Калькулятор конденсаторов для электродвигателя: Расчёт ёмкости конденсатора онлайн / Калькулятор / Элек.ру

Содержание

Калькулятор подбора конденсаторов для электродвигателя — MOREREMONTA

Чтобы подключить асинхронный электродвигатель трехфазного типа к однофазной сети на напряжение 220 В, необходимо создать условия для сдвига фаз на обмотках статора двигателя. Сдвиг фаз сформирует имитацию кругового вращающегося магнитного поля, заставляющего вращаться вал ротора двигателя. Конденсатор даёт току «запас» в π/2=90° относительно напряжения, и это создаёт дополнительный момент вращения ротора.

При подключении двигателя к сети используют два подключенных параллельно конденсатора — пусковой и рабочий. Данный калькулятор позволяет рассчитать ёмкость этих конденсаторов, ёмкость пускового конденсатора берется из расчёта 2,5 емкости рабочего конденсатора.

Для получения необходимых значений ёмкости, заполните поля формы ниже. Тип соединения обмоток двигателя, мощность двигателя, КПД и коэффициент мощности обозначены на шильдике электродвигателя. Способ соединения обмоток зависит от напряжения сети, к которой выполняется подключение: 220 В — «треугольник», когда концы обмоток соединены между собой, к их началам подводится питающее напряжение; 380 В — «звезда», при котором концы одной обмотки соединены с началом другой.

Результаты расчетов

Информация носит справочно-информационный характер

Для чего необходим расчет емкости конденсатора

Запустить асинхронный трехфазный электродвигатель, рассчитанный на напряжение 380 и даже 220 Вольт, от бытовой однофазной сети с напряжением 220 В напрямую не получится, так как при таком подключении обмоток статора невозможно сгенерировать вращающееся магнитное поле. Добиться необходимых условий для возникновения вращения магнитного потока можно включением в питающую сеть конденсаторов, которые и вызовут сдвиг фазы на 90° и трансформируют однофазный ток в некое подобие трехфазного. Чтобы двигатель работал с наименьшей потерей номинальной мощности и не вышел из строя, нужно правильно подобрать емкость пусковых и рабочих конденсаторов или конденсаторных батарей. С этой целью нами был разработан калькулятор емкости конденсаторов.

Как работает калькулятор емкости конденсаторов онлайн

Для расчета необходимых емкостей достаточно выбрать схему подключения обмоток статора и ввести в специальные окна технические характеристики подключаемого электродвигателя:

  • мощность, Вт
  • КПД, %
  • коэффициент мощности (cos φ )

После внесения всех необходимых данных, которые указаны на шильдике двигателя, требуется нажать на кнопку «Рассчитать»

Программа выполнит расчет пускового конденсатора и вычислит необходимую емкость рабочего конденсатора. Данные отразятся в соответствующих окнах.

Теперь Вам не требуется выполнять вычисления с помощью формул, наш калькулятор рассчитает емкость конденсаторов онлайн.

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает.

Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Расчет емкости конденсатора асинхронного двухфазного двигателя (конденсаторный двигатель) — Help for engineer

Расчет емкости конденсатора асинхронного двухфазного двигателя (конденсаторный двигатель)

Однофазный асинхронный двигатель

Обмотка статора однофазного асинхронного двигателя занимает приблизительно 2/3 окружности, именно по этой причине его мощность на 1/3 меньше мощности трехфазного двигателя таких же габаритов.

Ток, протекая по обмотке статора, создает пульсирующее магнитное поле, которое можно представить как два поля, вращающиеся в разных направлениях. Поле, которое вращается в направлении ротора называется прямым полем, а второе – обратным. Они воздействуют на ротор и создают соответствующие моменты (М

пр и Мобр).

По причине разных направлений вращения эти электрические машины не могут самостоятельно совершить пуск, так как при неподвижном роторе, то есть при S=1, пусковой момент, он же Мрез, равен нолю (смотри Рисунок 1). Однако, если придать движение ротору, то прямой и обратный моменты не будут равны и двигатель продолжит вращение в том же направлении (ток, протекающий по обмотке ротора будет оказывать размагничивающее действие и при этом будет ослабляться обратное поле).

Рисунок 1 — Зависимость механических характеристик от прямого и обратного вращающих полей

Пуск двигателя с помощью пусковых устройств

Для того чтоб запустить однофазный асинхронный двигатель применяют устройства для пуска двигателя:

— Конденсатор – C;

— Резистор – R.

Пуск трехфазных асинхронных двигателей осуществляется более простым способом из-за уже имеющегося в сети сдвига фаз на 120 электрических градусов

Для получения пускового момента используют пусковую обмотку статора, которая по отношению к рабочей обмотке сдвинута на 90 электрических градусов. Применяют фазосдвигающие элементы, которые подключают к пусковой обмотке. Эта обмотка работает, обычно, около 3 первых секунд, после чего принудительно отключается вручную или с помощью автоматов. По этой причине ее изготовляют из провода меньшего сечения и с меньшим количеством витков по сравнению с рабочей обмоткой.

Пуск при помощи резистора производится при малых необходимых пусковых моментах, то есть если нагрузка на валу незначительна. Рисунок 2 иллюстрирует применение пускового а) конденсатора и б) резистора; где Р – рабочая обмотка, П – пусковая обмотка.

Рисунок 2 – Схема подключения однофазного асинхронного двигателя

Двухфазные асинхронные двигатели

Наличие конденсатора значительно улучшает характеристики двигателя, по этой причине используются двухфазные асинхронные двигатели. В них две обмотки являются рабочими, в одну из них вводится конденсатор для смещения угла между фазами на 90 градусов и создания кругового магнитного поля. Такие двигатели называют конденсаторными.

Расчет емкости конденсатора для двигателя:

Емкость такого конденсатора определяется по формуле:

,

где – ток, протекающий в обмотке статора,

sinφ1 – сдвиг фаз между напряжение и током без конденсатора,

f– частота питающей сети,

U – напряжение сети,

n – коэффициент трансформации.

,

Где и kоб1,kоб2 — обмоточные коэффициенты,

W1, W2, — количество витков обмоток статора и ротора.

Напряжение на зажимах конденсатора выше чем напряжение сети и определяется следующей формулой:

Для повышения пусковых характеристик Существуют двигатели в одну обмотку которых ставятся два конденсатора, один из которых пусковой, второй – рабочий. Пусковой конденсатор обычно имеет емкость в разы большую чем рабочий. При этом пусковой отключается при достижении 70-80% номинальной скорости электрической машины.

Рисунок 3 – Пример подключения пары конденсаторов (конденсаторный двигатель)

Преимущества и недостатки конденсаторных двигателей

Недостатки по сравнению с трехфазным двигателем:

— Меньшая мощность;

— Увеличенное скольжение при номинальном режиме;

— Скорость вращения вала при холостом ходу ниже;

— Пониженная кратность пускового момента;

— Повышенная кратность пускового тока.

Преимущества:

— Имеют высокую эксплуатационную надежность;

— Не требуют трехфазного источника тока.

Недостаточно прав для комментирования

Калькулятор емкости последовательного соединения конденсаторов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Калькулятор позволяет рассчитать емкость нескольких конденсаторов, соединенных последовательно.

Пример. Рассчитать эквивалентную емкость двух соединенных последовательно конденсаторов 10 мкФ и 5 мкФ.

Входные данные

Добавить конденсатор

Выходные данные

Эквивалентная емкость

C микрофарад (мкФ)

Введите значения емкости в поля C1 и C 2, добавьте при необходимости новые поля, выберите единицы емкости (одинаковые для всех полей ввода) в фарадах (Ф), миллифарадах (мФ), микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ) и нажмите на кнопку Рассчитать.

1 мФ = 0,001 Ф. 1 мкФ = 0,000001 = 10⁻⁶ Ф. 1 нФ = 0,000000001 = 10⁻⁹ Ф. 1 пФ = 0,000000000001 = 10⁻¹² Ф.

В соответствии со вторым правилом Кирхгофа, падения напряжения V₁, V₂ and V₃ на каждом из конденсаторов в группе из трех соединенных последовательно конденсаторов в общем случае различные и общая разность потенциалов V равна их сумме:

По определению емкости и с учетом того, что заряд Q группы последовательно соединенных конденсаторов является общим для всех конденсаторов, эквивалентная емкость Ceq всех трех конденсаторов, соединенных последовательно, определяется как

или

Для группы из n соединенных последовательно конденсаторов эквивалентная емкость Ceq равна величине, обратной сумме величин, обратных емкостям отдельных конденсаторов:

или

Эта формула для Ceq и используется для расчетов в этом калькуляторе. Например, общая емкость соединенных последовательно трех конденсаторов емкостью 10, 15 and 20 мкФ будет равна 4,62 мкФ:

Если конденсаторов только два, то их общая емкость определяется по формуле

или

Если имеется n соединенных последовательно конденсаторов с емкостью C, их эквивалентная емкость равна

Отметим, что для расчета общей емкости нескольких соединенных последовательно конденсаторов используется та же формула, что и для расчета общего сопротивления параллельно соединенных резисторов.

Отметим также, что общая емкость группы из любого количества последовательно соединенных конденсаторов всегда будет меньше, чем емкость самого маленького конденсатора, а добавление конденсаторов в группу всегда приводит к уменьшению емкости.

Конденсаторы на печатной плате

Отдельного упоминания заслуживает падение напряжения на каждом конденсаторе в группе последовательно соединенных конденсаторов. Если все конденсаторы в группе имеют одинаковую номинальную емкость, падение напряжения на них скорее всего будет разным, так как конденсаторы в реальности будут иметь разную емкость и разный ток утечки. На конденсаторе с наименьшей емкостью будет наибольшее падение напряжения и, таким образом, он будет самым слабым звеном этой цепи.

Выравнивающие резисторы уменьшают разброс напряжений на отдельных конденсаторах

Для получения более равномерного распределения напряжений параллельно конденсаторам включают выравнивающие резисторы. Эти резисторы работают как делители напряжения, уменьшающие разброс напряжений на отдельных конденсаторах. Но даже с этими резисторами все равно для последовательного включения следует выбирать конденсаторы с большим запасом по рабочему напряжению.

Если несколько конденсаторов соединены параллельно, разность потенциалов V на группе конденсаторов равна разности потенциалов соединительных проводов группы. Общий заряд Q разделяется между конденсаторами и если их емкости различны, то заряды на отдельных конденсаторах Q₁, Q₂ and Q₃ тоже будут различными. Общий заряд определяется как

Конденсаторы, соединенные параллельно

По определению емкости, эквивалентная емкость группы конденсаторов равна

отсюда

или

Для группы n включенных параллельно конденсаторов

То есть, если несколько конденсаторов включены параллельно, их эквивалентная емкость определяется путем сложения емкостей всех конденсаторов в группе.

Возможно, вы заметили, что конденсаторы ведут себя противоположно резисторам: если резисторы соединены последовательно, их общее сопротивление всегда будет выше сопротивлений отдельных резисторов, а в случае конденсаторов всё происходит с точностью до наоборот.

Конденсаторы на печатной плате

Расчет конденсатора фазового сдвига — www.itieffe.com

Cспиртовой конденсатор фазового сдвига

Cспиртовой конденсатор фазового сдвига

Работа трехфазного асинхронного двигателя происходит из-за подачи питания на трехфазный ток, которые не совпадают по фазе между ними на 120 °.

Возможно питание одного и того же двигателя однофазным током nи случаи, в которых требуемая мощность не составляет 100% (и то же самое не превышает определенные мощности) через конденсатор фазового сдвига

Эффективность не будет высокой, поскольку полученный фазовый сдвиг не является оптимальным.

Однако он может применяться для различных целей: электронасосы, центробежные и винтовые вентиляторы, дрели и для всех тех машин с ограниченной мощностью и не требующих высоких пусковых токов.

В большинстве случаев используется соединение треугольником, подходящее для трехфазного двигателя 220–380 В, питаемого от однофазного 220 В.

На следующем рисунке показаны соединения для трехфазных асинхронных двигателей с однофазным питанием со звездой и треугольником, а также с вращением по и против часовой стрелки.

треугольник Стелла

Конденсатор производит фазовый сдвиг, необходимый для создания вращающегося магнитного поля внутри двигателя.

Величина фазового сдвига является результатом задействованной емкости и тока, по этой причине фазовый сдвиг никогда не может быть оптимальным, он меняется в зависимости от нагрузки и всегда будет компромиссом.

Двигатель с таким питанием никогда не сможет обеспечить номинальную мощность, при рассчитанном здесь значении мощность снижается до 60-70% и является компромиссом для работы с ограниченными и средними нагрузками.

Самый высокий пусковой момент для однофазного двигателя достигается, когда задержка, которую мы получаем с нашим конденсатором, составляет 90 °.

В случаях, когда нагрузка всегда высока, можно увеличить мощность для получения большей мощности, но будьте осторожны, в этом случае он не должен работать без нагрузки или с низкими нагрузками, вы рискуете сжечь двигатель.

Неверно думать, что с большим конденсатором он получает больше мощности, даже сбой может возникнуть у пользователя.

Наибольшее ухудшение этого типа соединения происходит в фазе пуска, доступный крутящий момент составляет 30-40% от крутящего момента, достигаемого при обычном питании двигателя.

Предупреждения

Помните, что в этом конкретном приложении конденсатор подвержен сильным токам и неоднократным изменениям полярности, если он не подходит для выполняемой работы, он может взорваться.

Используйте только неполяризованные конденсаторы с максимальным рабочим напряжением на 15-20% выше напряжения питания двигателя и рассчитанные на переменный ток.

Ссылки по теме

Конденсатор для компрессора

Конденсаторы CBB65 двойной емкости пусковые и рабочие

Конденсаторы двойные серии CBB65 – металлизированные полипропиленовые пленочные конденсаторы в металлическом (Al/Zn) корпусе с тремя выводами.

Номинальная емкость конденсаторов составляет 15 мкФ – 100 мкФ (для компрессора) и 1,5 мкФ – 6,0 мкФ (для вентилятора) при напряжении 450 В переменного тока частотой 50/60 Гц.

Допустимое отклонение ёмкости ±5%. Диапазон рабочих температур -40°С…+70°С. Другие серии сдвоенных конденсаторов: CBB65A-1, CBB65A-2.

Обозначение выводов конденсатора двойной емкости:

  • С (Common Connection) – общий вывод
  • HERM (Hermetically Sealed Compressor) – подключение рабочей обмотки компрессора
  • FAN (Fan Condenser) – подключение двигателя вентилятора

Применяются в качестве пускового и рабочего конденсатора при запуске и работе электродвигателей (фазосдвигающие конденсаторы) внешних блоков кондиционеров, в частности устанавливаются в кондиционерах LG, компрессоров холодильников, HVAC системах отопления вентиляции и кондиционирования воздуха, в различных машинах и агрегатах промышленного типа.

Перед подключением следует удостовериться в отсутствии накопленного заряда в конденсаторе. Разряд рекомендуется осуществлять при помощи резистора. Подсоединение проводов к клеммам 6,35х0,8 мм конденсатора осуществляется с использованием изолированных или неизолированных наконечников типа “мама”.

Габаритные и установочные размеры являются ориентировочными и могут отличаться от заявленных в зависимости от производителя. Наша компания гарантирует качество и работу конденсаторов в течение 2 лет с момента их приобретения, предоставляются паспорта качества.

Окончательная цена на пусковые конденсаторы CBB65 двойные зависит от количества, сроков поставки и формы оплаты.

*Примечание: Размеры являются ориентировочными и могут отличаться от заявленных в зависимости от производителя. Точные размеры уточняйте у наших специалистов.

Маркировка конденсаторов двойной ёмкости серии CBB65:

Расшифровка маркировки конденсаторов CBB65:

Размеры пусковых конденсаторов сдвоенных серии CBB65*:

*Примечание: Размеры являются ориентировочными и могут отличаться от заявленных в зависимости от производителя. Точные размеры уточняйте у наших специалистов.

Обозначение выводов и подключение конденсатора двойной ёмкости серии CBB65:

Калькулятор расчета ёмкости конденсатора

Пусковые и рабочие конденсаторы для электродвигателей подбирают исходя из необходимой ёмкости и номинального напряжения. С помощью онлайн-калькулятора можно произвести расчет ёмкости пускового и рабочего конденсатора для трехфазных электродвигателей при соединении обмоток двигателя по схеме “звезда” или “треугольник” и его подключении в однофазную сеть.

Сравнительные характеристики пусковых конденсаторов:

Устройство и производство пусковых конденсаторов

На торцевой части алюминиевого цилиндрического корпуса размещены жесткие неполярные вывода-клемы. Крепление проводов с помощью наконечников типа “мама” или с применением пайки. Крепление самого конденсатора осуществляется непосредственно за корпус.

Конденсаторы CBB65 с тремя выводами называют сдвоенными или двойные конденсаторы. Выводы с обозначением HERM предназначены для подключения обмотки двигателя компрессора, FAN – подключение обмотки двигателя вентилятора, C – общий вывод.

В качестве диэлектрика используется полипропиленовая пленка, электрод – металлизированная пленка, полученная напылением в вакууме, пропитка осуществляется касторовым маслом.

На боковой поверхности корпуса приведены рабочие технические параметры конденсатора (номинальная ёмкость, допустимое отклонение ёмкости, номинальное напряжение, рабочая частота и др.), выполненные путем штамповки или нанесением краски.

Каждый этап производства пусковых конденсаторов проходит всестороний контроль качества, все процессы изготовления максимально автоматизированы. Производственные процессы при изготовлении конденсаторов:

  • Порезка: электрод (металлизированная пленка) и диэлектрик (полипропиленовая пленка) нарезаются на полосы заданной длины и ширины.
  • Вывода конденсатора присоединяются к электродам, которые разделяются диэлектриком и сворачиваются в рулон, образуя “конденсаторный элемент”.
  • Пропитка: процесс вытеснения воды из “конденсаторного элемента” под давлением или под вакуумом и заполнения пор диэлектрика.
  • Сборка: “конденсаторный элемент” помещается в корпус. Готовый продукт получается после нанесенния изолирующей оболочки на корпус конденсатора.
  • Осмотр изделия, тестирование (тренировка), нанесенние маркировки.

Техника безопасности при работе с конденсаторами

Для предотвращения случайного прикосновения к токоведущим частям, находящихся под напряжением, их следует изолировать с помощью кожуха или сетчатого ограждения.

Корпус конденсатора необходимо надежно закрепить – в процессе эксплуатации под воздействием вибраций и сотрясений возможно смещение конденсаторов и попадание их в другие рабочие части оборудования.

Перед тестированием конденсаторов и их первоначальным подключением в схему следует убедиться, что в конденсаторах отсутствует накопленный заряд.

Поскольку конденсатор сохраняет накопленный заряд длительное время, то после каждого отключения необходимо проводить его разряд. В качестве разрядного сопротивления рекомендуется использовать резистор. У некоторых конденсаторов конструктивно предусмотрено наличие встроенного разрядного резистора.


Пусковой и рабочий конденсаторы кондиционера

Мы продолжаем цикл статей из серии “Сделай сам”. Сегодня поговорим о конденсаторах.

Во-первых, давайте договоримся не путать элементы, присутствующие в любом кондиционере: конденсатор и конденсер. Конденсер – элемент замкнутой системы, по которой циркулирует хладагент, это, собственно, радиатор, т.е. змеевик с оребрением, предназначенный для лучшего охлаждения газообразного хладагента в наружном блоке любой холодильной системы (например, кондиционера). Часто конденсер называют конденсатором. По сути правильно, ведь в нем хладагент из газообразного состояния начинает конденсироваться в жидкое (если быть совсем точным, паровая смесь охлаждается и подготавливается к тому, чтобы превратиться в жидкость под большим давлением).

Конденсатор в электрической цепи выполняет, в общем, ту же функцию, но для электричества. Говоря простым языком, электричество собирается в конденсаторе, чтобы при необходимости быть использованным, но как бы в больших количествах, чем оно находится в сети питания 220 В.

Если в кондиционере не пускается компрессор (т.е. кондиционер может работать просто как вентилятор, не охлаждая, неработающий компрессор можно определить по отсутствию характерного шума-гудения наружного блока, хотя при этом внутренний блок, кажется, работает нормально, но не охлаждает), первым делом подозрение падает на отсутствие напряжения питания. Если после теста мы выясняем, что питание 220 В на подводящих клеммах есть, то следующим в очереди будет рабочий (пусковой) конденсатор. Как было сказано выше и как следует из названия, пусковой конденсатор конденсирует энергию и использует большую силу тока, чтобы запустить компрессор, т.к. запуск требует больших энергозатрат. Сначала разберём маркировку, параметры и условное обозначение конденсаторов на схеме.

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме ясно из рисунка, буквенное обозначение – С и порядковый номер на схеме.

Основные параметры конденсаторов

Ёмкость конденсатора – параметр, который обозначает, какую энергию способен накопить конденсатор, а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Используемые номиналы рабочих и пусковых конденсаторов 1 мкФ (μF) – 100 мкФ (μF), чаще всего в быту встречаются конденсаторы емкостью 35 мкФ (μF) – 75 мкФ (μF).

Номинальное напряжение конденсатора – суть напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры. Производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах, например:

  • 400 В – 10000 часов
  • 450 В – 5000 часов
  • 500 В – 1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку с помощью мультиметра:

– отключаем питание кондиционера,

– разряжаем конденсатор, путём закорачивания его выводов, например отверткой,

– снимаем клемму (любую),

– устанавливаем прибор на измерение ёмкости конденсаторов,

– соединяем щупы к выводам конденсатора,

– считываем значение ёмкости.

Щупы на приборе нужно установить в гнёзда для измерения конденсаторов, com – common, общий, туда вставляем один из щупов, второй в гнездо с графическим обозначением конденсатора или буквенным – Сx

Ручку переключателя режимов ставим в режим измерения ёмкости конденсаторов. На корпусе конденсатора считываем значение его ёмкости и ставим заведомо больший предел измерения на приборе, например, номинал 30 мкФ (μF), а мы на приборе ставим 200 мкФ (μF). На втором фото – прибор с автоматическим выбором предела измерений.

После подсоединения щупов к выводам конденсатора ждём показаний на экране, например, время измерения ёмкости 40 мкФ (μF) первым прибором – менее одной секунды, вторым – более одной минуты, так что следует ждать.

Если замеренный параметр не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс “+” и минус “-” и их можно подключить как угодно.

ВНИМАНИЕ! Запрещается применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе).

Для этих целей выпускаются неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным (НЕ ПОСЛЕДОВАТЕЛЬНЫМ. ) соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов: Собщ12+. Сп .То есть, если соединить два конденсатора по 35 мкФ (μF), получим общую ёмкость 70 мкФ (μF), напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.


Как подобрать пусковой конденсатор для электродвигателя

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.

Время чтения: 2 минуты Нет времени?

Отправим материал вам на e-mail

Когда асинхронный двигатель подключается в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз в обмотках статора, имитирующий вращающееся магнитное поле. Это и приводит к вращению вала ротора электродвигателя, как в «родных» трехфазных сетях переменного тока. Для достижения этой цели в «не родных сетях» и служит конденсатор.

Подключение конденсатора к электродвигателю

Подбирать конденсатор следует очень внимательно, поэтому специально для читателей нашего онлайн-журнала был разработан удобный калькулятор с необходимыми пояснениями.

Калькулятор расчета емкости рабочего и пускового конденсатора

Пояснения к расчету

Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:

Схема подключения рабочего и пускового конденсатора при разных способах подключения обмотокРасчетные зависимости
Ср = 2800*I/U;
I = P/(√3*U*η*cosϕ)

Ср – емкость рабочего конденсатора

Ср = 4800*I/U;
I = P/(√3*U*η*cosϕ)

Ср – емкость рабочего конденсатора

Сп = 2,5*Ср, где Сп – емкость пускового конденсатора при любом способе подключенияРасшифровка обозначений:

Ср – емкость рабочего конденсатора, мкФ
Сп – емкость пускового конденсатора, мкФ
I – ток, А
U – напряжение в сети, В
η – КПД двигателя в %, деленных на 100
cosϕ – коэффициент мощности

Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:

  • если расчетное значение точно попало в существующий номинал, то в этом случае повезло – берете именно такой.
  • если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
  • По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.

Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.

Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65Электролитические неполярные конденсаторы серии CD60
Изображение
Номинальное рабочее напряжение, В400; 450; 630220-275; 300; 450
Номинальный ряд, мкФ1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 1505; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.

Калькулятор расчета результирующей емкости двух последовательно соединенных конденсатора

Экономьте время: отборные статьи каждую неделю по почте

При подключении асинхронного трехфазного электродвигателя на 380 В в однофазную сеть на 220 В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов – рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи.

Как подключить асинхронный двигатель?

Подключение асинхронного двигателя осуществляется по двум схемам: треугольник (эффективнее для 220 В) и звезда (эффективнее для 380 В).

На картинке внизу статьи вы увидите обе эти схемы подключения. Здесь, я думаю, описывать подключение не стоит, т.к. это описано уже тысячу раз в Интернете.

Во основном, у многих возникает вопрос, какие нужны емкости рабочего и пускового конденсаторов.

Пусковой конденсатор

Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз – рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.

При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.

Как подобрать конденсатор для трехфазного двигателя?

Конденсатор используется неполярный, на напряжение не менее 400 В. Либо современный, специально на это рассчитанный (3-й рисунок), либо советский типа МБГЧ, МБГО и т.п. (рис.4).

Итак, для расчета емкостей пускового и рабочего конденсаторов для асинхронного электродвигателя введите данные в форму ниже, эти данные вы найдете на шильдике электродвигателя, если данные неизвестны, то для расчета конденсатора можно использовать средние данные, которые подставлены в форму по умолчанию, но мощность электродвигателя нужно указать обязательно.

Расчет рабочего конденсатора для электродвигателя

Трехфазный асинхронный электродвигатель может работать от однофазной сети с фазосдвигающим конденсатором. Наиболее простой способ подключения базируется на подключении одной из обмоток трехфазных электродвигателей через фазосдвигающий конденсатор. При этом полезная мощность развиваемая двигателем будет находиться в пределах 50-60% от его мощности при работе от трехфазной сети.
Для нормальной работы электродвигателя с конденсаторным пуском желательно, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. Однако на практике это условие выполнить не только сложно, но и невозможно, поэтому обычно используют двухступенчатое управление двигателем. Такое управление работой электродвигателя означает, что при его пуске и наборе оборотов в цепь подключают два конденсатора: рабочий и пусковой, а после разгона один конденсатор – пусковой отключают и оставляют только рабочий конденсатор.
Данная принципиальная схема подключения трехфазных электродвигателей в однофазную сеть работает следующим образом: при включении пакетного выключателя П1 замыкаются контакты П1.1 и П1.2. Необходимо сразу же после включения П1 нажать кнопку «Разгон» – двигатель начинает набирать обороты, а после выхода на обороты – кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.
Емкость рабочего конденсатора Ср зависит от вида соединения обмоток двигателя, так в случае соединения обмоток двигателя в «треугольник» она определяется по формуле:
А в случае соединения обмоток двигателя в «звезду»:
где:
Ср – емкость рабочего конденсатора в мкФ;
I – потребляемый электродвигателем ток в А;
U – напряжение в сети, V.
Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить по следующей формуле:
где:
Р – мощность двигателя, указанная в его паспорте, Вт;
U – напряжение в сети, V;
ή – КПД двигателя;
cosφ – коэффициент мощности.
Величину емкости пускового конденсатора Сп выбирают в 2-2,5 раза больше емкости рабочего конденсатора Ср, при этом рабочее напряжение этих конденсаторов должно быть в 1,5 раза больше напряжения сети. Кроме того для сети 220V лучше всего использовать бумажные конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500V и выше. Применение электролитических конденсаторов в данной схеме (рис.1) категорически запрещается. Поскольку электролитический конденсатор, при включении в сеть переменного тока, быстро разогревается, электролит вскипает и происходит взрыв конденсатора. На это уходит, как показал опытный эксперимент, всего примерно 10-15с.
Однако в качестве пусковых конденсаторов, при условии их кратковременного включения – на 1-2с, можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450V. Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют резистором R1 с сопротивлением 2-3 мОм. Резистор R1 необходим для «стекания» оставшегося электрического заряда на конденсаторах. Общая емкость соединенных конденсаторов составляет (С1+С2)/2.
На практике в основном величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя. В таблице№1 приведена зависимость минимальных значений емкостей конденсаторов от мощности трехфазного электродвигателя при включении в сеть 220 В.
Таблица№1.


Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20-30 % превышающий номинальный. Поэтому если двигатель часто используется в недогруженном режиме или вхолостую, то емкость конденсатора Ср в этом случае следует уменьшить. Также может случиться, что во время перегрузки электродвигатель остановился. Тогда, сняв нагрузку вообще или снизив ее до минимума, для запуска электродвигателя снова подключают пусковой конденсатор.
Кроме того емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Например, для включения трехфазного электродвигателя типа АО2 мощностью 2,2кВт, имеющего 1420об/мин, можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой – 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

Когда асинхронный двигатель подключается в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз в обмотках статора, имитирующий вращающееся магнитное поле. Это и приводит к вращению вала ротора электродвигателя, как в «родных» трехфазных сетях переменного тока. Для достижения этой цели в «не родных сетях» и служит конденсатор.

Подбирать конденсатор следует очень внимательно, поэтому специально для читателей нашего онлайн-журнала был разработан удобный калькулятор с необходимыми пояснениями.

Пояснения к расчету

Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:

Основной функцией каждого конденсатора является накопление электрического заряда и его одномоментная отдача в нужное время. Данные приборы используются во многих электрических схемах, существенно улучшая качество их работы. Для правильного выбора и оптимизации данных устройств используйте онлайн калькулятор расчета емкости конденсатора. Достаточно ввести в таблицу исходные данные, чтобы получить определенные результаты.

Как рассчитать емкость конденсатора

Расчеты, производимые с помощью онлайн калькулятора, позволяют вычислить емкость конденсатора в течение нескольких секунд. Кроме этого параметра, можно определить показатели заряда, мощности, тока, энергии и прочих качеств конденсатора, необходимых в конкретном устройстве.

Наиболее часто встречаются электролитические конденсаторы, применяемые в схеме асинхронного электродвигателя. Конструкции этих устройств могут быть полярными или неполярными. В первом случае отмечается более высокая емкость, поэтому перед подключением конденсатора к двигателю, необходимо в обязательном порядке выполнить расчеты. С помощью проводимых вычислений устанавливается необходимая емкость, соответствующая конкретному двигателю.

Особое значение придается дополнительным расчетам при эксплуатации трехфазных электродвигателей. В обычном режиме конденсатор функционирует нормально, однако при включении в однофазную сеть, его емкость заметно снижается. Это приводит к увеличению частоты вращения вала. Предварительные расчеты и правильное подключение позволяют избежать подобных ситуаций.


При запуске асинхронного двигателя, работающего от напряжения 220 вольт, требуется конденсатор с высокой емкостью. В связи с этим, невозможно обойтись без проведения расчетов с помощью онлайн калькулятора. Проведение расчетов полностью зависит от способа соединения обмоток электродвигателя. Данное соединение может быть . В первом случае применяется формула Ср=2800хI/U, а для второго случая используется немного измененная формула Ср=4800хI/U.

Следует учитывать, что в цепочке соединенных конденсаторов емкость пускового устройства должна быть примерно в три раза выше, чем в рабочем приборе. Для расчета применяется формула Сп=2.5хСр, в которой Сп и Ср являются соответственно пусковым и рабочим конденсатором.

Методика расчета заряда конденсатора

В начальной стадии заряд любого прибора имеет нулевое значение. После подключения к гальваническому элементу или другому источнику постоянного тока происходит зарядка конденсатора.


В таблицу калькулятора вводятся такие данные, как значение ЭДС источника тока в вольтах, сопротивление, измеряемое в омах, емкость прибора в микрофарадах и время зарядки в миллисекундах. В результате вычислений появляются точные данные, характеризующие заряд конкретного конденсатора и определяющие его оптимальное использование в той или иной схеме.

Схема подключения рабочего и пускового конденсатора при разных способах подключения обмоток
Ср = 2800*I/U;
I = P/(√3*U*η*cosϕ)
Ср = 4800*I/U;
I = P/(√3*U*η*cosϕ)

Ср — емкость рабочего конденсатора

Сп = 2,5*Ср, где Сп — емкость пускового конденсатора при любом способе подключения
Расшифровка обозначений:

Ср — емкость рабочего конденсатора, мкФ
Сп — емкость пускового конденсатора, мкФ
I — ток, А
U — напряжение в сети, В
η — КПД двигателя в %, деленных на 100
cosϕ — коэффициент мощности

Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:

  • если расчетное значение точно попало в существующий номинал, то в этом случае повезло — берете именно такой.
  • если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
  • По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.

Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.

Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65Электролитические неполярные конденсаторы серии CD60
Изображение
Номинальное рабочее напряжение, В400; 450; 630220-275; 300; 450
Номинальный ряд, мкФ1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 1505; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.


Калькулятор расчета результирующей емкости двух последовательно соединенных конденсатора

Возможно Вам также будет интересно:

Калькулятор расчета длины нагревательного кабеля для теплого пола Калькулятор расчета шага укладки обогревательного кабеля для помещения Калькулятор расчета дополнительной нагрузки на бетонную плиту от стяжки и керамической плитки Калькулятор расчета производительности скважинного насоса для автономного водопровода

Калькулятор коэффициента мощности

Калькулятор коэффициента мощности. Вычислить коэффициент мощности, полную мощность, реактивную мощность и емкость корректирующего конденсатора.

Калькулятор предназначен для образовательных целей.

Конденсатор коррекции коэффициента мощности должен быть подключен параллельно каждой фазной нагрузке.

При вычислении коэффициента мощности не различаются опережающие и запаздывающие коэффициенты мощности.

Расчет коррекции коэффициента мощности предполагает индуктивную нагрузку.

Расчет однофазной цепи

Расчет коэффициента мощности:

PF = | cos φ | = 1000 × P (кВт) / ( V (V) × I (А) )

Расчет полной мощности:

| S (кВА) | = В (В) × I (А) /1000

Расчет реактивной мощности:

Q (кВАр) = √ ( | S (кВА) | 2 P (кВт) 2 )

Расчет емкости конденсатора коррекции коэффициента мощности:

S с поправкой (кВА) = P (кВт) / PF с поправкой

Q с поправкой (кВАр) = √ ( S с поправкой (кВА) 2 P (кВт) 2 )

Q c (кВАр) = Q (кВАр) Q с поправкой (кВАр)

C (F) = 1000 × Q c (кВАр) / (2π f (Гц) × В (В) 2 )

Расчет трехфазной цепи

Для трех фаз со сбалансированной нагрузкой:

Расчет при линейном напряжении

Расчет коэффициента мощности:

PF = | cos φ | = 1000 × P (кВт) / ( 3 × В Л-Л (В) × Я (А) )

Расчет полной мощности:

| S (кВА) | = 3 × В L-L (В) × I (A) /1000

Расчет реактивной мощности:

Q (кВАр) = √ ( | S (кВА) | 2 P (кВт) 2 )

Расчет емкости конденсатора коррекции коэффициента мощности:

Q c (кВАр) = Q (кВАр) Q с поправкой (кВАр)

C (F) = 1000 × Q c (кВАр) / (2π f (Гц) × В L-L (В) 2 )

Расчет с линейным напряжением

Расчет коэффициента мощности:

PF = | cos φ | = 1000 × P (кВт) / (3 × V L-N (V) × I (A) )

Расчет полной мощности:

| S (кВА) | = 3 × В L-N (В) × I (A) /1000

Расчет реактивной мощности:

Q (кВАр) = √ ( | S (кВА) | 2 P (кВт) 2 )

Расчет емкости конденсатора коррекции коэффициента мощности:

Q c (кВАр) = Q (кВАр) Q с поправкой (кВАр)

C (F) = 1000 × Q c (кВАр) / (3 × 2π f (Гц) × В LN (В) 2 )

Калькулятор мощности ►


См. Также

Калькулятор конденсаторов двигателя переменного тока

Выбор пускового конденсатора электродвигателя

кларедот

зачем нужен конденсатор для одиночного

пусковой конденсатор на двигатель 3л.

Коэффициент мощности

объяснил

прибрежный лес

plc talk

Коэффициент мощности

объяснил

Калькулятор конденсаторов серии

проверка однофазных электродвигателей

двигатели цепи и контроллеры двигателей

в чем разница между ac

конденсаторы двигателя cbb60

инкап ограничен

понимание воздушных компрессоров

как выбрать размер вращающегося фазового преобразователя

что делает конденсатор

детали о duo therm 3106732005 пусковой конденсатор переменного тока 3310727007 кондиционер

Таблица размеров конденсатора двигателя на 1 л.с.

Двигатель с разделенной фазой работает как конденсатор

исх. 22

конденсаторного запуска асинхронного двигателя

Калькулятор размера конденсатора

развязывающий конденсатор и байпас

двигатель переменного тока learnchannel tv com

www dnr louisiana gov

hvac кондиционер

конденсатор пусковой асинхронный двигатель его

www dnr louisiana gov

Расчет мощности конденсатора от

л.с. до кВт для двигателя hindi

Вам может понравиться
  • мотор süper spor
  • süs havuzu için devirdaim motoru
  • takma deniz motorları
  • т мотор u7 280kv
  • т моторс караманмараш
  • 1.8 Как рассчитать конденсатор для схемы Штейнмеца? | 1. Алюминиевые электродвигатели переменного тока | Часто задаваемые вопросы

    Схема Штейнмеца — это метод использования трехфазных двигателей, соединенных звездой или треугольником, с однофазным переменным током; это соединение должно соответствовать сетевому напряжению, например, в Европе обычно 230 В. Рабочий конденсатор может быть металлическим бумажным конденсатором согласно DIN EN 60252-1 (VDE 0560-8: 2011-10), который подключается к третьему выводу двигателя и к фазному проводу или к нейтральному проводу в зависимости от направления вращения. желанный.Если конденсатор подключен к фазному проводу, двигатель будет вращаться по часовой стрелке; подключение конденсатора к нейтральному проводу заставит двигатель вращаться против часовой стрелки. В различных профессиональных учебниках и форумах, ссылающихся на стандарт DIN 48501, который был отменен несколько лет назад, рекомендуется использовать емкость примерно 70 мФ на кВт номинальной выходной мощности двигателя при рабочем напряжении 230 В. Формула для расчета рабочего конденсатора выглядит следующим образом: где C — емкость, P — номинальная мощность, U — номинальное напряжение двигателя, где — угловая частота, а

    — угловая частота.

      • Соединение треугольником — направление вращения обратное

      • Конденсатор запуска двигателя третий

        9452 Генератор питания фаза. Однако это даст фазовый сдвиг менее 90 ° вместо 120 ° на второй обмотке двигателя.Это означает, что конденсатор создает только эллиптическое вращающееся магнитное поле, которого, однако, достаточно для создания пускового момента, чтобы двигатель мог запускаться самостоятельно. [2] Недостатком является то, что двигатель работает в эллиптическом режиме. В схеме Штейнмеца двигатель может быть подключен по схеме треугольник или Y, в зависимости от напряжения на клеммах катушки. В схеме Штейнмеца предпочтительно использовать соединение треугольником. Конденсатор и катушка вместе образуют последовательный резонансный контур.Во время работы на конденсаторе создается пиковое напряжение до 330 В, когда линейное напряжение составляет 230 В. Чтобы предотвратить разрушение конденсатора, он должен быть рассчитан на максимальное пиковое напряжение. Поскольку конденсаторы из металлической бумаги со временем стареют, добавляется запас прочности от 70 до 80 В. Следовательно, когда напряжение в сети составляет 230 В, используется конденсатор с выдерживаемым диэлектрическим напряжением не менее 400 В. Из-за конденсатора сила тока в каждой катушке будет разной.Пусковой ток зависит от требуемого крутящего момента и во много раз превышает номинальный ток. Поскольку при работе мощных двигателей, подключенных к однофазной сети, существует высокая однофазная нагрузка, максимально допустимая мощность подключенного двигателя Steinmetz составляет от 1,5 кВт до 2 кВт в зависимости от энергокомпании.

        Таблица размеров конденсаторов однофазных двигателей pdf

        Таблица размеров конденсаторов однофазных двигателей Pdf Www.

        Электротехнический центр по подбору размеров однофазных конденсаторов.

        Выбор пускового конденсатора электродвигателя.

        Электротехнический центр по подбору размеров однофазных конденсаторов.

        Выбор пускового конденсатора электродвигателя.

        Как рассчитать требуемую мощность КВА Рейтинг или.

        Выбор пускового конденсатора электродвигателя.

        Как определить размер конденсатора в квар F для улучшения Pf.

        Электротехнический центр по подбору размеров однофазных конденсаторов.

        Высоковольтные конденсаторы и силовые резисторы Johanson.

        Пусковой двигатель Обзор Научные темы.

        Высоковольтные конденсаторы и силовые резисторы Johanson.

        Расчет двигателей Часть 1 Двигатели и ответвление цепи.

        Как рассчитать требуемую мощность КВА Рейтинг или.

        Таблица размеров самых популярных конденсаторов однофазных двигателей Pdf 2019.

        Control Engineering Как правильно управлять трехфазным двигателем.

        Pdf Анализ и моделирование инвертора источника Z, питаемого к.

        Как определить размер конденсатора в квар F для улучшения Pf.

        Pdf Шум однофазного асинхронного двигателя вызван неправильной работой.

        Конденсаторы Mkp для электродвигателей 2 Uncommon Single.

        Pdf Двигатель с расщепленной фазой работает как конденсаторный двигатель и.

        Фазовая электронная схема Linkdeln.

        Трехфазный двигатель работает от однофазного источника питания Gohz Com.

        Pdf Использование двунаправленного преобразования трехфазного переменного тока в постоянный ток.

        Дилеммы определения размеров конденсаторов.

        Расчет мощности конденсатора мощностью от л.с. до кВт для двигателя Hindi.

        Выбор пускового конденсатора электродвигателя.

        Однофазные асинхронные двигатели Учебник по электронике двигателей переменного тока.

        Дилеммы определения размеров конденсаторов.

        Как правильно выбрать размер кабеля Пошаговое руководство.

        Расчет значений конденсатора для управления потолочным вентилятором.

        Электронные таблицы MS Excel.

        Пусковой двигатель Обзор Научные темы.

        Ремонт повреждений Керамический байпасный конденсатор какого размера.

        Выбор пускового конденсатора электродвигателя.

        Электролитический конденсатор Википедия.

        Выбор пускового конденсатора электродвигателя.

        Трехфазный двигатель работает от однофазного источника питания Gohz Com.

        Как выбрать конденсатор Выбор конденсатора пусковой работы Выбор конденсатора двигателя.

        Pdf Однофазный двухскоростной асинхронный двигатель с.

        Как найти подходящий размер кабельного провода Si.

        Расчет пускового тока для трехфазного двигателя.

        Тестирование рабочего конденсатора во время работы системы 2017.

        Выбор пускового конденсатора электродвигателя.

        Раскрыта таблица размеров пускового конденсатора на 2019 год.

        Как найти подходящий размер кабельного провода Si.

        Перемотка 3-х фазного двигателя 54 шага с изображениями.

        Пусковой двигатель Обзор Научные темы.

        У меня однофазный насос что поменяется и что будет.

        76 Экспертная таблица размеров пускового конденсатора.

        Основы коррекции коэффициента мощности для одноиндукционных двигателей

        Иногда может потребоваться корректировка коэффициента мощности (PF) для одного двигателя.Это означает определение размеров конденсаторов коэффициента мощности для этого двигателя. Хорошие новости: если вы правильно подберете эти конденсаторы, вы снизите затраты на потребление электроэнергии. Плохая новость: если вы сделаете их слишком маленькими, вы не сможете добиться многого. Худшая новость: если вы установите слишком большие конденсаторы, вектор коэффициента мощности переместится за пределы перпендикуляра, оставляя вас в очень неблагоприятной ситуации. Но не волнуйтесь, вычисления для получения правильного значения кВАр и правильного размера конденсатора коэффициента мощности просты.

        Калибровка конденсатора

        Во-первых, вам необходимо собрать информацию о коэффициенте мощности при полной нагрузке и КПД рассматриваемого двигателя.Часто вы можете получить его непосредственно у поставщика двигателей в виде технических паспортов продукции, компакт-дисков или прямо с его веб-сайта. Не помешало бы и веб-сайт производителя двигателя.

        Во-вторых, вам нужна входная мощность вашего двигателя в кВт. Чтобы получить это, вам, вероятно, потребуется выполнить несколько простых преобразований, которые начнутся с очень простых вычислений, как показано в Уравнения, которые нужно знать . По сути, вам необходимо определить потребляемую мощность в кВт, как показано в уравнении 2.

        Теперь, когда у вас есть этот номер, вы можете обратиться к таблице коррекции коэффициента мощности (, таблица 1, ).Глядя на таблицу, войдите слева с существующим PF , а затем спуститесь сверху с желаемым PF . Там, где две линии пересекаются, вы найдете нужный множитель. Возьмите этот множитель и умножьте на него мощность двигателя в кВт. Это даст вам требуемую коррекцию в кВАр.

        Наконец, используя данные в Таблице 2 , выберите конденсатор, округляя вниз до следующего меньшего значения. Теперь у вас есть конденсатор правильного размера для вашего плана коррекции коэффициента мощности.Для типовой установки см. Пример процедуры расчета .

        Типичный способ установки конденсатора в этом типе применения — это подключение его между пускателем и одиночным двигателем. Это соединение снижает ток, протекающий через стартер и реле перегрузки.

        Изменение размера нагревателей от перегрузки

        А теперь подумаем о перегревателях. Вы ведь установили их в стартер? И вы рассчитываете их в соответствии с током, который будет видеть стартер, в зависимости от нагрузки двигателя.Если вы уменьшите ток через стартер, существующие нагреватели не смогут защитить двигатель. Таким образом, вам нужно уменьшить размер нагревателя, чтобы приспособиться к уменьшенному току через стартер, иначе вы будете использовать недостаточно защищенный двигатель.

        Сам двигатель потребляет ток такой же величины при полной нагрузке, как и без коррекции коэффициента мощности. Однако конденсатор PF будет подавать часть тока на двигатель. Только баланс будет поступать через стартер от питающей сети.Вы можете определить новое значение тока, проходящего через перегрузки, используя уравнение 3.

        Если бы вы собирались сделать это для двигателя в нашем предыдущем примере, математика выглядела бы так, как показано в примере расчета тока нагревателя .

        Правила осторожности

        При корректировке коэффициента мощности на одном двигателе соблюдайте следующие рекомендации:

        Правило 1. Не выполняйте чрезмерную коррекцию с помощью коррекции PF. Вы должны нацеливать коррекцию коэффициента мощности на рабочий ток двигателя, а не на его пусковой ток или ток полной нагрузки.Другими словами, всегда правильно под ; стоимость небольшая потеря ПФ. Если вы исправите на , затраты возрастут из-за высоких переходных крутящих моментов, перенапряжений и других проблем, которых необходимо избегать. Вы должны рассматривать 95% поправку как верхний предел, а 90% — оптимальную цель.

        Правило 2: Никогда не используйте этот тип коррекции коэффициента мощности с двигателем, который управляется с помощью твердотельного устройства, например, с плавным пуском или частотно-регулируемым приводом. Если у вас есть проблема с PF и вы используете такое устройство, вам следует обратиться к производителю устройства за решением.Опыт производителя и доступ к тысячам пользователей могут сэкономить ваше время, деньги и время простоя. Производитель будет рад вам помочь.


        Боковая панель: уравнения, которые необходимо знать

        Уравнение 1: Преобразование мощности двигателя в кВт выходной мощности двигателя
        кВт МОЩНОСТЬ ДВИГАТЕЛЯ = л.с. × 0,746

        Уравнение 2: Преобразование мощности кВт во входную мощность
        кВт МОЩНОСТЬ ДВИГАТЕЛЯ = кВт МОЩНОСТЬ ДВИГАТЕЛЯ ÷ (% КПД ÷ 100)

        Уравнение 3: Преобразование нескорректированного тока в скорректированный ток
        I STARTER CORRECTED = I MOTOR FLA × (PF ORIGINAL ÷ PF CORRECTED )


        Боковая панель: Пример процедуры расчета

        Какой кВАр конденсатора коррекции коэффициента мощности необходим для повышения коэффициента мощности двигателя мощностью 100 л.с. до 95% при полной нагрузке?

        Шаг 1. Найдите существующий коэффициент мощности и КПД

        В нашем случае существующий PF составляет 85%, а мотор — 94.Эффективность 7%.

        Шаг 2: Преобразование л.с. в кВт

        МОЩНОСТЬ

        Используя уравнение 1, получаем:
        кВт МОЩНОСТЬ ДВИГАТЕЛЯ = л.с. × 0,746 = 100 × 0,746 = 74,6 кВт

        Шаг 3: Преобразование выходной мощности в кВт во входную

        Используя уравнение 2, получаем:
        кВт МОЩНОСТЬ ДВИГАТЕЛЯ = кВт МОЩНОСТЬ ДВИГАТЕЛЯ ÷ (% КПД ÷ 100) = 74,6 кВт ÷ 0,947 = 78,8 кВт

        Шаг 4: Найдите множитель для получения желаемой коррекции коэффициента мощности

        В нашем случае мы хотим скорректировать PF с 85% до 95%.Глядя на Таблицу 1 и спускаясь вниз по столбцу 95% и по столбцу 85%, мы видим, что пересечение находится на 0,291, что является множителем, который нам нужен.

        Шаг 5: Умножьте потребляемую мощность в кВт на множитель

        Расчет 78,8 × 0,291 = 22,9 кВАр.

        Шаг 6: Выберите ближайшее значение кВАр

        Используя таблицу 2, мы видим, что ближайшее значение, округленное в меньшую сторону, составляет 22,5 кВАр.


        Боковая панель: Пример расчета тока нагревателя

        Используя тот же двигатель мощностью 100 л.с., что и в примере процедуры расчета , вы обычно выбираете размер нагревателя на основе тока 118А.Однако при использовании уравнения 3 для корректировки коэффициента мощности необходимо выбрать размер нагревателя на основе нового числа.

        Вот как вы получите это число:
        I STARTER CORRECTED = I MOTOR FLA × (PF ORIGINAL ÷ PF CORRECTED ) = 118 × (0,85 ÷ 0,95) = 105,6A

        Общая процедура расчета Характеристики двигателей с постоянным разделением конденсаторов (PSC) (электродвигатели)

        6.4.2

        Переменные для расчета

        Расчет констант обмотки и паза

        Примечание: Описание переменных см. На рисунках.k представляет константу первичного паза (статора), а k2 представляет константу вторичного паза (ротора). Они находятся с использованием одного и того же набора уравнений, но при этом следует соблюдать осторожность при использовании уравнения, наиболее близкого к уравнению рассматриваемого слота.
        Константа k1 или k2 паза с круглым дном (обратите внимание, что F отличается для двух констант): форма паза A (см. Рис. 6.29)

        Реактивность утечки Проницаемость паза утечки Pxslot:

        Промежуточные расчетные значения

        Текущие расчеты

        Метод балансировки двигателя PSC.См. Схему однофазного постоянного разделенного конденсатора на рис. 6.42.
        Переменные, используемые в следующих уравнениях балансировки PSC:

        РИСУНОК 6.42. Схема однофазного постоянного разделенного конденсатора.


        Порядок расчета

        1. Разработайте основную обмотку так, чтобы добиться необходимого максимального крутящего момента.
        2. Рассчитайте производительность двухфазного двигателя.
        3. Решите относительно K.
        • Ka должно быть функцией кубического корня из 2, поскольку размеры проволоки варьируются в этом соотношении.
        • Предположим, что Ka будет одним из следующих значений: 1,26,1,59 или 2,00.
        • Установите значение K в правой части уравнения на Ka.
        • Решите для K, замените это значение на предполагаемое значение и выполните вторую итерацию.
        4. Решите относительно Xc.
        5. Спроектируйте конденсатор из Xc и исправьте предыдущие решения, если Rc слишком велико.
        6. Рассчитайте напряжение конденсатора Ec и вольт-ампер конденсатора.
        7. Рассчитайте уравнения производительности на основе рассчитанных потерь в первичной обмотке, конденсатора и коэффициента мощности.
        Используйте процедуры расчета, описанные в многофазном разделе, для расчета крутящего момента заторможенного ротора. Если это не удовлетворительно, может потребоваться уменьшить K, увеличить микрофарады или увеличить сопротивление ротора.
        Описанная процедура будет спроектирована для правильного значения емкости для достижения точки баланса. Однако невозможно сбалансировать двигатель при любой желаемой нагрузке. Соотношение витков и емкость должны быть изменены для достижения сбалансированной работы в желаемой точке нагрузки.Однако в любой точке нагрузки будет значение емкости, которое даст минимальную составляющую обратного поля
        .
        Уравнения для расчета балансировки двигателя PSC Силовая составляющая первичного тока основной обмотки A:

        Схема подключения односкоростного двигателя PSC показана на рис. 6.43. Для некоторых приложений достаточно вывести из двигателя только три вывода, используя внутреннее соединение. Конденсатор часто называют рабочим конденсатором, даже если он остается подключенным к двигателю как во время пуска, так и во время работы.Двигатели
        PSC обычно используются для многоскоростных приложений. Три общих соединения показаны на рис. 6.44 и 6.45. Рисунок 6.44 представляет двигатель с тройником. Рисунок 6.45 представляет двигатель с L-соединением. Скорость выбирается путем подключения источника питания между общим проводом и одним из проводов скорости. Показанные цвета свинца обычно используются, но могут быть заменены другими.

        РИСУНОК 6.43 Схема электрических соединений PSC.

        РИСУНОК 6.44 Т-образный многоскоростной двигатель PSC.

        РИСУНОК 6.45 Многоскоростной двигатель PSC с L-соединением.


        Расчет фазосдвигающего конденсатора — www.itieffe.com

        C спиртовой конденсатор фазового сдвига

        C спиртовой конденсатор фазового сдвига

        Работа трехфазного асинхронного двигателя происходит за счет подачи питания трехфазным током, которые не совпадают по фазе друг с другом на 120 °

        Один и тот же двигатель можно запитать однофазным током n и в случаях, когда требуемая мощность не составляет 100% (и она не превышает определенные мощности) через фазовый конденсатор

        Эффективность не будет высокой, поскольку полученный фазовый сдвиг не является оптимальным.

        Однако он может применяться для различных целей: электронасосы, центробежные и винтовые вентиляторы, дрели и для всех тех машин с малой мощностью и не требующих высоких пусковых токов.

        В большинстве случаев используется соединение треугольником, подходящее для трехфазного двигателя 220–380 В, питаемого от однофазного 220 В.

        На следующем рисунке показаны соединения для трехфазных асинхронных двигателей с однофазным питанием со звездой и треугольником, а также с вращением по часовой стрелке и против часовой стрелки.

        треугольник звезды

        Конденсатор создает фазовый сдвиг, необходимый для создания вращающегося магнитного поля внутри двигателя

        Величина фазового сдвига является результатом задействованной емкости и тока, по этой причине фазовый сдвиг никогда не может быть оптимальным, он меняется в зависимости от нагрузки и всегда будет компромиссным

        Двигатель с таким питанием никогда не сможет обеспечить номинальную мощность, при рассчитанном здесь значении мощность снижается до 60-70% и является компромиссом для работы с ограниченными и средними нагрузками

        Наивысший пусковой момент для однофазного двигателя достигается, когда задержка, которую мы получаем с нашим конденсатором, составляет 90 °

        В случаях, когда нагрузка всегда высока, можно увеличить мощность для получения большей мощности, но будьте осторожны, в этом случае он не должен работать без нагрузки или с небольшими нагрузками, вы рискуете сжечь двигатель

        Неверно думать, что с большим конденсатором он получает больше мощности, даже сбой может возникнуть у пользователя

        Наибольшее ухудшение этого типа соединения происходит в фазе пуска, доступный крутящий момент составляет 30-40% от крутящего момента, достигаемого при обычном питании двигателя

        Предупреждения

        Помните, что в этом конкретном приложении конденсатор подвержен воздействию высоких токов и многократного изменения полярности, если он не подходит для выполняемой работы, он может взорваться

        Используйте только неполяризованные конденсаторы с максимальным рабочим напряжением на 15-20% выше, чем у источника питания двигателя, и рассчитанные на переменный ток

        .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *