Какое сопротивление обмоток асинхронного двигателя таблица: Какое сопротивление обмоток электродвигателя. Сам себе электрик

Содержание

Сопротивление обмоток электродвигателя таблица - Всё о электрике

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 1. Общие правила

Глава 1.8. Нормы приемо-сдаточных испытаний

Электродвигатели переменного тока

1.8.15. Электродвигатели переменного тока до 1 кВ испытываются по п. 2, 4, 6, 10, 11. ¶

Электродвигатели переменного тока выше 1 кВ испытываются по п. 1-4,7,9-11. ¶

По п. 5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде. ¶

1. Определение возможности включения без сушки электродвигателей напряжением выше 1 кВ. Следует производить в соответствии с разд. 3 «Электрические машины» СНиП 3.05.06-85. «Электротехнические устройства» Госстроя России. ¶

2. Измерение сопротивления изоляции. Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям инструкции, указанной в п. 1. В остальных случаях сопротивление изоляции должно соответствовать нормам, приведенным в табл. 1.8.8. ¶

Таблица 1.8.8. Допустимое сопротивление изоляции электродвигателей переменного тока.

Напряжение мегаомметра, кВ

Обмотка статора напряжением до 1 кВ

Не менее 0,5 МОм при температуре 10-30 °С

Обмотка ротора синхронного электродвигателя и электродвигателя с фазным ротором

Не менее 0,2 МОм при температуре 10-30 °С (допускается не ниже 2 кОм при +75 °С или 20 кОм при +20 °С для неявнополюсных роторов)

Подшипники синхронных электродвигателей напряжением выше 1 кВ

Не нормируется (измерение производится относительно фундаментной плиты при полностью собранных маслопроводах)

3. Испытание повышенным напряжением промышленной частоты. Производится на полностью собранном электродвигателе. ¶

Испытание обмотки статора производится для каждой фазы в отдельности относительно корпуса при двух других, соединенных с корпусом. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается производить испытание всей обмотки относительно корпуса.

Значения испытательных напряжений приведены в табл. 1.8.9. Продолжительность приложения нормированного испытательного напряжения 1 мин. ¶

4. Измерение сопротивления постоянному току: ¶

а) обмоток статора и ротора. Производится при мощности электродвигателей 300 кВт и более. ¶

Измеренные сопротивления обмоток различных фаз должны отличаться друг от друга или от заводских данных не более чем на 2%; ¶

б) реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Значение сопротивления должно отличаться от паспортных данных не более чем на 10%. ¶

5. Измерение зазоров между сталью ротора и статора. Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 90°, должны отличаться не более чем на 10% среднего размера. ¶

Таблица 1.8.9. Испытательное напряжение промышленной частоты для электродвигателей переменного тока.

Испытательное напряжение, кВ

Мощность до 1 МВт, номинальное напряжение выше 1 кВ

Мощность выше 1 МВт, номинальное напряжение до 3,3 кВ

Мощность выше 1 МВт, номинальное напряжение выше 3,3 до 6,6 кВ

Мощность выше 1 МВт, номинальное напряжение выше 6,6 кВ

Обмотка ротора синхронного электродвигателя

8Uном системы возбуждения, но не менее 1,2

Обмотка ротора электродвигателя с фазным ротором

Реостат и пускорегулировочный резистор

Резистор гашения поля синхронного электродвигателя

6. Измерение зазоров в подшипниках скольжения. Размеры зазоров приведены в табл. 1.8.10. ¶

7. Измерение вибрации подшипников электродвигателя. Значения вибрации, измеренной на каждом подшипнике, должны быть не более значений, приведенных ниже: ¶

Синхронная частота вращения электродвигателя, Гц

Допустимая вибрация, мкм

8. Измерение разбега ротора в осевом направлении. Производится для электродвигателей, имеющих подшипники скольжения. Осевой разбег не должен превышать 2-4 мм. ¶

9. Испытание воздухоохладителя гидравлическим давлением. Производится избыточным гидравлическим давлением 0,2-0,25 МПа (2-2,5 кгс/см 2 ). Продолжительность испытания 10 мин. При этом не должно наблюдаться снижение давления или утечки жидкости, применяемой при испытании. ¶

10. Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом. Продолжительность проверки не менее 1 ч. ¶

11. Проверка работы электродвигателя под нагрузкой. Производится при нагрузке, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию. При этом для электродвигателя с регулируемой частотой вращения определяются пределы регулирования. ¶

Таблица 1.8.10. Наибольший допустимый зазор в подшипниках скольжения электродвигателей.

Изоляция электродвигателя

При испытаниях электродвигателя после ремонта или хранения на складе одним из важных параметров является сопротивление изоляции.

Измерение сопротивление изоляции электродвигателя

Проверку изоляции производят разными способами.

Испытание изоляции мегомметром

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение “мегаомы”;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около “0”;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра – 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях – 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

При появлении шума, стуков, дыма или “плавающих” показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях.

Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора “звезда” или “треугольник” необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.

Сушка электродвигателя

Если пониженное сопротивление вызвано попаданием на двигатель влаги или хранением в сыром помещении, то электромашину можно высушить. Для этого её необходимо разобрать – снять крышки подшипниковых щитов и вынуть ротор. Это делается для свободного выхода влаги.

Совет! Можно снять только один щит, а ротор вынуть вместе со вторым.

После разборки осуществляется сушка одним из способов:

  • Подачей на обмотки пониженного напряжения. Ток при этом не должен превышать номинальный.
  • Вставить в статор нагреватель. Чаще всего для этого используется лампа накаливания 60-100Вт.

Через сутки проводится повторное измерение изоляции. Если сопротивление растёт, то сушка продолжается до полного высыхания, если нет, то двигатель отправляется на средний ремонт в специализированное предприятие. Этот вид ремонта включает в себя пропитку обмоток лаком и повторную сушку.

Проверка изоляции является необходимой частью испытаний электродвигателя. Виды проверок в отдельных случаях определяются ПУЭ и другими нормативными документами.

На первый взгляд обмотка представляет кусок проволоки смотанной определенным образом и в ней нечему особо ломаться. Но у нее есть особенности:

строгий подбор однородного материала по всей длине;

точная калибровка формы и поперечного сечения;

нанесение в заводских условиях слоя лака, обладающего высокими изоляционными свойствами;

прочные контактные соединения.

Если в каком-либо месте провода нарушена любое из этих требований, то изменяются условия для прохождения электрического тока и двигатель начинает работать с пониженной мощностью или вообще останавливается.

Чтобы проверить одну обмотку трехфазного двигателя необходимо отключить ее от других цепей. Во всех электродвигателях они могут собираться по одной из двух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются буквами «Н» (начало) и «К» (конец). Иногда отдельные соединения могут быть спрятаны внутри корпуса, а для выводов используются другие способы обозначения, например, цифрами.

У трехфазного двигателя на статоре используются обмотки с одинаковыми электрическими характеристиками, обладающими равными сопротивлениями. Если при замере омметром они показывают разные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Визуально оценить качество обмоток не представляется возможным из-за ограниченного допуска к ним. На практике проверяют их электрические характеристики, учитывая, что все неисправности обмоток проявляются:

обрывом, когда нарушается целостность провода и исключается прохождение электрического тока по нему;

коротким замыканием, возникающем при нарушении слоя изоляции между входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается между одним или несколькими близкорасположенными витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электрическое сопротивление и не создавая ими определенной работы;

пробоем изоляции между обмоткой и корпусом статора или ротора.

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Прибор покажет большое сопротивление — ∞, которое учитывает образованный разрывом участок воздушного пространства.

Проверка обмотки на возникновение короткого замыкания

Двигатель, внутри электрической схемы которого возникло короткое замыкание, отключается защитами от сети питания. Но, даже при быстром выводе из работы таким способом место возникновения КЗ хорошо видно визуально за счет последствий воздействия высоких температур с ярко выраженным нагаром или следами оплавления металлов.

При электрических способах определения сопротивления обмотки омметром получается очень маленькая величина, сильно приближенная к нулю. Ведь из замера исключается практически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это наиболее скрытая и сложно определяемая неисправность. Для ее выявления можно воспользоваться несколькими методиками.

Способ омметра

Прибор работает на постоянном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков создает значительно большую индуктивную составляющую.

При замыкании одного витка, а их общее количество может быть несколько сотен, изменение активного сопротивления заметить очень сложно. Ведь оно меняется в пределах нескольких процентов от общей величины, а подчас и меньше.

Можно попробовать точно откалибровать прибор и внимательно измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в этом случае не всегда будет видна.

Более точные результаты позволяет получить мостовой метод измерения активного сопротивления, но это, как правило, лабораторный способ, недоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании изменяется соотношение токов в обмотках, проявляется излишний нагрев статора. У исправного двигателя токи одинаковы. Поэтому прямое их измерение в действующей схеме под нагрузкой наиболее точно отражает реальную картину технического состояния.

Измерения переменным током

Определить полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда возможно. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы двигателя можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток позволит токоограничивающий резистор или реостат соответствующего номинала.

При выполнении замера обмотка находится внутри магнитопровода, а ротор или статор могут быть извлечены. Баланса электромагнитных потоков, на условие которого проектируется двигатель, не будет. Поэтому используется пониженное напряжение и контролируются величины токов, которые не должны превышать номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его останется сравнить с характеристиками других обмоток.

Эта же схема позволяет снять вольтамперные характеристики обмоток. Просто надо выполнить замеры на разных токах и записать их в табличной форме или построить графики. Если при сравнении с аналогичными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Способ основан на создании вращающегося электромагнитного поля исправными обмотками. Для этого на них подается трехфазное симметричное напряжение, но обязательно пониженной величины. С этой целью обычно применяют три одинаковых понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки эксперимент проводят кратковременно.

Небольшой стальной шарик от шарикоподшипника вводят во вращающееся магнитное поле статора сразу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превышать ток в обмотках больше номинальной величины и следует учитывать, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это затруднит правильность сборки.

На практике для поиска полярности используются 2 способа:

1. с помощью маломощного источника постоянного тока и чувствительного амперметра, показывающего направление тока;

2. методом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На внешней поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых надо определить.

С помощью омметра вызванивают и помечают вывода, относящиеся к каждой обмотке, например, цифрами 1, 2, 3. Затем произвольно маркируют на любой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой посередине шкалы, способной указывать направление тока.

Минус батарейки жестко подключают к концу выбранной обмотки, а плюсом кратковременно прикасаются к ее началу и сразу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электромагнитной индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. Причем, если полярность обмоток угадана правильно, то стрелка амперметра отклонится вправо при начале импульса и отойдет влево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто перепутана. Останется только промаркировать выводы второй обмотки.

Очередная третья обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Здесь тоже вначале вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Затем произвольно маркируют концы первой выбранной обмотки для подключения к понижающему трансформатору напряжения, например, на 12 вольт.

Две оставшиеся обмотки случайным образом скручивают в одной точке двумя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в остальные обмотки с такой же величиной, поскольку у них равное число витков.

За счет последовательного подключения второй и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. В нашем случае при совпадении направления обмоток эта величина будет составлять 24 вольта, а при разной полярности — 0.

Останется промаркировать все концы и выполнить контрольный замер.

В статье дан общий порядок действий при проверке технического состояния какого-то произвольного двигателя без конкретных технических характеристик. Они в каждом индивидуальном случае могут меняться. Смотрите их в документации на ваше оборудование.

{SOURCE}

Какое сопротивление обмоток асинхронного двигателя таблица

Электродвигатели применяются во многих бытовых устройствах, поэтому если прибор, в котором установлен агрегат начинает барахлить, то, во многих случаях, диагностические мероприятия следует начинать с прозвона обмотки движка. Как прозвонить электродвигатель мультиметром, и сделать это правильно, будет подробно описано ниже.

Как прозвонить: условия

Прежде чем проверить электродвигатель на неисправность, необходимо убедиться в том, что шнур и вилка прибора абсолютно исправны. Обычно об отсутствии нарушения подачи электрического тока в устройство, можно судить по светящейся контрольной лампе.

Убедившись в том, что электрический ток поступает к электродвигателю, необходимо осуществить демонтаж его из корпуса устройства, при этом сам прибор должен быть полностью обесточен, во время выполнения данной операции.

Проверка якоря и статора электродвигателя производится мультиметром. Последовательность измерений зависит от модели электрического агрегата, при этом, прежде чем прозвонить электродвигатель, следует убедиться в исправности измерительного прибора.

Наиболее частой «поломкой» мультиметров является уменьшение заряда батареи, в этом случае можно получить искажённые результаты замеров сопротивления.

Ещё одним важным условием для того чтобы прозвонить электрический агрегат правильно, является полное приостановление каких-либо других дел и полностью посвятить время на выполнение диагностических работ, иначе можно легко пропустить какой-либо участок обмотки электродвигателя, в котором и может быть причина неполадок.

Прозвонка асинхронного двигателя

Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:

  1. Произвести замеры сопротивления между выводами двигателя.
    Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата.
  2. Провести диагностику утечки тока на «массу».
    Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.

Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований. Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание.

При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.

Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.

Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.

Как прозвонить коллекторный двигатель

Коллекторный агрегат также можно прозвонить мультиметром. Данный тип электродвигателей используется в цепи постоянного тока.

Коллекторные двигатели переменного тока встречаются реже, например в различных электроинструментах. Наиболее качественно прозванивать такие изделия можно в том случае, если полностью разобрать электрический двигатель.

Проверить якорь электродвигателя, а также прозвонить обмотку статора можно будет с помощью мультиметра, который должен быть переведён в режим измерения сопротивления до 200 Ом.

Наиболее часто статор коллекторного агрегата состоит из двух независимых обмоток, которые и требуется прозвонить мультиметром для определения их исправности.

Точное значение данного показателя, можно узнать в документации к электродвигателю, но о работоспособности обмотки можно судить в том случае, если прибор покажет небольшое значение сопротивления.

В мощных двигателях постоянного тока электрооборудования автомобиля, значение сопротивления статора будет настолько малым, что его отличие от короткозамкнутого проводника, может составлять десятые доли Ома. Менее мощные устройства имеют сопротивление обмотки статора в пределах 5 — 30 Ом.

Для того чтобы прозвонить мультиметром обмотки статора коллекторного электродвигателя, необходимо соединить щупы измерительного прибора с выводами данных обмоток. Если в процессе диагностических мероприятий будет выявлено отсутствие сопротивления даже в одном контуре, дальнейшая эксплуатация агрегата не осуществляется.

Ротор коллекторного электродвигателя состоит из значительно большего количества обмоток, но проверка якоря не займёт много времени.

Для того чтобы прозвонить эту деталь, необходимо включить мультиметр в режим измерения сопротивления до 200 Ом и расположить щупы мультиметра на коллекторе таким образом, чтобы они находились на максимальном удалении друг от друга.

Таким образом щупы займут место щёток двигателя и одну из нескольких обмоток якоря можно будет прозвонить. Если мультиметр покажет какое-либо значение, то не снимая щупов измерительного устройства с коллектора, следует провернуть слегка ротор, до момента соединения следующей обмотки со щупами устройства.

Таким образом проверить обмотку можно без особых усилий. Если мультиметр покажет примерно одинаковое значение сопротивления каждого контура, то это будет означать, что якорь устройства абсолютно исправен.

Для того чтобы правильно прозвонить данный тип двигателя, необходимо осуществить проверку возможной утечки электрического тока на «массу».

Это нарушение может привести не только к выходу из строя электродвигателя, но и к увеличению вероятности получения электротравмы. Проверить якорь и статор коллекторного двигателя на пробой не составит большого труда, для этого необходимо включить режим измерения сопротивления до 2 000 кОм. Для проверки статора достаточно подключить одну клемму к корпусу, а вторую к одной из обмоток.

Чтобы прозвонить эту часть электродвигателя правильно, во время выполнения данной операции запрещается прикасаться руками к металлической части щупов мультиметра, или к корпусу статора и проводки измеряемого контура.

Если не придерживаться этого правила, то можно получить ложноположительные результаты, так как через тело человека будет проходить достаточный электрический потенциал. В этом случае мультиметр покажет сопротивление человека, а не «пробой» между корпусом статора и обмоткой.

Аналогичным образом измеряется и возможная утечка электротока на корпус якоря электродвигателя.

Чтобы прозвонить отсутствие «пробоя» на массу устройства, необходимо поочерёдно присоединять щупы мультиметра к корпусу и различным обмоткам ротора электромотора.

Для того чтобы прозвонить различные типы электродвигателей с помощью мультиметра, необходимо приобрести мультиметр, который имеет режим измерения сопротивления.

Сверхточность, при осуществлении подобных действий, не требуется, поэтому можно с успехом использовать дешёвые китайские устройства. Прежде чем прозвонить обмотки двигателя мультиметром, необходимо убедиться в его исправности.

Следует также иметь в виду, что неисправность электродвигателя может иметь различные признаки. Даже в том случае если электрический прибор находится в рабочем состоянии, но обороты двигателя не достигают максимального значения, следует незамедлительно прозвонить возможные повреждения обмоток.

После того как будет произведены все диагностические мероприятия, и электродвигатель будет отремонтирован, производится испытание устройства прежде чем устанавливать его в бытовой прибор или инструмент.

При осуществлении любых электромонтажных или диагностических работ, необходимо полностью отсоединить прибор от сети 220 В. или трёхфазного тока.

Наладку асинхронных двигателей выполняют в следующем объеме:

• проверка механической части;

• измерение сопротивления изоляции обмоток относительно корпуса и между обмотками;

• измерение сопротивлений обмоток постоянному току;

• испытание обмоток повышенным напряжением промышленной частоты;

Внешний осмотр асинхронного двигателя начинают со щитка.

На щитке должны быть следующие данные:

• наименование или товарный знак завода-изготовителя,

• тип и заводской номер,

• номинальные данные (мощность, напряжение, сила тока, частота вращения, схема соединения обмотки, коэффициент полезного действия, коэффициент мощности),

• масса и ГОСТ на двигатель.

Ознакомление со щитком двигателя в начале работы является обязательным. Затем проверяют состояние внешней поверхности двигателя, его подшипниковых узлов, выходного конца вала, вентилятора и состояние клеммных выводов.

Если трехфазный двигатель не имеет составных и секционированных обмоток на статоре, то выводы обозначают в соответствии с табл. 1, а при наличии таких обмоток — выводы обозначают теми же буквами, что и простые обмотки, но с дополнительными цифрами впереди прописных букв. Для многоскоростных асинхронных двигателей впереди букв ставят цифры, указывающие на число полюсов данной секции.

Примечание: клеммы с нумерацией П — подключены к сети, С – свободны, З – закорочены

Маркировку щитков многоскоростных двигателей и способы их включения на разные скорости можно объяснить с помощью табл. 2.

При внешнем осмотре асинхронного двигателя особое внимание надо обращать на состояние коробки выводов и выводные концы, в которых очень часто встречаются различные нарушения изоляции, при этом измеряют расстояние между токоведущими частями и корпусом. Оно должно быть достаточно велико, чтобы не происходило перекрытия по поверхности. Не менее важной является величина выбега вала в осевом направлении, которая по нормам не должна превышать 2 мм (по 1 мм в одну сторону) для двигателей до 40 кВт.

Большое значение имеет величина воздушного зазора, так как оказывает существенное влияние на характеристики асинхронных двигателей, поэтому после ремонтов или в случае неудовлетворительной работы двигателя измеряют воздушный зазор в четырех диаметрально противоположных точках. Зазоры должны быть одинаковы по всей окружности и не должны отличаться в любой из этих четырех точек более, чем на 10% от среднего значения.

К асинхронным двигателям целого ряда станков, таких как резьбошлифовальные и зубошлифовальные, предъявляют особые требования с точки зрения биения и вибраций. На биение вала и вибрации электрических машин большое влияние оказывает точность обработки и состояние вращающихся частей машины. Особенно велики биения и вибрации при прогнутом вале двигателя.

Биение — отклонение от заданного (правильного) взаимного расположения поверхностей вращающихся или колеблющихся деталей типа тел вращения. Различают радиальные и торцовые биения.

Для всех машин биения нежелательны, так как при этом нарушается нормальная работа подшипниковых узлов и машины в целом. Величину биения измеряют с помощью часового индикатора, который позволяет измерять биения от 0,01 мм до 10 мм. При измерении биения вала наконечник индикатора упирают в вал, вращающийся с небольшой скоростью. По отклонению стрелки часового индикатора судят о величине биения, которая не должна превышать значений, указанных в технических условиях на станок или двигатель.

Изоляция электрической машины является важным показателем, так как от ее состояния зависит долговечность и надежность машины. Согласно ГОСТ сопротивление изоляции обмоток в МОм электрических машин должно быть не меньше

где U н— номинальное напряжение обмотки, В; P н — номинальная мощность машины, кВт.

Сопротивление изоляции измеряют перед пробным пуском двигателя, а затем в процессе эксплуатации периодически, кроме того, контролируют после длительных перерывов в работе и после каждого аварийного отключения привода.

Сопротивление изоляции обмоток относительно корпуса и между обмотками измеряют при холодных обмотках и в нагретом состоянии, при температуре обмоток, равной температуре номинального режима, непосредственно перед проверкой электрической прочности изоляции обмоток.

Если в двигателе выведены начало и конец каждой фазы, то сопротивление изоляции измеряют отдельно для каждой фазы относительно корпуса и между обмотками. У многоскоростных двигателей сопротивление изоляции проверяют для каждой обмотки в отдельности.

Для измерения сопротивления изоляции электродвигателей напряжением до 1000 В применяют мегомметры на 500 и 1000 В.

Измерение проводят следующим образом, зажим мегомметра «Экран» присоединяют к корпусу машины, а второй зажим гибким проводом с надежной изоляцией присоединяют к выводу обмотки. Концы проводников должны быть заделаны в ручки из изоляционного материала с металлическим штырем, заостренным на конце, для обеспечения надежного контакта.

Ручку мегомметра вращают с частотой, примерно равной 2 об/с. Двигатели небольшой мощности имеют небольшую емкость, поэтому стрелка прибора устанавливается в положение, соответствующее сопротивлению изоляции обмотки машины.

Для новых машин сопротивление изоляции, как показала практика, колеблется при температуре 20° С в пределах от 5 до 100 МОм. К двигателям малоответственных приводов небольшой мощности и напряжением до 1000 В «Правила устройств электроустановок» не предъявляют конкретных требований к величине R. Из практики известны случаи, когда двигатели, имеющие сопротивления менее 0,5 МОм, вводились в работу, их сопротивление изоляции повышалось и в дальнейшем они работали безотказно.

Снижение сопротивления изоляции в процессе эксплуатации вызывается поверхностной влажностью, загрязнением поверхности изоляции токопроводящей пылью, проникновением в толщу изоляции влаги, химическим разложением изоляции. Для уточнения причин снижении сопротивления изоляции необходимо произвести измерение с помощью двойного моста, например Р-316, при двух направлениях тока в контролируемой цепи. При разных результатах замеров наиболее вероятная причина — проникновение влаги в толщу изоляции.

Конкретно вопрос о включении асинхронного двигателя в работу должен решаться только после проведения испытания обмоток повышенным напряжением. Включение двигателя, имеющего малое значение сопротивления изоляции, без испытания повышенным напряжением допускается только в исключительных случаях, когда решается вопрос, что выгоднее: подвергнуть опасности двигатель или допустить простой дорогостоящего оборудования.

В процессе эксплуатации двигателя возможны повреждения изоляции, приводящие к снижению ее электрической прочности ниже допустимых норм . Согласно ГОСТ испытание электрической прочности изоляции обмоток по отношению к корпусу и между собой производят при отключенном от сети двигателе в течение 1 мин испытательным напряжением, величина которого должна быть не менее величины, приведенной в табл. 3.

Повышенное напряжение подают на одну из фаз, а остальные фазы присоединяют к корпусу двигателя. Если обмотки соединены внутри двигателя в звезду или треугольник, то испытание изоляции между обмоткой и корпусом проводят одновременно для всей обмотки. При выполнении испытаний напряжение нельзя прикладывать мгновенно. Испытание начинают с 1/3 испытательного напряжения, затем постепенно поднимают напряжение до испытательного, причем время подъема от половинного до полного испытательного напряжения должно составлять не менее 10 с.

Полное напряжение выдерживают в течение 1 мин, после чего его плавно снижают до 1/3Uисп и отключают испытательную установку. Результаты испытания считают удовлетворительными, если во время испытания не происходило пробоя изоляции или перекрытий по поверхности изоляции, при этом по приборам не наблюдались резкие толчки, свидетельствующие о частичных повреждениях изоляции.

Если при испытании произошел пробой, находят ею место и ремонтируют обмотку. Место пробоя можно найти путем повторного приложения напряжения с последующим наблюдением за появлением искр, дыма или легким потрескиванием при искрении, невидимом снаружи.

Измерение сопротивления обмоток постоянному току , которое проводят для уточнения технических данных элементов схемы, дает возможность в некоторых случаях определить наличие короткозамкнутых витков. Температура обмоток при измерении не должна отличаться от окружающей более чем на 5° С.

Измерения выполняют с помощью одинарного или двойного моста, по методу амперметра—вольтметра или методом микроомметра. Величины сопротивлений не должны отличаться от средней более чем на 20%.

Согласно ГОСТ при измерении сопротивления обмоток каждое сопротивление должно быть измерено 3 раза. При измерении сопротивления обмотки по методу амперметра—вольтметра каждое сопротивление должно быть измерено при трех различных значениях тока. За действительную величину сопротивления принимают среднее арифметическое из трех измерений.

Метод амперметра—вольтметра (рис. 1) применяют в тех случаях, когда не требуется большой точности измерения. Измерение методом амперметра—вольтметра основано на законе Ома:

где R х— измеряемое сопротивление, Ом; U — показание вольтметра, В; I — показание амперметра, А.

Точность измерения при этом методе определяется суммарной погрешностью приборов. Так, если класс точности амперметра 0,5%, а вольтметра — 1%, то суммарная погрешность составит 1,5%.

Для того чтобы метод амперметра—вольтметра давал более точные результаты, необходимо соблюдать следующие условия:

1. точность измерения в значительной степени зависит от надежности контактов, поэтому перед измерением рекомендуется контакты пропаять;

2. источником постоянного тока должна служить сеть или хорошо заряженная батарея напряжением 4—6 В, для того чтобы избежать влияния падения напряжения на источнике;

3. отсчет по приборам должен производиться одновременно.

Измерение сопротивления с помощью мостов применяется главным образом в тех случаях, когда необходимо получить большую точность измерения. Точность мостовых методов достигает 0,001%. Пределы измерений мостов колеблются от 10-5 до 106 Ом.

Микроомметром измеряют при большом числе замеров, например переходных сопротивлений контактов, межкатушечных соединений.

Рис. 1. Схема измерения сопротивления обмоток постоянному току по методу амперметра—вольтметра

Рис. 2. Схема измерении сопротивления обмотки статора асинхронного двигателя, соединенной в звезду (а) и в треугольник (б)

Измерения проводят быстро, так как отсутствует необходимость в регулировке прибора. Сопротивление обмотки постоянному току для двигателей до 10 КВт измеряют не ранее, чем через 5 ч по окончании его работы, а для двигателей более 10 кВт — не менее чем через 8 ч при неподвижном роторе. Если у статора двигателя выведены все шесть концов обмоток, то измерение проводят на обмотке каждой фазы отдельно.

При внутреннем соединении обмоток в звезду попарно измеряют сопротивление двух последовательно соединенных фаз (рис. 2, а). При этом сопротивление каждой фазы

При внутреннем соединении в треугольник измеряют сопротивление между каждой парой выводных концов линейных зажимов (рис. 2, б). Считая, что сопротивления всех фаз равны, определяют сопротивление каждой фазы:

Для многоскоростных двигателей аналогичные измерения проводят для каждой обмотки или для каждой секции.

Проверка правильности включения обмоток машин переменного тока. Иногда, особенно после ремонтов водные концы асинхронного двигателя оказываются непромаркированными, возникает необходимость определения начал и концов обмоток. Наиболее распространены два способа определения.

По первому способу сначала определяют попарно концы обмоток отдельных фаз. Затем собирают схему согласно рис. 3, а. «Плюс» источника присоединяют к началу одной из фаз, «минус» — к концу.

Условно принимают C1, С2, С3 за начало фаз 1, 2, 3, а С4, С 5 , С 6 — за концы 4, 5, 6. В момент включения тока в обмотках других фаз (2—3) индуктируется электродвижущая сила с полярностью «минус» на началах С2 и C3 и «плюс» на концах С5 и С6. В момент отключения тока в фазе 1 полярность на концах фаз 2 и 3 противоположна полярности при их включении.

После маркировки фазы 1 источник постоянного тока присоединяют к фазе 3, если при этом стрелка милливольтметра или гальванометра отклоняется в ту же сторону, то все концы обмоток замаркированы правильно.

Для определения начал и концов по второму способу соединяют обмотки двигателя в звезду или треугольник (рис. 3, б), а на фазу 2 подают однофазное пониженное напряжение. В этом случае между концами C1 и С2, а также С2 н С3 возникает напряжение, несколько большее подведенного, а между концами C1 и С3 напряжение оказывается равным нулю. Если концы фаз 1 и 3 включены неправильно, то напряжение между концами С1 и С2, С2 и С3 будет меньше подведенного. После взаимного определения маркировки первых двух фаз аналогично определяют третью.

Первоначальное включение асинхронного двигателя. Для выяснения полной исправности двигателя испытывают его в режиме холостого хода и под нагрузкой. Предварительно вновь проверяют состояние механических частей, наполнение смазкой подшипников.

Легкость хода двигателя проверяют путем проворачивания вала вручную, при этом не должно быть слышно треска, скрежета и тому подобных звуков, свидетельствующих о соприкосновении ротора и статора, а также вентилятора и кожуха, затем проверяют правильность направления вращения, для этого двигатель включают кратковременно.

Продолжительность первого включения 1—2 с. Одновременно наблюдают величину пускового тока. Кратковременный пуск двигателя целесообразно повторить 2—3 раза, постепенно увеличивая продолжительность включения, после чего двигатель можно включить на более длительный период. За время работы двигателя на холостом ходу наладчик должен убедиться в хорошем состоянии ходовых частей: отсутствии вибраций, толчков тока, отсутствии нагрева подшипников.

При удовлетворительных результатах пробных пусков двигатель включают совместно с механической частью или подвергают испытанию на специальном стенде. Время проверки работы двигателя колеблется от 5 до 8 ч, при этом контролируют температуру основных узлов и обмоток машины, коэффициент мощности, состояние смазки подшипников узлов.

В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.

Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

Виды обмоток

Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
  • Материал провода обмотки должен быть однородным по всей длине.
  • Форма и площадь поперечного сечения провода должны иметь определенную точность.
  • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
  • Провод обмотки должен обеспечивать прочный контакт при соединении.

Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

Проверка обмоток электродвигателя 3-фазного мотора . Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.

Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

Возможные неисправности

Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

  • Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
  • Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
  • Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
  • Пробиванием изоляции между корпусом статора и обмоткой.

Способы
Проверка обмоток электродвигателя на обрыв

Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

Проверка обмоток электродвигателя на короткое замыкание

При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

Проверка обмоток электродвигателя на межвитковое замыкание

Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

Проверка обмоток электродвигателя способом омметра

Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

Измерение тока в каждой фазе

Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

Проверка обмоток электродвигателя переменным током

Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

Проверка обмоток электродвигателя шариком

Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

Определение полярности обмоток электрическим методом

У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.

Чтобы определить маркировку, применяют некоторые способы:
  • Слабым источником постоянного тока и амперметром.
  • Понижающим трансформатором и вольтметром.

Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

Определение маркировки выводов обмотки амперметром и батарейкой

На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

Определение полярности вольтметром и понижающим трансформатором

Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).

Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.

Сопротивление обмоток однофазного двигателя - Мастер Фломастер

Однофазные электрические двигатели – электромеханический преобразователь энергии небольшой мощности. Конструктивно однофазный двигатель похож на трехфазный, однако статорная обмотка такого двигателя является двухфазной (основная и пусковая обмотки).
Основная (рабочая) обмотка создает магнитное поле при работе электродвигателя. Однако при подключении только рабочей обмотки к питающей сети результирующее магнитное поле будет равно нулю.

Пусковая (вспомогательная) обмотка предназначена для создания необходимого пускового момента. По способу создания пускового момента однофазные электродвигатели можно разделить на двигатели с рабочим конденсатором (конденсатор постоянно подключен к пусковой обмотке) и двигатели с пусковым конденсатором (конденсатор подключается к вспомогательной обмотке на время пуска).

По своему конструктивному исполнению основная и пусковая обмотки имеют ряд отличий. В первую очередь это сечение токопроводящих проводников. Сечение проводов рабочей обмотки больше ввиду длительного пребывания обмотки под нагрузкой. Именно это условие и используется при определении пусковой и рабочей обмоток электродвигателя. Рабочая обмотка имеет бОльшее сечение проводника, а следовательно и меньшее активное сопротивление.

Клеммная коробка однофазного электродвигателя имеет 3 или 4 вывода. Для определения пусковой и рабочей обмоток необходимо произвести измерение активного сопротивления проводников. Иногда обмотки можно различить визуально, зная что рабочая имеет бОльшее сечение.
Рабочая обмотка подключается к сети переменного тока. Один из выводов пусковой – к выводу рабочей обмотки, второй – через конденсатор к другому концу рабочей обмотки. Направление вращения двигателя определяется подключением пусковой обмотки и не зависит от полярности питающего напряжения.

Для электродвигателей с 3 выводами также необходимо произвести измерения активных сопротивлений. Довольно часто встречается комбинация сопротивлений 10 Ом, 25 Ом и 15 Ом. При этом один из выводов основной обмотки будет иметь наименьшее сопротивление (10 Ом), а второй при измерениях с двумя другими выводами покажет 10 Ом и 15 Ом. Третий вывод будет выводом пусковой обмотки. Направление вращения такого двигателя можно изменить лишь изменением схемы соединения обмоток, для чего необходимо произвести разборку электродвигателя.

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
  • три жилы при внутренней сборке схемы треугольника;
  • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
  • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

    Техническое состояние изоляции обмоток

    Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

    В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

    Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

    Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

    Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

    Как видите, промышленностью массово выпущены модели с:

    • повышенным сопротивлением пусковой обмотки;
    • пусковым конденсатором;
    • рабочим конденсатором;
    • пусковым и рабочим конденсатором;
    • экранированными полюсами.

    А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

    • значительное снижение реактивной мощности;
    • повышение КПД;
    • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

    Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

    Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

    Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

    Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

    Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

    Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

    Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

    Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

    Помечаем эти 3 конца уже понятной нам маркировкой:

    Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

    Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

    Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

    Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

    С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

    При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

    Тогда кнопку запуска отпускают:

    • пусковая обмотка отключается самовозвратом среднего контакта;
    • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

    Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

    Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

    Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

    С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

    Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

    Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

    Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

    Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

    2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

    Конденсатор подключают к выводам пусковой и рабочей обмоток.

    В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

    Здесь получается, что:

    • главная обмотка работает напрямую от 220 В;
    • вспомогательная — только через емкость конденсатора.

    Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

    Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

    Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

    Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

    Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

    Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

    При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

    В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

    Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

    Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

    Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

    Где взять номиналы главного и вспомогательного конденсаторов?

    Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

    Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

    Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

    Владелец
    видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

    Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

    Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

    Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

    Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

    В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

    Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

    Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

    Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

    Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

    Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

    Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

    Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

    Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

    Со всеми этими

      Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

    подключение однофазного двигателя

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Проверка обмоток асинхронного двигателя - Морской флот

    Как прозвонить асинхронный трёхфазный электродвигатель?

    Работая промышленным электриком по ремонту и обслуживанию электрооборудования приходилось часто менять электродвигатели вентиляции и различных станков. Для более быстрой предварительной диагностики неисправного электродвигателя выработалась методика его проверки мультиметром. Нужно измерить сопротивление его обмоток между фазными выводами А-В, А-С и В-С, оно должно быть примерно одинаковым, а так же измерить сопротивление между этими выводами и корпусом электродвигателя в пределе измерений прибора 2 МОм или 2000 кОм, оно не должно показать ничего, значит пробоя на корпус нет. Не забываем что провода прибора тоже имеют своё сопротивление, так что при сопоставлении измеренных данных с табличными, вычитайте это сопротивление. На видео показан пример измерения:

    Составил таблицы сопротивлений обмоток некоторых электродвигателей по данным старых книг по перемотке, рассчитав последний столбец методом сложения сопротивления двух обмоток, так как при измерении между выводами А-В, В-С, А-С это и есть последовательное соединение двух обмоток (соединение звезда – все 3 обмотки соединены в одной точке). В таблицах указаны обороты двигателя в зависимости от числа пар полюсов, то есть 750 об/мин, 1000, 1500 и 3000, но на практике они всегда немного меньше и реальные обороты указаны на табличках электродвигателей. Старые движки уже могли быть перемотаны не один раз, и с табличными данными могут не совпадать, но в пределах этого. Так что эта информация нужна только для примерного сопоставления мощности от сопротивления обмоток, у электродвигателей других производителей сопротивление обмоток может отличаться существенно.

    АвтоНовости / Обзоры / Тесты

    Как Проверить Трехфазный Двигатель Мультиметром

    Как проверить состояние обмотки электрического двигателя

    На 1-ый взор обмотка представляет кусочек проволоки смотанной спецефическим образом и в ней нечему особо ломаться. Но у нее есть особенности:

    серьезный подбор однородного материала по всей длине;

    четкая калибровка формы и поперечного сечения;

    нанесение в промышленных критериях слоя лака, владеющего высочайшими изоляционными качествами;

    крепкие контактные соединения.

    Если в каком-либо месте провода нарушена хоть какое из этих требований, то меняются условия для прохождения электронного тока и движок начинает работать с пониженной мощностью либо вообщем останавливается.

    Чтоб проверить одну обмотку трехфазного мотора нужно отключить ее от других цепей. Какие электромоторы можно проверить мультиметром? Трехфазный как проверить изоляцию. Во всех электродвигателях они могут собираться по одной из 2-ух схем:

    Концы обмоток обычно выводятся на клеммные колодки и маркируются знаками «Н» (начало) и «К» (конец). Как проверить двигатель мультиметром. Время от времени отдельные соединения могут быть спрятаны снутри корпуса, а для выводов употребляются другие методы обозначения, к примеру, цифрами.

    У трехфазного мотора на статоре употребляются обмотки с схожими электронными чертами, владеющими равными сопротивлениями. Если при замере омметром они демонстрируют различные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

    Как проявляются неисправности в обмотке

    Зрительно оценить качество обмоток не представляется вероятным из-за ограниченного допуска к ним. На практике инспектируют их электронные свойства, беря во внимание, что все неисправности обмоток появляются:

    обрывом, когда нарушается целостность провода и исключается прохождение электронного тока по нему;

    маленьким замыканием, возникающем при нарушении слоя изоляции меж входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

    межвитковым замыканием, когда изоляция нарушается меж одним либо несколькими близлежащими витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электронное сопротивление и не создавая ими определенной работы;

    пробоем изоляции меж обмоткой и корпусом статора либо ротора.

    Проверка обмотки на обрыв провода

    Этот вид неисправности определяется замером сопротивления изоляции омметром. Устройство покажет огромное сопротивление — ∞, которое учитывает образованный разрывом участок воздушного места.

    Проверка обмотки на возникновение короткого замыкания

    Движок, снутри электронной схемы которого появилось куцее замыкание, отключается защитами от сети питания. Но, даже при резвом выводе из работы таким методом место появления КЗ отлично видно зрительно за счет последствий воздействия больших температур с ярко выраженным нагаром либо следами оплавления металлов.

    При электронных методах определения сопротивления обмотки омметром выходит очень малая величина, очень приближенная к нулю. Ведь из замера исключается фактически вся длина провода за счет случайного шунтирования входных концов.

    Проверка обмотки на возникновение межвиткового замыкания

    Это более сокрытая и трудно определяемая неисправность. Для ее выявления можно пользоваться несколькими методиками.

    Способ омметра

    Устройство работает на неизменном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков делает существенно огромную индуктивную составляющую.

    При замыкании 1-го витка, а их полное количество может быть несколько сотен, изменение активного сопротивления увидеть очень трудно. Ведь оно изменяется в границах нескольких процентов от общей величины, а тотчас и меньше.

    Как прозвонить электродвигатель

    Трёхфазный асинхронный электродвигатель, проверка тестером. На практике довольно проверить электродви.

    Расположение контактов трехфазного двигателя и прозвонка обмоток

    Рассматриваем размещение концов обмоток трехфазного двигателя, определяем, верно ли они подключены.

    Можно испытать точно откалибровать устройство и пристально измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в данном случае не всегда будет видна.

    Более четкие результаты позволяет получить мостовой способ измерения активного сопротивления, но это, обычно, лабораторный метод, труднодоступный большинству электриков.

    Замер токов потребления в фазах

    При межвитковом замыкании меняется соотношение токов в обмотках, проявляется лишний нагрев статора. У исправного мотора токи схожи. Потому прямое их измерение в действующей схеме под нагрузкой более точно отражает реальную картину технического состояния.

    Измерения переменным током

    Найти полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда может быть. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

    У выведенного из работы мотора можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток дозволит токоограничивающий резистор либо реостат соответственного номинала.

    При выполнении замера обмотка находится снутри магнитопровода, а ротор либо статор могут быть извлечены. Баланса электрических потоков, на условие которого проектируется движок, не будет. Про то как проверить и двигатель от можно ли поверить мультиметром? И как можно. Потому употребляется пониженное напряжение и контролируются величины токов, которые не должны превосходить номинальных значений.

    Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его остается сопоставить с чертами других обмоток.

    Эта же схема позволяет снять вольтамперные свойства обмоток. Просто нужно выполнить замеры на различных токах и записать их в табличной форме либо выстроить графики. Если при сопоставлении с подобными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

    Шарик в статоре

    Метод основан на разработке вращающегося электрического поля исправными обмотками. Как проверить электродвигатель мультиметром пошаговая. Для этого на их подается трехфазное симметричное напряжение, но непременно пониженной величины. С этой целью обычно используют три схожих понижающих трансформатора, работающих в каждой фазе схемы питания.

    Для ограничения токовых нагрузок на обмотки опыт проводят краткосрочно.

    Маленькой металлической шарик от шарикоподшипника вводят во крутящееся магнитное поле статора сходу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

    Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

    Во время теста нельзя превосходить ток в обмотках больше номинальной величины и следует учесть, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

    Электрическая проверка полярности обмоток

    У статорных обмоток может отсутствовать маркировка начала и концов выводов и это сделает труднее корректность сборки.

    На практике для поиска полярности употребляются 2 метода:

    1. при помощи маломощного источника неизменного тока и чувствительного амперметра, показывающего направление тока;

    2. способом использования понижающего трансформатора и вольтметра.

    В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

    Проверка полярности посредством батарейки и амперметра

    На наружной поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых нужно найти.

    При помощи омметра вызванивают и отмечают вывода, относящиеся к каждой обмотке, к примеру, цифрами 1, 2, 3. Потом произвольно маркируют на хоть какой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой в центре шкалы, способной указывать направление тока.

    Минус батарейки агрессивно подключают к концу избранной обмотки, а плюсом краткосрочно прикасаются к ее началу и сходу разрывают цепь.

    При подаче импульса тока в первую обмотку он за счет электрической индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. При этом, если полярность обмоток угадана верно, то стрелка амперметра отклонится на право при начале импульса и отойдет на лево при размыкании цепи.

    Если стрелка ведет себя по-другому, то полярность просто спутана. Остается только промаркировать выводы 2-ой обмотки.

    Еще одна 3-я обмотка проверяется аналогичным образом.

    Проверка полярности посредством понижающего трансформатора и вольтметра

    Тут тоже сначала вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

    Потом произвольно маркируют концы первой избранной обмотки для подключения к понижающему трансформатору напряжения, к примеру, на 12 вольт.

    Две оставшиеся обмотки случайным образом скручивают в одной точке 2-мя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в другие обмотки с таковой же величиной, так как у их равное число витков.

    За счет поочередного подключения 2-ой и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. Как проверить датчик парктроника мультиметром (тестером. В нашем случае при совпадении направления обмоток данная величина будет составлять 24 вольта, а при разной полярности — 0.

    Остается промаркировать все концы и выполнить контрольный застыл.

    В статье дан общий порядок действий при проверке технического состояния какого-то случайного мотора без определенных технических черт. Они в каждом личном случае могут изменяться. Смотрите их в документации на ваше оборудование.

    Для выявления неисправности электродвигателя в домашних условиях за неимением дорогостоящего профессионального оборудования ничего не остается, как прозвонить электродвигатель мультиметром. С его помощью можно определить большинство поломок, и вам не придется привлекать специалиста. Итак, что нужно сделать?

    Подготовка

    Перед тем, как проводить диагностику, следует:

    • Обесточить агрегат. Если измерение сопротивления осуществляется в цепи, подключенной к электросети, прибор выйдет из строя.
    • Откалибровать аппарат, то есть выставить стрелку в нулевое положение (щупы должны быть замкнуты).
    • Осмотреть двигатель и выяснить, не затоплен ли он, нет ли запаха горелой изоляции или отломанных деталей и т.д.

    Асинхронный, коллекторный, однофазный и трехфазный двигатели прозваниваются по одной и той же методике, небольшая разница в конструкции особой роли не играет, но есть нюансы, которые необходимо учитывать.

    Этапы работы

    Самые частые неисправности можно поделить на два вида:

    • Наличие контакта в месте, где его не должно быть.
    • Отсутствие контакта в месте, где он должен быть.

    Для начала рассмотрим, как прозвонить 3-фазный электродвигатель мультиметром. Он имеет три катушки, соединенные по схеме «треугольник» или «звезда». На его работоспособность влияют надежность контактов, качество изоляции и правильная намотка.

    • Для начала проверьте замыкание на корпус (имейте в виду, значение получится приблизительное, так как для точных показаний требуются более чувствительные приборы).
    • Установите значения измерений на мультиметре на максимум.
    • Соедините щупы друг с другом, чтобы убедиться в правильности настроек и исправности прибора.
    • Соедините один из щупов с корпусом двигателя, если есть контакт, присоедините второй щуп к корпусу и следите за показаниями.
    • Если сбоев нет, поочередно коснитесь щупом вывода каждой из трех фаз.
    • Если изоляция качественная, проверка должна показать достаточно высокое сопротивление (несколько сотен или тысяч мегом).

    Необходимо помнить, что при измерении сопротивления изоляции с помощью мультиметра показания будут выше допустимых, так как ЭДС прибора не превышает 9в. Двигатель же работает при 220 или 380в. По закону Ома значение сопротивления зависит от напряжения, поэтому делайте скидку на разницу.

    Далее проверьте целостность обмоток, прозвонив три конца, входящих в борно двигателя. При наличии обрыва дальнейшая проверка не имеет смысла, поскольку прежде нужно устранить эту неисправность.

    Затем проверьте короткозамкнутые витки. При соединении «треугольником» показателем неисправности будет большее значение в концах А1 и А3. При соединении «звездой» прибор показывает завышенное значение в цепи А3.

    Зная, как прозвонить асинхронный электродвигатель мультиметром, вы сэкономите время и деньги, так как, возможно, выявятся только мелкие неисправности, которые вы легко устраните самостоятельно. Для более серьезной и детальной диагностики требуются другие приборы, которые редко используются в быту по причине дороговизны. Если вы не смогли найти повреждения с помощью мультиметра, обратитесь к специалисту.

    Проверка коллекторного электродвигателя

    Теперь перейдем к вышеупомянутым нюансам, ведь двигатели бывают разных видов. Как прозвонить коллекторный электродвигатель мультиметром? Схема его проверки выглядит следующим образом:

    • Включите прибор на единицы Ом и измерьте попарно сопротивление ламелей коллектора.
    • Затем измерьте сопротивление между корпусом якоря и коллектором.
    • Проверьте обмотки статора.
    • Измерьте сопротивление между корпусом и выводами статора.

    Межвитковое замыкание определяется только специальным прибором. Существует способ измерения сопротивления якоря. Снимите с него щетки и подведите к пластинам напряжение до 6в, измерьте падение напряжения между ними.

    Для проверки однофазного двигателя прозвоните рабочую и пусковую обмотки. Сопротивление первой должно быть в полтора раза ниже, чем второй.

    Для примера возьмем однофазный мотор с тремя выводами, использующийся в стиральных машинах (чаще старого образца). Если между концами очень большое сопротивление, значит катушки соединены последовательно. Остается найти среднюю точку и таким образом определить концы каждой из них в отдельности.

    Поскольку электродвигатели встречаются в каждом доме в бытовых приборах – это и холодильник, и пылесос, и многое другое – и они периодически ломаются, знать, как проверить однофазный электродвигатель мультиметром, просто необходимо. Если поломка не слишком серьезная, нести прибор в ремонтную мастерскую нецелесообразно. И у вас появится возможность набраться опыта и получить навыки, работая с двигателями разных типов и модификаций.

    Таблица 23. Электродвигатели переменного тока

    Наименование испытания

    Вид испытания

    Нормы испытания

    Указания

    23.1. Измерение сопротивления изоляции:

     

    У электродвигателей мощностью более 5 МВт измерения производятся в соответствии с установленными нормами и инструкциями заводов-изготовителей

    Сопротивление изоляции измеряется мегаомметром на напряжение:

    500 В - у электродвига-телей напряжением до 500 В

    1000 В - у электродвига-телей напряжением до 1000В

    2500 В - у электродвига-телей напряжением выше 1000 В

    1) обмоток статора, у электродвигателей на напряжение выше 1000 В или мощностью от 1 МВт до 5 МВт

    К, Т

    Сопротивление изоляции должно быть не ниже значений, приведенных в табл.28 (Приложение 3.1)

     

    2) обмоток статора, у электродвигателей на напряжение до1000 В

    К, Т

    Сопротивление изоляции обмоток должно быть не менее 1 МОм при температуре 10-30°С, а при температуре 60°С - 0,5 МОм

    Значения сопротивлений относятся ко всем видам изоляции

    3) коэффициент абсорбции (отношение R60/R15) обмоток статора электродвигателей напряжением выше 1000 В

    К, Т

    Значение R60/R15 должно быть не ниже 1,3 у электро-двигателей с термореактивной изоляцией и не ниже 1,2 у электродвигателей с микалентной компаундированной изоляцией

    Производится мегаомметром на напряжение 2500 В для электродвигателей мощностью от 1 до 5 МВт, а также меньшей мощности для электродвигателей наружной установки с микалентной компаундированной изоляцией

    4) обмоток ротора

    К, Т

    Сопротивление изоляции должно быть не менее 0,2 МОм

    Производится у синхронных электродвигателей и асинхронных электродвигателей с фазным ротором напряжением 3 кВ и выше или мощностью более 1 МВт мегаомметром на напряжение 1000 В  (допускается 500 В)

    5) термоиндикаторов с соединительными проводами

    К

    Не нормируется

    Производится мегаомметром на напряжение 250 В

    6) подшипников

    К

    Не нормируется

    Производится у электродвигателей напряжением 3 кВ и выше, подшипники которых имеют изоляцию относительно корпуса, производятся относительно фундаментной плиты при полностью собранных маслопроводах мегаомметром на напряжение 1000 В при ремонтах с выемкой ротора

    23.2. Оценка состояния изоляции обмоток электродвигателей перед включением

    К

    Электродвигатели включаются без сушки, если значения сопротивления изоляции обмоток и коэффициента абсорбции не ниже значений, приведенных в п.23.1.

     

    23.3. Испытание повышенным напряжением промышленной частоты

    К

    Значение испытательного напряжения принимается по табл.29 (Приложение 3.1)

    По решению технического руководителя Потребителя испытание электродвигателей напряжением до 1000 В может не производиться

    23.4. Измерение сопротивления постоянному току:

    К

     

     

    1) обмоток статора и ротора;

     

    Измеренные значения сопротивлений различных фаз обмоток, приведенные к одинаковой температуре, не должны отличаться друг от друга и от исходных данных более чем на ±2%

    Производится у электродвигателей напряжением 3 кВ и выше, сопротивление обмотки ротора измеряется у синхронных двигателей и электродвигателей с фазным ротором

    2) реостатов и пускорегулировочных резисторов

     

    Сопротивление не должно отличаться от исходных значений более чем на ±10%

    У электродвигателей напряжение 3 кВ и выше производится на всех ответвлениях. У остальных измеряется общее сопротивление реостатов и пусковых резисторов и проверяется целостность отпаек

    23.5. Измерение зазоров между сталью ротора и статора

    К

    У электродвигателей мощностью 1000 кВт и более, у всех электродвигателей ответственных механизмов, а также у электродвигателей с выносными подшипниками скольжения размеры воздушных зазоров в точках, расположенных по окружности ротора и сдвинутых относительно друг друга на угол 90°, или в точках, специально предусмотренных при изготовлении электродвигателя, не должны отличаться более чем на 10% от среднего размера

    Производится, если позволяет конструкция электродвигателя

    23.6. Измерение зазоров в подшипниках скольжения

    К

    Увеличение зазоров в подшипниках скольжения сверх значений, приведенных в табл.30 (Приложение 3.1), указывает на необходимость перезаливки вкладыша

    -

    23.7. Проверка электродвигателя на холостом ходу или с ненагруженным механизмом

    К

    Ток холостого хода не должен отличаться более чем на 10% от значения, указанного в каталоге или в инструкции завода изготовителя. Продолжительность испытания - 1 час

    Производится у электродвигателей напряжением 3 кВ и выше и мощностью 100 кВт и более

    23.8. Измерение вибрации подшипников электродвигателя

    К, М

    Вертикальная и поперечная составляющая вибрации, измеренные на подшипниках электро-двигателей, сочлененных с механизмами, не должна превышать значений, указанных в заводских инструкциях. При отсутствии таких указаний см. табл.31 (Приложение 3.1)

    Производится у электро-двигателей напряжением 3 кВ и выше и электро-двигателей ответственных механизмов

    23.9. Измерение разбега ротора в осевом направлении

    К

    Не выше 4 мм, если в заводской инструкции не установлена другая норма

    Производится у электро-двигателей, имеющих подшипники скольжения, ответственных механизмов или в случае выемки ротора

    23.10. Проверка работы электродвига-теля под нагрузкой

    К

    Производится при нагрузке электродвигателя не менее 50% номинальной

    Производится у электро-двигателей напряжением выше 1000 В

    23.11. Гидравлические испытания воздухоохладителя

    К

    Производится избыточным давлением 0,2-0,25 МПа (2-2,5 кгс/см2), если отсутствуют другие указания завода-изготовителя

    Продолжительность испытания - 5-10 мин

    23.12. Проверка исправности стержней короткозамкнутого ротора

    К

    Стержни коротко-замкнутых электродвигателей должны быть целыми

    Производится у асинхронных электродвига-телей мощностью 100 кВт и более

    23.13. Испытание возбудителей

     

    Производится у синхронных электро-двигателей в соответствии с требованиями заводских инструкций

     

    определение обмоток двигателя

    Зачастую, найдя какой-нибудь трехфазный двигатель, мы не можем его запустить по той простой причине, что правильно не определены начала и концы трех обмоток. Восполним этот пробел и применим для этого некоторые способы.
    Способ первый:
    инструмент - батарейка на от 1,5В до 4,5В(или аналогичный блок питания постоянного тока), милливольтрметр постоянного тока.
    Допустим, мы вызвонили омметром обмотки и у нас имеются несколько пар проводов. Нам надо определить, где у этих пар начало обмотки, а где конец. Возьмем любую пару проводов, принадлежащих одной из обмоток. Помечаем произвольно один из выводов обмотки как начало (Н), а второй как конец (К). Подключаем милливольтметр постоянного тока на пределе единицы или десятки милливольт постоянного тока(чем меньше напряжение батареи - тем меньше предел)к паре проводов другой обмотки. Минус батарейки присоединяем к нашему условному концу (К) первой обмотки, плюс - к началу. Наблюдаем за показаниями милливольтметра. Нас интересует отклоненение стрелки прибора в момент замыкания цепи «батарейка – обмотка». Если стрелка прибора отклоняется влево за ноль, то переключаем полярность присоединения прибора ко второй обмотке, и снова замыкаем батарейку на первую обмотку. Теперь отклонения прибора в момент замыкания должны быть в положительную(правую) сторону. Тот вывод обмотки, который соединен с плюсом милливольтметра, будет началом второй обмотки, а с минусом – концом (см. рис.1). Таким же образом определяем начало и конец третьей обмотки.
    Способ второй:
    инструменты - понижающий трансформатор, выключатель, вольтметр.
    Выбираем любую обмотку и подаем на нее напряжение с трансформатора величной, например, 6В. Это будет обмотка №1. Если при измерении вольтметром, к примеру, между обмоткой №1 и №2 вольтметр покажет, скажем, 8В - значит эти обмотки соединены одноименными концами(можно принять их за начала). Если это измерение между №1 и №2 покажет 4В - значит соединены они разноименными выводами и одну из обмоток надо развернуть концами. Аналогично определяюся концы 3-ей обмотки.

    Способ третий:
    инструменты - лампа накаливания на 220В, выключатель, амперметр.
    Две любые обмотки двигателя, лампу, выключатель и амперметр соединяем последовательно. Измеряем и запоминаем показание. Затем концы одной из обмоток меняем местами, снова измеряем и запоминаем. Большему показанию прибора будет соответствовать соединение двух обмоток одноименными выводами. Обозначаем их концы. То же самое проделываем с третьей обмоткой.

    Конденсаторный двигатель сопротивление обмоток | Авто Брянск

    Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

    Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

    У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

    У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

    То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

    Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

    Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

    Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

    А теперь несколько примеров, с которыми вы можете столкнуться:

    Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

    Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

    Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

    В этой статье поговорим о конденсаторных двигателях, которые по сути являются обычными асинхронными, отличающимися лишь способом подключения к сети. Затронем тему подбора конденсаторов, разберем причины необходимости точного подбора емкости. Отметим основные формулы, которые помогут в приблизительной оценке требуемой емкости.

    Конденсаторным двигателем называется асинхронный двигатель, в цепь статора которого включена дополнительная емкость, с целью создать сдвиг фаз тока в обмотках статора. Зачастую это касается однофазных цепей при использовании трехфазных или двухфазных асинхронных двигателей.

    Обмотки статора асинхронного двигателя физически сдвинуты друг относительно друга, и одна из них включается непосредственно в сеть, в то время как вторая, либо вторая и третья подключаются к сети через конденсатор. Емкость конденсатора подбирается так, чтобы сдвиг фаз токов между обмотками получился бы равным или хотя бы близким к 90°, тогда ротору будет обеспечен максимальный вращающий момент.

    При этом модули магнитной индукции обмоток должны получиться одинаковыми, чтобы магнитные поля обмоток статора оказались бы сдвинуты относительно друг друга так, чтобы суммарное поле вращалось по кругу, а не по эллипсу, увлекая за собой ротор с наибольшей эффективностью.

    Очевидно, ток и его фаза в подключенной через конденсатор обмотке связаны как с емкостью конденсатора, так и с эффективным импедансом обмотки, который в свою очередь зависит от скорости вращения ротора.

    При старте двигателя импеданс обмотки определяется лишь ее индуктивностью и активным сопротивлением, поэтому он относительно мал в момент пуска, и здесь нужен конденсатор большей емкости для обеспечения оптимального пуска.

    Когда же ротор разгонится до номинальных оборотов, магнитное поле ротора станет индуцировать в обмотках статора ЭДС, которая будет направлена против питающего обмотку напряжения — эффективное сопротивление обмотки теперь растет, и требуемая емкость снижается.

    При оптимально подобранной емкости в каждом режиме (пусковой режим, рабочий режим) магнитное поле будет круговым, и здесь имеет значение как скорость вращения ротора, так и напряжение, и число витков обмотки, и подключенная в текущий момент емкость. Если оптимальное значение какого-нибудь параметра нарушено, поле становится эллиптическим, характеристики двигателя соответственно падают.

    Для двигателей разного назначения схемы подключения емкостей разные. Когда требуется значительный пусковой момент, применяют конденсатор большей емкости, чтобы обеспечить оптимальные ток и фазу именно в момент пуска. Если пусковой момент не особо важен, то внимание уделяют только созданию оптимальных условий рабочего режима, при номинальной скорости вращения, и емкости подбирается для номинальных оборотов.

    Довольно часто для качественного пуска применяют пусковой конденсатор, который на время запуска подключается параллельно рабочему конденсатору относительно малой емкости, чтобы вращающееся магнитное поле и при пуске было круговым, затем пусковой конденсатор отключают, и двигатель продолжает работу только с рабочим конденсатором. В особых случаях прибегают к набору конденсаторов с возможностью переключения для разных нагрузок.

    Если пусковой конденсатор случайно не будет отключен после выхода двигателя на номинальные обороты, сдвиг фаз в обмотках уменьшится, не будет уже оптимальным, и магнитное поле статора станет эллиптическим, что ухудшит рабочие характеристики двигателя. Крайне важно правильно подобрать пусковую и рабочую емкости, чтобы двигатель работал эффективно.

    На рисунке показаны типичные схемы включения конденсаторных двигателей, применяемые на практике. Например рассмотрим двухфазный двигатель с короткозамкнутым ротором, статор которого имеет две обмотки для питания в двух фазах А и В.

    В цепь дополнительной фазы статора включен конденсатор С, поэтому токи IA и IВ текут в обеих обмотках статора в двух фазах. Наличием емкости добиваются фазового сдвига токов IA и IВ в 90°.

    Векторная диаграмма показывает, что суммарный ток сети образован геометрической суммой токов обеих фаз IA и IВ. Подбором емкости С добиваются такого сочетания с индуктивностями обмоток, чтобы фазовый сдвиг токов получился именно 90°.

    Ток IA запаздывает относительно приложенного сетевого напряжения UА на угол φА, а ток IВ — на угол φВ относительно напряжения UB, приложенного к зажимам второй обмотки в текущий момент. Угол между напряжением сети и напряжением, приложенным ко второй обмотке составляет 90°. Напряжение на конденсаторе UС образует угол 90° с током IВ.

    По диаграмме видно, что полная компенсация фазового сдвига при φ = 0 достигается тогда, когда реактивная мощность потребляемая двигателем из сети равна реактивной мощности конденсатора С. Рядом на рисунке показаны типичные схемы включения трехфазных двигателей с конденсаторами в цепях обмоток статоров.

    Промышленностью сегодня выпускаются конденсаторные двигатели на базе двухфазных. Трехфазные легко модифицируются вручную для питания от однофазной сети. Встречаются и мелкосерийные трехфазные модификации, уже оптимизированные при помощи конденсатора под однофазную сеть.

    Часто такие решения можно встретить в бытовых приборах, таких как посудомоечные машины и комнатные вентиляторы. Промышленные циркуляционные насосы, воздуходувки и дымососы также часто используют в своей работе конденсаторные двигатели. Если требуется включить трехфазный двигатель в однофазную сеть — применяют фазосдвигающий конденсатор, то есть опять же переделывают двигатель в конденсаторный.

    Для приблизительного расчета емкости конденсатора применяют известные формулы, в которые достаточно подставить напряжение питания и рабочий ток двигателя, и легко вычислить необходимую емкость для соединения обмоток звездой или треугольником.

    Для нахождения рабочего тока двигателя достаточно прочитать данные на его шильдике (мощность, кпд, косинус фи), и так же подставить в формулу. В качестве пускового конденсатора принято устанавливать конденсатор в два раза большей емкости, чем рабочий.

    К преимуществам конденсаторных двигателей, по сути — асинхронных, относится главным образом одно — возможность включить трехфазный двигатель в однофазную сеть. Из недостатков — необходимость оптимальной емкости под конкретную нагрузку, и недопустимость питания от инверторов с модифицированной синусоидой.

    Надеемся, что эта статья была для вас полезной, и теперь вы понимаете, для чего асинхронным двигателям конденсаторы, и как подбирать их емкость.

    Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

    Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

    В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

    С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

    Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

    На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

    Важное предупреждение

    Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

    Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

    В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

    Как состояние подшипников влияет на работу двигателя

    Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

    Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

    Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

    Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

    Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

    Что надо учитывать в конструкции статорных обмоток и как их подготовить

    Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

    Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

    Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

    Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

    Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

    Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

    Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

    Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

    Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

    Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

    Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

    Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

    • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
  • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

    Техническое состояние изоляции обмоток

    Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

    В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

    Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

    Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

    Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

    Как видите, промышленностью массово выпущены модели с:

    • повышенным сопротивлением пусковой обмотки;
    • пусковым конденсатором;
    • рабочим конденсатором;
    • пусковым и рабочим конденсатором;
    • экранированными полюсами.

    А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

    • значительное снижение реактивной мощности;
    • повышение КПД;
    • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

    Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

    Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

    Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

    Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

    Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

    Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

    Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

    Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

    Помечаем эти 3 конца уже понятной нам маркировкой:

    Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

    Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

    Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

    Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

    С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

    При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

    Тогда кнопку запуска отпускают:

    • пусковая обмотка отключается самовозвратом среднего контакта;
    • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

    Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

    Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

    Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

    С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

    Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

    Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

    Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

    Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

    2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

    Конденсатор подключают к выводам пусковой и рабочей обмоток.

    В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

    Здесь получается, что:

    • главная обмотка работает напрямую от 220 В;
    • вспомогательная — только через емкость конденсатора.

    Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

    Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

    Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

    Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

    Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

    Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

    При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

    В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

    Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

    Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

    Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

    Где взять номиналы главного и вспомогательного конденсаторов?

    Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

    Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

    Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

    Владелец
    видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

    Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

    Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

    Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

    Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

    В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

    Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

    Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

    Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

    Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

    Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

    Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

    Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

    Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

    Схема обмотки трехфазного двигателя и значения сопротивления

    Обмотка трехфазного двигателя. Значения сопротивления обмотки трехфазного двигателя , 3 фазы M или Таблица сопротивления обмотки , 3-фазный двигатель Таблица сопротивления обмотки pdf, формула обмотки трехфазного двигателя
    , Схема обмотки трехфазного двигателя Pdf Установка размера обмотки фирмы , Полная информация приведена на сайте Motor Coil Winding Data . В этом посте мы показали, как установить размер катушки 3-фазного двигателя мощностью 1 л.с.Диаграмма значений сопротивления также рассматривается в этой диаграмме.

    Таблица значений сопротивления двигателя.

    Здесь очень простой способ узнать таблицу значений сопротивления двигателя

    и установить размер катушки двигателя. вы можете взять это в качестве примера и сделать это со всеми типами двигателей, такими как однофазные и трехфазные. так что друг смотрит и получает удовольствие.

    Обмотка трехфазного двигателя

    Привет всем, я Радж, и в этих инструкциях я покажу вам, как перемотать и обновить старый трехфазный электродвигатель .Если вы ищете перемотку однофазного двигателя, вы можете найти ее здесь.

    В этих инструкциях я заработаю на шаг впереди. В следующих шагах я покажу вам, как анализировать скручивание двигателей, разбирать двигатель, удалять подшипники, рассчитывать свежую обмотку, перематывать двигатель, собирать его, используя новые подшипники, и исследовать двигатель.

    Перемотка - очень долгая процедура. Чтобы перемотать его, заменить все предыдущие детали и собрать заново, потребовалось около двух недель. Если у вас есть какие-либо вопросы, вы можете легко написать мне.

    Таблица значений сопротивления обмотки трехфазного двигателя.

    В этом типичном значении сопротивления обмотки для 3-фазного двигателя вы можете получить полное значение сопротивления обмотки , какое значение должны давать обмотка 3-фазного двигателя и земля.

    В этой обмотке 3-фазного двигателя Ом, вы можете увидеть полную диаграмму сопротивления обмоток 3-фазного двигателя . Как измерить сопротивление на 3-фазном двигателе.

    Видео обмотки 3-фазного двигателя здесь.

    Всю информацию о типе старой обмотки можно получить в «намоточной головке». Обмотка - это часть обмотки, в которой создаются все соединения. С учетом скручивания (типа намотки), количества кабелей в каждом зазоре и толщины кабеля вы можете перематывать новые двигатели, скручивая, не выполняя вычислений на следующем этапе.

    Схема обмотки трехфазного двигателя

    A Трехфазный асинхронный двигатель - наиболее часто используемый двигатель на земле.Он имеет неплохую эффективность, низкое производство и экономию средств. Две главные части двигателя - это ротор и статор.

    Ротор обычно выполнен в виде беличьей клетки и вставляется в отверстие статора. Статор выполнен из стального сердечника и скрученого. Статор используется для создания магнитного поля. 3 ступени генерируют вращающееся магнитное поле, поэтому нам не требуется конденсатор на трехфазном двигателе .

    Магнитное поле вращения «уменьшает» беличью клетку, где наводит напряжение.Поскольку клетка закорочена, напряжение создает электрический ток. Присутствие в магнитном поле создает силу.

    Так как магнитное поле должно вращаться быстрее, чем ротор, чтобы вызвать напряжение в роторе. Поэтому обороты двигателя немного меньше скорости магнитного поля ((3000 об / мин [Магнитное поле] - 2800 об / мин [Электродвигатель])). Вот почему мы называем их трехфазным АСИНХРОННЫМ электродвигателем.

    ДОСКА ДВИГАТЕЛЯ.

    1. На табличке с надписью двигателей мы можем найти наиболее полезную информацию о двигателе:
    2. Номинальное напряжение двигателя (для подключения двигателя типа "звездочка" (Y) и клапана (D)) [В]
    3. Y) и треугольник (D)
    4. подключение двигателя) [A] Мощность электродвигателя [Вт]
    5. Коэффициент мощности cos Fi Скорость вращения [об / мин] Номинальная частота [Гц]

    Значение сопротивления обмотки трехфазного двигателя.

    Тестирование на замыкание на землю с помощью омметра.

    Значения сопротивления обмотки трехфазного двигателя , Использование омметра: отключите все питание от системы. По отдельности проверьте все три провода T1, T2, T3 (три фазы) на провод заземления. Показания должны быть бесконечными.

    Если он равен нулю или вообще есть некоторая целостность, значит, проблема связана с двигателем или кабелем. Если он идет прямо к двигателю, отключите кабель и проверьте двигатель и кабель по отдельности.

    Убедитесь, что выводы на обоих концах ничего не касаются, включая другие выводы. Многие короткие замыкания серводвигателя можно считать с помощью обычного измерителя качества. Убедитесь, что вы используете качественный измеритель, работающий до 10 МОм.

    Оцените все 3 провода отдельно T1, T2, T3 (три фазы) к заземляющему кабелю. Показания часто находятся в диапазоне от 600 до 2000 МОм. Большинство шорт будет ниже 20 МОм.

    Будьте осторожны, не прикасайтесь проводами к чему-либо при считывании показаний. Это может дать ложные и неповторимые прочтения, заставляя продолжать ваше повествование.Вышеупомянутое - именно то, что я нашел типичным для 3-фазных двигателей 230 В перем.

    Несмотря на то, что 230 мегабайт для цепи 230 В перем. Тока , по моему опыту, кажется низким. Просто используйте это как ориентир. Только помните, что от 230 мегабайт до 600 мегабайт часто показывает некоторое ухудшение состояния кабелей или изоляции двигателя.

    Испытания на обрыв и короткое замыкание обмотки двигателя.

    Поместите измеритель в омах: от Т1 до Т2 от Т2 до Т3 от Т1 до Т3 Обычно ожидаемый диапазон равен.От 3 до 2,0 Ом, хотя большинство из них составляет около 0,8 Ом. Если вы читаете ноль, значит, между фазами есть краткое описание. Обычно, если он открыт, оно бесконечно или значительно превышает 2 кОм.

    Кабель и вилка Примечание. Часто в разъем кабеля двигателя попадает охлаждающая жидкость. Подумайте о том, чтобы высушить его и повторно протестировать. Если он все еще ужасен, на самих вкладышах иногда появляются следы пригорания, что приводит к небольшому кратковременному износу.

    В таких случаях вставки следует заменить. Также поищите места, где кабель движется через отслеживание.Провода со временем изнашиваются. Если это двигатель постоянного тока , оцените щетки .

    Вокруг двигателя должно быть 3-4 круглых крышки, которые нужно снять. Под ними вы обнаружите пружину с квадратным блоком (кистью). Посмотрите, сколько осталось, возможно, нужно заменить. Кроме того, проверьте коммутатор, на котором работают щетки, на предмет износа; попробуйте протереть поверхность.

    Соединения обмоток трехфазного двигателя

    3 ФАЗНЫЙ ДВИГАТЕЛЬ

    इस पोस्ट में हमने दिखाया है 1 л.с. 3 फेज मोटर का

    इसका बहुत ही आसान तरीका मोटर के कुंडल आकार के लिए है। आप इसे उदाहरण के रूप में प्राप्त कर सकते और इसे प्रकार की मोटरों के साथ कर जैसे एकल चरण और तीन चरण। तो दोस्त देखते रहें और इसका आनंद लें।

    Откройте крышку распределительной коробки.Перед измерением удалите все звенья в распределительной коробке. Измерьте сопротивление каждой обмотки, сопротивление между двумя отдельными обмотками и сопротивление между скручиванием и корпусом двигателя.

    Сопротивления обмотки трехфазного двигателя должны быть одинаковыми (+/- 5%). Сопротивление между двумя обмотками и рамой должно быть более 1,5 МОм. Обгоревшие обмотки двигателей можно обнаружить по уникальному запаху (запах горелого лака).

    फॉर मोरे इनफार्मेशन सर्च - ( Electricals trendz ) на youtube
    для получения дополнительной информации ищите Electricals trendz (канал) на youtube

    Измерение сопротивления обмоток электрических двигателей / генераторов

    Метод измерения

    Для испытания сопротивления обмотки двигателя используется четырехпроводной метод измерения (Кельвина).Он обеспечивает наилучшие возможные результаты измерения, поскольку гарантирует, что сопротивление соединительных токоведущих кабелей не будет учтено при измерении.

    Испытательный ток пропускается через обмотки с помощью сильноточных кабелей. Падение напряжения на обмотках измеряется с помощью сенсорных кабелей.

    Размещение кабелей очень важно. Токовые кабели всегда должны быть размещены вне чувствительных кабелей. Таким образом, сопротивление как кабелей, так и зажимов практически полностью исключено из измерения сопротивления (Рисунок 1).Сопротивление рассчитывается по закону Ома и равно падению напряжения, деленному на испытательный ток:

    R = U / I

    Рисунок 1 - Подключение РМО-М к испытательному объекту

    Испытание сопротивления обмотки

    Значение испытательного тока следует выбирать в соответствии с номинальным током обмотки. Информацию о номинальном токе обмотки можно найти на паспортной табличке испытуемого объекта. Испытательный ток не должен превышать 10% номинального тока обмотки. Из-за нагрева кабелей более высокие значения испытательного тока значительно увеличивают сопротивление обмотки.

    Сопротивление обмотки трехфазных двигателей переменного тока измеряется между их выводами (все три комбинации).

    Рисунок 2 - Измерение сопротивления обмотки статора двигателя переменного тока Рисунок 3 - Подключение для измерения сопротивления обмотки статора асинхронного двигателя.

    Сопротивление обмотки ротора с контактным кольцом измеряется непосредственно на контактных кольцах (нелинейное переходное сопротивление щеток не входит в измеренное сопротивление обмотки).

    Рисунок 4 - Измерение сопротивления обмотки ротора с контактным кольцом. Рисунок 5 - Меню результатов РМО-М

    Разрядный двигатель после испытания сопротивления обмотки

    Имейте в виду, что в магнитной цепи все еще остается энергия.После завершения измерения прибор РМО-М автоматически запустит текущий процесс разряда. Во время текущей разрядки на дисплее устройства отображается сообщение «РАЗРЯДКА».

    Рисунок 6 - Сообщение о разрядке

    Ни в коем случае нельзя снимать провода во время тестирования. Оператор всегда должен ждать окончания сигнала разгрузки и звукового сигнала зуммера. Это признак того, что проверенный двигатель был правильно разряжен.

    Процесс подачи тока и отвода энергии регулируется полностью автоматически.Схема безопасного разряда, оснащенная индикатором, быстро рассеивает накопленную магнитную энергию после завершения испытания.

    ВНИМАНИЕ : Измерительные провода нельзя отсоединять до того, как сообщение «Разрядка» исчезнет с дисплея и светодиод разрядки не погаснет.

    После завершения всех испытаний измерительные провода отключаются в следующем порядке:

    1. щупы удалены из объекта испытаний
    2. щупы удалены из прибора.

    Кабель питания от сети отсоединяется сначала от источника питания, а затем от прибора. Наконец, заземляющий (PE) кабель отключается от прибора.

    RMO50M и RMO100M

    ДВ Омметры силовых обмоток РМО50М и РМО100М предназначены для измерения сопротивлений индуктивных испытательных объектов, применяемых в электроэнергетике и других отраслях промышленности.

    Испытательный ток RMO50M находится в диапазоне от 5 мА до 50 А постоянного тока. Диапазон измерения от 0,1 мкОм до 1000 Ом.Обмоточный омметр RMO100M имеет возможность проверки с более высокими значениями испытательного тока. Испытательный ток RMO100M находится в диапазоне от 5 мА до 100 А постоянного тока, а диапазон измерения - от 1 мкОм до 1000 Ом.

    Максимальный вход в канале измерения напряжения составляет 5 В для всех значений испытательного тока. Имея это в виду, оператор должен выбрать испытательный ток таким образом, чтобы при ожидаемом сопротивлении это значение напряжения не превышалось. Например, если ожидаемое сопротивление при измерении будет около 100 мОм, значение испытательного тока должно быть ниже 50 А, потому что:

    U = I ∙ R

    5 В = 50 А ∙ 100 мОм

    В противном случае на устройстве отображается сообщение об ошибке «Изменить ток».Это указывает на слишком высокое испытательное напряжение. В этом случае следует уменьшить испытательный ток и повторить испытание.

    Это сообщение также отображается, если индуктивность тестового объекта слишком высока. Опять же, следует уменьшить испытательный ток и повторить испытание.

    Чтобы загрузить эту статью в формате .pdf, войдите в систему и перейдите по следующей ссылке.


    1 апреля 2020 г.

    Как тестировать и проверять однофазные электродвигатели ~ Изучение электротехники

    Пользовательский поиск

    Есть несколько типов однофазных двигателей.Однако общим для всех них является то, что у них есть начальная обмотка, рабочая обмотка и общее соединение между ними, как показано ниже:

    Тестировать однофазные двигатели довольно просто, если соблюдать определенные основные шаги. Цель любого теста двигателя переменного тока - определить состояние двигателя. Основные этапы проверки исправности любого двигателя приведены ниже.
    (a) Общие проверки
    (b) Проверка целостности и сопротивления заземления
    (c) Проверка источника питания
    (d) Проверка сопротивления обмотки двигателя переменного тока
    (e) Сопротивление изоляции Тест
    (f) Рабочий ток Тест

    Общие проверки
    Для однофазного двигателя выполните следующие действия:

    (1) Проверьте внешний вид двигателя.Убедитесь в отсутствии ожогов и повреждений корпуса, вентилятора или вала системы охлаждения.
    (2) Вручную проверните вал двигателя, чтобы проверить состояние подшипников. Следите за плавным и свободным вращением вала. Если вал вращается свободно и плавно, возможно, подшипник в хорошем состоянии, в противном случае подумайте о замене.
    (3) Как и при всех испытаниях и проверках, заводская табличка двигателя предоставляет ценную информацию, которая поможет установить истинное состояние двигателя. Внимательно изучите заводскую табличку.

    Проверка целостности и сопротивления заземления
    С помощью мультиметра измерьте сопротивление между корпусом двигателя и землей.Хороший мотор должен показывать менее 0,5 Ом. Любое значение больше 0,5 Ом указывает на неисправность двигателя.

    Проверка источника питания
    Для однофазных двигателей ожидаемое напряжение составляет около 230 В или 208 В в зависимости от того, используете ли вы систему напряжения Великобритании или Америки. Убедитесь, что на двигатель подается правильное напряжение.

    Проверка сопротивления обмотки двигателя переменного тока
    Проверьте сопротивление обмотки двигателя или показания в омах с помощью мультиметра . Поскольку в однофазном двигателе три клеммы - S, C, R, измерьте сопротивление обмотки:
    C к S, C к R и S к R.Измеренное значение от S до R должно быть = от C до S + C до R
    Как правило, для однофазных двигателей применяется следующее:
    (1) Показание сопротивления между S и R должно давать максимальное показание сопротивления
    (2) Ом. показания между C и R должны давать наименьшее значение сопротивления
    (3) Ом Показания между C и S должны давать некоторое промежуточное значение между значениями для S до R и от C до R
    Любое отклонение означает, возможно, неисправный электродвигатель или двигатель, который требует ремонта.

    Проверка сопротивления изоляции
    Нарушение сопротивления изоляции электродвигателя является одним из первых признаков того, что электродвигатель вот-вот выйдет из строя.Сопротивление изоляции обычно измеряется между обмотками двигателя и землей с помощью тестера изоляции или мегометра. Установите напряжение на измерителе сопротивления изоляции на 500 В и проверьте заземление обмоток двигателя. Проверьте C - E, S - E, R - E. Минимальное значение теста для исправного электродвигателя составляет не менее 1 МОм

    Тест рабочего тока
    При работающем двигателе проверьте ток полной нагрузки (FLA) с помощью подходящий измеритель или, предпочтительно, зажим на измеритель и сравните с заводской табличкой двигателя FLA .Отклонения от номинального значения FLA могут означать проблемы с тестируемым двигателем.

    Как тестировать трехфазные двигатели переменного тока ~ Изучение электротехники

    Основные этапы проверки исправности трехфазного двигателя переменного тока приведены ниже:
    (а) Общие инспекции
    (b) Тест на непрерывность и сопротивление заземления
    (c) Тест источника питания
    (d) Проверка целостности обмотки двигателя переменного тока
    (e) Испытание сопротивления обмотки двигателя переменного тока
    (f) Испытание сопротивления изоляции
    (g) Тест рабочего тока

    Общие проверки
    Для трехфазного двигателя выполните следующие действия:

    (1) Проверьте внешний вид двигателя.Убедитесь в отсутствии ожогов и повреждений корпуса, вентилятора или вала системы охлаждения.
    (2) Вручную проверните вал двигателя, чтобы проверить состояние подшипников. Следите за плавным и свободным вращением вала. Если вал вращается свободно и плавно, возможно, подшипник в хорошем состоянии, в противном случае рассмотрите возможность замены, ремонта или проведения дальнейшей диагностики.
    (3) Как и при любых испытаниях и проверках, на паспортной табличке двигателя содержится ценная информация, которая поможет установить истинное состояние двигателя. Тщательно проверьте заводскую табличку и сравните значения проверки рабочего тока (см. Ниже) со значением на заводской табличке

    Проверка целостности и сопротивления заземления
    С помощью мультиметра измерьте сопротивление между корпусом двигателя и массой.Хороший мотор должен показывать менее 0,5 Ом. Любое значение больше 0,5 Ом указывает на неисправность двигателя. Может потребоваться дальнейшее устранение неисправностей.

    Проверка источника питания
    Для трехфазных двигателей ожидаемое напряжение для системы 230/400 В составляет 230 В между фазой и нейтралью и 400 В между каждой из трех фазных линий питания. Убедитесь, что на двигатель подается правильное напряжение, используя мультиметр. Убедитесь, что клемма источника питания находится в хорошем состоянии. Проверьте соединительную планку на наличие клеммы (U, V и W).Для трехфазных двигателей тип подключения - звезда (Y) или треугольник. W к U). Каждая фаза должна иметь непрерывность, если обмотка в порядке. Если какая-либо конкретная фаза не проходит проверку целостности, вероятно, ваш двигатель сгорел.
    Пожалуйста, посмотрите, как идентифицировать трехфазные обмотки для правильной идентификации обмотки. U, V, W - европейское обозначение обмотки.

    Испытание сопротивления обмотки двигателя переменного тока
    Проверьте сопротивление обмотки двигателя или показания в омах с помощью мультиметра или омметра для фазовой клеммы (от U к V, V к W, W к U). должны быть одинаковыми (или почти одинаковыми). Помните, что у трех фаз одинаковые обмотки или почти одинаковые!

    Проверка сопротивления изоляции
    Нарушение сопротивления изоляции электродвигателя является одним из первых признаков того, что электродвигатель вот-вот выйдет из строя.Для трехфазного двигателя сопротивление изоляции обычно измеряется между каждой обмоткой или фазой двигателя и между каждой фазой двигателя и корпусом двигателя (землей) с помощью тестера изоляции или мегомметра. Установите напряжение на измерителе сопротивления изоляции на 500 В. Проверьте от фазы к фазе (U к V, V к W, W к U). Проверьте от фазы к корпусу двигателя (земле) (U к E, V к E, W к E). Минимальное испытательное значение сопротивления изоляции двигателя составляет 1 МОм (1 МОм). Узнайте, как измерить сопротивление изоляции электродвигателя.

    Тест рабочего тока
    При работающем двигателе проверьте ток полной нагрузки (FLA) подходящим измерителем или, лучше всего, клещами на измерителе и сравните с заводской табличкой FLA.Отклонения от номинального значения FLA могут означать проблемы с тестируемым двигателем.

    Проверка сопротивления обмотки двигателей

    2 августа 2019 г., Публикуется в статьях: EE Publishers, статьях: Energize, статьях: Vector.

    Информация от Megger

    Измерение сопротивления обмотки позволяет выявлять различные неисправности в двигателях и трансформаторах: короткое замыкание витков, неплотные соединения, обрывы жил и неисправные механизмы РПН.

    Измерение сопротивления обмотки позволяет выявить в двигателях проблемы, которые другие тесты могут не обнаружить. Эти проблемы включают частичное или полное замыкание катушек, плохие обжимы или соединения, дисбаланс между фазами (неправильное включение фаз) и неправильные соединения катушек (фазировка). Исследования, проведенные IEEE и Исследовательским институтом электроэнергетики (EPRI) по отказам электрического вращающегося оборудования, показывают, что 48% отказов двигателей происходят из-за отказов электрического оборудования.

    Обмотка vs.сопротивление изоляции

    Как и трансформаторы, двигатель или генератор разбивается на два основных компонента: изоляционный и механический. Механическое состояние и конструкция ротора или статора влияют на сопротивление обмотки. Измерители сопротивления обмотки подают известный постоянный ток через обмотки, измеряют результирующее падение напряжения на обмотке и вычисляют сопротивление. Не следует применять более 10% номинального тока обмотки, так как это нагреет обмотку и приведет к изменению значения сопротивления по мере нагрева меди или алюминия.

    Для электроизоляционного компонента используется прибор сопротивления изоляции (IR) для проверки состояния обмотки относительно земли (внешний корпус обмотки статора). Измерители сопротивления изоляции подают высокое постоянное напряжение, которое вызывает небольшой ток через тестируемую изоляцию. Затем тестер выдает показания сопротивления. Хорошая изоляция должна иметь высокое сопротивление, а типичные значения находятся в диапазоне МОм или ГОм. При подаче испытательного напряжения постоянного тока никогда не следует превышать номинальное напряжение проверяемой обмотки двигателя.

    Требования к тестерам

    Для наиболее распространенных измерений сопротивления можно использовать обычный мультиметр, настроенный на шкалу Ом (Ом). Однако обмотки в больших двигателях имеют низкое сопротивление и очень индуктивны. Поэтому тестер должен безопасно подавать достаточный испытательный ток при более значительном испытательном напряжении для безопасного и своевременного измерения обмотки статора.

    Рис. 1: Измерение межфазного сопротивления.

    Более высокое испытательное напряжение быстрее преодолеет индуктивность (до 50 раз быстрее, чем у обычного измерителя низкого сопротивления).Обычный мультиметр не может измерить сопротивление обмотки. MTO106 Megger обеспечивает испытательный ток до 6 А и напряжение холостого хода 48 В.

    В тестере сопротивления обмотки используется четырехпроводное измерение с набором выводов Кельвина для повышения точности измерения. Это исключает сопротивление набора проводов при измерении, обеспечивая точность.

    Безопасность - важный фактор при проверке сопротивления обмотки. Обмотки двигателя или генератора могут накапливать большое количество энергии, когда в них подается постоянный ток во время испытания (это называется индуктивной зарядкой).Эта энергия должна безопасно отводиться от обмотки после прекращения испытательного тока.

    MTO106 автоматически разрядит эту энергию безопасно после завершения теста. Функция разряда является пассивной и обеспечивает автоматический разряд в случае непреднамеренного отключения питания или случайного отключения измерительных проводов. Устройство также имеет визуальный и звуковой индикатор разряда при возникновении условий разряда.

    Для чего нужны испытания на сопротивление обмоток?

    Хотя обнаружение проблем в жизненно важных двигателях или генераторах важно, очень важно их обнаружение до того, как они приведут к катастрофическому отказу.Программы прогнозирующего и профилактического обслуживания, которые включают регулярное тестирование, могут помочь обнаружить проблемы с обмоткой на раннем этапе. Проверка сопротивления обмотки дает информацию о состоянии обмоток.

    Анализ результатов испытаний

    Показания сопротивления обмотки можно сравнить с заводскими значениями. Распространенный метод диагностики - сравнение с предыдущими показаниями. Поскольку сопротивление обмотки зависит от температуры, важно использовать температурные поправочные коэффициенты, когда это применимо.Результаты испытания сопротивления обмотки сравниваются между тремя фазами (на трехфазном двигателе).

    Ряд стандартов обеспечивает максимальные проценты отклонения, но типичные пределы составляют от 1 до 3% между средним значением для трех обмоток. Чрезмерная разница в показаниях сопротивления между фазами может указывать на возможную проблему внутри двигателя. Сопротивление обмотки также используется для измерения потерь в обмотке I 2 R .

    На самом деле сопротивление есть всегда, даже если оно небольшое.Это вызывает электрические потери, которые рассеиваются в виде тепла. Информация в этой статье относится к испытаниям обмотки статора двигателя. Испытания сопротивления ротора обычно можно проводить с помощью омметра с низким сопротивлением.

    Заключение

    Поддержание работы двигателей имеет решающее значение во многих отраслях промышленности. Знание состояния обмоток - одна из важных составляющих обеспечения надлежащей работы двигателей.

    Контакты Corola Argiro, Megger, [email protected]

    Статьи по теме

  • Портал ресурсов правительства ЮАР по коронавирусу COVID-19
  • Постановлениями министерства предлагается 13813 МВт новых построек ГЭС, ни Eskom
  • Настало время для южноафриканской национальной ядерной компании Necsa
  • Разбираясь со слоном в комнате, это Эском…
  • Интервью с министром полезных ископаемых и энергетики Гведе Манташе
  • ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ - прикладное промышленное электричество

    После внедрения Эдисоном в США системы распределения электроэнергии постоянного тока начался постепенный переход к более экономичной системе переменного тока.Освещение работало как на переменном, так и на постоянном токе. Передача электрической энергии на более длинные расстояния с меньшими потерями на переменном токе. Однако у двигателей была проблема с переменным током. Первоначально двигатели переменного тока были сконструированы как двигатели постоянного тока, но возникли многочисленные проблемы из-за изменения магнитных полей.

    Рисунок 5.1 Схема семейства электродвигателей переменного тока

    Чарльз П. Стейнмец внес свой вклад в решение этих проблем, исследуя гистерезисные потери в железной арматуре.Никола Тесла представил себе совершенно новый тип двигателя, когда он представил вращающуюся турбину, вращающуюся не водой или паром, а вращающимся магнитным полем. Его новый тип двигателя, асинхронный двигатель переменного тока, по сей день является рабочей лошадкой в ​​отрасли. Его прочность и простота обеспечивают долгий срок службы, высокую надежность и низкие эксплуатационные расходы. Тем не менее, небольшие щеточные электродвигатели переменного тока, аналогичные разнообразным электродвигателям постоянного тока, сохраняются в небольших приборах вместе с небольшими асинхронными электродвигателями Tesla. Выше одной лошадиной силы (750 Вт) царит мотор Tesla.

    Современные твердотельные электронные схемы приводят в действие бесщеточные двигатели постоянного тока с помощью сигналов переменного тока, генерируемых от источника постоянного тока. Бесщеточный электродвигатель постоянного тока, фактически электродвигатель переменного тока, заменяет обычный щеточный электродвигатель постоянного тока во многих приложениях. И шаговый двигатель , цифровая версия двигателя, приводится в движение прямоугольными волнами переменного тока, опять же, генерируемыми твердотельной схемой. На рисунке выше показано генеалогическое древо двигателей переменного тока, описанных в этой главе.

    Круизные лайнеры и другие крупные суда заменяют карданные валы с редукторами большими многомегаваттными генераторами и двигателями.Так было с тепловозами меньшего масштаба в течение многих лет.

    Рисунок 5.2 Диаграмма уровней моторной системы

    На системном уровне (рисунок выше) двигатель потребляет электрическую энергию в виде разности потенциалов и тока, преобразуя ее в механическую работу. К сожалению, электродвигатели не на 100% эффективны. Часть электроэнергии теряется на тепло, другой вид энергии, из-за потерь I2R (также называемых потерями в меди) в обмотках двигателя.Тепло - нежелательный побочный продукт этого преобразования. Его необходимо снимать с двигателя, так как это может отрицательно сказаться на долговечности. Таким образом, одна из целей - максимизировать КПД двигателя, уменьшая тепловые потери. Двигатели переменного тока также имеют некоторые потери, с которыми не сталкиваются двигатели постоянного тока: гистерезис и вихревые токи.

    Большинство двигателей переменного тока являются асинхронными. Асинхронные двигатели пользуются популярностью из-за их прочности и простоты. Фактически, 90% промышленных двигателей являются асинхронными.

    Никола Тесла разработал основные принципы многофазного асинхронного двигателя в 1883 году и к 1888 году создал модель мощностью в половину лошадиных сил (400 Вт).Тесла продала права на производство Джорджу Вестингаузу за 65000 долларов. Наиболее крупными (> 1 л.с. или 1 кВт) промышленными двигателями являются многофазные асинхронные двигатели . Под многофазностью мы подразумеваем, что статор содержит несколько различных обмоток на каждый полюс двигателя, приводимых в действие соответствующими синусоидальными волнами со сдвигом во времени. На практике это две-три фазы. Крупные промышленные двигатели трехфазные. Хотя для простоты мы включили многочисленные иллюстрации двухфазных двигателей, мы должны подчеркнуть, что почти все многофазные двигатели являются трехфазными.Под асинхронным двигателем мы подразумеваем, что обмотки статора индуцируют ток в проводниках ротора, как трансформатор, в отличие от коллекторного двигателя постоянного тока с коллектором.

    Конструкция асинхронного двигателя переменного тока

    Асинхронный двигатель состоит из ротора, известного как якорь, и статора, содержащего обмотки, подключенные к многофазному источнику энергии, как показано на рисунке ниже. Простой двухфазный асинхронный двигатель, представленный ниже, похож на двигатель мощностью 1/2 лошадиные силы, который Никола Тесла представил в 1888 году.

    Рисунок 5.3 Многофазный асинхронный двигатель Tesla

    Статор на рисунке выше намотан парами катушек, соответствующих фазам имеющейся электрической энергии. Статор двухфазного асинхронного двигателя выше имеет 2 пары катушек, по одной паре для каждой из двух фаз переменного тока. Отдельные катушки пары соединены последовательно и соответствуют противоположным полюсам электромагнита. То есть одна катушка соответствует N-полюсу, другая - S-полюсу, пока фаза переменного тока не изменит полярность.Другая пара катушек ориентирована в пространстве под углом 90 ° к первой паре. Эта пара катушек подключена к переменному току, сдвинутому во времени на 90 ° в случае двухфазного двигателя. Во времена Теслы источником двух фаз переменного тока был двухфазный генератор переменного тока. Статор на рисунке выше имеет выступающих полюсов, явно выступающих полюсов, которые использовались в ранних асинхронных двигателях Tesla. Эта конструкция используется и по сей день для двигателей с малой мощностью (<50 Вт). Однако для более мощных двигателей меньшая пульсация крутящего момента и более высокий КПД будут иметь место, если катушки встроены в пазы, вырезанные в пластинах статора (рисунок ниже).

    Рисунок 5.4 Рама статора с пазами для обмоток

    Пластины статора представляют собой тонкие изолированные кольца с прорезями, пробитыми из листов электротехнической стали. Набор из них закреплен концевыми винтами, которые также могут удерживать концевые кожухи.

    Рисунок 5.5 Статор с обмотками 2-φ (a) и 3-φ (b)

    На рисунке выше обмотки двухфазного и трехфазного двигателей установлены в пазы статора.Катушки наматываются на внешнее приспособление, а затем вставляются в пазы. Изоляция, зажатая между периферией катушки и пазом, защищает от истирания. Фактические обмотки статора более сложны, чем отдельные обмотки на полюс на рисунке выше. Сравнивая двигатель 2-φ с двигателем Tesla 2-φ с выступающими полюсами, количество катушек такое же. В реальных больших двигателях обмотка полюса разделена на идентичные катушки, вставленные во множество пазов меньшего размера, чем указано выше. Эта группа называется фазовой лентой (см. Рисунок ниже).Распределенные катушки фазового пояса подавляют некоторые нечетные гармоники, создавая более синусоидальное распределение магнитного поля по полюсу. Это показано в разделе синхронного двигателя. В прорезях на краю стойки может быть меньше витков, чем в других прорезях. Краевые пазы могут содержать обмотки от двух фаз. То есть фазовые пояса перекрываются.

    Рисунок 5.6 Фазовые ремни перекрытия

    Ключом к популярности асинхронного двигателя переменного тока является его простота, о чем свидетельствует простой ротор (рисунок ниже).Ротор состоит из вала, стального пластинчатого ротора и встроенной медной или алюминиевой беличьей клетки , показанной в (b), снятой с ротора. По сравнению с якорем двигателя постоянного тока, здесь нет коммутатора. Это устраняет щетки, искрение, искрение, графитовую пыль, регулировку и замену щеток, а также повторную обработку коллектора.

    Рисунок 5.7 Многослойный ротор с (а) встроенной беличьей клеткой, (б) токопроводящей клеткой, удаленной с ротора

    Проводники в короткозамкнутой клетке могут быть перекошены, перекручены относительно вала.Несоосность пазов статора снижает пульсации крутящего момента. Сердечники ротора и статора состоят из пакета изолированных пластин. Пластины покрыты изолирующим оксидом или лаком для минимизации потерь на вихревые токи. Сплав, используемый в пластинах, выбран из соображений низких гистерезисных потерь.

    Теория работы асинхронных двигателей

    Краткое объяснение работы заключается в том, что статор создает вращающееся магнитное поле, которое волочит ротор. Теория работы асинхронных двигателей основана на вращающемся магнитном поле.Один из способов создания вращающегося магнитного поля - вращение постоянного магнита. Если движущиеся магнитные линии потока разрезают проводящий диск, он будет следовать за движением магнита. Линии магнитного потока, разрезающие проводник, будут индуцировать напряжение и, как следствие, ток в проводящем диске. Этот поток тока создает электромагнит, полярность которого противодействует движению постоянного магнита - Закон Ленца . Полярность электромагнита такова, что он тянется к постоянному магниту.Диск следует с немного меньшей скоростью, чем постоянный магнит.

    Рисунок 5.8 Вращающееся магнитное поле создает крутящий момент в проводящем диске

    Вращающееся магнитное поле создает крутящий момент в проводящем диске

    Крутящий момент, развиваемый диском, пропорционален количеству силовых линий, разрезающих диск, и скорости, с которой он разрезает диск. Если бы диск вращался с той же скоростью, что и постоянный магнит, не было бы ни потока, разрезающего диск, ни индуцированного тока, ни поля электромагнита, ни крутящего момента.Таким образом, скорость диска всегда будет ниже скорости вращающегося постоянного магнита, так что линии потока, разрезающие диск, индуцируют ток, создают электромагнитное поле в диске, которое следует за постоянным магнитом. Если к диску приложена нагрузка, замедляющая его, будет развиваться больший крутящий момент, поскольку больше линий магнитного потока разрезают диск. Крутящий момент пропорционален скольжению , степени, на которую диск отстает от вращающегося магнита. Большее скольжение соответствует большему потоку, разрезающему проводящий диск, создавая больший крутящий момент.В основе аналогового автомобильного вихретокового спидометра лежит принцип, проиллюстрированный выше. Когда диск удерживается пружиной, отклонение диска и иглы пропорционально скорости вращения магнита. Вращающееся магнитное поле создается двумя катушками, расположенными под прямым углом друг к другу, которые управляются токами, которые не совпадают по фазе на 90 °. Это не должно вызывать удивления, если вы знакомы с диаграммами Лиссажу на осциллографе.

    Рисунок 5.9 В противофазе (90 °) синусоидальные волны образуют круговую диаграмму Лиссажу

    Смещенные по фазе (90 °) синусоидальные волны образуют круговую диаграмму Лиссажу На приведенном выше рисунке круговая диаграмма Лиссажу создается за счет подачи горизонтального и вертикального входных сигналов осциллографа с отклонением фазы синусоидальных волн на 90 °.Начиная с (a) с максимальным отклонением «X» и минимальным «Y», след перемещается вверх и влево в направлении (b). Между (a) и (b) две формы волны равны 0,707 Vpk при 45 °. Эта точка (0,707, 0,707) попадает на радиус окружности между (a) и (b). Трасса перемещается в (b) с минимальным отклонением «X» и максимальным отклонением «Y». При максимальном отрицательном отклонении «X» и минимальном отклонении «Y» след переместится в (c). Затем с минимальным «X» и максимальным отрицательным «Y» он переходит в (d), а затем обратно в (a), завершая один цикл.

    Рисунок 5.10 Окружность синуса по оси X и косинуса по оси Y

    На рисунке показаны две синусоидальные волны с фазовым сдвигом на 90 °, приложенные к отклоняющим пластинам осциллографа, расположенным под прямым углом в пространстве. Комбинация фазированных синусоидальных волн на 90 ° и отклонения под прямым углом дает двумерный узор - круг. Этот круг очерчен электронным лучом, вращающимся против часовой стрелки.

    Полная скорость двигателя и скорость синхронного двигателя

    Скорость вращения вращающегося магнитного поля статора связана с количеством пар полюсов на фазу статора.На приведенном ниже рисунке «полная скорость» всего шесть полюсов или три пары полюсов и три фазы. Однако на каждую фазу приходится только одна пара полюсов. Магнитное поле будет вращаться один раз за цикл синусоидальной волны. В случае мощности 60 Гц поле вращается со скоростью 60 раз в секунду или 3600 оборотов в минуту (об / мин). При мощности 50 Гц он вращается со скоростью 50 оборотов в секунду или 3000 об / мин. 3600 и 3000 об / мин - это синхронная скорость двигателя . Хотя ротор асинхронного двигателя никогда не достигает этой скорости, это определенно верхний предел.Если мы удвоим количество полюсов двигателя, синхронная скорость уменьшится вдвое, потому что магнитное поле вращается в пространстве на 180 ° на 360 ° электрической синусоидальной волны.

    Рисунок 5.11 Удвоение полюсов статора уменьшает синхронную скорость вдвое

    Синхронная скорость определяется по формуле:

    [латекс] N_s = \ frac {120 \ cdot f} {P} [/ латекс]

    Где:

    Н с = Скорость магнитного поля (об / мин)

    f = частота подаваемой мощности (Гц)

    P = общее количество полюсов на фазу, кратное 2

    На приведенном выше рисунке «половинная скорость» четыре полюса на фазу (3 фазы).Синхронная скорость для мощности 50 Гц составляет: S = 120 · 50/4 = 1500 об / мин

    Краткое объяснение асинхронного двигателя состоит в том, что вращающееся магнитное поле, создаваемое статором, увлекает за собой ротор. Более подробное и более правильное объяснение состоит в том, что магнитное поле статора индуцирует переменный ток в проводниках короткозамкнутого ротора, которые составляют трансформатор. вторичный. Этот индуцированный ток ротора, в свою очередь, создает магнитное поле. Магнитное поле вращающегося статора взаимодействует с этим полем ротора.Поле ротора пытается выровняться с полем вращающегося статора. Результат - вращение ротора с короткозамкнутым ротором. Если бы не было механической нагрузки крутящего момента двигателя, подшипников, сопротивления ветра или других потерь, ротор вращался бы с синхронной скоростью. Однако проскальзывание между ротором и полем статора синхронной скорости развивает крутящий момент. Именно магнитный поток, разрезающий проводники ротора при его проскальзывании, создает крутящий момент. Таким образом, нагруженный двигатель будет скользить пропорционально механической нагрузке.Если бы ротор работал с синхронной скоростью, не было бы потока статора, разрезающего ротор, не было бы тока, индуцированного в роторе, не было бы крутящего момента.

    Крутящий момент в асинхронных двигателях

    При первой подаче питания на двигатель ротор находится в состоянии покоя, а магнитное поле статора вращается с синхронной скоростью N s . Поле статора режет ротор с синхронной скоростью N с . Ток, индуцированный в закороченных витках ротора, является максимальным, как и частота тока, частота сети.По мере увеличения скорости ротора скорость, с которой магнитный поток статора сокращает ротор, представляет собой разницу между синхронной скоростью N с и фактической скоростью N ротора, или (N с - N). Отношение фактического потока, разрезающего ротор, к синхронной скорости определяется как скольжение :

    [латекс] s = \ frac {(N_s - N)} {N_s} [/ латекс]

    Где:

    Н с = синхронная скорость

    N = частота вращения ротора

    Частота тока, наведенного в проводники ротора, равна только частоте сети при пуске двигателя и уменьшается по мере приближения ротора к синхронной скорости. Частота ротора определяется по:

    [латекс] f_r = s \ cdot f [/ латекс]

    Где:

    с = скольжение,

    f = частота линии электропередачи статора

    Скольжение при 100% крутящем моменте обычно составляет 5% или меньше в асинхронных двигателях. Таким образом, для частоты сети f = 50 Гц частота наведенного тока в роторе:

    f r = S (f)
    = 0,05 (50 Гц)
    = 2,5 Гц.

    Почему он такой низкий? Магнитное поле статора вращается с частотой 50 Гц.Скорость вращения ротора на 5% меньше. Вращающееся магнитное поле режет ротор только с частотой 2,5 Гц. 2,5 Гц - это разница между синхронной скоростью и фактической скоростью ротора. Если ротор вращается немного быстрее при синхронной скорости, поток вообще не будет резать ротор, f r = 0.

    Рисунок 5.12 Зависимость крутящего момента и скорости от% скольжения.

    На приведенном выше графике показано, что пусковой крутящий момент, известный как крутящий момент заторможенного ротора (T LR ), превышает 100% крутящего момента при полной нагрузке (T FL ), безопасного продолжительного крутящего момента.Крутящий момент заблокированного ротора составляет около 175% от T FL для приведенного выше примера двигателя. Пусковой ток, известный как , ток заторможенного ротора (I LR ) составляет 500% от тока полной нагрузки (I FL ), безопасного рабочего тока. Ток большой, потому что это аналог закороченной вторичной обмотки трансформатора. Когда ротор начинает вращаться, крутящий момент может немного уменьшиться для определенных классов двигателей до значения, известного как тяговый момент . Это самое низкое значение крутящего момента, с которым когда-либо сталкивался пусковой двигатель.Когда ротор набирает 80% синхронной скорости, крутящий момент увеличивается со 175% до 300% крутящего момента полной нагрузки. Этот пробойный крутящий момент (T BD ) происходит из-за большего, чем обычно, 20% скольжения. Сила тока в этот момент уменьшилась лишь незначительно, но после этого будет быстро уменьшаться. Когда ротор ускоряется с точностью до нескольких процентов от синхронной скорости, как крутящий момент, так и ток значительно уменьшаются. При нормальной работе проскальзывание составит всего несколько процентов. Для работающего двигателя любой участок кривой крутящего момента ниже 100% номинального крутящего момента является нормальным.Нагрузка двигателя определяет рабочую точку на кривой крутящего момента. В то время как крутящий момент и ток двигателя могут превышать 100% в течение нескольких секунд во время запуска, продолжительная работа выше 100% может привести к повреждению двигателя. Любая крутящая нагрузка двигателя, превышающая крутящий момент пробоя, приведет к остановке двигателя. Крутящий момент, скольжение и ток будут приближаться к нулю в условиях нагрузки «без механического крутящего момента». Это состояние аналогично разомкнутому вторичному трансформатору. Существует несколько основных конструкций асинхронных двигателей, которые значительно отличаются от кривой крутящего момента, приведенной выше.Различные конструкции оптимизированы для запуска и работы с различными типами нагрузок. Крутящий момент заблокированного ротора (T LR ) для двигателей различных конструкций и размеров составляет от 60% до 350% момента полной нагрузки (T FL ). Пусковой ток или ток заторможенного ротора (I LR ) может находиться в диапазоне от 500% до 1400% от тока полной нагрузки (I FL ). Этот потребляемый ток может вызвать проблемы с запуском больших асинхронных двигателей.

    Классы двигателей NEMA и IEC

    Различные стандартные классы (или конструкции) двигателей, соответствующие кривым крутящего момента (рисунок ниже), были разработаны для лучшего управления нагрузками различных типов.Национальная ассоциация производителей электрооборудования (NEMA) определила классы двигателей A, B, C и D для удовлетворения этих требований к приводам. Аналогичные классы N и H Международной электротехнической комиссии (IEC) соответствуют конструкциям NEMA B и C соответственно.

    Рисунок 5.13 Характеристики для проектов NEMA

    Характеристики для проектов NEMA

    Все двигатели, за исключением класса D, работают со скольжением 5% или менее при полной нагрузке.

    • Класс B (IEC Class N) Двигатели используются по умолчанию в большинстве приложений.При пусковом моменте LRT = от 150% до 170% от FLT он может запускать большинство нагрузок без чрезмерного пускового тока (LRT). КПД и коэффициент мощности высокие. Обычно он приводит в действие насосы, вентиляторы и станки.
    • Класс A Пусковой момент такой же, как и у класса B. Пусковой момент и пусковой ток (LRT) выше. Этот двигатель справляется с кратковременными перегрузками, которые встречаются в машинах для литья под давлением.
    • Класс C (IEC Class H) имеет более высокий пусковой крутящий момент, чем классы A и B при LRT = 200% от FLT.Этот двигатель применяется для тяжелых пусковых нагрузок, которые необходимо приводить в действие с постоянной скоростью, таких как конвейеры, дробилки, поршневые насосы и компрессоры.
    • Двигатели класса D имеют самый высокий пусковой момент (LRT) в сочетании с низким пусковым током из-за высокого скольжения (от 5% до 13% при FLT). Высокое скольжение приводит к снижению скорости. Регулировка скорости плохая. Тем не менее, двигатель отлично справляется с нагрузками с переменной скоростью, например с маховиком для аккумулирования энергии. Применения включают пробивные прессы, ножницы и подъемники.
    • Класс E Двигатели являются версией класса B с более высоким КПД.
    • Класс F Двигатели имеют гораздо более низкие LRC, LRT и крутящий момент, чем у класса B. Они управляют постоянными, легко запускаемыми нагрузками.

    Коэффициент мощности асинхронных двигателей

    Асинхронные двигатели имеют отстающий (индуктивный) коэффициент мощности от линии электропередачи. Коэффициент мощности больших полностью нагруженных высокоскоростных двигателей может достигать 90% для больших высокоскоростных двигателей. При 3/4 полной нагрузки максимальный коэффициент мощности высокоскоростного двигателя может составлять 92%.Коэффициент мощности малых тихоходных двигателей может составлять всего 50%. При запуске коэффициент мощности может находиться в диапазоне от 10% до 25%, увеличиваясь по мере достижения ротором скорости. Коэффициент мощности (PF) значительно зависит от механической нагрузки двигателя (рисунок ниже). Ненагруженный двигатель аналогичен трансформатору без резистивной нагрузки на вторичной обмотке. Небольшое сопротивление отражается от вторичной обмотки (ротора) к первичной обмотке (статору). Таким образом, в линии электропередачи присутствует реактивная нагрузка до 10% коэффициента мощности. Когда ротор нагружен, возрастающая резистивная составляющая отражается от ротора к статору, увеличивая коэффициент мощности.

    Рисунок 5.14 Коэффициент мощности и КПД асинхронного двигателя

    КПД асинхронного двигателя

    Большие трехфазные двигатели более эффективны, чем трехфазные двигатели меньшего размера, и почти все однофазные двигатели. КПД большого асинхронного двигателя может достигать 95% при полной нагрузке, хотя чаще встречается 90%. Эффективность малонагруженного или ненагруженного асинхронного двигателя низкая, потому что большая часть тока связана с поддержанием намагничивающего потока. Когда нагрузка крутящего момента увеличивается, больше тока потребляется для создания крутящего момента, в то время как ток, связанный с намагничиванием, остается фиксированным.Эффективность при 75% FLT может быть немного выше, чем при 100% FLT. Эффективность снижается на несколько процентов при FLT 50% и снижается еще на несколько процентов при FLT 25%. Эффективность становится низкой только ниже 25% FLT. Изменение КПД в зависимости от нагрузки показано на рисунке выше. Индукционные двигатели обычно имеют завышенные размеры, чтобы гарантировать, что их механическая нагрузка может быть запущена и приведена в действие при любых условиях эксплуатации. Если многофазный двигатель нагружен менее 75% номинального крутящего момента, когда КПД достигает пика, КПД снижается лишь незначительно до 25% FLT.

    Корректор коэффициента мощности Nola

    Фрэнк Нола из НАСА предложил корректор коэффициента мощности (PFC) в качестве энергосберегающего устройства для однофазных асинхронных двигателей в конце 1970-х годов. Он основан на предположении, что асинхронный двигатель с неполной нагрузкой менее эффективен и имеет более низкий коэффициент мощности, чем двигатель с полной нагрузкой. Таким образом, можно сэкономить энергию в частично загруженных двигателях, в частности, в двигателях 1-φ. Энергия, потребляемая для поддержания магнитного поля статора, относительно фиксирована по отношению к изменениям нагрузки.Хотя в полностью загруженном двигателе экономить нечего, напряжение на частично загруженном двигателе может быть уменьшено, чтобы уменьшить энергию, необходимую для поддержания магнитного поля. Это повысит коэффициент мощности и эффективность. Это была хорошая концепция для заведомо неэффективных однофазных двигателей, для которых она предназначалась. Эта концепция не очень применима к большим трехфазным двигателям. Из-за их высокого КПД (90% +) экономия энергии невелика. Более того, двигатель с КПД 95% по-прежнему имеет КПД 94% при 50% крутящем моменте при полной нагрузке (FLT) и 90% КПД при 25% FLT.Потенциальная экономия энергии при переходе от 100% FLT к 25% FLT составляет разницу в эффективности 95% - 90% = 5%. Это не 5% мощности при полной нагрузке, а 5% мощности при пониженной нагрузке. Корректор коэффициента мощности Nola может быть применим к 3-фазному двигателю, который большую часть времени простаивает (ниже 25% FLT), например к пробивному прессу. Срок окупаемости дорогостоящего электронного контроллера был оценен как непривлекательный для большинства приложений. Тем не менее, он может быть экономичным в составе электронного пускателя двигателя или регулятора скорости.Асинхронный двигатель может работать как генератор переменного тока, если это привод

    .

    Асинхронные двигатели в качестве генераторов переменного тока

    Асинхронный двигатель может работать как генератор переменного тока, если он приводится в действие крутящим моментом, превышающим 100% синхронной скорости (рисунок ниже). Это соответствует нескольким% «отрицательного» скольжения, скажем, -1%. Это означает, что, поскольку мы вращаем двигатель быстрее, чем синхронная скорость, ротор продвигается на 1% быстрее, чем вращающееся магнитное поле статора. Обычно он отстает в двигателе на 1%.Поскольку ротор разрезает магнитное поле статора в противоположном направлении (впереди), ротор индуцирует напряжение в статоре, возвращая электрическую энергию обратно в линию электропередачи.

    Рисунок 5.15 Отрицательный крутящий момент превращает асинхронный двигатель в генератор

    Такой индукционный генератор должен возбуждаться «живым» источником мощностью 50 или 60 Гц. В случае сбоя в электроснабжении энергокомпании выработка электроэнергии невозможна. Этот тип генератора не подходит в качестве резервного источника питания.Преимущество ветряного генератора вспомогательной энергии состоит в том, что он не требует автоматического выключателя отключения питания для защиты ремонтных бригад. Это безотказно.

    Небольшие удаленные (от электросети) установки могут быть выполнены с самовозбуждением путем размещения конденсаторов параллельно фазам статора. Если снять нагрузку, остаточный магнетизм может вызвать небольшой ток. Этот ток может протекать через конденсаторы без рассеивания мощности. Когда генератор достигает полной скорости, ток увеличивается, чтобы подать ток намагничивания на статор.В этот момент может быть приложена нагрузка. Слабое регулирование напряжения. Асинхронный двигатель может быть преобразован в генератор с самовозбуждением путем добавления конденсаторов.

    Процедура запуска заключается в доведении ветряной турбины до скорости в двигательном режиме путем подачи на статор нормального напряжения линии электропередачи. Любая вызванная ветром скорость турбины, превышающая синхронную, будет развивать отрицательный крутящий момент, возвращая мощность в линию электропередачи, изменяя нормальное направление электрического счетчика киловатт-часов.В то время как асинхронный двигатель представляет отстающий коэффициент мощности для линии электропередачи, асинхронный генератор переменного тока представляет собой ведущий коэффициент мощности. Индукционные генераторы не получили широкого распространения на обычных электростанциях. Скорость привода паровой турбины является постоянной и регулируемой в соответствии с требованиями синхронных генераторов переменного тока. Синхронные генераторы также более эффективны.

    Скорость ветряной турбины трудно контролировать, и скорость ветра может изменяться порывами. Асинхронный генератор лучше справляется с этими колебаниями из-за собственного проскальзывания.Это меньше нагружает зубчатую передачу и механические компоненты, чем синхронный генератор. Однако это допустимое изменение скорости составляет всего около 1%. Таким образом, индукционный генератор, подключенный к прямой линии, считается ветряной турбиной с фиксированной скоростью (см. Асинхронный генератор с двойным питанием для истинного генератора переменного тока). Несколько генераторов или несколько обмоток на общем валу можно переключать для обеспечения высокой и низкой скорости, чтобы приспособиться к переменным ветровым условиям.

    Асинхронные двигатели с несколькими полями

    Асинхронные двигатели

    могут содержать несколько обмоток возбуждения, например, 4-полюсную и 8-полюсную обмотки, соответствующие синхронным скоростям 1800 и 900 об / мин.Подать питание на то или иное поле менее сложно, чем на повторное подключение катушек статора.

    Рисунок 5.16 Несколько полей позволяют изменять скорость

    Если поле сегментировано с выведенными выводами, его можно изменить (или переключить) с 4-полюсного на 2-полюсное, как показано выше для 2-фазного двигателя. Сегменты 22,5 ° переключаются на сегменты 45 °. Для ясности выше показана только проводка для одной фазы. Таким образом, наш асинхронный двигатель может работать на нескольких скоростях. При переключении вышеуказанного двигателя 60 Гц с 4 полюсов на 2 полюса синхронная скорость увеличивается с 1800 до 3600 об / мин.

    Q: Если двигатель приводится в движение частотой 50 Гц, каковы будут соответствующие 4-полюсные и 2-полюсные синхронные скорости?

    А:

    [латекс] N_s = \ frac {120f} {P} [/ latex] [latex] N_s = \ frac {120 * 50Hz} {4} [/ latex] [latex] = 1500 об / мин (4-полюсный) [ / латекс]

    [латекс] N_s = \ frac {120f} {P} [/ latex] [latex] N_s = \ frac {120 * 50Hz} {2} [/ latex] [latex] = 3000 об / мин (2-полюсный) [ / латекс]

    Двигатели асинхронные с переменным напряжением

    Скорость малых асинхронных двигателей с короткозамкнутым ротором для таких применений, как приводные вентиляторы, может быть изменена путем снижения сетевого напряжения.Это снижает крутящий момент, доступный нагрузке, что снижает скорость (см. Рисунок ниже).

    Рисунок 5.17 Регулирование переменного напряжения, скорость асинхронного двигателя

    Электронное регулирование скорости в асинхронных двигателях

    Современная полупроводниковая электроника расширяет возможности управления скоростью. Изменяя сетевую частоту 50 или 60 Гц на более высокие или более низкие значения, можно изменить синхронную скорость двигателя. Однако уменьшение частоты тока, подаваемого на двигатель, также снижает реактивное сопротивление X L , что увеличивает ток статора.Это может привести к насыщению магнитной цепи статора с катастрофическими последствиями. На практике напряжение на двигателе необходимо уменьшать при уменьшении частоты.

    Рисунок 5.18 Электронный частотно-регулируемый привод

    И наоборот, частота привода может быть увеличена для увеличения синхронной скорости двигателя. Однако необходимо увеличить напряжение, чтобы преодолеть увеличивающееся реактивное сопротивление, чтобы поддерживать ток на уровне нормального значения и поддерживать крутящий момент. Инвертор приближает синусоидальные волны к двигателю с помощью выходов с широтно-импульсной модуляцией.Это прерывистый сигнал, который может быть включен или выключен, высокий или низкий, процент времени включения соответствует мгновенному напряжению синусоидальной волны.

    Когда электроника применяется для управления асинхронным двигателем, становится доступно множество методов управления, от простых до сложных:

    • Скалярное управление: Описанный выше недорогой метод управления только напряжением и частотой без обратной связи.
    • Векторное управление: Также известно как векторное управление фазой.Компоненты тока статора, создающие магнитный поток и крутящий момент, измеряются или оцениваются в реальном времени для улучшения кривой крутящего момента двигателя. Это требует больших вычислений.
    • Прямое управление крутящим моментом: Продуманная адаптивная модель двигателя позволяет более прямое управление потоком и крутящим моментом без обратной связи. Этот метод быстро реагирует на изменения нагрузки.

    • Многофазный асинхронный двигатель состоит из многофазной обмотки, встроенной в многослойный статор, и проводящей короткозамкнутой клетки, встроенной в многослойный ротор.
    • Трехфазные токи, протекающие внутри статора, создают вращающееся магнитное поле, которое индуцирует ток и, следовательно, магнитное поле в роторе. Крутящий момент ротора развивается, когда ротор немного проскальзывает за вращающимся полем статора.
    • В отличие от однофазных двигателей, многофазные асинхронные двигатели самозапускаются.
    • Пускатели двигателей минимизируют нагрузку на линию питания, обеспечивая при этом больший пусковой крутящий момент, чем требуется во время работы.Пускатели для понижения тока сети требуются только для больших двигателей.
    • Трехфазные двигатели при запуске будут работать от однофазных.
    • Статический преобразователь фазы - это трехфазный двигатель, работающий на одной фазе без нагрузки на вал, генерирующий трехфазный выходной сигнал.
    • Несколько обмоток возбуждения можно перемонтировать для работы с несколькими дискретными скоростями двигателя, изменив количество полюсов.

    Трехфазный двигатель может работать от однофазного источника питания.Однако он не запускается самостоятельно. Его можно запустить вручную в любом направлении, набрав скорость за несколько секунд. Он будет развивать только 2/3 номинальной мощности 3-φ, потому что одна обмотка не используется.

    Рисунок 5.19 Двигатель 3-фазн. Питается от мощности 1-фазн., Но не запускается

    Одинарная катушка однофазного двигателя

    Одиночная катушка однофазного асинхронного двигателя создает не вращающееся магнитное поле, а пульсирующее поле, достигающее максимальной напряженности при электрическом напряжении 0 ° и 180 °.

    Рисунок 5.20 Однофазный статор создает невращающееся пульсирующее магнитное поле

    Другая точка зрения состоит в том, что одиночная катушка, возбуждаемая однофазным током, создает два вектора магнитного поля, вращающихся в противоположных направлениях, совпадающих дважды за оборот при 0 ° (рисунок выше-a) и 180 ° (рисунок e). Когда векторы поворачиваются на 90 ° и -90 °, они отменяются на рисунке c. При 45 ° и -45 ° (рисунок b) они частично складываются по оси + x и сокращаются по оси y. Аналогичная ситуация существует на рисунке d.Сумма этих двух векторов - это вектор, стационарный в пространстве, но чередующийся во времени. Таким образом, пусковой крутящий момент не создается.

    Однако, если ротор вращается вперед со скоростью немного меньшей, чем синхронная скорость, он будет развивать максимальный крутящий момент при 10% скольжении относительно вектора прямого вращения. Меньший крутящий момент будет развиваться выше или ниже 10% скольжения. Ротор будет испытывать скольжение на 200-10% относительно вектора магнитного поля, вращающегося в противоположных направлениях. Небольшой крутящий момент (см. Кривую зависимости крутящего момента от скольжения), за исключением двукратной пульсации частоты, вырабатывается вектором встречного вращения.Таким образом, однофазная катушка будет развивать крутящий момент после запуска ротора. Если ротор запускается в обратном направлении, он будет развивать такой же большой крутящий момент, поскольку он приближается к скорости вращающегося в обратном направлении вектора.

    Однофазные асинхронные двигатели имеют медную или алюминиевую короткозамкнутую клетку, встроенную в цилиндр из стальных пластин, типичных для многофазных асинхронных двигателей.

    Двигатель с постоянным разделением конденсаторов

    Одним из способов решения проблемы с однофазным двигателем является создание двухфазного двигателя, получающего двухфазное питание от однофазного.Для этого требуется двигатель с двумя обмотками, разнесенными друг от друга на 90 ° , электрический, питаемый двумя фазами тока, смещенными во времени на 90 ° . Это называется конденсаторным двигателем с постоянным разделением.

    Рисунок 5.21 Асинхронный двигатель с постоянным разделением конденсаторов

    Асинхронный двигатель с постоянным разделением конденсаторов

    Этот тип двигателя подвержен увеличенной величине тока и сдвигу во времени назад, когда двигатель набирает скорость, с пульсациями крутящего момента на полной скорости. Решение состоит в том, чтобы уменьшить емкость конденсатора (импеданс), чтобы минимизировать потери.Потери меньше, чем у двигателя с экранированными полюсами. Эта конфигурация двигателя хорошо работает до 1/4 лошадиных сил (200 Вт), хотя обычно применяется к двигателям меньшего размера. Направление двигателя легко изменить, включив конденсатор последовательно с другой обмоткой. Этот тип двигателя может быть адаптирован для использования в качестве серводвигателя, описанного в другом месте этой главы.

    Рисунок 5.22 Однофазный асинхронный двигатель со встроенными катушками статора

    Однофазные асинхронные двигатели могут иметь катушки, встроенные в статор для двигателей большего размера.Тем не менее, меньшие размеры требуют меньшего количества сложностей для создания концентрированных обмоток с выступающими полюсами.

    Асинхронный двигатель с конденсаторным пуском

    На рисунке ниже конденсатор большего размера может использоваться для запуска однофазного асинхронного двигателя через вспомогательную обмотку, если он отключается центробежным переключателем, когда двигатель набирает обороты. Более того, во вспомогательной обмотке может быть намного больше витков из более тяжелого провода, чем в двигателе с разделенной фазой сопротивления, чтобы уменьшить чрезмерное повышение температуры.В результате для таких тяжелых нагрузок, как компрессоры кондиционеров, доступен больший пусковой крутящий момент. Эта конфигурация двигателя работает настолько хорошо, что доступна в многомощных (несколько киловаттных) размерах.

    Рисунок 5.23 Асинхронный двигатель с конденсаторным пуском

    Асинхронный двигатель с конденсаторным двигателем

    Вариант двигателя с конденсаторным пуском (рисунок ниже) заключается в запуске двигателя с относительно большим конденсатором для высокого пускового момента, но с оставлением конденсатора меньшего номинала на месте после запуска для улучшения рабочих характеристик, не потребляя чрезмерного тока.Дополнительная сложность конденсаторного двигателя оправдана для двигателей большего размера.

    Рисунок 5.24 Асинхронный двигатель с конденсаторным двигателем

    Пусковой конденсатор двигателя может быть неполярным электролитическим конденсатором с двойным анодом, который может представлять собой два последовательно соединенных поляризованных электролитических конденсатора + к + (или - к -). Такие электролитические конденсаторы переменного тока имеют такие высокие потери, что их можно использовать только в прерывистом режиме (1 секунда во включенном состоянии, 60 секунд в выключенном состоянии), например, при запуске двигателя. Конденсатор для работы двигателя должен иметь не электролитическую конструкцию, а полимерный конденсатор с более низкими потерями.

    Асинхронный двигатель с двухфазным электродвигателем с сопротивлением

    Если во вспомогательной обмотке гораздо меньше витков, меньший провод подведен под углом 90 ° ° к основной обмотке, он может запустить однофазный асинхронный двигатель. При более низкой индуктивности и более высоком сопротивлении ток будет испытывать меньший фазовый сдвиг, чем основная обмотка. Может быть получено около 30 ° разности фаз. Эта катушка создает умеренный пусковой крутящий момент, который отключается центробежным переключателем на 3/4 синхронной скорости.Эта простая (без конденсатора) конструкция хорошо подходит для двигателей мощностью до 1/3 лошадиных сил (250 Вт), управляющих легко запускаемыми нагрузками.

    Рисунок 5.25 Сопротивление асинхронного двигателя с разделенной фазой

    Этот двигатель имеет больший пусковой крутящий момент, чем двигатель с экранированными полюсами (следующий раздел), но не такой большой, как двухфазный двигатель, построенный из тех же частей. Плотность тока во вспомогательной обмотке во время пуска настолько высока, что последующий быстрый рост температуры исключает частый перезапуск или медленные пусковые нагрузки.

    Корректор коэффициента мощности Nola

    Фрэнк Нола из НАСА предложил корректор коэффициента мощности для повышения эффективности асинхронных двигателей переменного тока в середине 1970-х годов. Он основан на предположении, что асинхронные двигатели неэффективны при нагрузке ниже полной. Эта неэффективность коррелирует с низким коэффициентом мощности. Коэффициент мощности меньше единицы возникает из-за тока намагничивания, необходимого для статора. Этот фиксированный ток составляет большую долю от общего тока двигателя при уменьшении нагрузки двигателя.При небольшой нагрузке полный ток намагничивания не требуется. Его можно уменьшить, уменьшив подаваемое напряжение, улучшив коэффициент мощности и КПД. Корректор коэффициента мощности определяет коэффициент мощности и снижает напряжение двигателя, тем самым восстанавливая более высокий коэффициент мощности и уменьшая потери.

    Поскольку однофазные двигатели примерно в 2–4 раза менее эффективны, чем трехфазные двигатели, существует потенциальная экономия энергии для двигателей 1-φ. Для полностью нагруженного двигателя экономии нет, так как требуется весь ток намагничивания статора.Напряжение не может быть уменьшено. Но есть потенциальная экономия от менее чем полностью загруженного двигателя. Двигатель с номинальным напряжением 117 В переменного тока рассчитан на работу при напряжении от 127 В переменного тока до 104 В переменного тока. Это означает, что он не полностью загружен при работе при напряжении более 104 В переменного тока, например, при работе холодильника на 117 В переменного тока. Контроллер коэффициента мощности может безопасно снизить сетевое напряжение до 104–110 В переменного тока. Чем выше начальное напряжение в сети, тем больше потенциальная экономия. Конечно, если энергокомпания подаст напряжение ближе к 110 В переменного тока, двигатель будет работать более эффективно без каких-либо дополнительных устройств.

    Любой практически неработающий однофазный асинхронный двигатель с 25% FLC или менее является кандидатом на использование PFC. Однако он должен работать большое количество часов в год. И чем больше времени он простаивает, как в пилораме, штамповочном прессе или конвейере, тем выше вероятность оплаты контроллера через несколько лет эксплуатации. За него должно быть втрое легче платить по сравнению с более эффективным 3-φ-двигателем. Стоимость PFC не может быть возмещена для двигателя, работающего всего несколько часов в день.

    Краткое описание: Однофазные асинхронные двигатели

    • Однофазные асинхронные двигатели не могут запускаться самостоятельно без вспомогательной обмотки статора, приводимой в действие противофазным током около 90 ° . После запуска вспомогательная обмотка необязательна.
    • Вспомогательная обмотка электродвигателя с постоянным разделением конденсаторов имеет конденсатор, включенный последовательно с ней во время пуска и работы.
    • Асинхронный двигатель с конденсаторным запуском имеет только конденсатор, включенный последовательно со вспомогательной обмоткой во время запуска.
    • Конденсаторный двигатель обычно имеет большой неполяризованный электролитический конденсатор, включенный последовательно со вспомогательной обмоткой для запуска, а затем меньший неэлектролитический конденсатор во время работы.
    • Вспомогательная обмотка электродвигателя с разделенным фазным сопротивлением развивает разность фаз по сравнению с основной обмоткой во время пуска из-за разницы в сопротивлении.

    (PDF) Испытания трехфазных асинхронных двигателей

    Ахмед М.Т. Ибрагим Алнаиб, преподаватель.

    Деп. инженера по электроэнергетике, Технический колледж / Мосул, Северный технический университет.

    7

    Эксперимент (4)

    Испытание трехфазного асинхронного двигателя под нагрузкой

    Цель:

    (a) Провести испытание под нагрузкой на трехфазном асинхронном двигателе.

    (b) Вычислить крутящий момент, выходную мощность, входную мощность, КПД, коэффициент входной мощности и скольжение для

    при каждой настройке нагрузки и определить, как скорость, КПД, коэффициент мощности, текущий крутящий момент статора и скольжение асинхронного двигателя

    варьироваться в зависимости от нагрузки.

    (c) Постройте следующие кривые рабочих характеристик: (i) Эффективность и эффективность. Выходная мощность, (ii) крутящий момент Vs.

    Выходная мощность, (iii) Линейный ток Vs. Выходная мощность, (iv) Коэффициент мощности Vs. Выход, (v) Скольжение Vs.

    Выходная мощность и (vi) Крутящий момент относительно. Скорость

    Теория:

    Нагрузочное испытание асинхронного двигателя выполняется для расчета его полной производительности, т.е. крутящего момента

    , скольжения, КПД, коэффициента мощности и т. Д. Во время этого испытания двигатель работает при номинальном напряжении

    и частоте и обычно Нагруженный механически тормозом и шкивом, исходя из наблюдаемых данных

    , производительность можно рассчитать, выполнив шаги, указанные ниже.

    - Скольжение ():

    Скорость ротора (Nr) немного снижается по мере увеличения нагрузки на двигатель. Синхронная скорость (Ns) вращающегося магнитного поля

    рассчитывается на основе количества

    полюсов P и частоты питания (f).

      , об / мин

        

    Обычно диапазон скольжения при полной нагрузке составляет от 2 до 5 процентов.

    - Крутящий момент:

    Механическая нагрузка - наиболее распространенный метод, используемый в лабораториях. Тормозной барабан

    соединен с валом двигателя, и нагрузка прикладывается путем натяжения ремня, при условии, что

    на тормозном барабане.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *