 -то же на уровне земли

 

1.2. Зоны защиты одиночных стержневых молниеотводов высоток 150 < h < 600 м имеют следующие габаритные размеры.

Зона А:

;

Зона Б

;

м

 

2. Двойной стержневой молниеотвод.

2.1. Зона защиты двойного стержневого молниеотвода высотой h £ 150 м представлена на рис. П3.2. Торцевые области зоны защиты определяются как зоны одиночных стержневых молниеотводов, габаритные размеры которых h0, r0, rx1, rx2 определяются по формулам п. 1.1 настоящего приложения для обоих типов зон защиты.

 

 

Рис. П3.2. Зона защиты двойного стержневого молниеотвода:

1 — граница зоны защиты на уровне hx1; 2 -то же на уровне hx2,

3 -то же на уровне земли

 

Внутренние области зон защиты двойного стержневого молниеотвода имеют следующие габаритные размеры.

Зона А:

при L £ h

;

;

;

при 2h < L £ 4h

;

;

;

При расстоянии между стержневыми молниеотводами L > 4h для построения зоны А молниеотводы следует рассматривать как одиночные.

Зона Б:

при L £ h

;

;

;

при h < L £ 6h

;

;

;

При расстоянии между стрежневыми молниеотводами L > 6h для построения зоны Б молниеотводы следует рассматривать как одиночные.

При известных значениях hc и L (при rcx = 0) высота молниеотвода для зоны Б определяется по формуле

h = (hc + 0,14L) / 1,06.

2.2. Зона защиты двух стержневых молниеотводов разной высоты h1, и h2 £ 150 м приведена на рис. П3.3. Габаритные размеры торцевых областей зон защиты h01, h02, r01, r02, rx1, rx2 определяются по формулам п. 1.1, как для зон защиты обоих типов одиночного стержневого молниеотвода. Габаритные размеры внутренней области зоны защиты определяются по формулам:

;

;

;

где значения hc1 и hc2 вычисляются по формулам для hc п. 2.1 настоящего приложения.

Для двух молниеотводов разной высоты построение зоны А двойного стержневого молниеотвода выполняется при L £ 4hmin, а зоны Б — при L £ 6hmin. При соответствующих больших расстояниях между молниеотводами они рассматриваются как одиночные.

 

 

Рис. П3.3 Зона зашиты двух стержневых молниеотводов разной высоты.

Обозначения те же, что и на рис. П3.1

 

3. Многократный стержневой молниеотвод.

Зона защиты многократного стержневого молниеотвода (рис. П3.4) определяется как зона защиты попарно взятых соседних стержневых молниеотводов высотой h £ 150 м (см. пп. 2.1, 2.2 настоящего приложения).

Основным условием защищенности одного или нескольких объектов высотой hx с надежностью, соответствующей надежности зоны А и зоны Б, является выполнение неравенства rcx > 0 для всех попарно взятых молниеотводов. В противном случае построение зон защиты должно быть выполнено для одиночных или двойных стержневых молниеотводов в зависимости от выполнения условий п. 2 настоящего приложения.

 

 

Рис. П3.4. Зона защиты (в плане) многократного стержневого молниеотвода.

Обозначения те же, что и на рис. П3.1

 

4. Одиночный тросовый молниеотвод.

Зона защиты одиночного тросового молниеотвода высотой h £ 150 м приведена на рис. П3.5, где h — высота троса в середине пролета. С учетом стрелы провеса троса сечением 35-50 мм2 при известной высоте опор hоп и длине пролета а высота троса (в метрах) определяется:

h = hоп — 2 при а < 120 м;

h = hоп — 3 при 120 < а < 150 м.

 

 

Рис. П3.5. Зона защиты одиночного тросового молниеотвода.

Обозначения те же, что и на рис. П3.1

 

Зоны защиты одиночного тросового молниеотвода имеют следующие габаритные размеры.

Зона А:

;

Зона Б:

;

;

Для зоны типа Б высота одиночного тросового молниеотвода при известных значениях hx и rx определяется по формуле

 

5. Двойной тросовый молниеотвод.

5.1. Зона защиты двойного тросового молниеотвода высотой h £ 150 м приведена на рис. П3.6. Размеры r0, h0, rx для зон защиты А и Б определяются по соответствующим формулам п. 4 настоящего приложения. Остальные размеры зон определяются следующим образом.

 

 

Рис. П3.6. Зона защиты двойного тросового молниеотвода.

Обозначения те же, что и на рис. П3.2

 

Зона А:

при L £ h

;

;

при h < L £ 2h

;

;

;

при 2h < L £ 4h

;

;

;

При расстоянии между тросовыми молниеотводами L > 4h для построения зоны А молниеотводы следует рассматривать как одиночные.

Зона Б:

при L £ h

;

;

при h < L £ 6h

;

;

;

При расстоянии между тросовыми молниеотводами L > 6h для построения зоны Б молниеотводы следует рассматривать как одиночные. При известных значениях hc и L (при rcx = 0) высота тросового молниеотвода для зоны Б определяется по формуле

h = (hc + 0,12L)/1,06.

 

 

Рис. П3.7. Зона защиты двух тросовых молниеотводов разной высоты

 

5.2. Зона защиты двух тросов разной высоты h1 и h2 приведена на рис. П3.7. Значения r01, r02, h01, h02, rx1, rx2 определяются по формулам п. 4 настоящего приложения как для одиночного тросового молниеотвода. Для определения размеров rc и hс используются формулы:

;

где hc1 и hc2 вычисляются по формулам для hc П.5.1 настоящего приложения.

Далее по формулам того же п. 4 вычисляются , , .

 

 

ПРИЛОЖЕНИЕ 4

 

ПОСОБИЕ К «ИНСТРУКЦИИ ПО УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ»
(РД34.21.122-87)

 

Настоящее пособие ставит задачей пояснить и конкретизировать основные положения РД 3421.122-87, а также ознакомить специалистов, занятых разработкой и проектированием молниезащиты различных объектов, с существующими представлениями о развитии молнии и ее параметрах, определяющих опасные воздействия на человека и материальные ценности. Приводятся примеры исполнения молниезащиты зданий и сооружений различных категорий в соответствии с требованиями РД 34.21.122-87.

 

1. КРАТКИЕ СВЕДЕНИЯ О РАЗРЯДАХ МОЛНИИ И ИХ ПАРАМЕТРАХ

 

Молния представляет собой электрический разряд длиной в несколько километров, развивающийся между грозовым облаком и землей или каким-либо наземным сооружением.

Разряд молнии начинается с развития лидера — слабо светящегося канала с током в несколько сотен ампер. По направлению движения лидера — от облака вниз или от наземного сооружения вверх — молнии разделяются на нисходящие и восходящие. Данные о нисходящих молниях накапливались продолжительное время в нескольких регионах земного шара. Сведения о восходящих молниях появились лишь в последние десятилетия, когда начались систематические наблюдения за грозопоражаемостью очень высоких сооружений, например Останкинской телевизионной башни.

Лидер нисходящей молнии возникает под действием процессов в грозовом облаке, и его появление не зависит от наличия на поверхности земли каких-либо сооружений. По мере продвижения лидера к земле с наземных объектов могут возбуждаться направленные к облаку встречные лидеры. Соприкосновение одного из них с нисходящим лидером (или касание последнего поверхности земли) определяет место удара молнии в землю или какой-либо объект.

Восходящие лидеры возбуждаются с высоких заземленных сооружений, у вершин которых электрическое поле во время грозы резко усиливается. Сам факт появления и устойчивого развития восходящего лидера определяет место поражения. На равнинной местности восходящие молнии поражают объекты высотой более 150 м, а в горных районах возбуждаются с остроконечных элементов рельефа и сооружении меньшей высоты и потому наблюдаются чаще.

Рассмотрим сначала процесс развития и параметры нисходящей молнии. После установления сквозного лидерного канала следует главная стадия разряда — быстрая нейтрализация зарядов лидера, сопровождающаяся ярким свечением и нарастанием тока до пиковых значений, варьирующихся от единиц до сотен килоампер. При этом происходит интенсивный разогрев канала (до десятков тысяч кельвин) и его ударное расширение, воспринимаемое на слух как раскат грома. Ток главной стадии состоит из одного или нескольких последовательных импульсов, наложенных на непрерывную составляющую. Большинство импульсов тока имеет отрицательную полярность. Первый импульс при общей длительности в несколько сотен микросекунд имеет длину фронта от 3 до 20 мкс; пиковое значение тока (амплитуда) варьируется в широких пределах: в 50% случаев (средний ток) превышает 30, а в 1-2% случаев 100 кА. Примерно в 70% нисходящих отрицательных молний за первым импульсом наблюдаются последующие с меньшими амплитудами и длиной фронта: средние значения соответственно 12 кА и 0,6 мкс. При этом крутизна (скорость нарастания) тока на фронте последующих импульсов выше, чем для первого импульса.

Ток непрерывной составляющей нисходящей молнии варьируется от единиц до сотен ампер и существует на протяжении всей вспышки, продолжающейся в среднем 0,2 с, а в редких случаях 1-1,5 с.

Заряд, переносимый в течение всей вспышки молнии, колеблется от единиц до сотен кулон, из которых на долю отдельных импульсов приходится 5-15, а на непрерывную составляющую 10-20 Кл.

Нисходящие молнии с положительными импульсами тока наблюдаются примерно в 10% случаев. Часть из них имеет форму, аналогичную форме отрицательных импульсов. Кроме того, зарегистрированы положительные импульсы с существенно большими параметрами: длительностью около 1000 мкс, длиной фронта около 100 мкс и переносимым зарядом в среднем 35 Кл. Для них характерны вариации амплитуд тока в очень широких пределах: при среднем токе 35 кА в 1-2% случаев возможно появление амплитуд свыше 500 кА.

Накопленные фактические данные о параметрах нисходящих молний не позволяют судить об их различиях в разных географических регионах. Поэтому для всей территории СССР их вероятностные характеристики приняты одинаковыми.

Восходящая молния развивается следующим образом. После того как восходящий лидер достиг грозового облака, начинается процесс разряда, сопровождающийся примерно в 80% случаев токами отрицательной полярности. Наблюдаются токи двух типов: первый — непрерывный безымпульсный до нескольких сотен ампер и длительностью в десятые доли секунды, переносящий заряд 2-20 Кл; второй характеризуется наложением на длительную безымпульсную составляющую коротких импульсов, амплитуда которых в среднем составляет 10-12 кА и лишь в 5 % случаев превышает 30 кА, а переносимый заряд достигает 40 Кл. Эти импульсы сходны с последующими импульсами главной стадии нисходящей отрицательной молнии.

В горной местности восходящие молнии характеризуются более длительными непрерывными токами и большими переносимыми зарядами, чем на равнине. В то же время вариации импульсных составляющих тока в горах и на равнине отличаются мало. На сегодняшний день не выявлена связь между токами восходящей молнии и высотой сооружений, с которых они возбуждаются. Поэтому параметры восходящих молний и их вариации оцениваются как одинаковые для любых географических регионов и высот объектов.

В РД 34.21.122-87 данные о параметрах токов молнии учтены в требованиях к конструкциям и размерам средств молниезащиты. Например, минимально допустимые расстояния от молниеотводов и их заземлителей до объектов I категории (пп. 2.3-2.5 *) определены из условия поражения молниеотводов нисходящими молниями с амплитудой и крутизной фронта тока в пределах соответственно 100 кА и 50 кА/мкс. Этому условию соответствует не менее 99% случаев поражения нисходящими молниями.

_________________

* Здесь и далее пункты РД 34.21.122-87.

 

Установка молниеотвода

Как сделать молниеотвод

Лишь только в 18 веке люди смогли понять природу молний и изобрести молниеотвод. Благодаря этому, они научились эффективно бороться с буйством грозы и избегать последующих неприятных последствий. Как сделать молниеотвод и защитить свое жилье, вы можете узнать из данной статьи.

Последствия от удара молнии в строение, которое не обустроено молниеотводом, могут быть значительными. Вот небольшой их перечень:

  • пожар в строении,
  • разрушение конструкций и строений,
  • выход из строя бытовой техники,
  • поражение током.

Если у вас есть загородный дом, надо обязательно установить на нем молниезащиту, она обезопасит дом и самое главное всех членов вашей семьи. Для этого вам надо хорошо знать, как сделать молниеотвод и применить эти знания на практике, сделав грамотный монтаж молниеотвода, согласно правилам и рекомендациям.

Из чего сделан

Существует обязательный стандарт, который определяет требования к молниеотводам. Они состоят из следующих обязательных, основных частей:

  • молниеприемника, который принимает на себя удар молнии,
  • токоотвод, по которому ток перемещается к заземлению,
  • заземление, по которому электрический потенциал уходит в землю.

Молниеприемник

Они бывают различной конструкции:

  • Стержневой. Состоит из металлического стержня — это может быть труба, уголок, сечением больше 100 квадратных миллиметров и длиной от 0,5 до 2 метров.
  • Линейный. Изготавливается из троса сечением больше 5 мм, который крепится на деревянных стержнях вдоль конька дома на полуметровой высоте. Обычно, такие молниеотводы устанавливаются на строениях с деревянной или шиферной крышей.
  • Сетчатый, изготавливается из проволоки или арматуры толщиной 12 мм. Крепится такой молниеприемник на высоте 50 см от кровли. Очень важно соединить сетку со всеми металлическими предметами, которые присутствуют на крыше.

Токоотвод — это часть молниеотвода, которая отводит заряд молнии к заземлению. Обычно это стальная проволока в 6 мм, ее прикрепляют к молниеприемнику при помощи сварки.

Токоотвод монтируют на стене, закрепляя скобами, и направляют в почву, где находится контур заземления. Помните, что токоотвод нельзя изгибать.

Заземление

Заземлители изготавливаются из стержней гладкой арматуры, которые соединяются между собой сваркой.

Токоотвод и заземление соединяются между собой при помощи сварки или болтового соединения.

Обслуживание

При наступлении сезона, когда возможны грозы, надо обязательно произвести профилактический осмотр молниеотводов. Проверьте места соединений, а также постоянно контролируйте влажность почвы в месте, где расположено заземление. Оно должно быть влажным, так как сухая почва хуже проводит электрический ток. Если надо, то увлажните грунт. Для этого хорошо использовать соляной раствор.

Раз в три года проверяйте контакты токоотвода и заземления. Убирайте с мест соединения ржавчину и грязь. Места, где вы использовали не сварные соединения, изолируйте гидроизоляционным материалом или специальной лентой.

Хорошо и грамотно сделанный и установленный молниеотвод будет надежной защитой вашим членам семьи и загородному дому.

Как осуществляется монтаж молниезащиты, наглядно представлено ниже:

Монтаж устройств молниезащиты

Компания «Пожарная техника» обладает всем необходимым оборудованием для установки молниеотводов, которые будут надежно защищать людей и их имущество от грозовых электрических разрядов.

Устройства молниезащиты необходимы для того, чтобы защитить любое здание или строение от негативных последствий удара молнии – таких как пожар, который может нанести материальный ущерб или создать угрозу жизни и здоровью людей.

Нужно устройство молниезащиты?

Устройства молниезащиты должны устанавливаться только специалистами и обладать соответствующими техническими характеристиками.

Обязательным условием функционирования любого производственного здания является наличие устройств молниезащиты, так как это предусматривает защиту от негативных последствий при непогоде и грозе.

Основным устройством молниезащиты является молниеотвод, который защищает от проникновения электрических разрядов на территорию объекта во время грозы.

Следует отметить, что молниеотводы должны устанавливаться согласно проектной документации, а также располагаться только в подготовленных и специально оборудованных местах, чтобы эффективность работы элементов молниезащиты сохранялась в течение длительного времени.

Правильная установка молниеотводов – это основной аспект процесса молниезащиты.

Принцип работы молниеотводов

Принцип работы молниеотводов достаточно прост: во время возникновения электрических разрядов приборы молниезащиты отталкивают получаемый разряд и не дают электричеству проникнуть на поверхность или внутрь здания, тем самым уберегая объекты от возгораний или взрывов.

Напряжение молниеотвода равняется нулю, за счет чего становится возможным отталкивание поступающих электрических разрядов, а не их накапливание. Если оборудование молниезащиты установлено верно, то молниеотвод будет отталкивать электрические разряды.

Самый главный процесс при монтаже молниеотвода – это его заземление. Без заземления металлическая конструкция не будет иметь отталкивающей силы, поэтому важно провести процедуру заземления и правильно установить молниеотвод на местности. В качестве заземляющего предмета может выступать небольшая металлическая конструкция, которая помещается на глубину грунта.

Чаще всего для заземления используют небольшие металлические трубы или уголки, либо конструкции, состоящие из нескольких предметов. Заземляющий предмет устанавливается на глубину не менее двух метров. Для этого делаются небольшие углубления в земле, внутрь которых помещается заземляющее оборудование.

Также важно учесть, что после установки заземляющих приборов необходимо тщательно следить за состоянием почвы и увлажнять ее при сухом климате.

Поэтому чаще всего заземление делают в непосредственной близости от водостоков и других источников влаги. Также стоит помнить о том, что молниеотвод периодически должен подвергаться замене, потому что металлические конструкции обладают собственным сроком службы.

Обратитесь к специалистам компании «Пожарная техника» – мы быстро и качественно установим систему молниезащиты на вашем объекте. Наши сотрудники ответят на все интересующие вас вопросы. Также в нашей компании действует услуга выезда специалиста на объект.

Установка молниеотводов

Одним из важных элементов здания, о монтаже которого иногда забывают, является молниеотвод. Установить качественную защиту от стихии помогут сотрудники компании “Промальпстрой”, которые с 1999 года предоставляют услуги в области промышленного альпинизма. Мы осуществляем фасадные, монтажные, электромонтажные и клининговые работы, подъем грузов, ремонт и очистку кровель и др.

Монтаж молниеотвода обеспечит сохранность жизней обитателей дома в случае попадания в него электрического разряда. Даже если молния ударит недалеко от здания, энергия разряда может вызвать перенапряжение электропроводки и пожар.

Системы защиты от молнии бывают внешними и внутренними. Внешняя служит для перехвата молнии и отвода ее в землю. Внутренняя препятствует возникновению высокого напряжения в электросетях.

Профессиональное устройство молниеотвода способно защитить электроприборы от перенапряжения, которое возникает в электрических цепях при грозовом разряде.

Цены на услуги по установке молниеотводов

Монтаж штыревой молниезащиты

Установка металлического штыря на металлической кровле

Монтаж громоотвода, заземления

По фасаду здания закрепляется металлическая полоса или металлическая проволока

Конструкция молниеотводов

Молниеотвод состоит из трех основных элементов: заземлителя, токоотвода и молниеприемника. Современные системы защиты различаются по типу молниеприемника, который может быть стержневым, тросовым, сетчатым или комбинированным (тросостержневым).

Тросовый элемент

Установка молниеприемника данного типа выгодна с экономической точки зрения, но уступает стержневым аналогам в плане надежности. Устанавливают на кровли из шифера. Трос натягивают на небольшой высоте по линии конька.

Молниеприемник изготавливается из круглой или угловой оцинкованной стали или металлической проволоки с сечением 10-12 мм.

Устройство стержневого молниеотвода

Штыревую систему устанавливают на дома с металлической крышей. Монтаж такой системы заключается в креплении на крыше стального штыря, высота которого будет на 1,5 м выше, чем самой высокой точки на здании.

Сетчатый тип

Сетчатые молниеприемники достаточно надежны и активно применяются в защите зданий 3-й категории, однако дешевыми их назвать нельзя. Сделать молниеотвод сетчатого типа можно с помощью проволоки, которая монтируется с определенным шагом. Сечение проволоки должно быть не менее 6 мм.

Монтирование молниеотвода с касанием к легковоспламеняемой кровле недопустимо. Зазор между молниезащитным устройством и кровлей не должен быть не менее 15 см.

Этот элемент конструкции нужен для электрического соединения заземлителя с молниеприемником. Изготавливается он из оцинкованной проволоки или труб (сечение 5 см.) Приводить токоотвод от молниеприемника к заземлителю нужно наиболее коротким путем. Крепится он к стенам при помощи гвоздей, скоб или специальных хомутов с интервалом в 150 см.

Заземлитель

Заземлитель может быть вертикальным или горизонтальным. Данный элемент предназначен для вывода электрического тока в грунт.

Расценки на установку молниеприемников различных типов можно посмотреть на нашем сайте. Более детальную информацию клиент получает после осмотра объекта нашим сотрудником. Связаться с нами можно по телефону (495) 662-67-85.

Работы, сопутствующие установке молниеотводов

Монтаж антенн

Главное требование, которое должно соблюдаться при установке антенны, – отсутствие препятствий на линии сигнала спутника и антенны.

Установка кондиционера альпинистом

Метод промышленного альпинизма используют при монтаже наружного блока кондиционеров. Для этого высотник должен обладать допуском для работы на высоте и иметь навыки инсталлятора климатической техники.

Установка молниезащиты

Защита здания от молнии и ее последствий обустраивается внутри и снаружи здания. В зависимости от места установки, варьируются и функции молниезащиты частного дома:

  • внутренние элементы отвечают за нивелирование последствий перепадов напряжения, чтобы электрические приборы, находящиеся в здании, не превратились в источники опасности,
  • наружные элементы предназначены для отведения молнии от здания, слива токовых разрядов в грунт (т. е. «гашение» удара).

По конструкции внешний молниеотвод в частном доме состоит из трех базовых частей: токоотвода, заземления и непосредственно молниеприемника. Рассмотрим их более детально.

Конструктивные особенности молниеотводов для частных домов

Молниеприемник. Это элемент, принимающий на себя разряд. В современных системах молниезащиты и заземления для частных домов применяют следующие разновидности приемников:

  • тросовый. Он отличается простотой и удобством. Стальную проволоку горизонтально натягивают вдоль конька между 2-мя опорами на крыши. Тросовые молниеприемники монтируются преимущественно на шиферных и деревянных кровлях,
  • стержневой. Как следует из названия, он представляет собой металлический стержень длиной 100 ± 50 см, монтируемый вертикально на крыше. Размеры такого молниеприемника подбираются в зависимости от защищаемой площади, и могут быть больше указанных величин. Он совместим с кровельными покрытиями всех типов,
  • сетчатый. Такой молниеприемник укладывается по всему периметру крыши. Это наиболее трудоемкий и затратный способ организации защиты. Сетчатые конструкции устанавливают на крышах с натуральной и гибкой черепицей.

Токоотвод. Он представляет собой связующий элемент между заземлением и молниеприемником. Изготавливается из медной проволоки диаметром 5 ± 1мм.

Заземлитель. В качестве данного элемента может использоваться лист металла либо 3 прутка арматуры, соединенные в треугольник. Заземлитель закапывается на глубину от 2 м.

Особенности эксплуатации системы молниезащиты

Все элементы молниеотвода и заземления в частном доме должны быть надежно соединены между собой. Обычно для скрепления применяется сварка.

При правильном выполнении монтажа молниезащита частного дома позволяет практически исключить риск поражения здания атмосферными токовыми зарядами. Но, как и другие конструктивные элементы строений, такая система нуждается в периодическом обслуживании.

Важно перед грозовым сезоном проводить профилактические осмотры защитного комплекса. При обнаружении ржавчины металлические элементы очищаются от нее и загрязнений с помощью специализированных антикоррозионных составом. Истончившиеся детали заменяют по мере необходимости.

Чтобы обеспечить надежную защиту здания, доверьте ее обустройство профессионалам. Опытные партнёры компании «ЕКАТЕРЕМ» выполнят монтаж молниезащиты в частных домах по оптимальной стоимости.

Молниеотвод

Сначала разберемся в сути понятия. Молниеотвод обозначает одно и тоже, что Грозозащита или Молниезащита и отличается от Громоотвода, которым называют чаще только молниеприемную часть системы защиты зданий и сооружений. То есть молниеотвод – это «молниеприемник + токоотвод + заземление», или внешняя составляющая системы. Если посмотреть на схему любой комплексной молниезащиты, будь то частный дом или здание промышленного, офисно-административного назначения, то это ее часть, которая предназначена именно для защиты от прямых ударов молнии.

Конструкции (виды) молниеотводов

Всего существует 3-и базовые схемы: стержневой (рисунки а, б), тросовый (в) и молниеотвод в виде молниеприемной сетки (или сетчатый) (г). Комбинированная схема предполагает сочетание базовых вариантов.

По количеству одинаковых молниеприемных частей – одиночный, двойной и т.д.

По характеру и месту установки стержневые делятся на молниеприемные стержни, сборные стержневые, которые могут устанавливаться на фланцах, кронштейнах, специальных опорах или быть отдельно стоящими. Молниеприемные мачты как правило имеют телескопическую конструкцию и метод установки на или в грунт.

Тросовый – это трос, натянутый между опорами. Контур может быть любым, в том числе замкнутым. К нему по сути относится и самый простой и дешевый вариант молниеотвода для частного дома или дачи, когда вместо троса на небольшом расстоянии от конька кровли натягивают проводник радиусом 8-10 мм (алюминиевый, стальной или медный в зависимости от материала и цвета кровли) на расстоянии не менее 20 мм от самого конька, выводят его концы за крайние точки на расстояние примерно 30 мм и загибают немного вверх.

Молниеприемная сетка используется на плоских или крышах с незначительным уклоном.

Итак, как мы сказали, система внешней молниезащиты может быть изолирована от сооружения (отдельно стоящие молниеотводы – стержневые или тросовые, а также соседние сооружения, выполняющие роль естественных молниеотводов), или может быть установлена на защищаемом здании и даже быть его частью.

Расчет молниеотвода

Выбор молниеотводов рекомендуют производить при помощи специальных компьютерных программ, способных на основании габаритов зданий, планов кровли и конструктивных элементов на ней вычислять вероятности прорыва молнии и зоны защиты. Вот почему надежнее обращаться в специализированные организации, которые быстро выдадут Вам различные варианты и конфигурации молниеотводов.

Хотя, если конфигурация защищаемого объекта позволяет обойтись простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры их можно определить самостоятельно, пользуясь заданными в Инструкциях СО 153-343.21.122-2003 и РД 34.21.122-87 зонами защиты.

Объект считается защищенным, если он целиком попадет в зону защиты молниеприемного устройства, которой присвоен требуемый уровень надежности.

Зона защиты одиночного стержневого молниеприемника (согласно СО 153-34.21.122-2003)

Стандартной зоной защиты в этом случае является круговой конус с вершиной, которая совпадает с вертикальной осью молниеотвода. Размеры зоны в этом случае определены 2-мя параметрами: высотой конуса h0 и радиусом его основания r0.

В таблице ниже указаны их значения в зависимости от требуемой надежности защиты для молниеотводов высотой до 150 м от уровня земли. Для больших высот необходимо применение специальных программ и методик расчета.

Для других типов и комбинаций молниеотводов вариации расчета зон защиты смотрите в главе 3.3.2 СО 153-343.21.122-2003 и Приложении 3 РД 34.21.122-87.

Теперь, чтобы определить попадает ли ваш объект Х в зону защиты рассчитываем радиус горизонтального сечения rx на высоте hx и откладываем его от оси молниеприемника до крайней точки объекта.

Правила определения зон защиты для объектов высотой до 60 м (согласно МЭК 1024-1-1)

В Инструкции СО есть методика проектирования молниеотводов для обычных сооружений по стандарту МЭК 1024-1-1, которая может быть принята только, если расчеты по ней получаются более «жесткие», чем требования указанной Инструкции.

По ней могут быть применены следующие 3-и способа для разных случаев:

  • метод защитного угла для простых по форме или маленьких частей больших сооружений
  • метод фиктивной сферы для сооружений сложной формы
  • защитная сетка в общем случае и в особенности для защиты поверхностей

В таблице для разных категорий (уровней) молниезащиты (подробнее о категориях или классах здесь) приведены соответствующие значения параметров каждого из методов (радиус фиктивной сферы, предельно допустимые угол защиты и шаг ячейки сетки).

Метод угла защиты для кровельных надстроек

Величина угла выбирается по графику на диаграмме для соответствующей высоты молниеотвода, которая отсчитывается от защищаемой поверхности, и класса молниезащиты здания.

Зона защиты, как уже было сказано выше, – это круговой конус с вершиной в верхней точке стержня молниепремника.

Метод фиктивной сферы

Применяется, когда сложно определить размеры зоны защиты для отдельных конструкций или частей здания по методу защитного угла. Ее границей является воображаемая поверхность, которую очерчивает сфера выбранного радиуса r (см. таблицу выше), если бы ее прокатили по вершине сооружения, обходя молниеотводы. Соответственно объект считается защищенным, если эта поверхность не имеет с ним общих точек пересечения или касания.

Молниеприемная сетка

Это проводник, уложенный сверху на кровлю с выбранным в зависимости от класса молниезащиты здания шагом ячейки. При этом все металлические элементы на крыше (зенитные фонари, вентиляционные шахты, воздухозаборники, трубы и т.п.) обязательно должны быть соединены с сеткой. Иначе для них необходимо смонтировать дополнительные молниеприемники. Более подробно о конструктивных особенностях и вариантах монтажа можно прочитать в материале «Молниезащита на плоской кровле».

Шаг ячейки по российским нормам выбирают исходя из категории молниезащиты здания (может быть меньше, но никак не больше).

Молниеприемная сетка монтируется с соблюдением ряда условий:

  • проводники прокладывают наикратчайшими путями
  • при ударе молнии у тока для отвода к заземлению должна быть возможность выбора хотя бы 2-х разных путей
  • при наличии конька и наклоне кровли более, чем 1 к 10, проводник нужно обязательно проложить по нему
  • никакие части и элементы, выполненные из металла, не должны выступать за внешний контур сетки
  • обязателен внешний контур сетки из проводника, смонтированный по краю периметра крыши, а край крыши должен выступать за габариты здания

Материалы и сечения проводников молниеотвода

В качестве материалов, используемых для производства молниеприемного оборудования и токоотводов используются оцинкованная и нержавеющая сталь, медь и алюминий. К ним предъявляются требования коррозионной стойкости и механической прочности, если используется защитное покрытие, то оно должно иметь хорошую адгезию с основным материалом.

В таблице указаны требования к профилю проводников и стержней по минимальной площади сечения и диаметра (согласно ГОСТ 62561.2-2014)

Монтаж молниеотвода для частного дома и промышленного здания

Рассмотрим какие же элементы монтажа включают в себя обычно система внешней молниезащиты. На рисунках ниже показаны примеры молниеотвода частного дома и промышленного здания.

Соответсвующими номерами здесь обозначены следующие изделия и их наименования:

Круглые и плоские проводники, тросы

Компоненты молниезащиты на плоских кровлях, перемычки и компенсаторы

Компоненты молниезащиты на скатных кровлях, кровельные держатели проводника

Компоненты молниезащиты на металлических кровлях, кровельные держатели проводника

Токоотводы, держатели токоотводов

Стержни земляного ввода, соединительные проводники, смотровые колодцы, держатели проводников

Клеммы для водосточных желобов, клеммы, соединительные компоненты

Монтаж можно разделить на три этапа: устройство молниеприемной части внешней молниезащитной системы (молниеприемники и их элементы крепления), прокладка токоотводов (кровельная и фасадная часть здания) и земляные работы по устройству заземления. Как правило у всех компаний стоимость работ составляет некоторый процент от цены материалов.

Купить молниеотвод, цены на комплектующие

Компания МЗК-Электро предлагает отличные цены на молниеотводы и комплектующие. Ассортимент изделий на нашем складе составляет более 1.500 позиций, закупка осуществляется напрямую по дилерским контрактам у прямых производителей, что предполагает обязательную сертификацию и гарантию. Все изделия имеют необходимые сертификаты качества и гарантию. Мы также занимаемся проектированием и монтажом любых систем молниезащиты зданий и сооружений, как для частных домовладельцев, так и промышленных предприятий. Познакомиться с нашими ценами можно в соответствующем разделе.

Адрес объекта: Московская область, Мытищинский район, дер. Пруссы, д. 25

Вид работ: Проектирование и монтаж системы внешней молниезащиты.

Состав молниезащиты: По плоской кровле защищаемого сооружения уложена молниеприемная сетка. Две дымоходные трубы защищены посредством установки на них молниеприемных стержней длиной 2000 мм и диаметром 16 мм. В качестве молниеприемного проводника использована сталь горячего цинкования диаметром 8 мм (сечение 50 кв.мм в соответствии с РД 34.21.122-87). Токоотводы проложены за водосточными трубами на хомутах с зажимными клеммами. Для токоотводов использован проводник из стали горячего цинкования диаметром 8 мм.

Адрес объекта: г. Москва. Боровское ш., коммунальная зона «Терешково».

Вид работ: монтаж системы внешней молниезащиты (молниеприемная часть и токоотводы).

Комплектующие: производства фирмы OBO Bettermann.

Исполнение: Общее количество проводника из стали горячего цинкования для 13 сооружений в составе объекта составило 21.5000 метров. По кровлям прокладывается молниеприемная сетка с шагом ячейки 5х5 м, по углам зданий монтируются по 2 токоотвода. В качестве элементов крепления использованы стеновые держатели, промежуточные соединители, держатели для плоской кровли с бетоном, скоростные соединительные клеммы.

Адрес объекта:г. Москва, Космодамианская наб., д. 52, стр. 8

Вид работ: монтаж системы обогрева лотка поверхностного водосбора и участков сливов на балконах 2-го и 3-го этажей

Нагревательный элемент: саморегулирующийся нагревательный кабель Thermon RGS-2-60-PU.

Производимые работы: Ревизия электрической системы водостоков: замер сопротивления изоляции силовых и нагревательных кабелей, проверка состояния распределительных коробок, проверка работоспособности шкафов управления. Изготовление и монтаж электрической системы обогрева: применялись регуляторы ETR и ETV фирмы OJ, автоматические выключатели и контакторы ABB, кабель нагревательный саморегулирующийся Thermon.

Адрес объекта: Московская обл., Новорижское шоссе, коттеджный поселок

Вид работ: изготовление и монтаж молниеотвода и заземления для частного дома.

Для монтажа системы громоотвода использовались комплектующие фирмы Dehn: проводники Rd8 из оцинкованной стали, медные проводники Rd8, медные держатели Rd8-10 (в т.ч. коньковые), соединители универсальные Rd8-10 из оцинкованной стали, клемма-держатели Rd8-10 из меди и нержавеющей стали, медные фальцевые клемма Rd8-10, биметаллические промежуточные соединители Rd8-10/Rd8-10, лента и хомуты крепления ленты на водосток из меди.

Адрес объекта: Московская обл., поселок Икша

Вид работ: Проектирование и монтаж систем внешней молниезащиты, заземления и уравнивания потенциалов частного дома.

Комплектующие фирмы B-S-Technic.

Внешняя молниезащита: проводник Rd8, медь, держатель Rd6-11 типа “крюк”, медь, соединитель универсальный Rd8-10, медь, молниеприемный стержень Rd16 L=1500 мм.

Заземление: стержень заземления Rd20 L=1500 мм, СГЦ, полоса Fl30 25х4, СГЦ, соединитель крестовой Fl40, СГЦ.

Внутренняя молниезащита: Разрядник DUT250VG-300/G TNC, производство CITEL GmbH.

Адрес объекта: Московская обл., Ногинский район.

Вид работ: устройство молниеотвода.

Комплектующие: J. Propster.

Внешняя молниезащита: По кровле защищаемого здания устроена молниеприемная сетка с шагом ячейки 10 х10 м. Зенитные фонари защищены посредством установки на них молниеприемных стержней длиной 2000 мм и диаметром 16 мм в количестве девяти штук.

Молниеотводы: Проложены в «пироге» фасадов здания в количестве 16 штук. Для токоотводов использован проводник из оцинкованной стали в ПВХ-оболочке диаметром 10 мм.

Заземление: Выполнено в виде кольцевого контура c горизонтальным заземлителем в виде оцинкованной полосы 40х4 мм и глубинными стерженями заземления Rd20 длиной L 2х1500 мм.

Расширяем географию – монтаж молниезащиты в Магадане

Портфолио нашей компании пополнила самая западная точка на карте РФ – Магаданская область, где завершаются работы по монтажу системы молниезащиты на зданиях управления образования региона.


Теги: #Установка молниеотвода

Молниеотводы отдельно стоящие на базе граненых конических опор

Молниеотвод МОГК – это молниеотвод отдельно стоящий, стержневого вида, являющийся одним из наиболее распространенных устройств в составе внешней молниезащитной системы объекта. Молниеотвод МОГК представляет собой металлическую конструкцию, состоящую из стального молниеприемника, установленного на металлическую граненую опору (мачту). Система громозащиты организованная по средствам использования отдельно стоящих молниеотводов, как показала практика, способна эффективно обеспечивать надлежащую зону защиты – пространство внутри которого здания или сооружения защищены от прямых ударов молнии с надежностью не ниже необходимого значения.

Назначение молниеотводов МОГК

Молниеотвод МОГК как отдельно стоящий молниеотвод, то есть мачта молниеотвода установлена на определенном удалении от защищаемого объекта, предназначен для принятия высоковольтного разряда молнии и отведения тока молнии в землю, минуя защищаемый объект, тем самым предотвращая его повреждение или разрушение.

Устройство молниеотвода

По типовому строению молниеотвод состоит из четырех конструктивных элементов: несущая часть, токоотводы, заземление и молниеприемник. В случае молниеотвода отдельно стоящего, конструктивные элементы образуют единую металлическую конструкцию и представляют опору токоотвод и молниеприемник единовременно.
Основные конструктивные элементы и узлы молниеотвода МОГК:

Место крепления молниеприемника

Первым элементом конструкции молниеотвода МОГК, принимающий удар разряда на себя, является стержневой молниеприемник.
В верхней части мачты молниеотвода для возможности фиксации устанавливаемого стержневого молниеприемника изготавливаются 2 ряда, по 4 симметрично расположенных резьбовых втулок в качестве крепежных отверстий.
Представленный способ крепления молниеприемника является типовым, но ни в коей мере не обязательным. Необходимость в другом виде крепления указывается при заказе.

Мачта молниеотвода

Опора молниеотвода — это несущая часть на который помещается молниеприемник. Опорная часть молниеотвода представляет собой граненый конической формы полый ствол, диаметр которого уменьшается от низа к верху. Данное строение ствола позволяет оптимально распределять нагрузки вдоль всего ствола опоры. Конструкция пирамидальной формы, обладает отличной устойчивостью. В зависимости от высоты молниеотвода, ствол мачты выполняется цельным или составным. Наряду с выше изложенным, мачта молниеотвода исполняет функциональное назначение токоотвода.

Фланцевое соединение

Молниеотвод отдельно стоящий устанавливается на железобетонное основание по средствам фланцевого соединения. Для этого в нижней части опоры имеется установочный фланец. Фланец изготавливается из листового металла методом плазменной резки. Между фланцем и стволом опоры изготавливаются дополнительные усиливающие элементы – ребра жесткости.
На фланцах располагаются крепежные отверстия, через которые посредствам болтов либо шпилек происходит соединение опоры и металлической закладной фундамента.

Основными преимуществами фланцевого соединения являются удобство монтажа и возможность регулировки вертикального положения опоры после её установки.
Одновременно с организацией фундамента обычно выполняются работы по размещению элементов заземлителя, предназначенного для отвода в землю тока молнии и его рассеиванию.


Элементы заземления в комплектацию молниеотвода МОГК не входят, выбираются и размещаются согласно проектной документации молниезащиты объекта заказчиком самостоятельно.

Обозначение: молниеотвод серия МОГК

МОГК-Н-в.р.

МОГК – молниеотвод граненный конический
Н – высота молниеотвода
в.р. – ветровой район эксплуатации молниеотвода

Сводная номенклатурная таблица типовых молниеотводов МОГК

Обозначение молниеотвода

nгр

Н

h

D

d

Масса

Фланец опоры молниеотвода

Ветровой район

А

Sфл

Мц

n

dотв

Обозначение фланца

м

м

мм

м

кг

мм

мм

мм

шт

мм

МОГК-8-VII

8

8

6

125

78

63

Ø 250

16

160

4

24

фл.250х250х16-Мц160-4х24

до VII

МОГК-9-VI

8

9

6

125

78

66

Ø 250

16

160

4

24

фл.250х250х16-Мц160-4х24

до VI

МОГК-10-V

8

10

6

125

78

71

Ø 250

16

160

4

24

фл.250х250х16-Мц160-4х24

до V

МОГК-12-IV

8

12

10

152

78

140

Ø 320

20

230

4

28

фл.320х320х20-Мц230-4х28

до IV

МОГК-13-IV

8

13

10

152

78

144

Ø 320

20

230

4

28

фл.320х320х20-Мц230-4х28

до IV

МОГК-14-IV

8

14

10

152

78

150

Ø 320

20

230

4

28

фл.320х320х20-Мц230-4х28

до IV

МОГК-15-III

8

15

12

180

78

183

Ø 320

20

230

4

34

фл.320х320х20-Мц230-4х34

до III

МОГК-16-III

8

16

12

180

78

187

Ø 320

20

230

4

34

фл.320х320х20-Мц230-4х34

до III

МОГК-18-III

8

18

16

276

92

325

Ø 500

20

400

8

34

фл.500х20-Мц400-8х34

до III

МОГК-18-V

16

18

16

319

147

380

Ø 530

20

430

8

34

фл.530х20-Мц430-8х34

до V

МОГК-19-III

8

19

16

276

92

330

Ø 500

20

400

8

34

фл.500х20-Мц400-8х34

до III

МОГК-19-V

16

19

16

319

147

385

Ø 530

20

430

8

34

фл.530х20-Мц430-8х34

до V

МОГК-20-III

8

20

16

276

92

333

Ø 500

20

400

8

34

фл.500х20-Мц400-8х34

до III

МОГК-20-V

16

20

16

319

147

390

Ø 530

20

430

8

34

фл.530х20-Мц430-8х34

до V

МОГК-21-III

8

21

16

276

92

345

Ø 500

20

400

8

34

фл.500х20-Мц400-8х34

до III

МОГК-21-V

16

21

16

319

147

402

Ø 530

20

430

8

34

фл.530х20-Мц430-8х34

до V

МОГК-22-IV

16

22

20

365

147

520

Ø 570

20

470

12

28

фл.570х20-Мц470-12х28

до IV

МОГК-23-IV

16

23

20

365

147

524

Ø 570

20

470

12

28

фл.570х20-Мц470-12х28

до IV

МОГК-24-IV

16

24

20

365

147

529

Ø 570

20

470

12

28

фл.570х20-Мц470-12х28

до IV

МОГК-25-IV

16

25

20

365

147

540

Ø 570

20

470

12

28

фл.570х20-Мц470-12х28

до IV

МОГК-26-IV

16

26

20

365

147

547

Ø 570

20

470

12

28

фл.570х20-Мц470-12х28

до IV

МОГК-27-III

16

27

25

413

147

755

Ø 620

20

520

12

34

фл.620х20-Мц520-12х34

до III

МОГК-27-IV

16

27

25

413

147

810

Ø 620

20

520

12

34

фл.620х20-Мц520-12х34

до IV

МОГК-28-III

16

28

25

413

147

760

Ø 620

20

520

12

34

фл.620х20-Мц520-12х34

до III

МОГК-28-IV

16

28

25

413

147

815

Ø 620

20

520

12

34

фл.620х20-Мц520-12х34

до IV

МОГК-29-III

16

29

25

413

147

760

Ø 620

20

520

12

34

фл.620х20-Мц520-12х34

до III

МОГК-29-IV

16

29

25

413

147

820

Ø 620

20

520

12

34

фл.620х20-Мц520-12х34

до IV

МОГК-30-III

16

30

25

413

147

775

Ø 620

20

520

12

34

фл.620х20-Мц520-12х34

до III

МОГК-30-IV

16

30

25

413

147

830

Ø 620

20

520

12

34

фл.620х20-Мц520-12х34

до IV

МОГК-31-III

16

31

25

413

147

780

Ø 620

20

520

12

34

фл.620х20-Мц520-12х34

до III

МОГК-31-IV

16

31

25

413

147

835

Ø 620

20

520

12

34

фл.620х20-Мц520-12х34

до IV

МОГК-32-II

16

32

30

469

147

975

Ø 680

20

580

12

34

фл.680х20-Мц580-12х34

до II

МОГК-32-III

16

32

30

469

147

1085

Ø 680

20

580

12

34

фл.680х20-Мц580-12х34

до III

МОГК-33-II

16

33

30

469

147

980

Ø 680

20

580

12

34

фл.680х20-Мц580-12х34

до II

МОГК-33-III

16

33

30

469

147

1090

Ø 680

20

580

12

34

фл.680х20-Мц580-12х34

до III

МОГК-34-II

16

34

30

469

147

985

Ø 680

20

580

12

34

фл.680х20-Мц580-12х34

до II

МОГК-34-III

16

34

30

469

147

1095

Ø 680

20

580

12

34

фл.680х20-Мц580-12х34

до III

МОГК-35-II

16

35

30

469

147

995

Ø 680

20

580

12

34

фл.680х20-Мц580-12х34

до II

МОГК-35-III

16

35

30

469

147

1105

Ø 680

20

580

12

34

фл.680х20-Мц580-12х34

до III

МОГК-36-II

16

36

30

469

147

1000

Ø 680

20

580

12

34

фл.680х20-Мц580-12х34

до II

МОГК-36-III

16

36

30

469

147

1110

Ø 680

20

580

12

34

фл.680х20-Мц580-12х34

до III

nгр – количество граней опоры молниеотвода
Н – высота молниеотвода
h — высота опорной части молниеотвода
D — нижний вписанный диаметр опоры молниеотвода
d — верхний вписанный диаметр опоры молниеотвода

А — линейный размер или Ø наружный диаметр фланца опоры
Sфл — толщина фланца опоры
Мц — межцентровое расстояние крепежных отверстий на фланце
n — количество крепежный отверстий
dотв — диаметр крепежного отверстия

Молниеотвод чертежи

Молниеотвод конструкция

Стержневой молниеотвод МОГК производимый ООО «ПКФ «Промснабресурс» представляет собой сборную металлическую конструкцию, в состав которой входят опорная часть и стержневой молниеприемник. Опорная часть (граненая коническая опора) или мачта молниеотвода изготавливается из листового рулонированного проката ГОСТ 14637-89. Мачта молниеотвода может быть цельной (до 12м) или составной. Длина секций составной опоры 9-12 м, так как имеются ограничения при транспортировке и технические возможности оборудования не позволяют принять в обработку заготовки более 12 метровой длины (камера порошковой покраски, ванна для горячего цинкования, листогибочный пресс). Наверх опорной части устанавливается стержневой молниеприемник штыревого типа. Стержневой молниеприемник в основном изготавливается из трубного проката и круглого горячекатаного прутка. Конструкция молниеприемника может быть адаптирована под технические параметры, указанные в проектной документации молниезащиты.

Монтаж молниеотвода

Сборка мачты молниеотвода происходит на месте ее установки. Конструкция опоры молниеотвода сборная, состоит из 2-х или более секций (если высота молниеотвода свыше 12 метров). При монтаже секции соединяются друг с другом за счет значительного усилия посадкой одного элемента в другой. Стяжка секций опоры молниеотвода с усилием порядка 1,5 тонн гарантирует надежное соединение частей, при этом нет необходимости в дополнительном сварном соединении. В верхней секции опоры молниеотвода изготовлен специальный элемент крепления для установки стержневого молниеприемника. Фиксация элементов молниеотвода предусмотрена при помощи болтовых соединений.

Каждый молниеотвод производства ООО «ПКФ «Промснабресурс» сопровождается «Инструкцией по монтажу» с перечнем и составом операций, выполняемых при сборке и монтаже изделия. Согласно существующего порядка работ, монтаж молниеприемника производится непосредственно в процессе установки мачты.

Установка молниеотвода

Вследствие того, что мачты молниеотвода имеют не малый вес и подвергаются беспеременно воздействию как постоянных, так и внешних нагрузок, то их установка должна производиться на железобетонное основание. Крепление молниеотвода к закладной железобетонного фундамента производится с помощью шпилек или болтов, в зависимости от вида металлической закладной детали фундамента. Для этого в нижней секции опоры изготавливается установочный фланец с крепежными отверстиями.

Параметры фундамента молниеотвода рассчитывается из совокупности высоты молниеотвода и действующих нагрузок, которые будет воздействовать на конструкцию в целом, с учетом особенностей грунта.

Фундамент молниеотвода

Железобетонное основание (фундамент) состоит из закладного металлического элемента и армированного бетона. Возможно применение двух видов закладных: трубчатый закладной элемент (фундаментный блок) и анкерный закладной элемент (анкерный блок). Применение того или иного вида закладного элемента определяет заказчик.

Анкерный блок

Анкерный блок

Анкерный блок представляет собой сборную металлическую конструкцию, каркасного типа, состоящую из шпилек, кондукторов и анкерной плиты.

Резьбовые шпильки являются непосредственно крепежными элементами. Шпильки могут быть как прямой, так и загнутой формы. Шпильки располагаются в соответствии с расположение крепежных отверстий на фланце опорной части мачты.

Кондуктора предназначены для правильного позиционирования шпилек, а анкерная плита для обеспечения прочности установленного анкерного блока.

Анкерный блок устанавливается в заранее подготовленный котлован и бетонируется. При установке анкерного блока требуется дополнительное армирование монолитного фундамента для соблюдения его прочностных характеристик.

Соединение опорной части мачты с анкерным блоком происходит путем привинчивания её к верхним резьбовым концам шпилек.

Обозначение анкерного блока

Масса

Мц

n

Рекомендуемый молниеотвод

кг

мм

шт

мм

мм

АБ-400-М30х1000-8

90

400

8

30

1000

МОГК-18-III

МОГК-19-III

МОГК-20-III

МОГК-21-III

АБ-430-М30х1000-8

92

430

8

30

1000

МОГК-18-V

МОГК-19-V

МОГК-20-V

МОГК-21-V

АБ-470-М24х800-12

63

470

12

24

800

МОГК-22-IV

МОГК-23-IV

МОГК-24-IV

МОГК-25-IV

МОГК-26-IV

АБ-520-М30х1000-12

129

520

12

30

1000

МОГК-27-III

МОГК-27-IV

МОГК-28-III

МОГК-28-IV

МОГК-29-III

МОГК-29-IV

МОГК-30-III

МОГК-30-IV

МОГК-31-III

МОГК-31-IV

АБ-580-М30х1000-12

133

580

12

30

1000

МОГК-32-II

МОГК-32-III

МОГК-33-II

МОГК-33-III

МОГК-34-II

МОГК-34-III

МОГК-35-II

МОГК-35-III

МОГК-36-II

МОГК-36-III

Мц — межцентровое расстояние крепёжных шпилек
n — количество крепёжных шпилек

dш — диаметр крепёжных шпилек
hш — длина крепёжных шпилек

Фундаментный блок

Фундаментный блок

Фундаментный блок – это закладной элемент, представляет из себя металлическую конструкцию, состоящую из трубы определенного диаметра с приваренным к ней фланцем.
Фундаментный блок устанавливается в заранее подготовленный котлован и бетонируется. Крепление опорной части мачты к нему производиться через крепежные отверстия на фланце посредствам метизов. В связи с большими габаритами и массой высокомачтовых опор, при изготовлении фундаментных блоков, для соблюдения условия прочности, приходиться использовать трубы больших диаметров, что приводит к значительному увеличению массы, а соответственно и цены фундаментного блока. Высокая цена фундаментного блока – делает данный способ установки экономически невыгодным, в связи с чем он используется достаточно редко.

Обозначение фундаментного блока

Н

D

Масса

Фланец фундаментного блока

Рекомен-дуемый молниеотвод

□А

Sфл

Мц

n

dотв

м

мм

кг

мм

мм

мм

шт

мм

ФБ-0,108-1,5 (фл.250х250х16-Мц160-4х24)

1,5

108

14

250

16

160

4

24

МОГК-8-VII МОГК-9-VI МОГК-10-V

ФБ-0,108-2,0 (фл.250х250х16-Мц160-4х24)

2

108

29

250

16

160

4

24

ФБ-0,159-1,5 (фл.320х320х20-Мц230-4х28)

1,5

159

41

320

20

230

4

28

МОГК-12-IV МОГК-13-IV МОГК-14-IV

ФБ-0,159-2,0 (фл.320х320х20-Мц230-4х28)

2

159

50

320

20

230

4

28

ФБ-0,159-2,5 (фл.320х320х20-Мц230-4х28)

2,5

159

58

320

20

230

4

28

ФБ-0,219-2,0 (фл.320х320х20-Мц230-4х34)

2

219

65

320

20

230

4

34

МОГК-15- III МОГК-16-III

ФБ-0,219-2,5 (фл.320х320х20-Мц230-4х34)

2,5

219

78

320

20

230

4

34

Н – высота фундаментного блока
D – диаметр трубы фундаментного блока

□А – линейный размер фланца фундаментного блока
Sфл – толщина фланца фундаментного блока
Мц — межцентровое расстояние крепёжных отверстий на фланце
n — количество крепёжных отверстий на фланце
dотв — диаметр крепёжного отверстия

Широкое применение анкерного блока в качестве металлической закладной фундамента, обусловлено его невысокой стоимостью по сравнению с трубчатым фундаментным блоком и как показала практика, он прост в установке и имеет высокий показатель надежности.

Размеры и способ подготовки котлована для фундамента, а также используемая марка бетона зависят от типа грунта на месте установки, что должно быть указано в проекте на проведение монтажных работ.

Материал изготовления

В зависимости от района установки определяется климатическое исполнение и наряду с этим выбор марки стали:
Стандартное исполнение: в стандартном исполнение металлические изделия изготавливаются из Ст3 ГОСТ 380-2005 или стали 20 ГОСТ 1050-88 и предназначены для установки в районах с умеренным климатом (температура воздуха наиболее холодных суток, обеспеченностью 0,98 ≥ -45С°, согласно СП 131.1330.2012 «Строительная климатология»).
Исполнение ХЛ: в данном исполнении металлические изделия изготавливаются из стали 09Г2С ГОСТ 19281-89 и предназначены для эксплуатации в условиях низких температур.

Расчет молниеотвода

При выборе средств защиты от прямых ударов молнии, а именно типов молниеотводов в первую очередь учитываются экономические соображения, технологические и конструктивные особенности объектов. Подобрать подходящие молниеотводы МОГК согласно условиям эксплуатации, с учетом ветрового района установки, климатического исполнения, характеристик грунта; исходя из значений требуемой надежности; типа защищаемого объекта и его площади, а также беря во внимание все пожелания клиента, помогут наши специалисты, которые правильно и точно оценят ситуацию и, исходя из нее, определят характеристики молниеотвода, которые идеально подойдут именно для вашего защищаемого объекта.
Расчет и подбор отдельно стоящего молниеотвода осуществляется нашими конструкторами для каждого объекта согласно технического задания, для этого разработана специальная форма опросного листа.

Типы антикоррозионного покрытия

Металлические поверхности мачт молниеотвода в обязательном порядке покрываются антикоррозийным покрытием для защиты от агрессивного воздействия окружающей среды. Мы предлагаем нанесение защитного покрытия следующими методами:

Цинкованние.

Оцинкованное покрытие, нанесенное методом горячего цинкования в соответствии с ГОСТ 9.307-89 «Покрытия цинковые горячие», обеспечивает нормальную эксплуатацию и хорошую антикоррозийную стойкость металлических изделий.

Порошковая покраска.

Нашим клиентам мы предлагаем нанесение защитного покрытия с помощью метода порошковой покраски в заводских условиях. Порошковое полимерное покрытие долговечно, антикоррозионно, надежно и безусловно экономически привлекательно. Собственный участок порошковой покраски с печью полимеризации, с внутренними размерами камеры 12300х2100х2350мм (ДхШхВ), позволяет окрашивать крупногабаритные мачты в сжатые сроки по стоимости работ от производителя. Немаловажным, является декоративность покрытия, ведь в некоторых случаях окраска мачт должна иметь обязательные цветовые решения (красно-белая или оранжево-белая окраска), с целью дневной маркировки высотных объектов.

Комбинированное покрытие.

Совместное применение метода порошковой окраски и метода горячего цинкования – это максимальная защита и увеличение срока эксплуатации металлоконструкций до 50 лет.

Эффективность внешней молниезащитной системы, её долговечность и безотказность напрямую связано с качеством элементов, входящих в её состав. Таким образом принимая решение о организации молниезащитной системы с использованием отдельно стоящих молниеотводов, надо серьезно подойти к выбору производителя у которого можно молниеотвод купить, гарантированного качества.
Предлагаем вам не полагаться на случай, а обратиться к проверенному и надежному производителю молниеотводов. Завод «ПКФ «Промснабресурс» предлагает своим клиентам купить молниеотвод МОГК, который обладает лучшим набором конструктивных и технологических параметров. Продуманность и надежность, качественное сырье и современные технологии, а также передовое оснащение производства позволяют нам выпускать продукцию гарантировано высокого качества.
Немаловажно что доступная на молниеотвод цена является важным стимулирующим фактором для того чтобы приобрести молниеотвод металлический в нашей компании-производителе. Приобретая долговечные и надёжные стальные молниеотводы, вы получаете документальные гарантии соответствия каждого изделия заявленным характеристикам, отвечающим современным стандартам качества и нормам безопасности.

ООО «ПКФ «Промснабресурс» приглашает к взаимовыгодной совместной деятельности и плодотворному сотрудничеству!

Не можете определиться с выбором, хотите уточнить детали, остались вопросы, пишите нам и требуйте информационной добавки. Мы оперативно дадим необходимую консультацию!

Виды молниеотводов

Для защиты зданий и сооружений от разрядов атмосферного электричества во время грозы и обеспечения безопасности людей предусматривается система молниезащиты. С этой целью устанавливается специальное оборудование — молниеотвод, который предохраняет сооружения от прямого попадания молнии, отводя электрический заряд в грунт.

Особенности молниеотводов разных видов

Все молниеотводы состоят из трех функциональных элементов: молниеприемника, токоотвода и заземлителя. В зависимости от конструкции молниеприемника различают 3 базовых вида пассивных молниеотводов:

  • стержневой;
  • тросовый;
  • сетчатый.

Также может использоваться комбинированная схема, сочетающая базовые варианты.

Стержневой молниеотвод

Стержневой молниеприемник — конструктивно наиболее простое устройство. Он представляет металлические стержни (мачты), устанавливаемые вертикально. Высота их может варьироваться от 30 см до десятков метров, а диаметр от 6 мм до десятков сантиметров. В быту такие молниеприемники называют громоотводами.

Эти устройства монтируют на крышах зданий, на самых высоких точках сооружений или на специально установленных опорах так, чтобы зона защиты охватывала весь защищаемый объект. Мачтовые молниеотводы рассчитываются с учетом ветровых и других механических нагрузок. От мачт прокладывают токоотводы, соединяющие их с заземлением.

Стержневые молниеприемники наиболее распространены благодаря своей простоте и невысокой стоимости. Наиболее эффективны они для защиты не сложных по конфигурации зданий и сооружений.

Тросовый молниеотвод

Молниеприемник тросового молниеотвода состоит из мачт и стального оцинкованного троса, натянутого между ними. К концам троса подводятся провода токоотвода, соединяющие молниеприемник с заземлителем. При правильном размещении опорных мачт разряды атмосферного электричества стекают в землю за пределами защищаемого объекта.

Тросовая молниезащита применяется обычно для невысоких строений.

В зависимости от количества одинаковых молниеприемников, входящих в систему, стержневые и тросовые молниеотводы делятся на одиночные, двойные и т.п. Системы, состоящие из нескольких молниеприемников, обычно используют для зданий и сооружений, занимающих большую по площади территорию.

Сетчатые молниеотводы

Молниеприемная сетка используется обычно на крупногабаритных зданиях с плоскими или с незначительным уклоном кровлями.

Конструктивно — это сетка из металлического прутка, которая размещается на крыше защищаемого объекта. Так же сетку можно укладывать прямо под утеплитель. Токоотводы монтируются по всему периметру сетки с шагом, зависящим от уровня защиты (10–25 м).

По своей надежности защиты от прямых ударов молнии такая система уступает предыдущим, поэтому она менее популярна, а часто используется в сочетании с другими видами молниезащиты.

Обзор молниезащиты

— Институт молниезащиты

Общая информация по отрасли

Институт молниезащиты — это общенациональная некоммерческая организация, основанная в 1955 году с целью продвижения образования, осведомленности и безопасности в области молниезащиты. Индустрия молниезащиты началась в Соединенных Штатах, когда Бенджамин Франклин постулировал, что молния — это электричество, и что с помощью металлического стержня можно отвести молнию от здания.Молния является прямой причиной более 50 смертей и 400 травм каждый год, и трудно защитить людей на открытых открытых площадках. Прямые удары молнии причиняют ущерб от пожара, превышающий 200 миллионов долларов в год, и страховые компании прямо или косвенно оплачивают претензии на миллиарды долларов, связанные с молнией. Большая часть этих имущественных потерь может быть сведена к минимуму, если не устранена, путем применения надлежащей молниезащиты для конструкций. LPI стремится к тому, чтобы современные системы молниезащиты обеспечивали наилучшее качество как материалов, так и методов установки, обеспечивая максимальную безопасность.

Национальная ассоциация противопожарной защиты . (NFPA) публикует документ № 780 под названием «Стандарт установки систем молниезащиты» считается национальным руководством по проектированию полных систем молниезащиты в Соединенных Штатах. NFPA опубликовало свой первый документ по молниезащите в 1904 году. Документы NFPA, такие как Национальный электротехнический кодекс (NEC — NFPA 70), Национальный кодекс по топливному газу (NFPA 54) и Единый пожарный кодекс (NFPA 1), разрабатываются комитетом для рассмотрения принятие новой информации по безопасности по конкретным вопросам, связанным с пожарами.

Стандарт защиты от молний № 780 пересматривается с трехлетним циклом для обновления. NFPA 780 включает молниезащиту для типовых строительных конструкций в четвертой главе как требования к обычным конструкциям. Документ 780 охватывает многие специальные конструкции от хранилищ опасных материалов до лодок и кораблей и открытых сооружений для пикников, а также дает рекомендации по личной безопасности на открытом воздухе. NFPA 780 предоставляет лучшее, что мы знаем сегодня в теории и технологиях, о системах защиты, протестированных опытными профессионалами отрасли в юридически признанном формате.

Испытания компонентов молниезащитных материалов на заводе перед отправкой для включения в список и маркировки проводятся Underwriters Laboratories, Inc. (UL) . Стандарт UL 96 отвечает минимальным требованиям к конструкции молниеприемников, кабельных жил, фитингов, соединителей и крепежных деталей, используемых в качественных системах молниезащиты. В UL есть инспекционный персонал, который регулярно посещает производственные предприятия, чтобы проверить соответствие требованиям для дальнейшего использования утвержденных товарных этикеток.

Полевые проверки завершенных установок молниезащиты также могут быть организованы с UL через подрядчиков по установке, перечисленных в их программе. UL выпускает продукт «Master Label» для систем, полностью соответствующих их Стандарту UL 96A в течение многих лет. Стандарт 96A основан на общих требованиях NFPA 780, но UL имеет техническую группу по стандартам (STP) для проверки требований к более удобному для проверки формату, что приводит к некоторым различиям. UL также будет проверять на соответствие некоторым другим национально признанным стандартам (например, NFPA 780) для полностью соответствующих систем.Некоторые частичные конструкции могут быть доступны для полевой инспекции в рамках их программы «Письмо с выводами».

Институт молниезащиты (LPI) принимает последнюю редакцию стандарта NFPA 780 в качестве справочного документа для проектирования систем. LPI выступает за использование UL в качестве стороннего органа по проверке компонентов в соответствии с их документами UL 96. LPI публикует этот документ # 175 , основанный на NFPA 780, с дополнительными пояснительными материалами, полезными для персонала, выполняющего установку, и инспекторов.

LPI предоставляет отраслевую программу самоконтроля для сертификации участников подмастерьем, мастером-установщиком и дизайнером-инспектором. Люди сдают экзамены, которые включают требования перечисленных выше Стандартов молниезащиты и применение этих принципов к примерам проектирования. Продление членства требуется каждый год, при этом дополнительные экзамены сдают примерно каждые три года при обновлении национальных стандартов. Заключение контрактов со специалистами, прошедшими квалификацию в рамках процесса LPI, обеспечивает дополнительный уровень гарантии качества для первоначальной установки системы и ресурс для будущих проверок и обслуживания существующих систем.

LPI внедрила программу проверки для завершенных установок под названием LPI-IP . LPI-IP предоставляет услуги по сертификации более тщательно и полно, чем любая предыдущая программа проверки от LPI или других, доступных в настоящее время на рынке. Благодаря использованию контрольно-пропускных пунктов, проверок и инспекций на месте сертификация системы LPI-IP обеспечивает безопасность с привлечением квалифицированного монтажного персонала и независимых инспекторов. LPI-IP предлагает «Главный сертификат установки» для полных конструкций, «Восстановленный мастер-сертификат установки» для ранее сертифицированных конструкций и «Осмотр ограниченного объема» для частичных систем в определенных контрактах.Это важный элемент для специалиста, владельца и страховщика имущества, обеспечивающего проверку качественных установок молниезащиты сторонним независимым источником.

Системы молниезащиты для сооружений, как правило, не являются требованиями национальных строительных норм и правил, хотя стандарты могут быть приняты властями, имеющими юрисдикцию для общего строительства или определенных помещений. Поскольку молниезащита может рассматриваться как вариант, крайне важно, чтобы разработчик, строительный подрядчик и страховщик имущества были знакомы с национальными стандартами для обеспечения наивысшего уровня безопасности. Системы молниезащиты отлично защищают людей от физической опасности, структурных повреждений зданий и отказов внутренних систем и оборудования. Полученная ценность начинается с правильного проектирования, продолжается с помощью качественных методов установки и должна включать проверку и сертификацию. Конечная цель — безопасная гавань, безопасность инвестиций и устранение потенциального простоя системы в противовес одному из самых разрушительных природных явлений.

Общая информация о системе

Стандарты США для полных систем молниезащиты включают NFPA 780, UL 96 и 96A и LPI 175 . Эти стандарты основаны на фундаментальном принципе обеспечения разумно прямого металлического пути с низким сопротивлением и низким сопротивлением для прохождения тока молнии, а также принятия мер по предотвращению разрушения, пожара, повреждения, смерти или травмы, когда ток течет с крыши. уровни ниже класса.Стандарты представляют собой консенсус властей в отношении основных требований к конструкции и характеристикам квалифицированных конструкций и продуктов. Ожидается, что полная система защиты, основанная на принципах надежной инженерии, исследованиях, протоколах испытаний и полевом опыте, обеспечит безопасность людей и конструкций от молнии и ее побочных эффектов. Стандарты постоянно пересматриваются в отношении новых продуктов, строительных технологий и подтвержденных научных разработок, направленных на устранение опасности молнии.Хотя материальные компоненты могут казаться очень похожими, конфигурация общей конструкции системы за последние 25 лет кардинально изменилась, чтобы отразить современный образ жизни.

Есть пяти элементов , которые должны быть на месте для обеспечения эффективной системы молниезащиты. Устройства для защиты от ударов должны быть пригодны для прямого попадания молнии и должны иметь рисунок, чтобы принимать удары до того, как они достигнут изоляционных строительных материалов. Кабельные жилы направляют ток молнии через конструкцию без повреждений между заглушками наверху и системой заземляющих электродов внизу.Система заземляющих электродов уровня ниже должна эффективно перемещать молнию к ее конечному пункту назначения вдали от конструкции и ее содержимого. Соединение или соединение системы молниезащиты с другими внутренними заземленными металлическими системами должно быть выполнено таким образом, чтобы исключить возможность попадания молнии в боковую вспышку изнутри. Наконец, устройства защиты от перенапряжения должны быть установлены на каждом служебном входе, чтобы остановить проникновение молнии от линий электроснабжения и дополнительно уравнять потенциал между заземленными системами во время грозовых разрядов.Если эти элементы правильно идентифицированы на этапе проектирования, включены в аккуратную рабочую установку и в здании не происходит никаких изменений, система защитит от повреждений молнией. Элементы этой системы пассивного заземления всегда выполняют аналогичную функцию, но общая конструкция индивидуальна для каждой конкретной конструкции.

Компоненты молниезащиты изготовлены из материалов , устойчивых к коррозии, и они должны быть защищены от ускоренного износа.Многие компоненты системы будут подвергаться воздействию атмосферы и климата. Комбинации материалов, образующих электролитические пары в присутствии влаги, не должны использоваться. Компоненты токоведущей системы должны обладать высокой проводимостью. Преобладающие почвенные условия на площадке будут влиять на компоненты подземной системы. Срок службы системы и цикл обслуживания / замены зависят от выбора материала и местных условий. Системные материалы должны быть согласованы с используемыми конструкционными материалами, в том числе облицовками, колпаками, кожухами вентиляторов, различными системами кровли, чтобы поддерживать влагозащитную оболочку в течение предполагаемого срока службы здания.

Медь, медные сплавы (включая латунь и бронзу) и алюминий являются основными материалами компонентов системы. Они служат наилучшим сочетанием функций для переноса тока и защиты от атмосферных воздействий. Поскольку алюминиевые материалы имеют немного меньшую токонесущую способность и механическую прочность, чем изделия из меди аналогичного размера, перечисленные и маркированные материалы для молниезащиты включают детали большего физического размера. Например, чтобы считаться эквивалентным, воздушный терминал минимального размера будет иметь диаметр ½ дюйма в алюминии по сравнению с диаметром 3/8 дюйма в меди.

Вода, вытекающая из меди, окисляет алюминий и гальванизированные поверхности, поэтому при согласовании конструкции системы необходимо учитывать гальванические аспекты для устранения возможных проблем с монтажом. Квалифицированные биметаллические фитинги используются для согласования компонентов системы для необходимых переходов от алюминия к меди. Они могут включать перечисленные продукты для этой цели или, в некоторых случаях, компоненты из нержавеющей стали. Алюминий никогда не контактирует с землей или почвой. Алюминий никогда не должен контактировать с лакокрасочными покрытиями на щелочной основе или встраиваться непосредственно в бетон.

Если какое-либо изделие подвергается необычному механическому повреждению или смещению, оно может быть защищено молдингом или покрытием, но необходимо проявлять осторожность, чтобы противоударные устройства и другие компоненты, устанавливаемые на крыше, могли выполнять свою функцию при приемке навесного оборудования. Компоненты молниезащиты под ударными клеммами могут быть скрытыми внутри здания ниже уровня крыши во время строительства или при доступе. Скорость тока молнии и разделение потока между несколькими путями не позволят компонентам нагреться до любой мгновенной температуры возгорания, опасной для типичных строительных материалов.Включение системы в конструкцию позволяет соединять структурный металлический каркас и внутренние заземленные системы и обеспечивает защиту от проблем смещения и обслуживания, которые полезны для продления срока службы системы.

Материалы, подходящие для использования в системах молниезащиты, перечислены в списке , помечены и протестированы как в соответствии со стандартом UL 96. Конструкция проводника включает максимальное увеличение площади поверхности для переноса молнии и гибкость конфигурации для выполнения изгибов и поворотов, необходимых при установке.Основания аэровокзала эффективно передают удар от оконечного устройства к проводнику кабеля и надежно крепятся к различным поверхностям здания в суровых погодных условиях. Фитинги для сращивания должны поддерживать контакт с проводниками, длина которых должна быть достаточной для передачи тока и выдерживать воздействие окружающей среды. Заземляющие электроды должны обеспечивать надлежащий контакт с землей для рассеивания заряда и удовлетворять требованиям пригодности для жизненного цикла в различных составах почвы. Размеры скрепляющих устройств позволяют обеспечить надлежащее соединение систем для выравнивания потенциалов по всей конструкции.Устройства защиты от импульсных перенапряжений соответствуют требованиям более высоких уровней тока для удовлетворения потребностей, связанных с молниеприемниками.

Прекращение забастовки

Устройства защиты от ударов выполняют системную функцию по подключению прямых молниеприемников. Они представляют собой зонтик от проникновения молнии в непроводящие строительные материалы для защиты от пожара или взрыва. Любое металлическое тело толщиной 3/16 дюйма или более, выступающее над конструкцией, выдержит удар молнии, не прожигая.Поэтому в некоторых случаях строительные элементы могут быть включены в качестве прекращения забастовки. Высокие мачты или воздушные заземляющие провода, аналогичные защите линии электропередач, могут служить в качестве защитных устройств. В большинстве случаев, однако, малые специальные молниеотводы составляют большинство систем защиты от ударов. Эти ненавязчивые компоненты предпочтительны из-за простоты монтажа и эстетических соображений, и их можно скоординировать в наиболее эффективную конфигурацию для всех типичных строительных конструкций.

Окружающая нас атмосфера электрически заряжена, но свободный воздух поддерживает относительно сбалансированное распределение ионов. Когда мы поднимаем в воздух здание, дерево или даже человека, в меньшей степени, мы меняем этот электрический баланс. Электрическое поле накапливается для изменения точек в геометрии наземных объектов. Такие элементы, как гребни и особенно концы гребней, края зданий с плоской крышей и даже больше, углы становятся точками накопления ионов, которые увеличивают восприимчивость к ударам молнии.Надлежащая система устройств защиты от ударов учитывает эти реалии за счет использования молниеприемников в сконфигурированной схеме, предназначенной для использования точек естественного накопления ионов в здании для втягивания молнии в систему защиты. Чем выше конструкция и чем серьезнее плоские изменения (например, от вертикальной стены до горизонтальной плоской крыши), тем больше возможностей для крепления на этих критических стыках. Проектирование системы воздушных терминалов , выступающих всего на 10 дюймов над этими структурными точками акцента и вдоль гребней и краев, было доказано более чем столетней практикой для обеспечения перехвата примерно 95% зарегистрированных вспышек молний, ​​включая большинство жестокий.Некоторые удары молнии с меньшим потенциалом теоретически могут возникать на плоских плоскостях вдали от устройств защиты от ударов, разработанных в соответствии со стандартами, но последствия находятся в допустимых пределах для обычного строительства. Учитывая более низкий уровень энергии, необходимый для байпаса, другие компоненты структурного заземления, включенные в полную систему молниезащиты, и случайную вероятность соединения с компонентом системы в любом случае, этот метод защиты здания считается наиболее эффективным.

Защита самых высоких и выступающих элементов здания с помощью устройств защиты от удара, в зависимости от геометрии здания, также обеспечивает некоторый уровень защиты для нижних пристроек конструкции или элементов, находящихся в «тени» более высоких полностью защищенных областей. Зона защиты существует от любого устройства для защиты от вертикальных ударов и даже больше от вертикального полностью защищенного уровня здания. Зона защиты описана в Стандартах молниезащиты с использованием сферической модели с радиусом 150 футов (46 метров) для идентификации объектов, находящихся под защитой более высоких элементов системы, или расширения зданий на расстояния, требующие дополнительной защиты с помощью дополнительных ударных клемм.Это похоже на катание мяча диаметром 300 футов (92 метра) с высоты по зданию, а затем по зданию на противоположный уровень во всех мыслимых направлениях. Если мяч касается изолированного строительного материала, то добавляется дополнительная ударная клемма. Зоны, поддерживаемые ударными клеммами, ударными клеммами и уклонами, а также вертикальные стены, тогда находятся под защитой правильно спроектированных элементов системы. Эта геометрическая модель для защиты целых конструкций основана на последнем этапе процесса присоединения молнии и снова покрывает более 90% возможных ударов.На более ответственных конструкциях, таких как те, которые содержат взрывчатые вещества или легковоспламеняющиеся жидкости и пары, модель уменьшается до сферы радиусом 100 футов (30 метров), которая покрывает более 98% зарегистрированных ударов молний.

Система защиты от ударов защищает конструкцию от ударов молнии, обеспечивая предпочтительные точки крепления. В большинстве случаев предпочтительнее использовать медные или алюминиевые молниеотводы из-за их проводимости и устойчивости к погодным условиям.Квалифицированные выступающие металлические строительные элементы также могут выполнять эту функцию. В особых обстоятельствах, когда нельзя допустить проникновения молнии, использование высоких мачт и воздушных заземляющих проводов, используемых в модели с уменьшенной зоной действия, может обеспечить дополнительную защиту. Защита таких вещей, как стандарты освещения или деревья, может обеспечить некоторую защиту области на основе модели зоны. Конструктивная конфигурация ударной нагрузки — это первый ключевой элемент в обеспечении полной системы молниезащиты.

Проводники

Система проводов . Компонент полной молниезащиты включает в себя кабели основных размеров, конструкционную сталь здания, а также соединительные или соединительные провода с внутренними заземленными системами здания.Основные проводники выполняют токопроводящую функцию от устройств защиты от удара до системы заземления. Основные кабели изготовлены из меди или алюминия с высокой проводимостью, которые хорошо работают во внешних условиях. Молния ищет путь к земле, поэтому даже при использовании очень проводящих материалов кабели должны прокладываться горизонтально или вниз. Это похоже на концепцию самотечного потока воды на наклонных плоских участках в водосточные желоба или в водосточных желобах в водосточные системы.Кабели необходимо прокладывать, используя длинные плавные изгибы не менее 90 градусов. Молния создает значительную механическую нагрузку на кабели, в результате чего могут быть повреждены острые изгибы или углы, а в худшем случае молния может перекинуться через дугу. Эту механическую силу можно сравнить с отправкой воды под давлением через пожарный шланг — проводник будет пытаться выпрямиться, вызывая опасность повреждения стыковых фитингов, креплений или самого проводника.

Медные и алюминиевые жилы основных кабелей для молниезащиты спроектированы по стандарту гладкого переплетения или канатной свивки с использованием отдельных проводов меньшего сечения.Такая конструкция обеспечивает максимальную площадь поверхности на единицу веса проводника для размещения молнии, которая быстро распространяется по поверхности. Эта конструкция также позволяет упростить изгиб и формирование системы проводников вдоль, вокруг и над элементами конструкции здания. Открытые проводники крепятся с максимальным интервалом в три фута для удержания системы на месте от ветра и непогоды. Все устройства защиты от удара должны быть подключены к проводникам с минимумом двух путей к системе заземления.Устройства защиты от ударов, покрывающие различные области конструкции, должны быть соединены между собой для образования единой системы либо посредством проводников на крыше, либо через токоотводы, либо путем соединения элементов системы заземления для разных уровней или выступов крыши. Жилы молниеотводов могут быть скрыты под или внутри конструкции — на чердаках и в стенах, или в бетонных насыпях — потому что скорость молнии снижает возможность нагрева проводников до температуры искрового воспламенения строительных материалов, намного ниже опасного уровня.

Нисходящие или токоотводы — это элементы системы основных проводов, которые обычно переносят молнию от системы уровня крыши в систему заземления. Это может быть кабельный провод или непрерывный стальной каркас , соответствующий требованиям , толщиной 3/16 дюйма или больше, или их комбинация. Арматурная сталь или арматура неприемлемы в качестве замены проводника кабеля, но каждый нисходящий вывод кабеля должен быть прикреплен к несущему каркасу вверху и внизу каждого вертикального участка.Все устройства защиты от ударов должны иметь как минимум два пути к земле, чтобы разделить молнию по нескольким путям, поэтому в самом маленьком здании должно быть минимум два нисходящих вывода. Нисходящие линии для больших зданий могут быть рассчитаны с интервалами в 100 футов в среднем для площади периметра здания, хотя системные компоненты для специальных элементов конструкции здания могут потребовать дополнительных токоотводов для удовлетворения требований множественных трасс. Важно рассчитать площадь защищаемого периметра, чтобы получить правильное распределение нисходящих отводов для коньковых крыш, которые включают ударные заделки только вдоль вершины.

Обеспечение множественных путей для тока молнии имеет большое преимущество, заключающееся в снижении общей энергии на любом проводнике. Это влияет не только на размер проводника, но и удерживает молнию на указанных нами путях, чтобы свести к минимуму боковые мигания во внутренние системы и уменьшить потенциальные проблемы внутренней индукции. Стандарты молниезащиты требуют минимального количества по периметру, но большее количество путей может быть очень полезным для обеспечения клетки защиты для оборудования и людей внутри.Тот факт, что стальная рама , конструкция создает наибольшее количество квалифицированных вертикальных путей, соединенных горизонтально на многоуровневых структурах, делает его использование в качестве нисходящих проводов предпочтительным для обеспечения улучшенной защиты от проникновения побочного эффекта молнии. Несмотря на то, что кабельные жилы необходимы для нисходящих водопроводов в бетонных конструкциях, необходимое соединение арматуры помогает создать аналогичную сеть защиты в проектах высотного строительства.

Заземление

Правильно выполненные заземляющие соединения необходимы для эффективного функционирования системы молниезащиты, так как они служат для распределения молнии по земле.Это не означает, что сопротивление заземляющего соединения должно быть низким, а скорее, что распределение металла в земле или на ее поверхности в крайних случаях должно быть таким, чтобы обеспечить рассеивание разряда молнии без причинения ущерба.

Низкое сопротивление желательно, но не обязательно, что может быть продемонстрировано крайними случаями, с одной стороны, здания, покоящегося во влажной глинистой почве, а с другой стороны, здания, стоящего на голом камне. В первом случае, если грунт имеет нормальное удельное сопротивление, сопротивление надлежащего заземляющего электрода должно быть меньше 50 Ом, и два таких соединения с землей на небольшом прямоугольном здании опытным путем были признаны достаточными.В этих благоприятных условиях просто обеспечить адекватные средства для рассеивания энергии вспышки без возможности серьезного повреждения. Во втором случае было бы невозможно выполнить хорошее заземление в обычном смысле этого слова, потому что большинство пород изолируют или, по крайней мере, обладают высоким удельным сопротивлением; следовательно, чтобы получить эффективную основу, необходимы более сложные средства. Наиболее эффективные системы представляют собой разветвленную сеть проводов , проложенную на поверхности скалы, окружающей здание, к которой подключены токоотводы.Сопротивление между таким устройством и землей может быть высоким, но в то же время распределение потенциала вокруг здания по существу такое же, как если бы оно покоилось на проводящей земле, и результирующий защитный эффект также по существу такой же. Система заземляющих электродов для защиты от молний служит для отвода молнии в любой слой почвы и отвода ее от конструкции.

Сеть заземляющих электродов будет определяться в основном опытом и суждением лица, планирующего установку, с должным учетом минимальных требований Стандартов, которые предназначены для охвата обычных случаев, которые могут возникнуть, соблюдая Имейте в виду, что, как правило, чем шире доступный металл под землей, тем эффективнее система заземления.Схема заземления зависит от характера почвы: от одиночных заземляющих стержней, когда почва глубокая, до использования нескольких электродов, заземляющих пластин, радиальных проводов или подземных проводных сетей, где почва неглубокая, сухая или с плохой проводимостью. Каждый нисходящий кабель должен заканчиваться соединением заземляющего электрода, предназначенным для системы молниезащиты. Электроды или электроды системы связи не должны использоваться вместо электродов заземления молнии. Конечный продукт должен включать соединение отдельных заземляющих электродов разных систем.

По возможности, заземляющие электроды следует подключать снаружи к фундаментной стене или на достаточно большом расстоянии, чтобы избежать заглубленных опор, заглушек труб и т. Д. Заземляющие электроды следует устанавливать ниже линии замерзания, где это возможно. Материалы, используемые для заземляющих электродов, должны подходить к любому щелочному или кислотному составу почв для длительного срока службы.

Во время разряда молнии по системе проводов заземляющие электроды следует рассматривать как точки, через которые протекает сильный ток между системой защиты от удара молнии и землей вокруг конструкции.Следовательно, размещение с целью отвода потока тока от конструкции наиболее выгодным образом является важным. Это будет реализовано путем размещения заземляющих устройств на внешних оконечностях, таких как углы и внешние стены конструкции, и избегая, насколько это возможно, протекания тока под зданием. В некоторых случаях, особенно когда речь идет о пристройках к существующему зданию, может возникнуть необходимость разместить отводы и заземление внутри и под конструкцией.

Заземляющий контур , окружающий конструкцию, соединяющую все нисходящие кабели в их основании и / или устройства заземляющих электродов, является лучшим способом выравнивания потенциала для всей системы молниезащиты. Всегда можно иметь разные значения сопротивления заземляющих электродов даже на одной и той же конструкции.

Поскольку разделение молнии по нескольким путям начинается в точке завершения удара и проходит через систему проводников к земле, разные значения сопротивления электродов могут нарушить эту функцию.Контур заземления решает эту потенциальную проблему и обеспечивает разветвленную сеть проводов для улучшения системы заземления. Контур заземления требуется для каждой конструкции , превышающей 60 футов в высоту. Если соединительный контур нельзя установить в земле, его можно разместить внутри конструкции, чтобы выполнить это требование. Этот контур уровня земли также обеспечивает соединение с другими заземленными системами здания.

Все заземляющие средства в конструкции или на ней должны быть соединены между собой для обеспечения общего потенциала земли с использованием молниеотвода основного размера.Это включает в себя систему заземляющих электродов молниезащиты, заземления системы электрических, коммуникационных и антенн , а также металлические трубопроводы. Системы , входящие в конструкцию, такие как линии воды, газа и сжиженного нефтяного газа, металлические трубопроводы и т. Д. Подключение к газовым линиям должно производиться заказчиком. сторона счетчика, чтобы избежать выхода из строя катодной защиты линий обслуживания. Если все эти системы подключены к непрерывной металлической системе водопровода, требуется только одно соединение между заземлением молниезащиты и водопроводом.Системное соединение может быть выполнено в нескольких точках возле входов в конструкции для систем, или может использоваться одно жесткое соединение на шине заземления. Приведение всех заземленных систем здания к одному и тому же потенциалу на определенном уровне — это первый шаг к защите внутренних компонентов и людей от молнии. Он начинает процесс склеивания против боковых ударов от компонентов системы к внутренним системам здания.

Выравнивание потенциалов (соединение)

Основные токоведущие компоненты системы молниезащиты были описаны в их самой ранней форме Бенджамином Франклином.Современные методы изготовления компонентов и конструкции, включающие систему в конструкции и внутри нее, изменили внешний вид системы, но философия, лежащая в основе прекращения удара, проводимости и заземления, остается аналогичной — принять молнию и отправить ее на землю. Наиболее существенные изменения в конструкции системы молниезащиты происходят из-за адаптации того, как мы строим и оснащаем современное здание, или того, что мы могли бы назвать «фактором внутренней сантехники». Современное здание «» включает в себя металлические трубопроводы, такие как водопровод, канализация и газовые системы, а также схемы для электрических и коммуникационных систем, которые обеспечивают внутренние пути для молнии, чтобы повредить компоненты и приблизить людей к опасности.

В начале удара молнии в систему может произойти немедленное повышение до 1 000 000 вольт на основных компонентах, переходящее к 0 вольт на земле. Любая другая независимо заземленная система здания в непосредственной близости от компонентов молниезащиты будет иметь напряжение 0 вольт, поэтому естественная тенденция состоит в том, что некоторые или все молнии покидают нашу токоведущую систему и вспыхивают на альтернативный путь заземления. Если расстояние между потенциальными путями достаточно мало, дуга или боковая вспышка могут возникать через воздух или строительные материалы, что создает возможность возгорания или взрыва.

Поскольку внутренние заземленные системы здания пронизывают конструкцию, этот потенциал существует на уровне крыши, на стенах здания или в них и даже потенциально ниже уровня земли. Молния распространяется от заземляющих электродов системы у поверхности земли и может возвращаться по металлическим трубам или другим основаниям обратно в здание. Альтернативные пути от внутренней заземленной схемы не предназначены для проведения тока молнии (опасность возгорания), а соединения в металлических трубах не предназначены для использования в качестве токопроводящих устройств, приводящих к тепловой деформации или ударам.Оборудование внутри сооружений, от раковины, подключенной как к водопроводной, так и к канализационной линиям, до персонального компьютера, подключенного как к электросети, так и к телефонным или антенным цепям, становится дополнительными точками для дугового разряда молнии между независимо заземленными системами , создавая значительные разрушения.

Полная система молниезащиты решает эту проблему посредством соединения или соединения металлических систем здания с системой молниезащиты для создания общего потенциала земли .Когда заземленные системы соединены вместе, у молнии нет причин покинуть наш проектный путь прохождения тока, потому что не существует произвольной дуги по точкам. Требуется соединить каждую заземленную систему здания и систему непрерывных металлических трубопроводов с системой заземляющих электродов молниезащиты вблизи уровня земли. Низкопрофильные конструкции могут нуждаться во взаимном соединении систем только около уровня крыши, когда они находятся в непосредственной близости от компонентов системы молниезащиты.По мере того, как конструкции становятся выше, возникает потребность в соединении верхней части вертикального расширения каждой внутренней заземленной системы с системой крыши с молниезащитой. Наконец, в многоэтажном строительстве системы заземления здания соединяются между собой на уровне земли, на уровне крыши и на промежуточных уровнях, чтобы обеспечить достаточное выравнивание потенциалов между длинными проводниками во избежание возникновения дуги.

Внутренняя дуга между заземленными системами также зависит от количества путей от системы молниезащиты на крыше до системы заземления.Чем больше путей, тем больше мы разделяем молнию на сегменты с более низким напряжением, тем меньше вероятность возникновения дуги через любую среду и альтернативные системы. Включение стальной надстройки в систему молниезащиты обеспечивает колонны, балки и промежуточные соединения для максимального разделения молнии и, таким образом, минимизирует разницу потенциальных проблем внутри. Стандарты требуют, чтобы кабельные нисходящие провода соединялись с арматурной сталью (арматурой) в литых колоннах вверху и внизу каждого участка, создавая аналогичный эффект, хотя эта механическая структурная система не считается подходящей для проведения тока молнии сама по себе.Арматурная сталь, заземленные внутренние системы и молниезащита также должны быть соединены между собой с интервалом в 200 футов по вертикали для поддержания выравнивания потенциалов.

Соединение вместе заземленных систем обычно выполняется с помощью арматуры меньшего размера и кабелей или проводов , проложенных на крышах конструкций. Соединение для выравнивания потенциалов — это не то же самое, что обеспечение пропускной способности по току. Однако во многих случаях проще использовать полноразмерные компоненты системы, потому что в конструкции они размещаются близко к желаемым точкам соединения.Когда мы склеиваем внутри конструкции или ниже уровня, более типичным является использование полноразмерных компонентов, главным образом, для большей механической прочности в соответствии с реалиями строительства.

Расширение системы молниезащиты за счет включения системы заземления соединение для любой конструкции является критическим элементом, основанным на индивидуальном проектировании здания для проживания и процессов, характерных для его предполагаемого использования.

Защита от перенапряжения

Системы молниезащиты спроектированы в первую очередь как системы противопожарной защиты — чтобы не дать зданию сгореть и потерять людей и оборудование внутри.Внесение металлических элементов в конструкцию обеспечивает пути, по которым молнии будут следовать из внешней среды и создавать опасности внутри. Мы связываем или соединяем заземления и трубы с системой молниезащиты, чтобы частично избежать этой проблемы. Следующим шагом является обеспечение защиты цепей, связанных с электрическими линиями, линиями связи и / или данных, которые могут передавать молнию в конструкцию. Самые серьезные проблемы связаны с коммуникационными линиями , которые представляют собой разветвленные системы, устанавливаемые на столбах или заглубленные, которые могут передавать дополнительные непрямые удары в здание.Полная система молниезащиты в соответствии со стандартами включает устройства защиты от перенапряжения на каждом входе служебных проводов здания, независимо от того, являются ли они коммунальными или, возможно, монтируются в конструкции, как антенная система.

Устройства защиты от перенапряжения для входов в здание предназначены для «плавания» по линии, обнаружения проблем с перенапряжением и передачи избыточной энергии непосредственно на землю. УЗИП, предназначенные для грозовых перенапряжений, должны быстро реагировать на появление резко возрастающей формы волны и быть в состоянии поддерживать соединение с землей во время сильного перенапряжения, а затем возвращаться к своей роли мониторинга.Большинство устройств имеют два или более внутренних элемента для выполнения этой задачи и реагируют примерно на 150% от стандартного рабочего напряжения системы. Элементы SPD можно рассматривать как самопожертвованные и они могут со временем сгореть, защищая от множества небольших скачков (например, стандартных коммутационных скачков при передаче энергии) или нескольких массивных скачков, таких как прямые молнии. Поэтому важно, чтобы SPD был доступен для просмотра или имел световые индикаторы или другие идентификаторы, чтобы знать, что ваша защита работает, как задумано.Поскольку служебные входы для различных систем работают при разном напряжении, компоненты SPD должны иметь индивидуальный размер для каждой системы и обычно упаковываются индивидуально для выполнения определенных функций, но если службы входят в подсобное помещение для распределения по всему зданию в общей зоне, одно SPD может быть спроектированным так, чтобы выполнять несколько функций в одном корпусе. Поскольку добавление длины пути заземления служит только для замедления времени реакции компонентов SPD, устройство SPD следует подключать как можно напрямую к системе заземления всегда с минимальной длиной провода.

Правильно установленные устройства защиты от перенапряжения на всех входах на фидерах проводов цепи защищают массивный вход молнии в конструкцию, сохраняя проводку от возгорания и в целом защищая такие объекты, как большие двигатели, осветительные приборы и другое надежное оборудование. Это конкретное требование Стандартов — защищать здание от разрушения. Внутри каждой современной структуры у нас есть множество устройств, которые работают при низком напряжении, включая печатные платы, действительно не предназначенные для работы на уровне пропускания 150%, только для SPD.

Также возможны индукционные эффекты для внутренней проводки и оборудования даже с хорошо спроектированной системой молниезащиты. Ток мощного прямого удара молнии в конструкцию создает магнитное поле, исходящее от проводников, поэтому в любой ближайшей альтернативной цепи может возникать некоторое добавленное напряжение за счет индукции. Хотя только в Стандартах по молниезащите и Национальном электротехническом кодексе защита от перенапряжения на внутреннем оборудовании рассматривается как дополнительная, это может быть критически важной потребностью в защите для владельца.Защита аудио / видео компонентов, систем связи, компьютерного оборудования и / или технологического оборудования может иметь большое значение для качества предприятия, непрерывности бизнеса без перерывов и физической защиты пользователей оборудования. УЗИП, установленные на используемом оборудовании, должны обеспечивать защиту всех цепей, питающих устройство, чтобы обеспечить общую точку заземления. Поскольку системы утилизационного оборудования, как правило, специфичны для объекта, обычно требуется индивидуальная оценка для определения рентабельных решений.

Когда устройства защиты от перенапряжения посылают энергию в систему заземления, это мгновенное соединение всех систем электропроводки обеспечивает выравнивание потенциалов для этих металлических систем, так же как соединение между компонентами системы молниезащиты и альтернативным заземлением системы здания обеспечивает общее соединение. Достижения в области технологий продолжают изменять среду структур, в которых мы живем, работаем и развлекаемся. Применение SPD вместе с токоведущими компонентами и соединением заземленных систем здания обеспечивает полный пакет для полной системы молниезащиты для защиты конструкции, людей и оборудования внутри.

Осмотр и обслуживание

Открытые компоненты системы молниезащиты — это медь, алюминий или другой металл, предназначенный для пропускания тока, обеспечения контактных соединений и сохранения работоспособности в открытой погодной среде. Как и в случае с любым другим строительным элементом, изготовленным из аналогичных материалов, окисление или коррозия компонентов не ожидается при нормальных условиях в течение длительного периода или обычного «срока службы» конструкции .Компоненты системы, скрытые внутри конструкции между крышей и перекрытием, защищены от атмосферных воздействий и неправильного обращения. Система заземляющих электродов может быть защищена от атмосферных воздействий погодных условий, но подвержена потенциальной деградации из-за состава почвы и влаги. Можно ожидать, что правильная первоначальная установка обеспечит защиту навсегда или, по крайней мере, в течение разумного срока службы конкретного здания.

Существуют дополнительные реалии строительства, использования нами зданий и даже неизвестные в местных условиях, которые требуют рассмотрения технического обслуживания для системы молниезащиты.Пассивную систему заземления, такую ​​как молниезащита, нелегко оценить неспециалистам — вы не можете щелкнуть выключателем или включить кран, чтобы проверить, находится ли он в рабочем состоянии.

Бывают очевидные моменты, когда изменения в структуре вызывают потребность в обслуживании или расширении исходной системы. Замена кровли здания, внесение дополнений в конструкцию здания или добавление вентиляционных труб или антенн для новых внутренних процессов — очевидные области, требующие пересмотра и обработки.Не так очевидно, но, как сообщается, главной причиной для обязательной проверки систем является привычка рабочих из других профессий удалять и не переустанавливать компоненты системы, потому что они не понимают важности общей конструкции системы молниезащиты . Также возможно, что соседний технологический стек будет выделять вещество, переносимое ветром к компонентам вашей системы, которое разрушает материалы намного быстрее, чем ожидалось. Любой из этих элементов требует периодических проверок и технического обслуживания, чтобы гарантировать работоспособность системы в условиях удара молнии, но это, безусловно, может быть проигнорировано с серьезными непредвиденными последствиями.

Программа осмотра и возможного технического обслуживания должна быть реализована для обеспечения постоянной эффективности системы на конструкции. Визуальный осмотр может выполняться ежегодно с использованием контрольного списка и умеренного обучения вашего поставщика молниезащиты, чтобы учесть любой мелкий ремонт, такой как незакрепленная арматура, неправильное крепление, повреждение оголенных кабелей, замена снятого оборудования или повреждение устройств защиты от перенапряжения. Это может сделать обычный специалист по обслуживанию здания или даже владелец здания под руководством.Если специалист по молниезащите не привлекается для каждой ежегодной проверки, то с интервалом в пять лет будет важно проводить «тестовую» проверку с привлечением знающего человека — инспектора или установщика — для более тщательной проверки.

Полная испытательная проверка будет включать визуальные проверки вместе с проверкой целостности для проверки эффективности системы от крыши до уровня и наземные испытания для проверки функции скрытых подземных электродов.Программа обеспечения качества, разработанная для обслуживания вашей системы молниезащиты, устранит неожиданности, которые могут привести к катастрофическим последствиям.

Реализация системы молниезащиты включает в себя искусство, науку, мастерство и технологическую интуицию. Это специализированная отрасль со своими собственными стандартами, разработанными специально для борьбы с великим случайным разрушителем природы. Как и в любом другом начинании, подготовка, обучение и сертификация лиц, участвующих в проектировании, установке и проверке полной системы молниезащиты, определяют высшее качество. Lightning Protection Institute фокусирует наши усилия на обучении профессионалов, владельцев, пользователей и широкой общественности безопасной и эффективной молниезащите и предоставляет качественные ресурсы через наше членство для выполнения этой важной услуги для всей строительной отрасли.

Детали установки защиты молниеотвода

(1) Я НЕ УВЕРЕН, КАК УСТАНОВИТЬ МОЛНИИ? Начните с FAQ # 24 и изучите основные инструкции ниже или: Вы можете приобрести копию инструкций по установке, в которой есть все подробности, за 12 долларов.00 почтовые расходы оплачены. У нас также есть конструктор / установщик, который поможет с вашими вопросами. Если вы ИЗУЧИТЕ ВСЕ эти часто задаваемые вопросы, это вам значительно поможет.

(2) КАК Я МОГУ УБЕДИТЬСЯ, ЧТО ВАШЕ ОБОРУДОВАНИЕ РАБОТАЕТ? За исключением некоторых декоративных элементов, все наше оборудование для защиты от молний с гордостью СДЕЛАНО В США и изготовлено в соответствии с требованиями лабораторий Underwriters (UL) и Национальной ассоциации противопожарной защиты (NFPA). Вы можете быть уверены, что оборудование, которое вы покупаете у нас, изготовлено по самым высоким стандартам качества.Позвоните для получения справочных номеров в UL.

(3) МНЕ НУЖНА СПЕЦИАЛЬНАЯ ЧАСТЬ, КОТОРАЯ НЕ ВИЖУ НА ВАШЕМ САЙТЕ? У нас есть сотни деталей для домов, деревьев, коммерческих зданий и других специальных приложений. Если вы не видите их здесь, ПОЖАЛУЙСТА, СПРОСИТЕ.

(4) А КАК НАСЧЕТ ЦЕНА? Наша цена у производителей оптом. Наше качественное оборудование — ваша лучшая ценность в обеспечении качества, обслуживания и технической поддержки

(5) Что насчет ссылок? Да, ссылки важны. Вот несколько наших наиболее известных клиентов; AMERICA WEST AIRLINES, HERTZ RENT A CAR, DUPONT COMPANY, УПРАВЛЕНИЕ АРМИИ, ВМФ, ВВС И ПОБЕРЕЖЬЕ, КОМПАНИЯ ВЗАИМНОГО СТРАХОВАНИЯ HARFORD, ШТАБ-КВАРТИРА СТРАХОВАНИЯ USF & G, КОМПАНИЯ ТЕЛЕФОННОЙ СВЯЗИ, СЕРВИСНАЯ СЛУЖБА США, ГРЕЙХАНСКАЯ СЛУЖБА UNISYS CORPORATION, BECHTEL CORPORATION, BLUE CROSS BLUE SHIELD, LOYOLA COLLEGE, WESTINGHOUSE ELECTRIC, BANK OF AMERICA И МНОГО ДРУГИХ.

(6) СКОЛЬКО ВЫ ЗАНИМАЕТЕСЬ ПРЕДПРИЯТИЕМ ПО ЗАЩИТЕ ОТ МОЛНИИ? Мы — семейный бизнес, который установил тысячи систем молниезащиты с 1972 года, и вы можете рассчитывать на то, что мы будем рядом с вами в будущем.

(7) КАКОВА ВАША ПОЛИТИКА ВОЗВРАТА? Комиссия за возврат ВСЕХ товаров составляет 15%. НЕТ возврат будет принят после 20 дней. Нет возврата на кабель и специальные заказы.

(8) КАК И КОГДА ВЫ ОТПРАВЛЯЕТЕ? За исключением декоративных элементов и специальных заказов, ваш заказ обычно отправляется с завода в течение 48 часов службой UPS или почтовой службой США, в зависимости от того, какой способ является наилучшим.

(9) ВЫ УСТАНАВЛИВАЕТЕ ИЛИ ПРОВЕРЯЕТЕ СИСТЕМЫ ЗАЩИТЫ ОТ МОЛНИИ? Да, мы можем организовать установку и осмотр в выбранных местах. Звоните для информации

Технические FAQ (часто задаваемые вопросы):

(10) Для чего нужны стеклянные шары? Более 100 лет назад стеклянные шары стали украшением громоотводов. Они не выполняют никакой функции. Многие добавляют их в громоотводы для причудливого украшения крыши. Вопреки мнению, стеклянные шары обычно не разбиваются при ударе молнии по стержню.

(11) У меня голая металлическая крыша, какие материалы я могу использовать? Медь окрашивает алюминий и гальванизированную сталь. Поэтому НЕ прикрепляйте медные материалы к этим поверхностям и НЕ прикрепляйте алюминий к меди по той же причине. В некоторых случаях вы можете использовать луженый (покрытый свинцом) медный кабель на металлических поверхностях. Если вам действительно нужно подключить медь к алюминию, у нас есть специальный биметаллический соединитель для этой цели (# 25-Z).

(12) У меня плоская крыша, и я не хочу использовать гвозди или шурупы? На плоских крышах коммерческого типа нельзя делать проходки.У нас есть клеевое оборудование, специально предназначенное для этой цели, а также специальные соединители для металлических крыш (см. Стр. 2).

(13) Алюминиевый кабель и стержни будут работать так же хорошо, как медь? Да, при соблюдении правил установки. Конечно, медь является лучшим проводником, чем алюминий, но алюминиевый кабель больше, чем медный кабель, поэтому он компенсирует меньшую проводимость алюминия.

(14) Не могу я использовать свой собственный электрический провод и детали для своих громоотводов? Нет! — Кабель должен иметь оплетку, а обычное электрическое оборудование не рассчитано на огромную мощность молнии.Если вы собираетесь установить молниеотводы, СДЕЛАЙТЕ ЭТО ПРАВИЛЬНО и используйте подходящее оборудование и кабель с оплеткой, который разработан специально для защиты от молний (см. Часто задаваемые вопросы № 23).

(15) Разве кабель не нагреется и не обожжет мою крышу? НЕТ! — Кабель со специальной оплеткой не нагревается от Lightning. Правильно заземленный кабель с оплеткой подходящего размера обеспечивает путь к земле с низким сопротивлением. Если нет сопротивления, значит нет тепла. Национальная ассоциация противопожарной защиты (NFPA) заявляет, что вы можете установить оборудование для защиты от молний на древесине и большинстве других строительных материалов или через них.Ключевым моментом здесь является использование специального плетеного кабеля, специально разработанного для защиты от молний. Никогда не используйте кабель или провод, предназначенный для постоянного электрического питания.

(16) Вокруг моего дома высокие деревья. Разве Молния не ударит в дерево первой? Он может ударить по дереву, но со всем металлом, приборами, водопроводными трубами и электрическими проводами, которые есть в доме, молния может вспыхнуть к дому, спускаясь с дерева. Дерево НЕ заменяет молниезащиту.

(17) Я живу в низинном районе, мне все еще нужна защита от молний: если разряд молнии находится над вашей структурой и если молния проходит на меньшее расстояние до вашего дома, чем до ближайших более высоких объектов, тогда вы будет поражен. Ваш дом, в котором много металла и электропроводки, обычно является гораздо лучшей мишенью для молний, ​​чем возвышенность и деревья. За некоторыми исключениями, большинство открытых площадок не защищены от ударов молнии.

(18) Правда ли, что громоотводы притягивают молнии? НЕТ! НЕТ.Однако громоотводы НЕ притягивают молнию, поскольку стержни размещаются в самых высоких точках на крыше, и при правильном заземлении молния ударяет по стержням. Если бы молния ударила в ваш дом, она бы ударила независимо от того, есть там стержни или нет. Незаземленный громоотвод ничем не отличается от любого другого металлического объекта на вашей крыше, такого как металлические вентиляционные отверстия, трубы, антенны, флюгеры и т. Д.

(19) Кто-то сказал мне, что громоотводы не работают? Установлены громоотводы; Штаб-квартира State Farm Insurance, Белый дом, комплекс космических шаттлов и миллионы других коммерческих зданий и домов по всему миру, в некоторых странах использование громоотводов является обязательным.- Громоотводы работают по двум простым законам физики; (1) Они обеспечивают; НАИБОЛЕЕ КОРОТКИЙ ПУТЬ К ЗЕМЛЕ и (2) ОНИ ОБЕСПЕЧИВАЮТ ПУТЬ НАИМЕНЬШЕГО СОПРОТИВЛЕНИЯ.

(20) У кого-то, кого я знал, были громоотводы, и он был поврежден; Телевизор и бытовая техника. ЗАЧЕМ? Громоотводы защищают от прямого удара молнии. Повреждения внутри дома иногда возникают из-за попадания молнии через электрические, телевизионные и телефонные провода. Столб питания может быть поражен (даже на расстоянии нескольких миль), и ток будет следовать по проводам (над или под землей) в дом и разрушать электрическое оборудование.Жезлы на крыше тут ни при чем. Поэтому на электрические провода, входящие в конструкцию, следует также установить РАЗРЯДНИКИ.

(21) Слышал, что для установки громоотводов нужен специалист? Если вы используете правильное оборудование, изучите инструкции и соблюдаете меры предосторожности, то нет причин, по которым вы не можете сделать это самостоятельно. Копию инструкций по установке можно найти здесь или на веб-сайтах UL и NFPA.

(22) Я думал, что мой дом был заземлен, когда он был построен: Да, он заземлен, но электрическое заземление в основном предназначено для подачи электроэнергии.Электрическое заземление не поможет, если молния ударяет по вашей крыше, и молния должна пройти через ваш дом, чтобы добраться до земли. Молниеотводы и тяжелый плетеный кабель — единственный способ защитить крышу и конструкцию от физических повреждений.

(23) Технические факты: Молния перемещается по поверхности громоотводов и кабеля. Множество жил в специально разработанном кабеле с оплеткой значительно увеличивает площадь его поверхности. ОПЛЕТКА в кабеле молнии очень важна, поскольку она имеет эффект подавления электромагнитного импульса (ЭМИ).По мере того, как ток проходит по каждой плетеной нити провода, и поскольку нити перекрещиваются друг с другом, и, как и заряды, отталкиваются, плетеный кабель оказывает эффект подавления ЭМИ. По сравнению с обычным электрическим проводом, ЭМИ вокруг обычного провода может соединяться с другими проводами под крышей и за стенами и передавать очень высокие напряжения в электрическую проводку. ИСКЛЮЧЕНИЕ: В зданиях из конструкционной стали и под землей можно использовать одножильный кабель достаточного размера, поскольку ЭМИ будет поглощаться сталью в конструкции и в земле.

(24) — ОСНОВНЫЕ ДЕТАЛИ УСТАНОВКИ: Стержни на крыше (так называемые воздушные терминалы) короче 24 высотой должны располагаться на расстоянии не более 20 друг от друга по периметру коньков и плоской крыши. Если стержни высотой более 24, они могут быть размещены на расстоянии 25 друг от друга. Стержни следует размещать в пределах 2-х концов коньков и внешних углов крыш. Каждый молниеотвод должен обеспечивать двусторонний путь к земле, а один из кабелей должен поддерживать горизонтальный или нисходящий путь вниз к заземляющему стержню или пластине. — ЗАЗЕМЛЕНИЯ или ПЛАСТИНЫ ЗАЗЕМЛЕНИЯ Следует размещать на расстоянии 2 или более от здания.Верх заземляющего стержня, а также медный соединительный кабель следует проложить под землей. — Никакая конструкция не должна иметь менее 2 стержней или пластин заземления. Алюминиевый кабель никогда не следует прокладывать под землей (см. Детали заземления ниже). — Кабели должны быть подключены к зданию каждые 3 или менее, и кабель должен поддерживать плавный поток без резких изгибов. УКАЗАНИЕ: В любом месте, где кабель громоотвода находится в пределах 6 крупных металлических объектов, таких как вентиляционные отверстия на крыше, должен быть соединение между ними, чтобы предотвратить боковую вспышку.К системе громоотвода также должны быть подключены такие инженерные сети, как электрическое заземление. Bare Copper не следует устанавливать на оцинкованные или алюминиевые поверхности (см. FAQ №11). На оборудование должны быть установлены ЭЛЕКТРОННЫЕ РАЗРЯДНИКИ, чтобы предотвратить проникновение скачков через электрические провода (см. FAQ №20).

Система молниезащиты — Designing Buildings Wiki

Удар молнии может превышать 100 миллионов вольт ампер. Любой заземленный объект, который обеспечивает путь к земле, будет излучать вверх «положительные стримеры» или пальцы электрического заряда.Они создают канал плазменного воздуха для огромных нисходящих токов удара молнии.

Токи высокого напряжения от удара молнии всегда будут проходить по пути наименьшего сопротивления к земле. Система молниезащиты (LPS) может защитить конструкцию от повреждений, вызванных ударами молнии, обеспечивая путь с низким сопротивлением к земле, по которому молния может следовать и рассеиваться.

LPS не притягивает молнии и не может рассеивать молнии, он просто обеспечивает защиту от пожара и повреждений конструкции, предотвращая прохождение молнии через сами строительные материалы.

Наибольшему риску подвержены здания, расположенные на большой высоте, на вершинах холмов или склонах холмов, в изолированных местах и ​​в высоких башнях и дымовых трубах.

В отсутствие LPS при ударе молнии может использоваться любой проводник в качестве пути для достижения земли, который может включать телефонные кабели, силовые кабели, инженерные сети, такие как водопроводные или газовые трубы, или саму конструкцию, если это стальной каркас.

Некоторые из основных опасностей, связанных с ударами молнии в здание, включают:

[править] Стержни или «воздушные терминалы»

Громоотвод — это высокий металлический наконечник или заостренная игла, помещенный наверху здания.Для заземления стержня используются один или несколько проводов, часто из медных лент. Стержни предназначены для использования в качестве «вывода» для разряда молнии.

[править] Токопроводящие кабели

Множество тяжелых кабелей проложено вокруг здания симметрично. Иногда это называют «клеткой Фарадея». Эти кабели проложены вдоль вершин и по краям крыш, а также вниз по одному или нескольким углам здания к заземляющему стержню (ам), по которому ток направляется на землю. Этот тип СМЗ может использоваться в зданиях, которые подвергаются сильному воздействию, или в чувствительных объектах, таких как компьютерные залы.

[править] Стержни заземления

Это длинные толстые стержни, закопанные глубоко в землю вокруг защищенной конструкции. Обычно они изготавливаются из меди или алюминия и предназначены для излучения положительных стримеров.

Включение СМЗ следует учитывать на стадии проектирования. Конструкция должна гарантировать, что даже если молния первой поразит конструкцию, токи большого напряжения будут втянуты в СМЗ до того, как можно будет нанести серьезный ущерб.

LPS может быть спроектирован таким образом, чтобы использовать части здания, которые могут безопасно выдерживать большие токовые нагрузки, и отводить энергию от тех частей здания, которые не способны на это.

СМЗ должна быть спроектирована и установлена ​​так, чтобы предотвратить боковые вспышки между объектами. Поддерживая электрическую непрерывность объектов по отношению к соединительному проводнику, любые различия в электрическом потенциале могут быть обнулены, что позволяет любым изменениям напряжения происходить одновременно.

Отсутствие правильного заземления сделает LPS неэффективным, поскольку безопасное рассеивание энергии удара будет невозможно. Часто требуется дополнительное заземление от поставщика коммунальных услуг.

Основы системы молниезащиты | EC&M

Каждый год я провожу каникулы с мамой в Висконсине. Каждый раз, когда я там, я смотрю за окно ее гостиной и вижу молниезащитный стержень на крыше дома через улицу. Меня всегда забавляло и озадачивало, почему молниезащитная система была установлена ​​в доме, построенном в центре Висконсина в конце 1930-х годов. Но вот оно во всей красе.

Молниезащита — одна из тех инженерных систем, которая является загадкой для многих и часто является объектом оценки стоимости для тех, кто не понимает цели системы молниезащиты.Как и многие другие инженерные системы, молниезащита не обязательно является «дизайнерским предпочтением», но потребность в системе молниезащиты определяется требованиями NFPA 70 и NFPA 780, оценкой риска молнии и часто страховой компанией объекта.

Merriam-Webster определяет молнию как «вспышку света, возникающую в результате разряда атмосферного электричества; также: сам разряд ». Мы знаем, что молния — это пример этой концепции от 30 000 А до 100 000 А.Учитывая, что ток в большинстве жилых цепей составляет 15 А, сила одного удара молнии — это значительное количество энергии. (Да, я знаю, что напряжение влияет на прямую эквивалентность энергии, но мы смотрим на величину здесь — и человек имеет значение.)

Итак, если молния неизбежна, зачем вкладывать средства в эти молнии, токопроводящие кабели и заземляющие стержни? Почему бы просто не позволить молнии ударить, как она может, и позволить зданию рассеивать энергию на землю?

Основная причина использования системы молниезащиты состоит в том, чтобы направить эту электрическую энергию по менее разрушительному пути к земле — вместо того, чтобы проходить через электрическую проводку здания, водопровод, конструкции или пути низковольтных кабелей, где это может создать значительный хаос внутри здание.Система молниезащиты не полностью устраняет ущерб, который может быть нанесен конструкции, но она, безусловно, может уменьшить ущерб, направляя энергию непосредственно на землю, вместо того, чтобы дать ей возможность свободно управлять зданием. Даже с воздушными клеммами и нижними выводами всегда существует риск боковой вспышки, что является одной из основных причин, по которой NEC требует, чтобы все низковольтные кабели располагались на расстоянии не менее 6 футов от кабелей молниезащиты. Низковольтные кабели подобны фитилю для такого большого количества электроэнергии.

Не все районы страны так восприимчивы к ударам молнии, и не все сооружения требуют системы молниезащиты. Расположение, высота и конфигурация конструкции играют большую роль в определении необходимости системы молниезащиты. Приложение L к стандарту NFPA 780: для установки систем молниезащиты содержит рекомендации по оценке рисков. Производители молниезащиты также предоставляют критерии оценки, основанные на этом стандарте.Иногда язык документации производителя объясняет концепции и рационализацию в нетехнических терминах, которые легче понять нетехническому человеку. В дополнение к оценке рисков, многие страховые компании часто требуют, чтобы системы защиты от молний соответствовали требованиям к покрытию. Страховые компании могут даже предложить скидку на страховые взносы, если в конструкции будет установлена ​​система молниезащиты. Преимущества и требования для сертификации системы, включенной в перечень, различаются в зависимости от страховой компании, и их следует согласовывать с каждым перевозчиком.

И последнее, о чем следует помнить: если установлена ​​система молниезащиты, ее необходимо установить правильно, чтобы обеспечить безопасность и защиту здания вместо дополнительного риска. Помните, что любой разрыв в системе создает уязвимые места для конструкции.

Статья 250 NEC также должна быть пересмотрена и соблюдена в отношении требований к заземлению и соединению конструкции, и ее следует придерживаться в отношении того, как эти системы взаимодействуют с системой молниезащиты.

Как работает громоотвод?

Что такое громоотвод?

Стержень освещения — это внешний терминал, устанавливаемый в здании или сооружении, который предназначен для привлечения молнии, чтобы иметь контролируемую точку удара и предотвратить ее попадание в нежелательную зону или людей.

Существует несколько типов осветительных стержней с разными характеристиками. Но они состоят из металлических материалов, и их морфология основана на одной или нескольких выступающих точках, куда попадает разряд.

Вся установка называется системой молниезащиты, в основном она состоит из:

  • Системы захвата (молниеотводы)
  • Токоотвод.
  • Системы заземления.
  • Ограничители перенапряжения.

Прежде чем объяснять, как работает молниеотвод , мы хотели бы связать его с историей и представить вам возможные эффекты ударов молнии.

История громоотвода

15 июня 1752 года, в штормовой день в Филадельфии, ученый-изобретатель по имени г-н.Бенджамин Франклин взорвал воздушного змея с металлическим каркасом, привязанным шелковым шнуром, к которому он ранее вставил металлический ключ, и поднес его к руке. Благодаря этому эксперименту он смог наблюдать, как через шелковую нить электричество достигает ключа, и летят электрические искры.

Он мог подтвердить, что металлический ключ был заряжен электростатическим зарядом, и он продемонстрировал, что облака были электрически заряжены и что удары молнии были сильными электростатическими разрядами.

Франклин обнаружил, что если удар молнии или электрический огонь, как он это называл, когда он выйдет из облаков и найдет металлический канал на пути к Земле, чтобы попасть в него, он останется там и рассеется.В результате этого безумного эксперимента год спустя, в 1753 году, он обнаружил громоотвод под названием типа Франклина, и этот змей стал самым известным в истории.

Эффекты ударов молнии

Среди различных эффектов, которые могут вызывать удары молнии, мы можем упомянуть такие, как термические, физиологические, электродинамические, электрохимические эффекты и т. Д. Из-за их важности мы подчеркнем тепловые и физиологические эффекты.

Тепловые эффекты возникают из-за высокой температуры, достигаемой в канале, по которому протекает ток молнии, она может достигать 20000 ° C, что вызывает большие повреждения, когда электрический ток достигает, например, дерева или ударяет по конструкции.

С другой стороны, физиологические эффекты, они в основном затрагивают живые существа и возникают из-за ступенчатых и контактных напряжений, возникающих при разряде молнии на землю. Для борьбы с этими эффектами и смягчения их последствий в правилах защиты от молний устанавливаются меры безопасности для людей и животных, такие как те, которые сформулированы в Приложении D стандарта UNE 21186: 2011.

Существуют также международные правила, регулирующие воздействие тока молнии на человеческий организм и домашний скот (IEC TR 60479-4: 2011).И другие правила, устанавливающие процедуры безопасности для снижения риска, когда мы находимся вне строения или здания (IEC / TR 62713).

Молния также имеет два очень характерных связанных эффекта: молния, которая представляет собой световой эффект из-за сильной циркуляции тока (до 200 кА), и гром, который представляет собой звуковой эффект из-за расширяющейся волны воздуха, который он нагревает. за несколько микросекунд до очень высоких температур.

Операция

Когда нас спрашивают Как работает громоотвод ? Мы указываем, что это воздушный терминал, обеспечивающий внешнюю защиту здания или сооружения от прямых ударов молнии.Таким образом, молниеотвод должен всегда устанавливаться над самой высокой точкой здания или сооружения, которое мы должны защищать, он будет отвечать за улавливание и безопасное проведение разряда молнии на землю.

Для улавливания этого разряда молниеотвод имеет наконечник и металлический корпус, которые соединены проводящей сетью с системой заземления с низким импедансом (менее 10 Ом), в которой происходит рассеяние грозового разряда.

В условиях шторма между системой облако — земля возникает высокое напряжение из-за большого количества электрических зарядов, которые присутствуют как у основания облака, так и на земле.Это высокое напряжение является спусковым крючком для запуска лидера, спускающегося с луча, который пробурит диэлектрический воздух между облаком и землей. Очень сильное электрическое поле E (кВ / м), которое появляется в этой зоне, вызывает циркуляцию восходящих электрических зарядов через тело молниеотвода противоположного знака, инициируя восходящий индикатор, который встретится и рекомбинирует с нисходящим лидером. , захватив его и сбросив на землю.

Внешние системы молниезащиты

В настоящее время существует 4 системы внешней защиты, утвержденные нормативными документами:

Благодаря своим преимуществам по сравнению с другими системами внешней защиты, молниеотвод ESE (Early Streamer Emission) в настоящее время является наиболее используемым, он обеспечивает больший радиус защиты, чем другие системы (до 80 м в радиусе защиты уровня I).), и его установка очень проста, потому что в некоторых случаях требуется только токоотвод для подачи тока молнии и заземление для рассеивания всей ее энергии. Вследствие всех этих факторов установка системы молниеотвода ESE проста, легка, быстра и имеет очень низкую стоимость по сравнению с другими системами.

Проектирование и установка

Чтобы правильно спроектировать систему молниезащиты в конструкции, мы должны сначала провести анализ ее риска, чтобы определить, необходима ли ее защита.В случае подтверждения необходимости молниезащиты мы должны рассчитать, какой уровень защиты или фактор безопасности следует применять в данной конструкции (I, II, III или IV). На веб-сайте INGESCO есть бесплатное онлайн-программное обеспечение для расчета и оценки этого риска.

После расчета уровня защиты конструкции мы выберем внешнюю систему молниезащиты, которая наилучшим образом соответствует вашим потребностям в каждом проекте из этих 4 систем защиты.

Если выбранной внешней системой молниезащиты является молниеотвод ESE, мы будем следовать всем рекомендациям, установленным международными стандартами (UNE 21186: 2011, NFC 17.102: 2011, НП 4426: 2013)

В статье установка громоотводов вы найдете более подробную информацию о том, как установить громоотвод ESE в соответствии с указанными правилами.

Как узнать, требуется ли установка внешней системы молниезащиты

Решение о том, устанавливать ли внешнюю систему защиты от поражения электрическим током, зависит от нормативных требований, действующих в каждой стране. Купить громоотвод — выбор хозяев постройки или дома.

Мы должны помнить о риске, создаваемом молнией для людей или инфраструктуры, а также о важности соблюдения нормативных требований. Экономия на отсутствии адекватной системы защиты может обойтись очень дорого в очень неожиданный момент. Качество водосборной системы имеет решающее значение.

Вы можете проконсультироваться напрямую с инженерным отделом INGESCO для проведения бесплатного исследования в соответствии с действующими правилами и подробностями в техническом отчете, если требуется установка внешней системы молниезащиты, или вы можете провести исследование самостоятельно с помощью программного обеспечения INGESCO. .

Конструкция молниезащиты

— выберите лучший

Молниезащита

и лучшая система молниезащиты Консультанта признана лучшим решением в отрасли и установлена ​​на тысячах башен, зданий, заводов и фабрик. Благодаря превосходному качеству своей уникальной конструкции LEC продолжает устранять удары молнии.

Для лучшей защиты от молний

Вот некоторые из их запатентованных продуктов для защиты от молний:

Dissipation Array System — работает по технологии переноса заряда.он снижает ток напряжения между облаком и землей, тем самым предотвращая возникновение удара молнии.

Ионизатор Spline Ball — дополнение к установке Dissipation Array, это одна из лучших конструкций молниезащиты, устанавливаемая на конструкциях, требующих легкой защиты.

Шлицевой шаровой наконечник — Альтернатива стандартному пневмоострову, он разработан для снижения риска прямых ударов высокоэффективным способом.

Streamer Delaying Air Terminal — недорогая, но высокоэффективная конструкция молниезащиты, эффективно устраняющая удар молнии.

Лучший дизайн и системы молниезащиты

Facility Guard : этот сетевой фильтр разработан для промышленного и коммерческого использования. Обычно он устанавливается на служебном входе или в качестве вспомогательной панели. Он защищает от внешних скачков напряжения, которые обычно вызываются молнией.

Ограничители переходных процессов : Лучшая конструкция молниезащиты, включенная в список UL, устанавливается на стороне нагрузки главного служебного входа. Его основная цель — защитить чувствительную электронику и нагрузки на базе микропроцессоров путем ограничения переходного напряжения.

Устройство защиты от перенапряжения постоянного тока — это устройство защиты от быстрого нарастания переменного тока очень важно. В идеале он устанавливается перед инвертором и готов гасить дугу постоянного тока, когда это необходимо.

Гибридные ограничители перенапряжения для данных и телекоммуникационных приложений — эти типы разрядников устанавливаются для защиты телекоммуникационного оборудования и оборудования, обрабатывающего передаваемые данные, информацию и видеосигналы.

Data Line Protector — эти грозозащитные разрядники устанавливаются в серверных, диспетчерских и офисах. Они доступны в различных конфигурациях.

Coaxial Line Protector — защищает устройства, подключенные к антенной системе с помощью коаксиальных кабелей, такие как микроволновые, широкополосные, сотовые системы и оборудование GPS. Они содержат специальные грозовые разрядники с максимальным разрядным током.

Защита от прямого удара молнии и перенапряжения — непростая задача.Правильная конструкция молниезащиты зависит от ряда факторов.

Lightning Eliminators & Consultants Inc. будет рада проконсультировать вас по поводу надлежащего типа молниезащиты, минимизирующего потери и повреждения любого рода.


Промышленные / коммерческие системы защиты

  1. Услуги молниезащиты /
  2. Промышленные / коммерческие системы защиты

и здания класса II (более 75 футов)

Те же основные группы компонентов используются для установки молнии. системы защиты промышленных, коммерческих и государственных объекты и сооружения, используемые в жилых системах.

Однако, поскольку эти типы зданий более обширны и сложнее, чем жилое, так будет и молниезащита система. Кроме того, если высота здания превышает 75 футов, класса, необходимые кабели и компоненты становятся значительно больше и тяжелее.

Воздушные терминалы

Как и в жилых системах, эти компоненты также известны как «Устройства для прекращения удара» — это верхняя часть системы, в которой начальный контакт происходит между разрядом молнии и система молниезащиты.В последние годы Томпсон и промышленности в большинстве случаев перешли на тупой (округлый наконечник) воздушные терминалы в отличие от исторически традиционных острых наконечники пневмоостровов. Это основано на исследовании покойного доктора Чарльза. Б. Мур из Университета Нью-Мексико, где был обнаружен тупой наконечники стержней (диаметром до 1 дюйма) являются лучшими рецепторами молнии, чем очень остроконечные стержни.

Как упоминалось ранее, существует код, предписывающий увеличение количества воздуха размер терминала, когда конструкция превышает 75 футов в высоту.Конкретно, медные воздуховоды изменяются с минимального диаметра 3/8 дюйма на «Класс I» (менее 75 футов) система — vs- ½ дюйма минимальный диаметр для «класса II» (более 75 ’). Алюминиевые пневмоострова отличаются от минимального диаметра ½ дюйма класса I. до минимального диаметра «5/8» для второго сорта. Есть большое разнообразие Доступны пневмоостровы и монтажные основания, поэтому подходят для всех зданий конфигурации. Если нет, мы сделаем их подходящими.

Проводников

Как и в приложениях класса I, эти специальные кабели проводят «Удар молнии» безопасно от аэровокзалов до земли.Однажды Достигнута высота 75 футов, как и у аэровокзалов, размеры увеличиваются значительно как для медных, так и для алюминиевых кабелей. Фактически они в основном удваивается по весу на 1000 футов и круговую мил.

Допускаются как медные, так и алюминиевые проводники. в зависимости от условий проекта и предпочтений спецификации.

Обратите внимание, что существуют очень конкретные критерии кода, указанные в предотвратить сочетание разнородных металлов. Медь и алюминий не может быть установлен на противоположном металле или соединен без специальных биметаллическая арматура.Также медь нельзя монтировать на оцинкованные или оцинкованные стальные поверхности.

Наконец, необходимо отметить, что кабели системы молниезащиты имеют особую многожильную конструкцию и не соответствуют нормам Размеры AWG. См. Коды и каталоги для получения дополнительной информации.

Подробнее о проводниках

Склеивание

склеивающее оборудование

Для применений Класса II эти фитинги и сварочные аппараты, используемые для изготовления соединения, предотвращающие боковые зазоры, должны быть тяжелой литой (бронза, медь или алюминий) с болтовыми соединениями давления.Фитинги класса I с ручным обжимом не используются для систем класса II. Очень особые и обширные критерии соединения вступают в игру для зданий, превышающих 200 футов высотой.

Земля

Помимо одинарных приводных штанг, описанных для класса I, Промышленные, коммерческие и строительные системы класса II часто используют много более сложные и обширные методы заземления. Они могут включать заглубленные плиты и кабельные решетки в дополнение или вместо ведомые стержни.Также в некоторых случаях химическая засыпка или инкапсуляция продукты используются для уменьшения общего сопротивления системы относительно земли.

Ограничители перенапряжения

По мере увеличения высоты здания, его размеров и эксплуатационных нагрузок потребность в возникает для более крупных и надежных устройств защиты от перенапряжения на всех входящие службы для безопасного шунтирования перенапряжения на этих линиях земля. Электротехнический проектировщик должен быть вовлечен и отвечать за выбор и указание подходящего разрядника для каждого здания система.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *