Какие светодиоды используются в фонариках: Характеристики светодиодов для фонариков. Подбор и замена диодов

Содержание

Характеристики светодиодов для фонариков. Подбор и замена диодов

Рассмотрим светодиодную продукцию, начиная от старых 5-мм, до сверхъярких мощных светодиодов мощность которых доходит до 10 Вт.

Чтобы выбрать «правильный» фонарик для своих нужд, нужно разобраться в том какие бывают светодиоды для фонариков и их характеристики.

Светодиодные фонарики

Какие диоды используются в фонариках?

Мощные светодиодные фонари начались с устройств с матрицей 5-мм.

LED фонари в совершенно разных исполнениях, от карманных до кемпинговых, получили широчайшее распространение в середине 2000-х. Их цена заметно снизилась, а яркость и долгий срок службы от одного заряда батареек сыграли свою роль.

5мм светодиоды5-ти миллиметровые белые сверхъяркие светодиоды потребляют от 20 до 50 мА тока, при падении напряжения 3.2-3.4 вольта. Сила света – 800 мкд.

Очень хорошо показывают себя в миниатюрных фонариках-брелках. Маленький размер позволяет носить такой фонарик с собой. Питаются они либо от «мини-пальчиковых» батареек, либо от нескольких круглых «таблеток». Часто используются в зажигалках с фонариком.

Вот какие светодиоды в китайских фонариках устанавливаются уже много лет, но их век постепенно истекает.

В поисковых фонарях при большом размере отражателя есть возможность смонтировать десятки таких диодов, но такие решения постепенно отходят на второй план, а выбор покупателей падает в пользу на фонарей на мощных светодиодах типа Cree.

Поисковый фонарьПоисковый фонарь на 5мм светодиодах

Такие фонари работают от батареек типа АА, ААА или аккумуляторов. Стоят недорого и проигрывают как в яркости, так и в качестве современным фонарям на более мощных кристаллах, но об этом ниже.

В дальнейшем развитии фонарей производители перебрали множество вариантов, но рынок качественной продукции занимают фонари с мощными матрицами или дискретными светодиодами.

Какие светодиоды используют в мощных фонариках?

Под мощными фонарями подразумеваются современные фонари различных типов начиная от тех, что размером с палец, заканчивая огромными поисковыми фонарями.

Мощные светодиодные фонарики

В такой продукции в 2017 году актуальна марка Cree. Это название американской компании. Её продукция считается одной из наиболее передовых в области светодиодной техники. Альтернативой являются LED от производителя Luminus.

Такие вещи значительно превосходят светодиоды с китайских фонариков.

Какие светодиоды Cree в фонариках устанавливаются наиболее часто?

Модели носят название состоящие из трёх четырёх символов, разделённых дефисом. Так диоды Cree XR-E, XR-G, XM-L, XP-E. Модели XP-E2, G2 чаще всего используются для небольших фонариков, а XM-L и L2 – очень универсальные.

Их используют, начиная от т.н. EDC фонарей (для повседневного ношения) – это маленькие фонари размером меньше ладони, до серьёзных поисковых фонарей большого размера.

Давайте рассмотрим характеристики мощных светодиодов для фонариков.

Главная характеристика светодиодов для фонарей – это световой поток. От неё зависит яркость вашего фонаря и количество света, которое может дать источник. Разные светодиоды, потребляя одинаковое количество энергии, могут существенно отличаться по яркости.

Рассмотрим характеристики светодиодов в больших фонариках, прожекторного типа:

Продавцы часто указывают не полное название диода, его типа и характеристики, а сокращенную, несколько иную цифробуквенную маркировку:

  • Для XM-L: T5; T6; U2;
  • XP-G: R4; R5; S2;
  • XP-E: Q5; R2; R;
  • для XR-E: P4; Q3; Q5; R.

Фонарь может так и называться, «Фонарь EDC T6», информации в такой краткости более чем достаточно.

Ремонт фонариков

К сожалению цена таких фонариков довольно большая, как и самих диодов. И не всегда есть возможность приобрести новый фонарь, в случае поломки. Давайте разберемся как поменять светодиод в фонарике.

Для ремонта фонарика необходим минимальный набор инструментов:

  • Паяльник;
  • флюс;
  • припой;
  • отвёртка;
  • мультиметр.

Чтобы добраться до источника света нужно отвинтить головную часть фонаря, она обычно закреплена на резьбовом соединении.

Скручиваем оптику фонарика

В режиме проверки диодов или измерения сопротивления проверьте исправность светодиода. Для этого прикоснитесь щупами черным и красным к выводам светодиода, сначала в одном положении, а затем поменяйте местами красный и черный.

Режим проверки светодиодов

Если диод исправен – то в одном из положений будет низкое сопротивление, а в другом – высокое. Таким образом вы определяете, что диод исправен и проводит ток только в одном направлении. Во время проверки диод может излучать слабый свет.

В противном случае в обеих положениях будет короткое замыкание или высокое сопротивление (обрыв). Тогда нужна замена диода в фонаре.

Проверка светодиода

Теперь нужно выпаять светодиод из фонаря и, соблюдая полярность, впаять новый. Будьте внимательны при выборе светодиода, учтите его потребление тока и напряжение, на которое тот рассчитан.

Если вы будете пренебрегать этими параметрами – в лучшем случае фонарик будет быстро садиться, в худшем – драйвер выйдет из строя.

Драйвер – это устройства для питания светодиода стабилизированным током от разных источников. Промышленно изготавливаются драйвера для питания от сети 220 вольт, от автомобильной электросети – 12-14.7 вольт, от Li-ion аккумуляторов, например, типоразмера 18650. Драйвером оборудовано большинство мощных фонарей.

Увеличиваем мощность фонаря

Если вас не устраивает яркость вашего фонаря или вы разобрались как заменить светодиод в фонарике и захотели его модернизировать, прежде чем покупать сверхмощные модели изучите основные принципы работы LED и ограничения в их эксплуатации.

Замена диода на более мощныйДиодные матрицы не любят перегрева – это главный постулат! А замена светодиода в фонарике на более мощный может привести к такой ситуации. Обратите внимание на модели, в которые устанавливаются более мощные диоды и сравните со своей, если они подобны по размерам и конструктиву – меняйте.

Если ваш фонарь меньше — потребуется дополнительное охлаждение. Подробнее о изготовлении радиаторов своими руками мы писали здесь.

Если вы попытаетесь установить в миниатюрный фонарик-брелок такой гигант, как Сree MK-R, он у вас быстро выйдет из строя от перегрева и это будут зря потраченные средства. Незначительное повышение мощности (на пару ватт) допустимо без модернизации самого фонарика.

В остальном процесс замены марки светодиода в фонарике на более мощную – описан выше.

Фонари Police

Они зарекомендовали себя на протяжении многих лет и с каждой новой моделью этих фонарей спрос не утихает. Новинкой на отечественном рынке стала модель с электрошокером.

LED фонарик PoliceLED фонарик Police с шокером

Такие фонари ярко светят и могут выступать в роли средства самообороны. Однако и в них случаются проблемы со светодиодами.

Как заменить светодиод в фонарике Police

Широкий модельный ряд очень трудно охватить в рамках одной статьи, но можно дать общие рекомендации по ремонту.

  1. При ремонте фонаря с электрошокером будьте аккуратны, желательно используйте резиновые перчатки, чтобы избежать удара током.
  2. Фонари с пылевлагозащитой собраны на большом количестве винтов. Они отличаются по длине, поэтому делайте пометки откуда вы выкрутили тот или иной винт.
  3. Оптическая система фонарика Police позволяет регулировать диаметр светового пятна. При разборке на корпусе сделайте отметки в каком положении стояли детали перед снятием, иначе будет трудно поставить блок с линзой обратно.

Замена светодиода, блока преобразователя напряжения, драйвера, аккумулятора возможна с применением стандартного набора для пайки.

Какие светодиоды стоят в китайских фонариках?

Многие товары сейчас покупаются на aliexpress, где можно найти как оригинальную продукцию, так и китайские копии, которые не соответствуют заявленному описанию. Цена за такие приборы бывает сопоставимой с ценой на оригинал.

Посылки из Китая

В фонарике, где заявлен светодиод Cree, его может на самом деле не быть, в лучшем случае будет стоять диод откровенно другого типа, в худшем такой, который внешне будет трудно отличим от оригинала.

Причины пробоя светодиодаЧто это может за собой повлечь? Дешевые светодиоды выполняются в низкотехнологичных условиях и не выдают заявленной мощности. Имеют низкий КПД, от того у них усиленный нагрев корпуса и кристалла. Как уже было сказано, что перегрев – самый злой враг для Led приборов.

Так происходит потому, что при нагревании через полупроводник увеличивается ток, вследствие чего нагрев становится еще сильнее, мощности выделяется еще более, лавинообразно это приводит к пробою или обрыву светодиода.

Если постараться и потратить время на поиск информации, можно определить оригинальность продукции.

Сравнение оригинала и подделки CreeСравните оригинал и подделку cree

LatticeBright – это китайский производитель светодиодов, который делает продукцию очень похожей на Cree, наверное это совпадение дизайнерской мысли (сарказм).

LatticeBright и CreeСравнение китайской копии и оригинала Cree

На подложках эти клоны выглядят следующим образом. Можно заметить разнообразие форм подложек для светодиодов, производимое в китае.

Подложки китайских подделокОпределение подделки по подложке для LED

Подделки изготавливаются довольно умело, многие продавцы не указывают об этом «бренде» в описании товара и о том, где произведены светодиоды для фонарей. Качество таких диодов не самое худшее среди китайского барахла, но и далеко от оригинала.

Установка светодиода вместо лампы накаливания

У многих в старых вещах пылятся коногонки или фонари на лампе накаливания и вы можете легко сделать его светодиодным. Для этого есть либо готовые решения, либо самодельные.

С помощью разбитой лампочки и светодиодов, если добавить немного смекалки и припоя, можно сделать отличную замену.

Железный бочонок в данном случае нужен для улучшения отвода тепла от LED. Далее нужно припаять все детали друг к другу и закрепить клеем.

При сборке будьте аккуратны – избегайте замыкания выводов, в этом поможет термоклей или термоусадочная трубка. Центральный контакт лампы нужно распаять – образуется отверстие. Продеть через него вывод резистора.

Дальше нужно припаять свободный вывод светодиода к цоколю, а резистора к центральному контакту. Для напряжения 12 вольт нужен резистор 500 Ом, а для напряжения в 5 В – 50-100 Ом, для питания от Li-ion 3.7В аккумулятора – 10-25Ом.

Led вместо лампы накаливанияКак сделать из лампы накаливания светодиодную

Подобрать светодиод для фонарика гораздо сложнее чем его заменить. Нужно учитывать массу параметров: от яркости и угла рассеивания, до нагрева корпуса.

Кроме того, нельзя забывать об источнике питания для диодов. Если вы освоите все описанное выше – ваши приборы будут светить долго и качественно!

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Светодиоды для фонариков: характеристики, фото, схемы

Для фонариков светодиоды подходят различной мощности. Световая эффективность устройства не должна превышать 80 лм. Также внимание следует обращать на драйвер. Как правило, он устанавливается с выходным конденсатором. У некоторых моделей имеется усилитель. В среднем потребление тока у них равняется 3 А.

Если рассматривать чувствительные модификации, то у них установлена система защиты от перепадов напряжения. Для того чтобы более подробно разобраться в вопросе, необходимо рассмотреть конкретные модели.

светодиоды для фонариков характеристики

Схемы с емкостными конденсаторами

Схемы фонариков на светодиодах с емкостными конденсаторами включают волновые фильтры. В данном случае триггеры используются на полупроводниковой основе. Как правило, параметр выходного напряжения у них не превышает 20 В. Для снижения чувствительности используются преобразователи. Драйверы у моделей устанавливаются с различной пропускной способностью. Если рассматривать светодиод на 30 В, то у него имеется трансивер.

схемы фонариков на светодиодах

Использование демпфирующих конденсаторов

Схема светодиода с демпфирующим конденсатором включает в себя контактные фильтры. Всего у моделей имеется два преобразователя. Драйвер к светодиоду подсоединяется через обмотку. У некоторых модификаций предусмотрен компактный трансивер. Чаще всего он используется с усилителем.

Характеристики LED с маркировкой 530

Это универсальные и мощные светодиоды для фонариков. Характеристики устройств указывают на высокий коэффициент проводимости. Производятся светодиоды на 20 и 25 В. Если рассматривать первый вариант, то световая эффективность устройства в среднем равняется 60 лм. Коэффициент цветопередачи в данном случае зависит от проводимости трансивера. У многих моделей усилитель используется без преобразователя.

Показатель потребления тока у светодиодов не превышает 2,5 А. Время включения моделей данного типа составляет около 6 мс. Если рассматривать светодиоды на 25 В, то у них используется только импульсный трансивер. У многих моделей предусмотрен один усилитель. Драйвер подсоединяется с помощью преобразователя. Параметр светового потока лежит в районе 65 лм. Время включения светодиодов данного типа равняется 7 мс.

LED 640 (светодиоды для фонариков): характеристики, фото

Схема светодиода указанной серии включает в себя преобразователь фазового типа. Для повышения чувствительности используются фильтры. Усилители чаще всего применяются на магнитной основе. Параметр световой эффективности в устройствах равняется 65 лм. Также важно отметить, что показатель потребления тока не превышает 4,2 А. Отклонения частоты составляет в среднем 4 Гц.

Срок службы светодиодов данного типа составляет три года. К недостаткам устройств можно отнести малую проводимость тока у драйверов. Показатель яркости у них крайне низкий. Световая отдача, как правило, не превышает 5 %. Эти светодиоды для фонариков 6 вольт подходят хорошо.

светодиоды для фонариков характеристики 2014

Использование светодиодов LED 765

Для устройства на 12 В используются указанные светодиоды для фонариков. Характеристики 2014 года указывают на повышенный уровень потребления тока. Световой поток этой модификации равняется 45 лм. Также важно отметить, что модель подходит для импульсных усилителей. Драйвер в устройстве используется на 6,5 мк. Фазовые помехи указанным светодиодам не страшны.

Световая эффективность в среднем равняется 70 лм. Срок службы устройства не превышает четыре года. Коэффициент цветопередачи равняется 80 %. Для фонариков с регуляторами модель подходит отлично. В данном случае подключение устройств осуществляется через контактный переходник.

Схема LED 840

Это компактные и универсальные светодиоды для фонариков. Характеристики модели в первую очередь говорит о высоком показателе рассеивания. Коэффициент пульсации у нее максимум достигает 80 %. Время включения устройства составляет 5 мс. Если верить специалистам, то для фонариков на 12 В модель подходит замечательно. Усилитель в устройстве установлен поглощающего типа.

Всего у модели имеется два драйвера. Триггер у светодиода используется с переходником. Для решения проблем с тепловыми потерями стандартно применяется конденсатор. Световая эффективность представленной модели равняется 67 лм. Показатель проводимости не превышает 10 мк. В данном случае потребление тока составляет 0,3. Минимальная допустимая температура светодиода только -10 гарусов. Система защиты от перегрева у модели отсутствует.

Характеристики LED 827

Моделям с напряжением 12 В подходят указанные светодиоды для фонариков. Характеристики устройства говорят о наличие качественных проводных трансиверов. Усилители у модели установлены открытого типа. Всего в устройстве используется два конденсатора. С минимизацией тепловых потерь они справляются отлично. Минимальная допустимая температура светодиода равняется -15 градусов.

Для фонариков на 15 В они не подходят. Система защиты в устройстве используется с фильтрами. Драйвер у модели предусмотрен на 4,5 мк. Потребление тока равняется не более 4 А. Время включения светодиода в среднем составляет 6 мс. Коэффициент пульсации модели - 85 %. Световая эффективность, как правило, не превышает 50 лм.

Светодиоды LED 830

На устройства в 10 В отлично подходят данные светодиоды для фонариков. Характеристики у них довольно хорошие. Время включения - 5 мс, световая эффективность 65 лм, а потребление тока равняется 3,3 А. Преобразователь у модели используется фазового типа. Если верить специалистам, то для фонариков на 15 В модель не подходит.

Трансивер в указанном светодиоде отсутствует. Непосредственно драйвер установлен с проводимостью 4,5 мк. Проблемы с выпрямлением тока решаются благодаря конденсаторам. Коэффициент пульсации у модели максимум достигает 90 %. Срок службы представленного устройства - три года. Минимальная допустимая температура светодиода не превышает -20 градусов.

светодиоды для фонариков характеристики фото

Характеристики LED серии ЛБ

Для фонариков на 15 В подходит указанный светодиод. Характеристики модели говорят о повышенном коэффициенте цветопередачи. Выходное напряжение модели - 15 В. Фильтр в устройства используется волнового типа. Драйвер в данном случае подсоединяется через проводник. Трансивер у светодиода используется с переходником. Конденсатор установлен открытого типа. Всего у модели есть два триггера. В данном случае потребление энергии составляет 2,5 А.

Световой поток устройства максимум достигает 65 лм. Коэффициент пульсации у модели незначительный. Также к недостаткам можно приписать малый уровень минимально допустимой температуры. Китайский фонарик на светодиодах включается за 4 мс. Проблемы с выпрямление тока у модели возникают редко. Для фонариков на 10 В указанная модель не подходит. Система защиты от перегрева у светодиода отсутствует. Отклонение частоты у модели равняется 5 Гц. Эти светодиоды для фонариков Cree подходят замечательно.

светодиоды для фонариков 6 вольт

Указанные светодиоды для фонариков производятся с качественными усилителями импульсного типа. Всего у модели установлено два конденсатора. Трансивер стандартно используется проводного типа. Также важно отметить, что отклонение частоты максимум составляет 4 Гц. Потребление тока у светодиода не превышает 3 А.. Световой поток устройства равняется 70 лм. Световая отдача у модели незначительная.

Если верить специалистам, то для фонариков на 12 В модель подходит замечательно. Непосредственно подключение драйвера осуществляется через переходник. В среднем время включения равняется 6 мс. Срок службы представленной модели 5 лет. Минимальная допустимая температура светодиода равняется -15 градусам.

светодиоды для фонариков cree

Светодиоды LED серии ТБ (тёпло-белого света)

Это простые и не дорогие светодиоды для фонариков. Характеристика устройства говорит о том, что коэффициент цветопередачи у модели невысокий. Также важно отметить, что выходное напряжение равняется 8 В. Срок службы светодиода составляет три года. Трансивер у модификации используется высокой чувствительности. Всего у модели предусмотрено два конденсатора. Если верить экспертам, то для фонариков на 10 В устройство не подходит. Показатель потребления тока у модели равняется 2 А. Световой потока светодиода максимум достигает 65 лм.

светодиоды для фонариков

Проблемы с отрицательной модуляцией встречаются редко. К недостаткам можно отнести только малый параметр проводимости. Фильтры в устройстве используются только открытого типа. Максимальное отклонение частоты у светодиода достигает 5 Гц. Для снижения чувствительности на конденсаторе применится триггер. Коэффициент пульсации у модели незначительный. Для установки светодиода необходим проводной переходник.

Особенности моделей LED серии ЛХБ (холодно-белого света)

Указанные светодиоды характеристики имеют хорошие. В первую очередь важно отметить, что коэффициент цветопередачи равняется 80%. В данном случае срок службы составляет три года. Непосредственно выходное напряжение составляет 12 В. Время включения равняется 5 мс. В данном случае усилитель используется с переходником. Если верить специалистам, то проблемы с тепловыми потерями встречаются редко. Конденсаторы у модели уставлены проходного типа.

Светодиоды для фонариков: характеристики и производители

При выборе или сборке нового светодиодного фонарика обязательно нужно уделить внимание используемому светодиоду. Если единственная задача будущего фонарика – это подсветка тёмного подъезда, то с этой задачей справится практически любой яркий светодиод белого свечения. Другое дело – желание заполучить портативный осветительный прибор с параметрами под более сложную задачу. В этом случае особое значение имеет световой поток, то есть способность фонаря выдать достаточно мощный луч и осветить широкую площадь пространства.

Светодиоды каких брендов находятся на топовых позициях, и какими характеристиками обладают их светоизлучающие диоды, применяемые в фонариках?

Основные характеристики

За качество света, излучаемого фонарем, отвечает светодиод, который можно без преувеличения назвать сердцем устройства. Стабильность сердечного ритма фонаря зависит от многих параметров, основными из которых являются ток потребления, световой поток и цветовая температура. Законодателем моды принято считать компанию Cree, которая выпускает широкую линейку сверхъярких и мощных светодиодов, в том числе и для фонариков. светодиоды Cree

светодиоды CreeСовременные карманные фонарики проектируют на одном светодиоде мощностью 1, 2, или 3 Вт. В одноваттном исполнении значение прямого тока составляет около 350 мА с падением напряжения 2,8-2,9 В.

Ток и напряжение двухваттного светодиода составляет около 700 мА и 3,0 В соответственно, а аналогичный кристалл в 3 Вт потребляет примерно 1000 мА и 3,2 В. Приведенные электрические показатели характерны для моделей светодиодов ведущих мировых брендов.

Интенсивность излучения, которую еще называют световым потоком, зависит от производителя и семейства светодиода. Паспортное значение светового потока мощных светодиодов принято замерять на максимально допустимом рабочем токе. Компания-изготовитель фирменных фонарей вместе с типом установленного светодиода, указывает количество выдаваемых изделием люмен.

К сожалению, часто на упаковке фонарика указываются завышенные характеристики, в том числе и световой поток. Причина этого проста – любой производитель хочет реализовать как можно больше товара.

Световой поток неразрывно связан с цветовой температурой света. Современный светоизлучающие диоды способны излучать световой поток до 200 люмен на 1 ватт и могут производиться с любой температурой свечения: от желтовато теплого до холодного белого. Фонари с тёплым белым цветом излучения (T≤3500°K) наиболее приятны для глаза, но менее яркие. Освещение с нейтральной цветовой температурой(T=4000-5500°K) более эффективно позволяет рассматривать мелкие детали. Холодно-белый луч (T≥6500°K) в мощных фонарях с большой дальностью освещения, но в течение длительной работы раздражает зрение. график световых температур

график световых температурВ связи с невозможностью проведения точных расчетов, продолжительность жизни светодиодов рассчитывают методом экстраполяции. При температуре 25-50 °C их срок службы кристалла может превысить 200 тыс. ч., но это не оправдано экономически. Поэтому производители допускают повышение рабочей температуры до 85°C, экономя, таким образом, на охлаждении. Превышение порога в 150°C приводит к необратимым процессам выгорания кристалла и потере яркости.

Индекс цветопередачи (CRI) – качественный показатель, характеризующий способность светодиода освещать предметы без искажения их реального цвета. Для светодиодных источников освещения, в том числе и фонариков, показатель цветопередачи в 75 CRI и выше считается хорошим.

Важным элементом светодиода является линза. Она задаёт угол рассеивания светового потока, а значит, определяет дальность луча. В технических характеристиках светодиодов обязательно указывают значение угла излучения. Для каждой модели этот параметр индивидуален и может варьироваться от 20 до 240 градусов. Мощные светодиоды для фонариков имеют угол 90-120° и, как правило, комплектуются отражателем с дополнительной линзой в корпусе.

Несмотря на резкий скачок в развитии мощных многокристальных светодиодов, мировые лидеры продолжают выпуск менее мощные светодиоды. Выпускаются они в корпусах небольшого размера, не превышающего 10 мм в ширине или диаметре. Типовое значение тока таких светоизлучающих диодов не превышает 70 мА, а световой поток – 50 лм. Мощные фонарики на их основе постепенно исчезают с прилавков магазинов, ввиду худших технических характеристик и необходимости последовательно-параллельного подключения для повышения яркости. В сравнении с одним мощным кристаллом надёжность схемы и угол рассеивания нескольких таких элементов в одном корпусе намного хуже.

Отдельно стоит отметить четырёхвыводные светодиоды в корпусе P4 «SuperFlux» или «Пиранья», которые имеют улучшенные технические характеристики. У светодиодов «Пиранья» есть два важных преимущества, благодаря которым они востребованы:

  • более равномерно распределяют световой поток;
  • не нуждаются в отводе тепла;
  • имеют низкую себестоимость.

Светодиод Пиранья

Светодиод Пиранья

5 крупнейших производителей

Переносной фонарик должен быть не только эргономичным, но и оснащенным надёжным светодиодным источником с высоким рабочим ресурсом без потери яркости. Чтобы не ошибиться с выбором, предпочтение следует отдавать производителям светодиодной продукции мирового уровня.

Подразделение японской компании Nichia долгое время удерживало лидирующие позиции в производстве светодиодов всех типов. Из-за высокой стоимости продукции и усиливающейся конкуренции со стороны Китая и Тайваня сегодня встретить их светодиоды в фонарях европейского рынка удается все реже. Однако, Nichia необходима миру, как двигатель прогресса. Ведь разработки японских компаний берут за основу их китайские и тайваньские коллеги. Nichia

NichiaМощные светодиоды для фонариков от всемирно известной компании Cree удерживают первенство не только на американском континенте. Выгодно выделяясь меньшей себестоимостью и высоким качеством, светодиоды от Cree доступны всем желающим европейского континента. Аккумуляторный фонарь на мощном кристалле от американского бренда – это надёжный друг в походе, ночной рыбалке и пр. CreeCreePhilips Lumileds – европейский производитель светоизлучающих диодов широкого спектра. Компания достигла определённого прогресса в построении систем наружного освещения функционального и архитектурного значения. Разработчики Philips Lumileds осуществляют комплексный подход в построении светодиодных систем, учитывая их дизайн, степень защиты и удобство пользования. Philips LumiledsPhilips LumiledsХорошо известная в России южнокорейская корпорация Samsung своевременно профинансировала своё подразделение по поиску новых светодиодных решений и теперь имеет полный цикл производства излучающих диодов. Samsung не ограничивается выпуском LED подсветки для собственных дисплеев. Их успехи распространились и на другие сегменты рынка: светодиоды большой мощности (в том числе и для фонарей), ультраяркие элементы для вспышки, а также модули внутреннего и внешнего освещения. SamsungSamsungOsram Opto Semiconductors прославилась отличными характеристиками светодиодов из серии Duris, которые выгодно отличаются высокой светоотдачей и индексом цветопередачи. Немецкая компания сделала ставку на внедрение светодиодных технологий в промышленные отрасли, ориентируясь на выпуск готовых специализированных ламп и светильников. В лабораториях Osram улучшают показатели светоизлучающих диодов не только видимого спектра, но и делают открытия в ИК, УФ и лазерном направлении. OsramOsram

Доклады научных работников вместе с новостями о развитии искусственного освещения свидетельствуют о продолжающейся здоровой конкуренции между крупными корпорациями. Положительные тенденции развития светодиодных технологий мы видим в постоянно обновляемом модельном ряде фонарей, удивляющих своим дальнобойным лучом, высокой степенью защиты, способностью зарядки от солнечной энергии и прочими ноу-хау.

Мощные светодиоды для фонариков. Какие светодиоды используются в фонариках и какие лучше? Военные и специальные

Со времен изобретения электрического освещения учеными создавались все более экономичные источники. Но настоящим прорывом в этой области стало изобретение светодиодов, которые не уступают по силе светового потока предшественникам, однако расходуют во много раз меньше электроэнергии. Их созданию, начиная от первого индикаторного элемента и заканчивая ярчайшим на сегодня диодом «Cree», предшествовало огромное количество работы. Сегодня мы попробуем разобрать различные характеристики светодиодов, узнаем, как эволюционировали эти элементы и как их классифицируют.

Читайте в статье:

Принцип работы и устройство световых диодов

Светодиоды отличает от привычных осветительных приборов отсутствие в нем нити накала, хрупкой колбы и газа в ней. Это принципиально отличный от них элемент. Говоря научным языком, свечение создается за счет наличия в нем материалов р- и n-типа. Первые накапливают положительный заряд, а вторые – отрицательный. Материалы р-типа накапливают в себе электроны, в то время, как в n-типе образуются дырки (места, где электроны отсутствуют). В момент появления на контактах электрического заряда они устремляются к р-n-переходу, где каждый электрон инжектируется именно в р-тип. Со стороны обратного, отрицательного контакта n-типа в результате подобного движения и возникает свечение. Оно обусловлено выделением фотонов. При этом не все фотоны излучают видимый человеческим глазом свет. Сила, которая заставляет двигаться электроны, называется током светодиода.

Эта информация ни к чему обычному обывателю. Достаточно знать, что светодиод имеет прочный корпус и контакты, которых может быть от 2-х до 4-х, а также то, что каждый светодиод имеет свое номинальное напряжение, необходимое для свечения.


Полезно знать! Подключение производится всегда в одинаковом порядке. Это значит, что если к контакту «-» на элементе подключить «+», то свечения не будет – материалы р-типа просто не смогут зарядиться, а значит не будет и движения к переходу.

Классификация светодиодов по их области применения

Такие элементы могут быть индикаторными и осветительными. Первые были изобретены раньше вторых, при этом они уже давно используются в радиоэлектронике. А вот с появлением первого осветительного светодиода начался настоящий прорыв в электротехнике. Спрос на осветительные приборы подобного типа неуклонно растет. Но и прогресс не стоит на месте – изобретаются и внедряются в производство все новые виды, которые становятся все ярче, не потребляя при этом больше энергии. Разберем более подробно, какими бывают светодиоды.

Индикаторные светодиоды: немного истории

Первый такой светодиод красного цвета был создан в середине ХХ века. Хотя он имел низкую энергоэффективность и излучал тусклое свечение, направление оказалось перспективным и разработки в этой обрасти продолжились. В 70-х годах появляются зеленые и желтые элементы, а работы по их усовершенствованию не прекращаются. К 90-му году сила их светового потока достигает 1 Люмена.


1993 год ознаменован появлением в Японии первого синего светодиода, который был намного ярче предшественников. Это означало, что теперь, совмещая три цвета (которые и составляют все оттенки радуги), можно получить любой. В начале 2000-х сила светового потока уже достигает 100 Люмен. В наше время светодиоды не перестают совершенствоваться, наращивая яркость без увеличения потребляемой мощности.

Использование светодиодов в бытовом и промышленном освещении

Сейчас подобные элементы используются во всех отраслях, будь то машино- или автомобилестроение, освещение производственных цехов, улиц или квартир. Если взять последние разработки, то можно сказать, что даже характеристики светодиодов для фонариков порой не уступают старым галогеновым лампам на 220 В. Попробуем привести один пример. Если взять характеристики светодиода 3 Вт, то они будут сопоставимы с данными лампы накаливания с потреблением 20-25 Вт. Получается экономия электроэнергии почти в 10 раз, что при ежедневном постоянном использовании в квартире дает весьма существенную выгоду.


Чем хороши светодиоды и есть ли в них минусы

О положительных качествах световых диодов можно сказать многое. Основными из них можно назвать:

Что же касается отрицательных сторон, то их всего две:

  • Работают только с постоянным напряжением;
  • Вытекает из первого – высокая стоимость ламп на их основе по причине необходимости использования (электронного стабилизирующего блока).

Каковы основные характеристики светодиодов?

При выборе таких элементов для той или иной цели, каждый обращает внимание на их технические данные. Основное, на что следует обратить внимание, приобретая приборы на их основе:

  • ток потребления;
  • номинальное напряжение;
  • потребляемая мощность;
  • температура цвета;
  • сила светового потока.

Это то, что мы можем увидеть на маркировке . На самом же деле, характеристик намного больше. О них сейчас и поговорим.

Ток потребления светодиода – что это такое

Ток потребления светодиода равен 0.02 А. Но это относится лишь к элементам с одним кристаллом. Существуют и более мощные световые диоды, в составе которых может быть 2, 3 и даже 4 кристалла. В этом случае ток потребления будет увеличиваться, кратно числу чипов. Именно этот параметр и диктует необходимость подбора резистора, который впаивается на вводе. В этом случае сопротивление светодиода не дает высокому току мгновенно сжечь LED элемент. Это может произойти по причине высокого тока сети.


Номинальное напряжение

Напряжение светодиода имеет прямую зависимость от его цвета. Это происходит по причине разности материалов для их изготовления. Рассмотрим эту зависимость.

Цвет светодиода Материал Прямое напряжение при 20 мА
Типовое значение (В) Диапазон (В)
ИК GaAs, GaAlAs 1,2 1,1-1,6
Красный GaAsP, GaP, AlInGaP 2,0 1,5-2,6
Оранжевый GaAsP, GaP, AlGaInP 2,0 1,7-2,8
Желтый GaAsP, AlInGaP, GaP 2,0 1,7-2,5
Зеленый GaP, InGaN 2,2 1,7-4,0
Голубой

Солнечные фонарики — нам надо ярче / Хабр

Наверняка многие уже успели наиграться с китайскими солнечными фонариками и разочароваться в них. Попробуем разобраться в вопросе: в чём причина их малой яркости и можно ли с этим что-то сделать?


Для начала сравним солнечные батареи фонариков. Я выбрал три фонарика, первый приехал с Алиэкспресса, второй был куплен около 3 лет назад в Глобусе и третий был куплен в этом году в Леруа:

Также в сравнении будут участвовать три солнечные батареи с Алиэкспресса размерами 56.8х56.8 мм и 60х65 мм:

И круглая солнечная батарея диаметром 82 мм:

Электронной нагрузки у меня нет, поэтому тест проведу при помощи аккумулятора ёмкостью 1600 мА/ч предварительно разряженного, а потом заряженного до 500 мА/ч. При пробном тесте на таких трёх одинаковых аккумуляторах одного полностью разряженного, заряженного до половины и полностью заряженного разница в зарядном токе отличалась несущественно. Поочерёдно подключаем мультиметр в разрыв провода аккумуляторов фонариков и измеряем ток заряда.

Солнечный фонарик, купленный на Алиэкспрессе:

Солнечный фонарик, купленный в Глобусе:


Солнечный фонарик, купленный в Леруа:

Аналогично измеряем зарядный ток от солнечных батарей, подключая их через плату от фонарика безвременно погибшего под чьей-то ногой.

Солнечная батарея 56.8х56.8 мм:

Солнечная батарея 60х65 мм:

Солнечная батарея диаметром 82 мм:

Измерения проводились как правило с интервалом в один час, недостающие результаты измерений для таблиц по июню и августу рассчитывались исходя из высоты солнца над горизонтом. В графике ниже приведены рассчётные значения максимального заряда аккумуляторов за сутки:

Как видно из графиков, накопленная за день энергия китайских фонариков вполне соответствуют их токам потребления, результаты измерений которых приведены ниже в этой статье. А если фонарик собирать на основе солнечных батарей с Алиэкспресса, то его потребление можно увеличить практически на порядок, доведя его до 60…100 мА. Стоит также отметить, что этот график составлен исходя из идеальных условий для солнечной батареи, а именно отсутствии облачности и затенения от деревьев, или построек. Например, фонарик заряжающийся на открытом месте током 60 мА:

При затенении от небольшой сливы:

Выдаёт в два раза меньший ток заряда, что надо учитывать при расстановке фонариков на местности:

А теперь про отрицательные свойства батарей выполненных из пластин поликристаллического кремния. Большинстве случаев эти батареи представляют собой основание из гетинакса, на котором пайкой при помощи шинок соединены фотопластины и залиты прозрачным компаундом на основе эпоксидного клея. На фотографии фонарики отслужившие два сезона:

Со временем от солнечного излучения поверхность солнечной батареи разрушается и при попадании воды покрывается белым налётом, что конечно не сказывается положительно на эффективности солнечной батареи. На фотографии ниже те же самые фонарики спустя ещё сезон:

Ситуацию может спасти полировка, например с помощью пасты ГОИ, или на крайний случай можно замочить солнечную батарейку в тёплой воде, а затем счистить налёт при помощи старой зубной щётки, а лучше с зубным порошком. Снизу фотография этих же солнечных фонариков после чистки.

На фотографии батарея с Алиэкспресса 56.8х56.8 мм, отработавшая 2 сезона и побывшая несколько часов в воде:

Та же батарея после чистки зубной щёткой:

Как показывает практика, работоспособность после такой чистки восстанавливается практически полностью, ниже тест новой батареи:

И батареи после чистки:

Разница составляет всего 5 мА, что частично можно списать на разброс параметров солнечных батарей в партии. Стоит также отметить, что прозрачный компаунд, которым применяется в данном типе солнечных батарей не стоек к спирту, растворителям и если протереть ими солнечную батарею, то компаунд практически сразу начинает разрушаться и белеть.

Также встречаются солнечные батареи из поликристаллического кремния ламинированного в полиэтилен:

Как показала практика, это является самым практичным решением, на фотографии батарея отработавшая в самодельном солнечном фонарике уже 4 сезона!


А теперь поговорим об электронной начинке солнечных фонариков. Схемы на трансформаторах мы не будем рассматриваются ввиду трудоёмкости их изготовления. Электроника солнечных фонариков первого поколения строилась на дискретных элементах. Три классические схемы показаны на рисунках ниже и если внимательно приглядеться то видно, что узел собственно повышающего преобразователя в них практически полностью идентичен и основные различия только в способе анализа освещённости и питании светодиодов. На первых двух схемах для анализа освещённости используются дополнительные фоторезисторы, а на третьей схеме в качестве датчика света используется непосредственно солнечная батарея, а светодиод подключен параллельно с интегрирующим конденсатором, сглаживающим броски напряжения, но об этом чуть позже.


Схема 1


Схема 2


Схема 3

Современные солнечные фонарики базируются в основном на китайских микросхемах семейств YX8XXX, QX5252, ANA618. Именитые производители, например Diodes, также выпускают подобные микросхемы, но из – за того что стоимость у них скорее всего значительно больше чем у китайских микросхем, в фонариках мы их вряд – ли когда нибудь встретим. В основном производители этих микросхем заявляют КПД микросхем не хуже 85%, средний ток через светодиод задаётся номиналом дросселя, но производители в даташитах по разному его нормируют — одни приводят усреднённый ток через светодиод (схемы 4, 7), другие потребляемый ток от аккумулятора (схемы 5, 6).

Также надо уточнить, что в китайских фонариках применяются индуктивности типа — EC-24:

Это недорогой маломощный дроссель, с относительно большим внутренним сопротивлением, что конечно снижает КПД преобразователя.


Схема 4


Схема 5


Схема 6


Схема 7


Вскрытие показало, что в фонарике, который был куплен в Глобусе используется микросхема YX8018:

Индуктивность номиналом 136 мкГн:

Потребление фонарика от источника напряжением 1,27 вольта составляет 6 mA:

В фонарике из Леруа используется микросхема ANA618:

Индуктивность номиналом 210 мкГн:

Потребление фонарика от источника напряжением 1,27 вольта составляет 5 mA:

А в фонарике с Алиэкспресса применена знаменитая китайская микросхема типа «клякса»:

Индуктивность номиналом в 342 мкГн:

Потребление фонарика от источника напряжением 1,27 вольта составляет 11 mA:

Результаты этого измерения и беглый взгляд на таблицу приложенную к схеме 5, позволяют предположить, что мы имеем дело с микросхемой QX5252 в бескорпусном исполнении.

После удачного повторения и наладки схем 1 — 3 схемы выяснилось, что в целом они работоспособны, но по характеристикам примерно аналогичны тем же китайским, а хотелось большего. Закупив на пробу солнечные батареи, которые вместе с фонариками участвовали в тестировании, я сначала остановился на токе потребления схем фонариков в 60 мА, применяя сверхъяркие светодиоды диаметром 5 мм с углом рассеяния в 120 градусов:

Попытки сделать светорассеиватели как в китайских фонариках успехом не увенчались и я пришёл вот к такой конструкции применяя её вместе со схемой 9:

Эти светодиоды имеют недостаток – источник света точечный и поэтому плафоны фонариков приходилось подбирать матовые, прозрачные плафоны матировать покрывая полупрозрачным белым акриловым лаком или делая вставки из белой плёнки. Но когда погнался за яркостью и перешёл на токи потребления фонариков от аккумуляторов в 100 – 120 мА, от 5 миллиметровых светодиодов пришлось окончательно отказаться, не спасало даже параллельное соединение шести светодиодов:

Маломощные светодиоды просто не способны эффективно работать на пиковых токах, поэтому пришлось перейти на сборки из трёх 0,5 ваттных светодиодов типоразмера 5730 и схему 8:

Забегая вперёд замечу, что со светодиодами 5730 в отличии от 5 миллиметровых не требуется матировать плафоны фонариков, что опять же увеличивает яркость фонарика.

На рисунках 8, 9 схемы разработанные мной на основе схем на рисунках 1 — 3. Это «рабочие лошадки», которые уже в течении 3 сезонов показали свою надёжность и неприхотливость. Схема 8 предназначена для работы с одним 1 – 3 ваттным светодиодом, или тремя 0,5 ваттными типа 5730. Схема 9 предназначена для работы с фонариками – гирляндами на основе параллельно подключенных однотипных маломощных светодиодов, например тех же 5 миллиметровых. Основой обеих схем является повышающий преобразователь на транзисторах VT4, VT5, дросселе L1, конденсаторе обратной связи С4, резисторе – ограничителе тока базы R7 и резисторе задающего ток смещения R8. Этот блок практически полностью идентичен с первыми тремя схемами. Но есть и отличия, это усилитель датчика света на транзисторе VT1, что позволило добиться более позднего включения фонарика в ранних сумерках по сравнению с исходными схемами. А также датчик напряжения, который выполняет функцию защиты аккумулятора от глубокого переразряда, запрещая работу повышающего преобразователя, если напряжение на аккумуляторе ниже 1,1 вольта. Датчик реализован на диоде VD2 и транзисторе VT2. Если напряжение на аккумуляторе будет ниже 1,1 вольта, то два PN перехода включенные последовательно образованные диодом VD2 и эмиттерным переходом транзистора VT2 будут закрыты, как и транзистор VT3, разрешающий включение повышающего преобразователя. Резистором R4 задаётся уровень гистерезиса схемы датчика напряжения. Резисторами R7, R8 задаётся ток потребляемый блоком повышающего преобразователя от аккумулятора. С данными номиналами ток потребления схемы будет составлять 95 – 120 мА при среднем токе через светодиод около 20 mA. Ток я измерил косвенным методом. К солнечной батарее был подключен стрелочный прибор от магнитофона. Направив на солнечную батарею горящие светодиоды и найдя положение, в котором стрелка отклонится на максимум и запоминаем её положение:

Затем подключаем светодиоды к регулируемому источнику тока. Регулируя ток через светодиоды добиваемся, чтобы стрелка встала в тоже положение что и в предыдущем измерении:

У меня получилось 23 мА при напряжении на светодиоде 2,8 В. Получается, что измеренное таким косвенным методом КПД равно всего 52%, что не удивительно, ввиду того что Uкэ насыщения кремниевого транзистора BC817 составляет 0,6 вольта.


Схема 8


Схема 9

При заказе транзисторов для этой схемы имейте ввиду, что китайские транзисторы BC817 с Алиэкспресса могут работать некорректно с током потребления 50 – 60 mA и низким КПД схемы. Нормально работают транзисторы фирм ON Semiconductor, или NXP. В схеме применены резисторы и керамические конденсаторы типоразмера 0805, электролитические конденсаторы танталовые в корпусе CASE-А и ёмкостью 10 – 47 мкФ и рабочим напряжением не менее 10 вольт. Диод 1SS314 можно заменить на широко распространённый LL4148, диод 1SS357 на SS16 и подобные диоды шоттки. Дроссель L1 типоразмера CD43 100 мкГн:

Транзисторы BC847, BC857 лучше применять индексом C, они имеет максимальный коэффициент усиления h31Э. Рабочее напряжение конденсатора С5 в схеме 9 должно быть не менее 16 вольт и ёмкостью не менее 10 микрофарад. При попытке его уменьшения до 1 uF (хотелось заменить достаточно большой электролитический конденсатор в корпусе в CASE-A на более миниатюрный керамический в корпусе 0603) 5 мм светодиоды из – за несглаженных выбросов импульсов напряжения с преобразователя начали постоянно выходить из строя, пришлось вернуться к первоначальному номиналу. Платы изготавливаются по стандартной ЛУТ технологии, в качестве выключателя используются разъёмы на плате и аккумуляторе:

Плата универсальна для схем на рисунках 8, 9. На фотографии плата собрана по схеме 8 (конденсатор С5 не установлен).

Ссылка на архив со схемами и печатными платами (в формате P-CAD 2006 и .pdf)

Неплохо себе показала схема 10 на экзотической и сравнительно дорогой микросхеме ZXLD383 фирмы DIODES. Конденсатор С1 керамический 0805, дроссель L1 типоразмера CD43 10 мкГн. HL1 – сборка из трёх светодиодов типа 5730. С указанными номиналами ток потребления схемы составляет 100 – 110 мА.


Схема 10

В сборе это выглядит как то так:

Ссылка на архив со схемами и печатными платами (в формате P-CAD 2006 и .pdf)

И наконец самая оптимальная по критерию цена/качество схема на китайской микросхеме фирмы QX Micro devices QX5252. Конденсатор С1 керамический 0805, дроссель L1 типоразмера CD43 22 мкГн. HL1 – сборка из трёх светодиодов типа 5730. С указанными номиналами ток потребления схемы составляет 100 – 110 мА.

Схема 11

Плата в сборе:

Ссылка на архив со схемами и печатными платами (в формате P-CAD 2006 и .pdf)

Ради интереса были проведены испытания при помощи люксометра:

Результаты в таблице:

Фонарик Ток потребления, мА Освещённость, КЛК
Алиэспресс 11 0,9
Глобус 6 2,7
Леруа 5 7,58
ZXLD383 (Схема 10) 112 95
QX5252 (Схема 11) 109 114
Схема 8 93 101

Приведу несколько фотографий. Тест фонарика из Глобуса:

Тест платы на микросхеме QX5252 (Схема 11):

Мне кажется, что всем уже наскучили голые цифры и схемы, поэтому забегая вперёд покажу как вечером выглядят в реальной жизни фонарик из Глобуса (слева) и фонарик основанный на схеме 11 (справа):

А о конструкциях фонариков на основе приведённых схем мы поговорим в следующий раз…

Новое сердце для китайского фонарика / Хабр

Купив множество китайских фонариков, мощностью от 100 до 16000 люмен, так и не остался доволен.

В большинстве случаев фонарик не отдаёт заявленный продавцом световой поток. Так получается из-за того, что продавцы в лучшем случае указывают максимальный световой поток, который может отдавать установленный светодиодный модуль, но в результате экономии на материалах светодиод работает, если повезёт, в половину от своего максимума. Для ограничения тока применяются тонкие провода, это позволяет отказаться от использования источника постоянного тока и ограничиться простым ШИМ контроллером с силовым ключём.

В качестве донора был выбран «2500Lm CREE XM-L T6 LED Headlamp» ценой в 12 долларов, у которого через год использования умер ШИМ контроллер CX2812. Данный контроллер имеет три выхода для нагрузки, два входа для настройки режимов работы и один вход для кнопки переключения режимов. Первым неприятным моментом практически любого китайского фонарика для меня оказалось наличие режимов Strobe и SOS. В случае с данным контроллером, достаточно подать на вход OPT1 логическую единицу и из пяти режимов останется только три (High, Low, Off). Если единицу подать на оба OPT входа, то режим Low тоже исчезнет.

Продавец заявляет, что в фонарике используется светодиод Cree XM-L T6 и он жарит аж 2500 люменов на максимальном режиме. На сайте Cree для данного светодиода заявлена светосила 100 люменов на ватт и максимальная мощность 10 ватт. На самом деле используется светодиод XM-L U2, его характеристики не сильно отличаются от T6, но из-за толщины проводов до светодиода доходит только 1.1А, что при напряжении аккумулятора 4.1В составляет 4.51Вт. Получается, что на максимальном режиме фонарик излучает примерно 451 люмен. Люксметр показывает 420 люменов, и это довольно далеко от цифры 2500.

Схема драйвера проще некуда и усложнять её не будем. В качестве нового каменного сердца был выбран микроконтроллер ATtiny85, хотя хватило бы и ATtiny13(a), но в нужном корпусе его под рукой не оказалось. Кнопка переключения режимов удачно попала на ножку PB2/INT0, а вот база транзистора оказалась подключенной к выходу RESET. Имея на борту аппаратный ШИМ, было решено использовать именно его, поэтому дорожка ведущая к RESET была перерезана, а база транзистора подключена перемычкой к выходу PB1/OC0B. Для удобства программирования необходимые пины были вынесены наружу. Провода зафиксированы соплями термоклея. Провода от аккумуляторов до платы заменены на чуть более толстые.

Прошивка собиралась в Arduino 1.0.6, в качестве программатора использовался Arduino Nano. Установлены фьюзы в соответствии со схемой «ATtiny85 @ 1 MHz (internal oscillator; BOD disabled)». Вес прошивки в бинарном виде на данный момент составляет 278 байт. В выключенном состоянии фонарик потребляет 0.3мкА, при кратковременном нажатии на кнопку включается минимальный режим, потребление увеличивается до 7.6мА. Для выключения необходимо кратковременно нажать и отпустить кнопку. Если продолжить удержание кнопку, то яркость плавно увеличится до максимальной. Частичная замена проводов не дала существенного прироста яркости, ибо провода от блока питания до головы остались узким местом. На данный момент на максимальном режиме потребление получилось 1.2А, напряжение АКБ 4.2, получается примерно 500 люменов.

Но даже несмотря на то, что китайские продавцы указывают в несколько раз завышенные показатели по светосиле, зачастую даже минимальный, из предложенных, режим был слишком ярким для меня. После переделки, минимального режима вполне достаточно для того, чтобы ночью не запнуться на лесной тропинке или использовать фонарик в качестве ночника при ночёвке в пещере. Итого буквально за пару часов из мёртвого фонарика удалось сделать фонарик моей мечты. Надеюсь мой опыт окажется для кого-нибудь полезным. Код доступен по ссылке HeadLamp.ino.

Обновление 04.02.2015: Подумав немного, добавил возможность моментального включения фонарика на максимальный режим (два быстрых клика), а так же режим стробоскопа (три быстрых клика). Для активации этих режимов необходимо раскомментировать соответствующие дефайны в начале кода.

характеристики, фото, схемы. Какие светодиоды используются в фонариках и какие лучше

Современный рынок осветительных устройств предлагает огромный выбор световых приборов, имеющих узкие углы рассеяния и большую дальность действия. Это прожекторы общего назначения, прожекторы для транспорта, театральных сцен, студий, строительных площадок, аэродромов и многие другие. К таким световым приборам относятся и мощные аккумуляторные фонари.

При выборе наиболее подходящего, современного и эффективного фонаря вы сразу же можете прийти в замешательство, так как при всем разнообразии их конструкций, типах используемых источников света, дальности действия и угла рассеяния луча и других параметров, трудно моментально остановиться на конкретной модели.

В данной статье мы попытаемся разобраться с наиболее важными техническими особенностями фонарей, влияющими на правильность их выбора.

Предназначение мощных фонарей

Мощные фонари предназначены для эксплуатации в сложных условиях, где необходим стабильный, яркий световой поток, поддержание которого, обеспечивается на протяжении длительного времени. Чаще всего их используют в своей работе спасательные службы, работники МВД, спелеологи и туристы. Типичными представителями этого класса осветительных приборов являются поисковые или тактические фонари. Мощными бывают также подствольные фонари, крепящиеся под ствол оружия при помощи специальных креплений, кемпинговые или , имеющие большую длительность работы, налобные или головные фонари, крепление которых позволяет крепить их на голову. Поэтому при выборе мощного фонаря всегда нужно обращать внимание, для каких целей он предназначен.

Особые условия, в которых обычно используются мощные фонари, диктуют и особые требования к их конструкции и световым характеристикам. А именно:

  • ударостойкость и влагозащищенность корпуса;
  • наличие в фонарях материалов с высокой теплопроводностью, обеспечивающих эффективный отвод тепла от источника света;
  • емкость аккумуляторной батареи, значение которой непосредственно влияет на длительность работы фонаря и стабильность его светового потока;
  • универсальность конструкции контейнера для установки аккумуляторных батарей;
  • возможность регулировки угла рассеяния светового потока;
  • надежность специальных креплений, эффективность противоскользящих вставок или насечек на рукоятке фонаря, наличие ремня для носки фонаря на плече и других нюансов.

Материал корпуса и конструкции рукоятки

Раз уж так сложилось, что поисковые фонари являются наиболее востребованными на рынке, то в качестве примера будем знакомиться именно с ними.

Для изготовления корпуса современных мощных поисковых фонарей зачастую используется анодированный дюралюминий, легкий, прочный и коррозионностойкий, на внешнюю поверхность которого наносится либо антискользящее полиуретановое напыление, стойкое к царапинам и ударам, либо продольные, поперечные и диагональные насечки. Корпус таких фонарей в основной своей массе изготовляются в виде трубки, выполняющей одновременно две функции - рукоятки и контейнера для аккумуляторных батарей. Но бывают фонари с выносной рукояткой. Примеры корпусов и рукояток можно посмотреть на изображениях представленных ниже.

На изображениях также хорошо видны ребра радиатора, увеличивающие эффективность отвода тепла исходящего от источника света. Ребра выполнены путем проточки массы металла корпуса ближе к оптической части фонаря.

Влагозащищенность

Фонари имеют разные степени защиты от попадания внутрь их корпуса посторонних предметов и влаги. Так как все фонари имеют минимальную защиту способную задерживать частицы пыли, но не способны работать при длительном попадании на них капель и брызг воды, их условно можно поделить на две группы, фонари невлагостойкие и влагостойкие. По системе классификации степеней защиты (IP - Ingress Protection Rating) не влагостойким можно присвоить значение IP50, то есть пылезащищенные и влагопроницаемые. Корпуса влагостойких фонарей, как правило, выпускаются с возможностью погружения всех фонарей под воду. Поэтому их степень защиты начинается с IP67 и заканчивается IP69. Иногда цифра, обозначающая от проникновение посторонних предметов, опускается и вместо первой цифры ставится буква «Х» (IPХ7 - IPХ9).

Расшифруем значение цифр 7 - 9. Цифра 7 обозначает возможность кратковременного погружения фонаря на глубину до 1 метра. Цифра 8 обозначает возможность длительного погружения фонаря на глубину более 1 метра. Цифра 9 обозначает возможность длительного погружения фонаря на очень большую глубину, где присутствует большое давление жидкости.

Источники света

Источник света это, пожалуй, самый важный элемент, характеризующий потребительские и эксплуатационные параметры фонарей. Обычные лампы накаливания уходят в прошлое и в современных мощных фонарях уже не применяются. В качестве источников света в современных мощных фонарях используются галогеновые лампы накаливания, газоразрядные ксеноновые лампы (HID) и светодиоды (LED).

Галогеновые лампы

Это усовершенствованная разновидность ламп накаливания и говорить об их преимуществах можно только в сравнении с традиционными вариантами. Заполнение колбы лампы накаливания галогеновыми добавками позволило поднять ее световую отдачу, при той же мощности и продлить срок ее службы в два раза (до 2000 часов) за счет уменьшения выгорания вольфрама.

Лампы имеют среднюю светоотдачу 22 Лм/Вт. Это почти в два раза выше, чем у обычной лампы накаливания, но все же это очень мало, если учитывать, что лампа должна работать в переносном фонаре и источник энергии имеет ограниченный ресурс. Лампы очень чувствительны к частым включениям, при которых они в основном и перегорают.

Как и обычные лампы накаливания, уходят в прошлое, ведь им трудно конкурировать с долговечными и энергоэффективными светодиодными и ксеноновыми источниками света.

Ксеноновые лампы

Характерной особенностью ксеноновых ламп является то, что электрический разряд лампы происходит в инертном газе ксеноне, при высоком давлении и больших плотностях тока. По этой причине лампы имеют очень высокую яркость и видимый спектр излучения близкий к солнечному свету с цветовой температурой 6100 - 6300 К.

Ксеноновые лампы имеют высокое напряжение зажигания и поэтому требуют применения специальных зажигающих устройств. После розжига, лампы разгораются приблизительно в течение 15 секунд.

Ксеноновые лампы очень чувствительны к изменению напряжения питания. При изменении питающего напряжения на ± 5 %, мощность лампы изменяется на ±20 %. По этой причине при применении ламп такого типа приходится применять стабилизирующие устройства, поддерживающие напряжение, по мере разряда батареи питания, на одном уровне.

Светоотдача ксеноновой лампы составляет от 80 до 100 Лм/Вт. Ксеноновый разряд имеет самую высокую яркость. По теоретическим оценкам его максимальная яркость может достигать 2000 МКд/м².

Яркий, мощный световой поток дневного спектра позволяет равномерно освещать большую площадь, что делает такие фонари незаменимым инструментом при поисковых работах в местах аварий, в условиях сильной запыленности и загазованности в шахтах, глубоких колодцах и пещерах. Свет ксенонового фонаря заметен даже днем на большом расстоянии, что очень актуально при спасательных работах в горах и тайге.

Этот тип источника света уверенно вытесняет лампы накаливания и газоразрядные лампы из современных моделей фонарей. Такой факт легко объясняется следующими преимуществами светодиодов:

  • светодиод, в отличие от ксеноновой лампы, безынерционен и при подаче на него питающего напряжения он моментально выходит на номинальный режим свечения, также как у галогеновой лампы;
  • температура нагрева светодиода намного меньше температуры нагрева галогеновой и ксеноновой ламп;
  • так как при свечении светодиода энергии на нагрев тратится меньше то светодиоды, на сегодняшний день, имеют самый высокий КПД - до 45 %. К сравнению, галогеновая лампа имеет КПД равный около 5 %, ксеноновая лампа - до 30 %;
  • максимальная свет

Все, что вам нужно знать об УФ-фонариках

Ультрафиолетовые фонарики - отличные инструменты для наблюдения за вещами, которые обычно невидимы. Но с таким большим количеством вариантов и технических терминов может быть немного запутанно и сложно понять, правильно ли вы совершаете покупку. Прочтите наше руководство, чтобы быть уверенным, что вы получаете лучший продукт!

Что такое УФ-фонарик?


Ультрафиолетовый фонарик излучает ультрафиолетовое излучение - вид световой энергии, невидимой человеческому глазу.Когда ультрафиолетовый свет попадает на определенные объекты, они могут флуоресцировать - явление, подобное яркому свечению. Многие объекты и вещества, такие как краски, красители, минералы, животные и биологические жидкости, обладают флуоресценцией, а это означает, что присутствие этих предметов можно обнаружить только тогда, когда на них светит источник ультрафиолетового света.

УФ-фонарик имеет ту же форму и формат, что и стандартный фонарик белого света, но вместо излучения белого света он излучает ультрафиолетовый свет. Практически все УФ-фонарики используют светодиодную технологию.

Должен ли я получить УФ-фонарик для моего приложения?


УФ-освещение имеет множество применений, но УФ-фонарики могут быть наиболее полезны в ситуациях, когда важны портативность и простота использования. УФ-фонари обычно недостаточно сильны, чтобы вызвать какие-либо химические или физические реакции (например, отверждение), но дают достаточно УФ-света для наблюдения эффектов флуоресценции.

Ниже приведены некоторые примеры использования УФ-фонарей:


  • Судебная экспертиза и проверка подделок

  • Наблюдение за минералами и драгоценными камнями

  • Проверка на наличие пятен мочи (например.грамм. домашние животные) или другие биологические жидкости

  • Поиск насекомых и рептилий



Имеет ли значение, какой УФ-фонарик я использую?


Поскольку УФ-фонари различаются по типу и качеству, может быть трудно понять, какие УФ-фонари подойдут для вашего конкретного случая использования, не глядя на спецификации. См. Ниже, на что следует обратить внимание:

Получите правильную длину волны. УФ-свет - это общий термин, обозначающий широкий диапазон длин волн УФ-излучения в УФ-спектре.Подобно тому, как видимый свет измеряется в видимом спектре, УФ-свет также описывается в спектре с использованием его длины волны, измеряемой в нанометрах (нм). При поиске любого ультрафиолетового света чрезвычайно важно знать, на какой длине волны (в нанометрах или нм) он излучает.


Почему так важна длина волны? Короче говоря, чтобы быть полезным, УФ-свет должен вызывать флуоресценцию. Не все длины волн УФ-излучения способны вызывать достаточный эффект флуоресценции, поэтому вы можете полностью упустить цель, купив неправильную длину волны.

Хотя оптимальные длины волн могут варьироваться в зависимости от материалов и объектов, большая часть флуоресценции наиболее сильна на длинах волн около 360 нм. Поэтому важно, чтобы вы приобрели УФ-фонарик с длиной волны около 365 нм - в противном случае УФ-энергия, производимая фонариком, может оказаться совершенно бесполезной и производить желаемое флуоресцентное свечение.

Из-за тенденций в производстве светодиодов, светодиоды с более высокой длиной волны проще и дешевле производить.В результате светодиоды с длиной волны 415 нм (видимый, фиолетовый свет) и 405 нм (пограничный видимый фиолетовый свет) часто используются в качестве «ультрафиолетовых» светодиодов. Если продавец или производитель не указывает используемую длину волны - будьте осторожны - они вполне могут использовать фиолетовый или пурпурный светодиод, который не является настоящим источником УФ-света.

Обычный вариант длины волны - 395 нм. Строго говоря, это ультрафиолетовые светодиоды, когда мы используем определение <400 нм для определения УФ. Но поскольку эти светодиоды так близки к границе отсечки 400 нм, они по-прежнему излучают большую часть своей энергии в виде фиолетового света.В результате многие объекты будут освещены тусклым фиолетовым цветом, не давая достаточно низковолнового ультрафиолетового света, чтобы вызвать флуоресценцию.

Достаточно ли мощности? Даже правильная длина волны ультрафиолетового света может быть бесполезной, если ее просто недостаточно. Другими словами, вам нужно убедиться, что у вас есть и качество (хорошая длина волны), и количество.

Но как узнать, сколько излучается ультрафиолетового света? К сожалению, это непростая спецификация, которую не перечисляет большинство продуктов.В отличие от белых фонарей, которые используют метрику люменов для описания яркости, поскольку УФ-излучение невидимо, эта мера неприменима. Хотя есть способы измерения УФ-излучения, это может быть не слишком практично при покупке УФ-фонарей, поскольку большинство производителей не предоставляют много информации.

Как правило, два аспекта конструкции УФ-фонарика определяют, сколько УФ-света он может испускать. Первый - это потребляемая мощность, обычно измеряемая в ваттах. Большинство фонарей меньшего размера будут работать с мощностью 1 Вт или около того, в то время как более крупные фонари могут работать с мощностью 3 Вт или более.Не дайте себя обмануть количеством светодиодов - просто потому, что светодиодов больше, не обязательно означает, что стало больше мощности. Важна общая мощность: 1 светодиод мощностью 3 Вт больше мощности, чем 3 светодиода мощностью 0,5 Вт каждый.

Второй аспект - эффективность светодиодов. Не все светодиоды преобразуют одинаковое отношение электрической энергии к энергии УФ-излучения, и это может сыграть важную роль в определении количества излучаемой энергии УФ-света. Низкоэффективный светодиод может означать, что даже ультрафиолетовый фонарик большой мощности на самом деле не производит много полезного УФ-излучения.Эффективность УФ-светодиода определить непросто, но, как правило, стоит обратить внимание на более дешевые УФ-фонари, поскольку светодиодный чип обычно является самым дорогим компонентом фонарика, а низкие значения эффективности обычно являются результатом низкой стоимости или низкой стоимости. перегруженные светодиодные чипы.

Как он питается? Многие УФ-фонарики могут питаться от одноразовых батареек AA или AAA. Часто это самый дешевый и практичный подход для случайного, легкого использования - если, например, вы используете его только в течение нескольких минут за раз, чтобы проверить мочу домашних животных.Что делать, если вы ожидаете более строгого или длительного использования? Вы можете рассмотреть вариант с перезаряжаемой батареей.

Самый распространенный тип батареи - литий-ионный аккумулятор 18650. Батареи 18650 могут выдерживать до 2500 мАч (при 3,6 В) или более, что эквивалентно примерно 3-4 батареям одноразового типа AA. Используя аккумуляторную батарею, вы сэкономите на долгосрочных расходах на батарею. Многие ультрафиолетовые фонарики также имеют USB-порт или аналогичный порт для зарядки аккумуляторных батарей.

18650 аккумуляторы бывают двух вариантов - защищенные и незащищенные. Защищенный элемент 18650 включает в себя интегральную схему, которая защищает аккумулятор от перегрева, взрыва или утечки. Хотя защищенные батареи действительно стоят немного дороже, риск взрыва батареи из-за отсутствия защиты цепи может означать разницу между сгоранием дома и получением телесных повреждений.

Является ли УФ-свет от УФ-фонарика вредным или опасным?


Заявление об ограничении ответственности: Содержание , опубликованное ниже, предназначено только для информационных целей.Он не предназначен для замены профессионального медицинского совета, и на него нельзя полагаться как на медицинский или личный совет.

Всегда обращайтесь за советом к своему врачу или другому квалифицированному медицинскому работнику по любым вопросам, которые могут у вас возникнуть относительно вашего здоровья или состояния здоровья. Никогда не пренебрегайте советом медицинского работника и не откладывайте его поиск из-за того, что вы прочитали на этом сайте.

УФ-свет часто изображается в новостях и СМИ как вредный, поэтому вы можете беспокоиться о том, безопасны ли УФ-фонари.Короткий ответ: они, как правило, безопасны, если вы следуете некоторым правилам здравого смысла, которые мы обсудим ниже.

Но сначала важно понять риски, связанные с УФ-светом, и место, где УФ-фонари находятся с точки зрения этих рисков. Так же, как мы обсуждали, что длина волны и мощность являются определяющими факторами того, насколько сильны эффекты флуоресценции, риски и опасность ультрафиолетового света также зависят от длины волны и мощности.

Мы получаем от солнца значительное количество УФ-А (315-400 нм) и УФ-В (280-315 нм).Длина волны УФ-В короче и, следовательно, более вредна. Большинство рисков, связанных с чрезмерным воздействием солнечного света (солнечные ожоги, раздражение глаз и рак), являются результатом длин волн УФ-В. Поскольку УФ-фонари, излучающие на длинах волн 365 нм или выше, излучают в диапазоне УФ-А, их можно считать менее вредными, чем длины волн УФ-В.

Вообще говоря, общее количество УФ-света, излучаемого УФ-фонариком, также намного меньше, чем то, что вы найдете на улице в солнечный день.Естественный солнечный свет имеет около 32 Вт УФ-энергии на квадратный метр, что более чем в 30 раз превышает количество УФ-энергии, излучаемой УФ-фонариком мощностью 3 Вт (при 30% эффективности).

Хотя мы видим, что вредная способность УФ-фонарика намного меньше, чем от естественного солнечного света, мы также не можем полностью исключить возможность опасности и вреда от УФ-фонарика. Чтобы еще больше снизить эти риски, можно предпринять определенные шаги.

Прежде всего - никогда не смотрите прямо в УФ-фонарик.Ультрафиолетовый свет невидим и не вызывает такой же естественной реакции на косоглазие или взгляд в сторону, как если бы мы смотрели прямо в белый фонарик. То, что он не кажется ярким, не означает, что он не излучает много ультрафиолетового света. Обязательно держите УФ-фонарик подальше от детей или тех, кто не знает, что фонарик излучает УФ-свет.

Если вам все еще немного некомфортно из-за аспектов безопасности, вы можете предпринять дальнейшие шаги для дальнейшей защиты, как если бы вы выходили на улицу при ярком солнечном свете.Например, вы можете приобрести защитные очки или солнцезащитные очки, блокирующие УФ-излучение, которые помогут уменьшить количество УФ-излучения, попадающего в ваши глаза. При использовании УФ-фонарика вы также можете стараться не направлять свет прямо на голую кожу и носить одежду с длинными рукавами. И, на практике, держите УФ-фонарик включенным только до тех пор, пока это необходимо.

.

Введение в объективы: объяснение светодиодной оптики

Когда мы думаем о светодиодной оптике, мы склонны думать о прозрачной пластиковой линзе, которая помещается поверх самого светодиода для фокусировки или распространения света. Если это ваш мыслительный процесс, вы зашли слишком далеко. xp-l Давайте сделаем шаг назад и посмотрим на сам светодиод. Видите этот небольшой защитный купол над диодом? Фактически это называется первичной оптикой, которая служит для защиты и формирования выходного сигнала небольшого диода. Свет от основной оптики светодиодов все еще слишком широкий для большинства приложений, ему не хватает интенсивности на расстоянии.Вот почему в большинстве светодиодных светильников используется вторичная оптика (линзы, отражатели, оптика TIR и т. Д.) Для сбора всего этого света и увеличения его интенсивности по направлению к цели.
Создание линз и отражателей для светодиодов (твердотельное освещение) сильно отличается от простого масштабирования Untitled Banner (1) их от других источников света. Это может показаться логичным способом их создания, поскольку светодиоды имеют гораздо меньшие форм-факторы, чем другие источники света, но они также различаются по тому, как они излучают свет. Как видно по лампам накаливания, они светятся на 360 градусов, но светодиоды имеют направленное освещение, освещающее только 180 градусов.Это связано с конструкцией светодиода, как вы можете видеть слева, светоизлучающий диод состоит из одного или нескольких кристаллов, установленных на теплопроводящем материале, при этом первичная оптика закрывает кристалл. Следовательно, максимальный угол излучения светодиода составляет 180 градусов, поскольку подложка находится на задней стороне кристалла. LED break down

Первичная оптика

Типичное пространственное распределение - это то, что производители используют для описания света, исходящего от основной оптики светодиода. В основном это означает форму или распространение света от центра диода.Как мы уже говорили ранее, светодиоды обращены в одном направлении, поэтому представьте линию, идущую прямо вниз от центра. Пространственное распределение измеряется в градусах от этой центральной точки.

Возьмем, к примеру, Cree XP-G2, который рассчитан на 115 градусов, что означает, что луч будет расширяться на 57,5 ​​градусов в обе стороны. Тот факт, что он рассчитан на это, не означает, что вы получаете полный световой поток светодиода во всем спектре. Чем ближе вы к центру, тем сильнее будет свет, как и другие точки источников света.Взгляните на график «Типичного пространственного распределения» XP-G2, такой график будет в таблицах данных излучателей, которые можно найти на всех страницах светодиодных продуктов на сайте. Spatial Distribution Cree XP-G2 LED

Вдоль центральной оси светодиод излучает 100% своей относительной силы света и будет терять яркость по мере удаления от центра. Предположим, мы запускаем Cool White Cree XP-G2 при 350 мА, мы знаем из технических данных, что при таком токе привода светодиод будет выдавать 139 люмен, это номинальная мощность, на центральной оси.При 30 градусах от центра световой поток светодиода падает до 125 люмен. Спустившись вниз по кривой распределения на 40 градусов, световой поток достигает 111 люмен. Он продолжает падать до тех пор, пока при 57,5 ​​градусах вы не получите только половину светового потока при 70. Очевидно, что, когда вы теряете столько светового потока по всему спектру, что требуется дополнительная линза или оптика, чтобы усилить этот свет и использовать яркость и эффективность светодиодов на полную мощность.

Светодиоды нужно сфокусировать

Светодиоды высокой мощности постоянно совершенствуются и становятся разумными вариантами для широкого спектра приложений.Как мы заявляли выше, для многих из этих приложений, таких как внутреннее точечное / направленное освещение, уличное освещение, архитектурное освещение и точечное освещение, излучатель и первичная оптика сами по себе не могут обеспечить достаточную интенсивность для целевой поверхности. Мы углубились в вывод эмиттеров выше, но другой способ описать это - то, что эмиттеры испускают ламбертовское распределение света. Это в основном означает, что яркость для наблюдателя одинакова, независимо от положения наблюдателя. Если вы когда-либо видели, как загорался голый излучатель, вы можете это сразу увидеть.Даже если вы находитесь далеко в стороне, вы все равно можете увидеть, что источник света очень яркий, и, вероятно, вам даже будет мешать смотреть на него. Проблема в том, что этот свет просто выбрасывается наружу, и ничто не использует лучи.

Вторичная оптика используется для объединения световых лучей в управляемый луч, который передает эту полную интенсивность в нужную вам область. Коллимированные световые лучи распространяются параллельно, хотя невозможно сделать свет идеально параллельным из-за дифракции и конечного физического размера голого излучателя.Важно отметить, что чем меньше размер источника света (излучателя), тем эффективнее будет процесс.

При описании того, как определенная вторичная оптика или линза может коллимировать луч, мы часто смотрим на угол обзора или полуширину на полувысоте (FWHM). FWHM - это угловая ширина луча, когда интенсивность на краю равна половине интенсивности в центре луча. Это удобный способ классификации оптики, но он не принимает во внимание различия между определенными оптическими платформами (диоды разных размеров).Приятно знать, что оптика с одинаковыми углами обзора может довольно сильно различаться по интенсивности и качеству луча в зависимости от оптической конструкции излучателей. На страницах оптики на нашем сайте мы стараемся перечислить все разные углы и FWHM для каждого светодиода, который мы несем.

Вторичная оптика не только предназначена для коллимирования света, но иногда ее используют для улучшения однородности цвета и распределения света в целевой области. Выбор подходящей оптики или линзы зависит от области применения.Отражатели и оптика TIR используются во многих различных приложениях, и оба имеют свои преимущества и недостатки.

Untitled Banner
Отражатели

Рефлекторы

проще в установке и намного дешевле в производстве, чем оптика TIR. Насколько хорошо они собирают и собирают свет, зависит от их формы. Иногда их также используют с другой отделкой, чтобы добавить текстуру свету или рассеять его. Часто физические размеры источников света ограничивают возможности оптики. В случае массивов или эмиттеров со встроенной микросхемой (COB) они излучают настолько большую площадь, что единственное реальное решение - окружить их отражателем.

Отражатели

используются в большинстве ламп накаливания, но у светодиодов есть один ключевой недостаток: большая часть световых лучей, исходящих из центра излучателя, выходит из системы, даже не касаясь отражателя. Это означает, что даже с узкой отражающей системой значительная часть света уходит далеко от цели. Это приводит к потере светового потока или создает нежелательные блики. Reflectors light distribution

Вот почему стало обычным делом, особенно с улучшением излучателей с высокой световой плотностью, заключать их в линзу TIR, чтобы направлять почти весь свет к цели.

TIR Optics

Оптика или линзы с полным внутренним отражением (TIR), как правило, изготавливаются методом литья под давлением из полимеров и используют преломляющую линзу внутри отражателя. Обычно они имеют форму конуса и могут иметь очень высокую эффективность при отражении и контроле распространения света светодиодов. Обычно они работают так, что линза направляет свет от центра излучателя how TIR LED optics work к отражателю, который затем отправляет его коллимированным и контролируемым лучом, узким, широким, независимо от вашего выбора.

Есть дополнительная поверхность над сборкой, которая дает больше возможностей для модификации света. Эти виды обработки поверхности (рябь, матирование, полировка и т. Д.) Рассеивают свет, расширяют луч или формируют распределение.

led-optic-carclo-10003-15_tv TIR-оптика действительно хорошо работает со светодиодами, поскольку они используют характеристики излучателя. Другие формы света излучают тепло наружу, тогда как светодиоды отводят тепло от своего основания, что позволяет этой оптике TIR плотно прилегать и полностью окружать куполообразный верх.Это дает гораздо больше контроля, поскольку они освещают и контролируют буквально прямо от источника света.

Оптика

TIR широко используется в наружном освещении, а также сделала большие шаги в области внутреннего освещения. Они идеально подходят для управления узким светом, но не работают, когда акцент делается на рассеянный свет и слабую ослепленность.

имеет значение

Отношение размера светодиода к размеру оптики определяет угол луча. Если вам нужен узкий луч, исходящий от вашего светодиода, для этого потребуется излучатель меньшего размера или оптика большего размера.Излучатели меньшего размера ограничивают выход, в то время как оптика большего размера действительно расширяет пределы литья под давлением. Важно действительно знать, что вы ищете (больше света, даже рассеивание света и т. Д.) При соединении светодиодов и оптики вместе для вашего приложения.

Подбор матча

Установить оптику на светодиоды на самом деле довольно просто, особенно если вы знакомы с источниками питания светодиодов. У нас есть широкий ассортимент оптики TIR от Carclo, которая хорошо сочетается с нашими предложениями Cree и Luxeon LED.В нашем разделе оптики просто выберите светодиод, который вы хотите использовать, и появится список оптики и держателей оптики, совместимых с тем, что вы хотите использовать.

Тройная оптика будет хорошо работать с нашими светодиодными звездами, так как у них есть опускающиеся ножки, которые подходят прямо в отверстия на наших правых платах. С одноразовой оптикой TIR вам понадобится держатель для линз, именно здесь вам важно перейти на страницу оптики и посмотреть, какие держатели подходят к каким светодиодам. Untitled Banner (2)

Если вы хотите построить свой собственный свет, лучше всего протестировать несколько различных вариантов и посмотреть, какой из них обеспечивает нужный вам свет.Следите за обновлениями в нашем следующем сегменте светодиодной оптики, где мы вместе протестируем светодиоды и оптику, чтобы увидеть, какие лучи они излучают на разных расстояниях.

.

Как работают светоизлучающие диоды

Светодиоды , обычно называемые светодиодами, - настоящие незамеченные герои в мире электроники. Они выполняют много разных работ на самых разных устройствах. Они формируют числа на цифровых часах, передают информацию с пультов дистанционного управления, зажигают часы и сообщают вам, когда ваши приборы включены. Собранные вместе, они могут формировать изображения на огромном телеэкране или освещать светофор.

По сути, светодиоды - это просто крошечные лампочки, которые легко встраиваются в электрическую цепь.Но, в отличие от ламп накаливания, у них нет перегоревшей нити, они потребляют меньше электроэнергии и не сильно нагреваются. Они освещаются исключительно движением электронов в полупроводниковом материале и служат столько же, сколько и стандартный транзистор. Срок службы светодиода на тысячи часов превосходит короткий срок службы лампы накаливания. Из-за этих преимуществ крошечные светодиоды - одна из самых популярных технологий, используемых для освещения ЖК-телевизоров.

Объявление

Светодиоды

имеют ряд преимуществ перед обычными лампами накаливания, но их главное преимущество - КПД .В лампах накаливания процесс производства света включает в себя выделение большого количества тепла (нить накаливания должна быть нагрета для освещения). Эта энергия полностью расходуется впустую, если вы не используете лампу в качестве обогревателя, потому что огромная часть доступного электричества не идет на производство видимого света. Условно говоря, светодиоды выделяют очень мало тепла. Гораздо больший процент электроэнергии идет непосредственно на производство света, что значительно снижает потребность в электроэнергии.

На ватт светодиоды излучают больше люмен (или количества видимого света), чем обычные лампы накаливания.Светоизлучающие диоды имеют более высокую световую отдачу (насколько эффективно электричество преобразуется в видимый свет), чем лампы накаливания - лампа накаливания мощностью 60 Вт может генерировать от 750 до 900 люмен, но вы можете получить такой же световой поток от светодиодной лампы, используя только 6-8 Вт. И та же светодиодная лампа может прослужить 25000 часов, но 60-ваттная лампа накаливания, вероятно, будет гореть только около 1200 часов. Другими словами, одна светодиодная лампа может прослужить до 21 лампы накаливания мощностью 60 Вт, горящей последовательно [источник: EarthEasy].

До недавнего времени светодиоды были слишком дорогими для использования в большинстве осветительных приборов, потому что они построены на основе современных полупроводниковых материалов. Цена на полупроводниковые устройства резко упала после 2000 года, однако, светодиоды стали более экономичным вариантом освещения для широкого круга ситуаций. Хотя они могут быть дороже, чем передние лампы накаливания (около 5 долларов по сравнению с 1 долларом для ламп накаливания), их более низкая стоимость в конечном итоге может сделать их более выгодной покупкой. Несколько компаний начали продавать светодиодные лампы, предназначенные для конкуренции с лампами накаливания и компактными люминесцентными лампами, которые обещают обеспечить долгую жизнь яркого света и удивительную энергоэффективность.

В этой статье мы рассмотрим технологию, лежащую в основе этих повсеместных поворотников, осветив при этом некоторые интересные принципы электричества и света.

.

Simple English Wikipedia, бесплатная энциклопедия

Молодежь продает мобильные лампы в Бенине

Фонарь (на североамериканском английском) или фонарик (в большинстве стран Содружества) - это небольшой переносной прожектор. Его функция - луч света, помогающий видеть. Обычно для этого требуются батарейки.

Свет производится небольшой лампочкой. В 20 веке это обычно была лампа накаливания. В настоящее время большинство используют светодиоды, которые работают немного иначе.В 1896 году была изобретена первая сухая аккумуляторная батарея. В отличие от предыдущих батарей, в нем использовался пастообразный электролит вместо жидкости. Это была первая батарея, подходящая для портативных электрических устройств, поскольку она не проливалась и не ломалась, и работала в любом положении. Иногда электричество поступает от небольшого генератора вместо батареи.

Факел также может относиться к легковоспламеняющейся палке, которую зажигают для получения света и (или) тепла.

Сотни лет назад люди использовали свечи для внутреннего освещения.Это было дорого, и как только свеча тухла, вам приходилось покупать или делать новую, иначе вы застряли в темноте. Когда было открыто электричество и была изобретена электрическая лампочка, Дэвид Мизелл, британец, работавший в нью-йоркском магазине Хьюберта в 1898 году, придумал лампочку, которую можно было взять с собой куда угодно. Затем был изобретен факел.

.

Отправить ответ

avatar
  Подписаться  
Уведомление о