Как работает автоматическое переключение обмоток трансформатора в блоке питания. Какие преимущества дает эта технология. Какие существуют схемы реализации автоматического переключения обмоток. Как правильно выбрать компоненты для такой схемы.
Принцип работы автоматического переключения обмоток трансформатора
Автоматическое переключение обмоток трансформатора в блоке питания позволяет существенно повысить КПД устройства и снизить тепловыделение. Принцип работы заключается в следующем:
- Вторичная обмотка трансформатора разделена на несколько секций
- При низком выходном напряжении используется только часть обмотки
- С ростом выходного напряжения подключаются дополнительные секции обмотки
- Это позволяет поддерживать оптимальное падение напряжения на регулирующем элементе
Благодаря этому удается избежать больших потерь мощности при низких выходных напряжениях. Например, при выходном напряжении 5В вместо падения 45В на регулирующем транзисторе будет падение всего 5-10В.

Преимущества автоматического переключения обмоток
Использование схемы автоматического переключения обмоток трансформатора дает следующие преимущества:
- Повышение КПД блока питания во всем диапазоне выходных напряжений
- Снижение тепловыделения на регулирующих элементах
- Уменьшение габаритов и массы радиатора охлаждения
- Возможность получения большего диапазона выходных напряжений
- Повышение надежности и срока службы блока питания
При этом блок питания остается линейным и обеспечивает низкий уровень пульсаций и шумов на выходе.
Варианты схем автоматического переключения обмоток
Существует несколько основных вариантов реализации схемы автоматического переключения обмоток трансформатора:
Схема на электромеханических реле
Простейший вариант на основе электромагнитных реле. Преимущества — простота, надежность, отсутствие потерь на коммутирующих элементах. Недостатки — шум при переключении, ограниченный ресурс контактов.
Схема на симисторах
Используются симисторы для бесконтактной коммутации обмоток. Плюсы — бесшумность работы, высокая надежность. Минусы — сложность управления, потери на симисторах.

Схема на полевых транзисторах
Применяются мощные полевые транзисторы в качестве коммутирующих элементов. Достоинства — низкие потери, простота управления. Недостатки — высокая стоимость компонентов.
Выбор компонентов для схемы автоматического переключения
При разработке схемы автоматического переключения обмоток важно правильно подобрать ключевые компоненты:
- Коммутирующие элементы (реле, симисторы, транзисторы) должны выдерживать максимальный ток нагрузки с запасом
- Управляющие транзисторы выбираются с учетом тока управления реле/симисторов
- Стабилитроны определяют пороги переключения и выбираются под конкретные напряжения обмоток
- Диоды защиты от ЭДС самоиндукции ставятся параллельно обмоткам реле
Правильный выбор компонентов обеспечит надежную и стабильную работу схемы автоматического переключения обмоток трансформатора в блоке питания.
Особенности намотки трансформатора для схемы с переключением обмоток
Для реализации автоматического переключения обмоток необходимо особым образом намотать вторичную обмотку трансформатора:

- Обмотка разделяется на несколько секций с отводами
- Количество секций определяет число ступеней регулировки
- Напряжение секций выбирается кратным (например, 10В, 20В, 40В)
- Сечение провода рассчитывается на максимальный ток нагрузки
- Необходима дополнительная обмотка для питания схемы управления
Правильная намотка трансформатора — залог эффективной работы всей схемы автоматического переключения обмоток.
Алгоритм работы схемы автоматического переключения
Рассмотрим типовой алгоритм работы схемы автоматического переключения обмоток трансформатора:
- При низком выходном напряжении используется минимальное число витков вторичной обмотки
- С ростом выходного напряжения срабатывают пороговые элементы (стабилитроны)
- Управляющие транзисторы открываются и включают дополнительные секции обмотки
- При снижении напряжения процесс идет в обратном порядке
- Гистерезис обеспечивает четкое переключение без дребезга
Такой алгоритм позволяет автоматически поддерживать оптимальное напряжение на входе стабилизатора во всем диапазоне регулировки.

Применение микроконтроллера для управления переключением
Современным решением является использование микроконтроллера для управления переключением обмоток трансформатора. Это дает ряд преимуществ:
- Гибкая настройка порогов и алгоритма переключения
- Возможность реализации плавного переключения
- Контроль параметров и диагностика неисправностей
- Интеграция дополнительных функций защиты
- Возможность цифровой индикации режимов работы
Микроконтроллерное управление позволяет создать интеллектуальную систему переключения обмоток с широкими возможностями.
Автоматическое переключение обмоток трансформатора в блоке питания: характеристика, схемы
Автор otransformatore На чтение 8 мин Опубликовано
В состав любого измерительного комплекса, имеющегося в современной лаборатории или на рабочем месте радиолюбителя, обязательно входит недорогой и надежный блок питания (БП). Для того чтобы улучшить его эксплуатационные характеристики, специалисты советуют применить автоматическое переключение трансформаторных обмоток в блоке питания. Это существенно снижает паразитное рассеяние мощности в выходных каскадах и облегчает режим работы любого лабораторного источника тока.
Указанный подход особо востребован в тех случаях, когда в рабочих условиях востребован БП с диапазоном регулировки напряжения 50 Вольт, например, и с током нагрузки не менее 5 Ампер. Промышленные источники с такими заявленными характеристиками для рядового пользователя недоступны из-за своей высокой стоимости.
Для чего используется система переключений обмоток трансформатора
При самостоятельном изготовлении блока питания с такими характеристиками исполнителю приходится решать целый ряд проблем, важнейшая из которых – обеспечение требуемой передаточной характеристики во всем спектре выходных напряжений. Рассмотрим пример, когда имеется источник питания, рассчитанный на максимальное напряжение до 50-ти Вольт.
Если в определенной ситуации потребовалось установить точное значение выходного напряжения всего в 5 Вольт при токе в нагрузке 5 Ампер – в выходных цепях будет бесполезно рассеиваться мощность 225 Ватт. Эта цифра получается из расчета 50-5=45 (Вольт), что после умножения на 5 Ампер дает означенною величину потерянной без всякого эффекта мощности.
Важно! В данной ситуации КПД такого источника будет предельно низким.
Для устранения указанного недостатка приходится принимать специальные меры, позволяющие существенно снизить потери в индуктивных выходных каскадах. Для этого потребуется предпринять следующее:
- Каким-то образом коммутировать вторичные обмотки силового трансформатора (ТС), что позволит при необходимости отбирать от него меньшую по величине мощность.
- Использовать более экономичный импульсный режим преобразования электроэнергии.
- Воспользоваться заранее изготовленным предварительным регулятором, работающим по тому же импульсному принципу.
С другой стороны, общеизвестно, что надежный и многофункциональный лабораторный блок питания не должен иметь импульсных узлов, приводящих к появлению нелинейных искажений. Более рациональным и эффективным в этом случае считается чисто линейное преобразование.
Дополнительная информация: для не очень сложных любительских схем вполне сгодится обычный импульсный блок питания.
Однако для наладки более точной электронной аппаратуры потребуется стандартное устройство, содержащее узлы с линейной передаточной характеристикой.
Принцип работы
Для решения этой проблемы при разработке промышленных источников питания инженеры пошли по первому пути, предполагающему наличие во вторичной обмотке нескольких коммутируемых отводов. Для их переключения применяются самые различные способы, включая следующие варианты:
- Ручная коммутация (посредством галетных переключателей, например).
- Использование типовых коммутирующих реле, управляемых отдельным электронным узлом.
- Включение в выходную цепочку быстродействующих полупроводниковых элементов (симисторов).
- Применение в качестве управляющего узла современных контроллеров.
Такая коммутация позволяет использовать только часть вторичной обмотки, соответствующую требуемому значению выходного напряжения (в приведенном выше примере – это 5 Вольт).
Таким образом, принцип работы такой схемы заключается в искусственной регулировке выходного переменного напряжения с установкой его фиксированной величины, меньшей полного значения выхода трансформатора. Данный подход исключает неоправданный расход энергии, идущей на бессмысленный нагрев элементов выпрямителя (в типовых схемах эту функцию выполняют силовые транзисторы).
Обратите внимание! Для повышения КПД такой схемы и снижения степени нагрева сердечника трансформатора специалисты советуют увеличивать число отводов вторичной обмотки до максимального значения.
После такой доработки выходных цепей к ним подключаются контакты галетного переключателя, посредством которого можно будет устанавливать требуемый режим питания по выходу. Единственное неудобство этого метода – увеличение числа органов управления выходным напряжением. Неэффективность механического способа подключения выходных обмоток трансформатора заставляет искать новые (более рациональные) решения.
Преимущества
Применение принципа дробления выходного напряжения на небольшие части обеспечивает следующие преимущества:
- Возможность на свое усмотрение устанавливать на выходе устройства широкий набор рабочих напряжений.
- Снизить потери в выходных каскадах блока питания.
- Повысить общий КПД и, в конечном счете, сэкономить на расходе электроэнергии.
Все эти преимущества удается получить лишь при условии эффективности механических способов управления или электронных схем коммутации. Порядок построения каждой из них будет рассмотрен в следующем разделе.
Варианты схематических решений
При конструировании блоков питания, обеспечивающих экономное расходование электроэнергии и исключающих тепловые потери в сердечнике трансформатора, возможны следующие варианты:
- Установка в выходных цепях обычных переключателей витков.
- Применение в тех же цепочках коммутаторов релейного типа.
- Использование в выходных управляющих линиях современных симисторных переключателей.
- Применение в преобразовательной схеме программируемого электронного коммутатора (контроллера).
Далее каждый из этих способов управления выходным напряжением будет рассмотрен более подробно.
Простой блок переключения
Этот тип коммутатора может быть выполнен в виде обычного галетного переключателя, рассчитанного на определенное число положений ручки управления. Каждому из них соответствует заданное количество витков вторичной катушки трансформатора, с увеличением числа которых возрастает его выходное напряжение.
Важно! К преимуществам этого способа следует отнести простоту реализации, а к недостаткам – неудобство постоянного переключения ручки, которой приходится управлять вручную.
Кроме того, коммутации в этом случае происходят очень медленно и приводят к паразитным переходным процессам в выходных цепях, обладающих высокой индуктивностью.
Релейный
Принцип этого метода управления выходными каскадами БП основан на применении специальных коммутирующих элементов, называемых реле. С их помощью удается существенно повысить скорость переключений и исключить появления больших всплесков напряжения (тока). Со схемой такого коммутатора можно ознакомиться на приведенном справа рисунке.
Из нее видно, что для управления положением контактов реле используется отдельная катушка, напряжение с которой выпрямляется и подается на простейший электронный модуль, выполненный на основе транзисторов.
Обратите внимание! В этом случае исполнительной частью устройства коммутации являются контакты реле, срабатывающие намного быстрее человеческой руки, переключающей галетный прибор.
Поэтому переходные процессы в данной схеме заметно меньше, а опасность возникновения перенапряжений в выходных цепях существенно снижается. С другой стороны, контакты реле со временем снашиваются, а сильное искрообразование зачастую приводит к нарушениям в нормальной работе преобразователя. Гораздо надежнее некоторые типы полупроводниковых приборов (симисторы, например), при коммутации которых в цепях исключаются паразитные помехи.
Симисторный
Симисторная схема управления переключением обмоток (точнее – ее пример) приведена на рисунке слева. В данной ситуации коммутация витков выходной катушки осуществляется посредством электронных переходов специальных полупроводниковых приборов – симисторов. Для управления их переключением в схеме предусмотрен электронный модуль, срабатывающий по сигналу, поступающему от пользователя.
В данном случае для развязки управляющих и коммутирующих цепей применены оптические пары того же симисторного типа. Сигнал на их входные элементы поступает с выходов транзисторов, управляемых электронным коммутатором на операционных усилителях. В состав симистороной схемы управления выходными напряжениями входят:
- Блок питания на стабилизаторе VR1.
- Модуль задержки включения, выполненный на транзисторах VT1-VT3.
- Блок индикации на светодиодных элементах LED1-LED3.
- Типовой сдвоенный компаратор LM393.
- Логика типа 74HC86.
- Оптроны MOC3083.
- Входной делитель R6-R7.
В процессе настройки этой схемы резистором R7 выставляется фиксированное входное напряжение, поделенное делителем R6-R7 на десять. Пример: при поступлении с БП напряжения 20 Вольт, его величина на не инвертируемых входах LM393 составит всего 2 Вольта. А резисторы R8, R10 служат для выставления пороговых напряжений переключения
Переключатель обмоток трансформатора на контроллере
Принцип работы программируемого блока состоит в следующем:
- Каждому из фиксируемых значений выходного напряжения (согласно требованиям задания) ставится в соответствие определенный двоичный код.
- Комбинация из нулей и единичек определяет нужное число обмоток, подключаемых к выходу трансформатора блока питания.
- За счет их изменения и происходит управление выходными цепями.
- За смену кода ответственен специальный контроллер, управляющий работой всей схемы.
Дополнительная информация! Особенностью данного метода является то, что электронный модуль не измеряет текущее выходное напряжение, а только индицирует его расчетное значение.
Применение в управляющей схеме современного микроконтроллера позволяет существенно сократить общее число комплектующих изделий. Это не только заметно упрощает проектирование и изготовление печатных плат, но и облегчает все процедуры, связанные с наладкой устройства в целом. На приведенном выше рисунке представлена схема управления выходным каскадом блока, выполненная на микроконтроллере PIC16F628A-1/P (DD1). Дополнительный узел – регистр сохранения данных ЭКР1554ИР22 (DD2).
Конечно, для реализации этого принципа управления можно было обойтись простейшим и более дешевым микроконтроллером PIC12F629. Он обычно применяется в сочетании с двумя сдвиговыми регистрами, преобразующими последовательный код в его параллельную копию. Но при этом дешевое устройство не обеспечивало бы требуемую устойчивость к воздействию импульсных помех, которые, как известно, всегда присутствуют при коммутации индуктивных цепей.
Обратите внимание! Указанное замечание непосредственно касается нашего случая, когда схемное решение предполагает использование обладающих большой индуктивностью трансформаторных обмоток.
В заключительной части тематического обзора отметим, что все известные способы переключения выходных обмоток трансформатора делятся на механические (с использованием галетного переключателя, например) и автоматические. Второй способ управления успешно реализуется за счет появления быстродействующих электронных элементов и комплектующих. При их использовании не только повышается скорость предполагаемых коммутаций, но и возрастает уровень защищенности схемы от воздействия паразитных импульсных помех.
Переключение обмоток трансформатора лабораторных источников питания. Часть первая. — Блоки питания — Источники питания
Николай Петрушов
Лабораторный источник питания для радиолюбителя является первостепенной и неотъемлемой частью радиолюбительской лаборатории. Каждый решает для себя сам — купить такой источник, или собрать его самому.
Конечно, хочется иметь в своей лаборатории источник питания с широкой регулировкой напряжения, вольт эдак до 50, и конечно с током нагрузки, желательно не менее 5 ампер.
Промышленные источники питания с такими характеристиками для рядового радиолюбителя просто не доступны, и остаётся единственный путь — изготовить такой источник самому. Но при самостоятельном изготовлении источника питания с такими характеристиками, приходится решать ряд проблем, одной из которых самой главной, является его КПД во всём диапазоне выходных напряжений.
Дело в том, что при максимальном выходном напряжении источника питания в 50 вольт, и при установке выходного напряжения, например 5 вольт и токе нагрузке 5 ампер — на выходных транзисторах будет выделяться бесполезная мощность 225 ватт. То есть КПД источника в таком режиме будет до безобразия мал.
Решить такую проблему можно разными способами, например коммутацией вторичных обмоток силового трансформатора, или сделать источник питания импульсным, или собрать импульсный пред-регулятор. Но как показала личная практика — хороший лабораторный источник питания не должен иметь ни каких импульсных каскадов и быть чисто, только линейным. Для каких либо цифровых, или не ответственных схем, вполне может подойти и импульсный источник питания, а вот для наладки какой либо приёмной аппаратуры — только линейный.
Поэтому в линейных промышленных источниках питания пошли по первому пути, где вторичная силовая обмотка трансформатора имеет несколько отводов и коммутируется двумя-тремя реле.
Эти меры частично решают данную проблему и значительно повышают КПД источника питания.
Ещё более улучшить его КПД и уменьшить нагрев выходных транзисторов, можно увеличением количества отводов силовой обмотки трансформатора и, например установки галетного переключателя, как сделано в блоке питания, схема которого обозначена на рисунке ниже. Одно неудобство — увеличивается количество органов регулировки и установки выходного напряжения.
Чтобы избавиться от этого недостатка — была разработана схема блока переключения обмоток трансформатора на реле, представленная ниже.
Вашему вниманию предлагается блок переключения обмоток трансформатора для лабораторных источников питания, который выполнен всего на трёх реле, и который переключает вторичные обмотки силового трансформатора с шагом в 5 вольт, и имеет восемь ступеней регулировки выходного напряжения.
Блок переключения меняет напряжение с трансформатора на входе блока питания ступенями по пять вольт, от 8-ми до 43 вольт в зависимости от выходного напряжения блока питания. Такое максимальное выходное напряжение (43 вольта) выбрано не случайно, и обусловлено применением в фильтре распространённых электролитических конденсаторов с рабочим напряжением 63 вольта. При этом напряжение на конденсаторах фильтра будет около 60 вольт и максимальное выходное напряжение блока питания может достигать 50-52 вольта. Вы вполне сами можете изменить максимальное выходное напряжение с трансформатора и напряжение ступеней регулирования под свои нужды. Например начальную обмотку сделать на 10-12 вольт, и ступени изменения сделать по 6 вольт. Тогда максимальное переменное напряжение, подаваемое на мост — составит 52-54 вольта. Конденсаторы фильтра в таком случае необходимо ставить на рабочее напряжение 80 вольт.
Схема блока собрана на 13-ти транзисторах и одной микросхеме. При кажущейся сложности схемы, она довольно простая, и при правильной сборке не требует никакого налаживания, начинает работать сразу и работает надёжно.
Схема блока переключения обмоток трансформатора.
В схеме применены реле на рабочее напряжение 12 вольт. Контакты реле на схеме трансформатора, обозначены в исходном положении (все реле обесточены).
Можно применять реле на любые рабочие напряжения, с коммутируемым током через контакты не менее 10 ампер. При использовании реле на другие рабочие напряжения, например на 24 вольта, необходимо будет вторичную обмотку силового трансформатора, которая питает данный блок (обмотка V), намотать на напряжение 17-18 вольт и стабилизатор 7805 желательно установить на небольшой радиатор.
Схема работает следующим образом;
Когда выходное напряжение блока питания не превышает 6,2 вольт, стабилитроны закрыты и все реле обесточены. На выпрямительный мост блока питания — подаётся переменное напряжение 8 вольт с первой части вторичной обмотки II силового трансформатора. При повышении выходного напряжения блока питания более 6,2 вольт, открывается стабилитрон ZD1, на вход микросхемы 1 (вывод 11) — подаётся логический ноль. Микросхема К555ИВ3 — является приоритетным шифратором (выше приоритет имеет вход с более высоким номером), и на выходе выдаёт двоичный код 1-2-4-8 в зависимости от того, на каком входе присутствует логический ноль. Самый высокий приоритет у входа 9 (вывод 10, мы его, вход 8 и выход 8 не используем), то есть если на этом входе логический ноль, то на выходе будет двоичный код девятки 1-0-0-1 (вернее 0-1-1-0, так как активный уровень микросхемы — логический ноль), в не зависимости от входных уровней на других входах. Поэтому после открывания стабилитрона ZD1 — срабатывает реле Р1 и переключает своими контактами обмотку II. Выходное напряжение с выхода трансформатора повышается на 5 вольт. При дальнейшем повышении выходного напряжения блока питания до уровня 12,4-12,6 вольт, открывается второй стабилитрон, на второй вход микросхемы К555ИВ3 (вывод 12) подаётся логический ноль и срабатывает реле Р2, а Р1 выключается (двоичный код двойки 0-1-0). К первой части обмотки II подключается обмотка III, и на выходе трансформатора переменное напряжение повышается ещё на 5 вольт. Ну и так далее, при повышении выходного напряжения блока питания — срабатывание всех реле происходит в двоичном коде. Пороги срабатывания выбраны следующие; 6,2 — 12,5 — 18,6 — 24,8 — 31 — 37,5 — 43,5 вольт и зависят от применённых стабилитронов.
Трансформатор блока питания.
Силовой трансформатор для применения с данным блоком, имеет три силовых обмотки. Намотать одну силовую обмотку с несколькими выводами, или три силовых обмотки — особой разницы нет, так как в основном трансформатор для своего источника питания, основная часть радиолюбителей изготавливает самостоятельно. Поэтому мотаем три обмотки, проводом рассчитанным на наш максимальный ток нагрузки. Первая на 13 вольт с отводом от 8-ми вольт (8+5), вторую на 10 вольт и третья на 20 вольт. Начало обмоток на схеме обозначены точками. Вы можете по своему усмотрению выбрать для себя необходимые напряжения и намотать свои обмотки, только необходимо помнить, что напряжение обмотки III должно быть в два раза больше второй части обмотки II, а напряжение обмотки IV — в два раза больше напряжения обмотки III.
Транзисторы в данном блоке переключения применены КТ315 и выходные КТ815. Вместо них можно ставить любые транзисторы соответствующей структуры и мощности.
Блок собран на печатной плате — размером 55х70 мм. Печатная плата рассчитана без установки на неё реле, так как они могут применяться самые разнообразные. Реле установлены на отдельной плате.
Печатная плата блока переключения обмоток трансформатора.
Зарубежные аналоги для микросхемы К555ИВ3 — 74LS/HC/HCT 147. Стабилитроны можно ставить на необходимые Вам пороги переключений. Печатная плата разработана в формате Sprint-Layout 6.0 и изображена со стороны деталей. То есть при её изготовлении рисунок нужно «зеркалить». Плата также имеется в архиве.
Архив для статьи
cxema.org — Коммутатор обмоток для лабораторного блока питания
Коммутатор обмоток для лабораторного блока питания
Регулируемый источник питания является обязательным атрибутом на столе радиолюбителя, но из-за их немалой стоимости многие предпочитают сделать лабораторный блок питания своими руками.
Блоки питания бывают линейными и импульсными, основное преимущество импульсных схем — это их высокий КПД (>90%). Линейные схемы имеют низких КПД, но обеспечивают более чистое выходное напряжение, которые свойственны импульсным источникам питания.
Линейные источники питания лучше, но при конструировании таких источников питания большой мощности возникают проблемы с охлаждением силовых транзисторов.
В чем же заключается основная сложность?. Допустим мы собрали блок питания с регулировкой напряжения от нуля до 30 Вольт и ток от нуля до 5 Ампер. И если мы выставим на выходе малое напряжение и большой ток, например 3 Вольта и 5 Ампер, на выходе получим мощность около 9 Ватт, при этом на транзисторе будет падение напряжения как минимум 27 Вольт, с учетом тока в 5 ампер, получаем около 140 ватт мощности в виде бесполезного тепла, которое нужно отводить.
Есть два основных варианта решения этой проблемы:
- Громадный радиатор с вентилятором для охлаждения силового транзистора;
- Система переключения обмоток трансформатора.
Второй вариант наиболее предпочтителен, и позволит избавиться от массивных радиаторов и шумного вентилятора.
Принцип работы очень прост — при малых выходных напряжениях на вход также подается малое напряжение. Таким образом мощность рассеиваемая на транзисторе будет гораздо меньше, КПД увеличивается в разы.
Но для того, чтобы задействовать коммутатор, нужно иметь трансформатор с несколькими вторичными обмотками, желательно с полностью одинаковыми параметрами, например три обмотки по 12 Вольт.
Перед вами сейчас самая простая и безотказная схема релейного коммутатора.
Имеем пару стабилитронов на одинаковое напряжения и пару реле, которыми управляют маломощные транзисторы обратной проводимости. Точка «А» подключается к выходу лабораторного блока питания. Масса питания общая. Схема коммутатора питается от отдельной, маломощной обмотки.
Схема работает следующим образом, если напряжение на выходе лабораторного блока питание ниже 12 Вольт, стабилитрон закрыт. Если напряжение на выходе лабораторного блока питания больше 12 Вольт первый стабилитрон моментально откроется, сигнал поступит на базу первого транзистора, отпирая его, через открытый переход поступит питание на обмотку реле, как следствие — реле также сработает, коммутируя соответствующую обмотку. Теперь на вход стабилизатора поступает напряжение 24 Вольта.
При увеличении выходного напряжения блока питания до порогового значения, а это сумма напряжений обеих стабилитронов, точно таким же образом откроется второй стабилитрон, что приведёт к отпиранию второго транзистора и сработкет второго реле, и на вход стабилизатора поступит полное напряжение со всех трех последовательно соединенных обмоток трансформатора.
В этот момент первое реле тоже находится во включенном состоянии, но так как питание поступает по второму реле, на выходное напряжение это не влияет. Добавив в схему еще один транзистор со стабилитроном, в эти моменты можно отключать его.
Если напряжение на выходе источника питания больше значения суммы напряжений стабилизации стабилитронов откроется третий транзистор, шунтируя базу транзистора, который управляет первой реле на массу питания, тот закроется и отключит реле.
Стоит заметить, что через стабилитроны и переходы база эмиттер протекают ничтожно малые токи.
В схеме использованы реле с напряжением катушки 12 Вольт.
Диоды предназначены для защиты от пробоя управляющих транзисторов напряжением самоиндукции с обмоток реле во время их отключения.
Ток коммутации реле зависит от вашего блока питания, если конструируете лабораторный блок питания на 5 Ампер, реле желательно взять с двукратным запасом, например 10-12 Ампер.
Базовые ограничительные резисторы для транзисторов могут иметь сопротивление от 6,8 до 15 кОм. Сами транзисторы обратной проводимости, можно взять любые малой и средней мощности.
К недостаткам схемы можно отнести использование электромагнитного реле. Должен сказать, что во многих промышленных блоках питания применяется именно такое решение. Реле издают звук во время переключения, а контакты не вечные.
Есть системы, где переключающим элементом является симистор, но такие коммутаторы также не идеальны, часто возникают проблемы с управлением, а на самих симисторах будут потери, следовательно и нагрев, к тому же симисторные схемы довольно сложны.
Питать схему коммутации можно как от отдельной обмоткой, которая намотана на основном трансформаторе, так и от отдельного маломощного блока питания. Напряжение этого источника должно быть от 18 до 20 вольт, при токе в 200-300мА.
Печатная плата тут
Автоматическое переключение обмоток трансформатора в блоке питания
В состав любого измерительного комплекса, имеющегося в современной лаборатории или на рабочем месте радиолюбителя, обязательно входит недорогой и надежный блок питания (БП). Для того чтобы улучшить его эксплуатационные характеристики, специалисты советуют применить автоматическое переключение трансформаторных обмоток в блоке питания. Это существенно снижает паразитное рассеяние мощности в выходных каскадах и облегчает режим работы любого лабораторного источника тока.
Указанный подход особо востребован в тех случаях, когда в рабочих условиях востребован БП с диапазоном регулировки напряжения 50 Вольт, например, и с током нагрузки не менее 5 Ампер. Промышленные источники с такими заявленными характеристиками для рядового пользователя недоступны из-за своей высокой стоимости. Как раз это и вынуждает его применять принцип и схему автоматического переключения обмоток трансформатора в блоке питания.
Для чего используется система переключений обмоток трансформатора
При самостоятельном изготовлении блока питания с такими характеристиками исполнителю приходится решать целый ряд проблем, важнейшая из которых – обеспечение требуемой передаточной характеристики во всем спектре выходных напряжений. Рассмотрим пример, когда имеется источник питания, рассчитанный на максимальное напряжение до 50-ти Вольт.
Если в определенной ситуации потребовалось установить точное значение выходного напряжения всего в 5 Вольт при токе в нагрузке 5 Ампер – в выходных цепях будет бесполезно рассеиваться мощность 225 Ватт. Эта цифра получается из расчета 50-5=45 (Вольт), что после умножения на 5 Ампер дает означенною величину потерянной без всякого эффекта мощности.
Важно! В данной ситуации КПД такого источника будет предельно низким.
Для устранения указанного недостатка приходится принимать специальные меры, позволяющие существенно снизить потери в индуктивных выходных каскадах. Для этого потребуется предпринять следующее:
- Каким-то образом коммутировать вторичные обмотки силового трансформатора (ТС), что позволит при необходимости отбирать от него меньшую по величине мощность.
- Использовать более экономичный импульсный режим преобразования электроэнергии.
- Воспользоваться заранее изготовленным предварительным регулятором, работающим по тому же импульсному принципу.
С другой стороны, общеизвестно, что надежный и многофункциональный лабораторный блок питания не должен иметь импульсных узлов, приводящих к появлению нелинейных искажений. Более рациональным и эффективным в этом случае считается чисто линейное преобразование.
Дополнительная информация: для не очень сложных любительских схем вполне сгодится обычный импульсный блок питания.
Однако для наладки более точной электронной аппаратуры потребуется стандартное устройство, содержащее узлы с линейной передаточной характеристикой.
Принцип работы
Для решения этой проблемы при разработке промышленных источников питания инженеры пошли по первому пути, предполагающему наличие во вторичной обмотке нескольких коммутируемых отводов. Для их переключения применяются самые различные способы, включая следующие варианты:
- Ручная коммутация (посредством галетных переключателей, например).
- Использование типовых коммутирующих реле, управляемых отдельным электронным узлом.
- Включение в выходную цепочку быстродействующих полупроводниковых элементов (симисторов).
- Применение в качестве управляющего узла современных контроллеров.
Такая коммутация позволяет использовать только часть вторичной обмотки, соответствующую требуемому значению выходного напряжения (в приведенном выше примере – это 5 Вольт).
Таким образом, принцип работы такой схемы заключается в искусственной регулировке выходного переменного напряжения с установкой его фиксированной величины, меньшей полного значения выхода трансформатора. Данный подход исключает неоправданный расход энергии, идущей на бессмысленный нагрев элементов выпрямителя (в типовых схемах эту функцию выполняют силовые транзисторы).
Обратите внимание! Для повышения КПД такой схемы и снижения степени нагрева сердечника трансформатора специалисты советуют увеличивать число отводов вторичной обмотки до максимального значения.
После такой доработки выходных цепей к ним подключаются контакты галетного переключателя, посредством которого можно будет устанавливать требуемый режим питания по выходу. Единственное неудобство этого метода – увеличение числа органов управления выходным напряжением. Неэффективность механического способа подключения выходных обмоток трансформатора заставляет искать новые (более рациональные) решения.
Преимущества
Применение принципа дробления выходного напряжения на небольшие части обеспечивает следующие преимущества:
- Возможность на свое усмотрение устанавливать на выходе устройства широкий набор рабочих напряжений.
- Снизить потери в выходных каскадах блока питания.
- Повысить общий КПД и, в конечном счете, сэкономить на расходе электроэнергии.
Все эти преимущества удается получить лишь при условии эффективности механических способов управления или электронных схем коммутации. Порядок построения каждой из них будет рассмотрен в следующем разделе.
Варианты схематических решений
При конструировании блоков питания, обеспечивающих экономное расходование электроэнергии и исключающих тепловые потери в сердечнике трансформатора, возможны следующие варианты:
- Установка в выходных цепях обычных переключателей витков.
- Применение в тех же цепочках коммутаторов релейного типа.
- Использование в выходных управляющих линиях современных симисторных переключателей.
- Применение в преобразовательной схеме программируемого электронного коммутатора (контроллера).
Далее каждый из этих способов управления выходным напряжением будет рассмотрен более подробно.
Простой блок переключения
Этот тип коммутатора может быть выполнен в виде обычного галетного переключателя, рассчитанного на определенное число положений ручки управления. Каждому из них соответствует заданное количество витков вторичной катушки трансформатора, с увеличением числа которых возрастает его выходное напряжение.
Важно! К преимуществам этого способа следует отнести простоту реализации, а к недостаткам – неудобство постоянного переключения ручки, которой приходится управлять вручную.
Кроме того, коммутации в этом случае происходят очень медленно и приводят к паразитным переходным процессам в выходных цепях, обладающих высокой индуктивностью.
Релейный
Принцип этого метода управления выходными каскадами БП основан на применении специальных коммутирующих элементов, называемых реле. С их помощью удается существенно повысить скорость переключений и исключить появления больших всплесков напряжения (тока). Со схемой такого коммутатора можно ознакомиться на приведенном справа рисунке.
Из нее видно, что для управления положением контактов реле используется отдельная катушка, напряжение с которой выпрямляется и подается на простейший электронный модуль, выполненный на основе транзисторов.
Обратите внимание! В этом случае исполнительной частью устройства коммутации являются контакты реле, срабатывающие намного быстрее человеческой руки, переключающей галетный прибор.
Поэтому переходные процессы в данной схеме заметно меньше, а опасность возникновения перенапряжений в выходных цепях существенно снижается. С другой стороны, контакты реле со временем снашиваются, а сильное искрообразование зачастую приводит к нарушениям в нормальной работе преобразователя. Гораздо надежнее некоторые типы полупроводниковых приборов (симисторы, например), при коммутации которых в цепях исключаются паразитные помехи.
Симисторный
Симисторная схема управления переключением обмоток (точнее – ее пример) приведена на рисунке слева. В данной ситуации коммутация витков выходной катушки осуществляется посредством электронных переходов специальных полупроводниковых приборов – симисторов. Для управления их переключением в схеме предусмотрен электронный модуль, срабатывающий по сигналу, поступающему от пользователя.
В данном случае для развязки управляющих и коммутирующих цепей применены оптические пары того же симисторного типа. Сигнал на их входные элементы поступает с выходов транзисторов, управляемых электронным коммутатором на операционных усилителях. В состав симистороной схемы управления выходными напряжениями входят:
- Блок питания на стабилизаторе VR1.
- Модуль задержки включения, выполненный на транзисторах VT1-VT3.
- Блок индикации на светодиодных элементах LED1-LED3.
- Типовой сдвоенный компаратор LM393.
- Логика типа 74HC86.
- Оптроны MOC3083.
- Входной делитель R6-R7.
В процессе настройки этой схемы резистором R7 выставляется фиксированное входное напряжение, поделенное делителем R6-R7 на десять. Пример: при поступлении с БП напряжения 20 Вольт, его величина на не инвертируемых входах LM393 составит всего 2 Вольта. А резисторы R8, R10 служат для выставления пороговых напряжений переключения
Переключатель обмоток трансформатора на контроллере
Принцип работы программируемого блока состоит в следующем:
- Каждому из фиксируемых значений выходного напряжения (согласно требованиям задания) ставится в соответствие определенный двоичный код.
- Комбинация из нулей и единичек определяет нужное число обмоток, подключаемых к выходу трансформатора блока питания.
- За счет их изменения и происходит управление выходными цепями.
- За смену кода ответственен специальный контроллер, управляющий работой всей схемы.
Дополнительная информация! Особенностью данного метода является то, что электронный модуль не измеряет текущее выходное напряжение, а только индицирует его расчетное значение.
Применение в управляющей схеме современного микроконтроллера позволяет существенно сократить общее число комплектующих изделий. Это не только заметно упрощает проектирование и изготовление печатных плат, но и облегчает все процедуры, связанные с наладкой устройства в целом. На приведенном выше рисунке представлена схема управления выходным каскадом блока, выполненная на микроконтроллере PIC16F628A-1/P (DD1). Дополнительный узел – регистр сохранения данных ЭКР1554ИР22 (DD2).
Конечно, для реализации этого принципа управления можно было обойтись простейшим и более дешевым микроконтроллером PIC12F629. Он обычно применяется в сочетании с двумя сдвиговыми регистрами, преобразующими последовательный код в его параллельную копию. Но при этом дешевое устройство не обеспечивало бы требуемую устойчивость к воздействию импульсных помех, которые, как известно, всегда присутствуют при коммутации индуктивных цепей.
Обратите внимание! Указанное замечание непосредственно касается нашего случая, когда схемное решение предполагает использование обладающих большой индуктивностью трансформаторных обмоток.
В заключительной части тематического обзора отметим, что все известные способы переключения выходных обмоток трансформатора делятся на механические (с использованием галетного переключателя, например) и автоматические. Второй способ управления успешно реализуется за счет появления быстродействующих электронных элементов и комплектующих. При их использовании не только повышается скорость предполагаемых коммутаций, но и возрастает уровень защищенности схемы от воздействия паразитных импульсных помех.
В состав любого измерительного комплекса, имеющегося в современной лаборатории или на рабочем месте радиолюбителя, обязательно входит недорогой и надежный блок питания (БП). Для того чтобы улучшить его эксплуатационные характеристики, специалисты советуют применить автоматическое переключение трансформаторных обмоток в блоке питания. Это существенно снижает паразитное рассеяние мощности в выходных каскадах и облегчает режим работы любого лабораторного источника тока.
Указанный подход особо востребован в тех случаях, когда в рабочих условиях востребован БП с диапазоном регулировки напряжения 50 Вольт, например, и с током нагрузки не менее 5 Ампер. Промышленные источники с такими заявленными характеристиками для рядового пользователя недоступны из-за своей высокой стоимости. Как раз это и вынуждает его применять принцип и схему автоматического переключения обмоток трансформатора в блоке питания.
Для чего используется система переключений обмоток трансформатора
При самостоятельном изготовлении блока питания с такими характеристиками исполнителю приходится решать целый ряд проблем, важнейшая из которых – обеспечение требуемой передаточной характеристики во всем спектре выходных напряжений. Рассмотрим пример, когда имеется источник питания, рассчитанный на максимальное напряжение до 50-ти Вольт.
Если в определенной ситуации потребовалось установить точное значение выходного напряжения всего в 5 Вольт при токе в нагрузке 5 Ампер – в выходных цепях будет бесполезно рассеиваться мощность 225 Ватт. Эта цифра получается из расчета 50-5=45 (Вольт), что после умножения на 5 Ампер дает означенною величину потерянной без всякого эффекта мощности.
Важно! В данной ситуации КПД такого источника будет предельно низким.
Для устранения указанного недостатка приходится принимать специальные меры, позволяющие существенно снизить потери в индуктивных выходных каскадах. Для этого потребуется предпринять следующее:
- Каким-то образом коммутировать вторичные обмотки силового трансформатора (ТС), что позволит при необходимости отбирать от него меньшую по величине мощность.
- Использовать более экономичный импульсный режим преобразования электроэнергии.
- Воспользоваться заранее изготовленным предварительным регулятором, работающим по тому же импульсному принципу.
С другой стороны, общеизвестно, что надежный и многофункциональный лабораторный блок питания не должен иметь импульсных узлов, приводящих к появлению нелинейных искажений. Более рациональным и эффективным в этом случае считается чисто линейное преобразование.
Дополнительная информация: для не очень сложных любительских схем вполне сгодится обычный импульсный блок питания.
Однако для наладки более точной электронной аппаратуры потребуется стандартное устройство, содержащее узлы с линейной передаточной характеристикой.
Принцип работы
Для решения этой проблемы при разработке промышленных источников питания инженеры пошли по первому пути, предполагающему наличие во вторичной обмотке нескольких коммутируемых отводов. Для их переключения применяются самые различные способы, включая следующие варианты:
- Ручная коммутация (посредством галетных переключателей, например).
- Использование типовых коммутирующих реле, управляемых отдельным электронным узлом.
- Включение в выходную цепочку быстродействующих полупроводниковых элементов (симисторов).
- Применение в качестве управляющего узла современных контроллеров.
Такая коммутация позволяет использовать только часть вторичной обмотки, соответствующую требуемому значению выходного напряжения (в приведенном выше примере – это 5 Вольт).
Таким образом, принцип работы такой схемы заключается в искусственной регулировке выходного переменного напряжения с установкой его фиксированной величины, меньшей полного значения выхода трансформатора. Данный подход исключает неоправданный расход энергии, идущей на бессмысленный нагрев элементов выпрямителя (в типовых схемах эту функцию выполняют силовые транзисторы).
Обратите внимание! Для повышения КПД такой схемы и снижения степени нагрева сердечника трансформатора специалисты советуют увеличивать число отводов вторичной обмотки до максимального значения.
После такой доработки выходных цепей к ним подключаются контакты галетного переключателя, посредством которого можно будет устанавливать требуемый режим питания по выходу. Единственное неудобство этого метода – увеличение числа органов управления выходным напряжением. Неэффективность механического способа подключения выходных обмоток трансформатора заставляет искать новые (более рациональные) решения.
Преимущества
Применение принципа дробления выходного напряжения на небольшие части обеспечивает следующие преимущества:
- Возможность на свое усмотрение устанавливать на выходе устройства широкий набор рабочих напряжений.
- Снизить потери в выходных каскадах блока питания.
- Повысить общий КПД и, в конечном счете, сэкономить на расходе электроэнергии.
Все эти преимущества удается получить лишь при условии эффективности механических способов управления или электронных схем коммутации. Порядок построения каждой из них будет рассмотрен в следующем разделе.
Варианты схематических решений
При конструировании блоков питания, обеспечивающих экономное расходование электроэнергии и исключающих тепловые потери в сердечнике трансформатора, возможны следующие варианты:
- Установка в выходных цепях обычных переключателей витков.
- Применение в тех же цепочках коммутаторов релейного типа.
- Использование в выходных управляющих линиях современных симисторных переключателей.
- Применение в преобразовательной схеме программируемого электронного коммутатора (контроллера).
Далее каждый из этих способов управления выходным напряжением будет рассмотрен более подробно.
Простой блок переключения
Этот тип коммутатора может быть выполнен в виде обычного галетного переключателя, рассчитанного на определенное число положений ручки управления. Каждому из них соответствует заданное количество витков вторичной катушки трансформатора, с увеличением числа которых возрастает его выходное напряжение.
Важно! К преимуществам этого способа следует отнести простоту реализации, а к недостаткам – неудобство постоянного переключения ручки, которой приходится управлять вручную.
Кроме того, коммутации в этом случае происходят очень медленно и приводят к паразитным переходным процессам в выходных цепях, обладающих высокой индуктивностью.
Релейный
Принцип этого метода управления выходными каскадами БП основан на применении специальных коммутирующих элементов, называемых реле. С их помощью удается существенно повысить скорость переключений и исключить появления больших всплесков напряжения (тока). Со схемой такого коммутатора можно ознакомиться на приведенном справа рисунке.
Из нее видно, что для управления положением контактов реле используется отдельная катушка, напряжение с которой выпрямляется и подается на простейший электронный модуль, выполненный на основе транзисторов.
Обратите внимание! В этом случае исполнительной частью устройства коммутации являются контакты реле, срабатывающие намного быстрее человеческой руки, переключающей галетный прибор.
Поэтому переходные процессы в данной схеме заметно меньше, а опасность возникновения перенапряжений в выходных цепях существенно снижается. С другой стороны, контакты реле со временем снашиваются, а сильное искрообразование зачастую приводит к нарушениям в нормальной работе преобразователя. Гораздо надежнее некоторые типы полупроводниковых приборов (симисторы, например), при коммутации которых в цепях исключаются паразитные помехи.
Симисторный
Симисторная схема управления переключением обмоток (точнее – ее пример) приведена на рисунке слева. В данной ситуации коммутация витков выходной катушки осуществляется посредством электронных переходов специальных полупроводниковых приборов – симисторов. Для управления их переключением в схеме предусмотрен электронный модуль, срабатывающий по сигналу, поступающему от пользователя.
В данном случае для развязки управляющих и коммутирующих цепей применены оптические пары того же симисторного типа. Сигнал на их входные элементы поступает с выходов транзисторов, управляемых электронным коммутатором на операционных усилителях. В состав симистороной схемы управления выходными напряжениями входят:
- Блок питания на стабилизаторе VR1.
- Модуль задержки включения, выполненный на транзисторах VT1-VT3.
- Блок индикации на светодиодных элементах LED1-LED3.
- Типовой сдвоенный компаратор LM393.
- Логика типа 74HC86.
- Оптроны MOC3083.
- Входной делитель R6-R7.
В процессе настройки этой схемы резистором R7 выставляется фиксированное входное напряжение, поделенное делителем R6-R7 на десять. Пример: при поступлении с БП напряжения 20 Вольт, его величина на не инвертируемых входах LM393 составит всего 2 Вольта. А резисторы R8, R10 служат для выставления пороговых напряжений переключения
Переключатель обмоток трансформатора на контроллере
Принцип работы программируемого блока состоит в следующем:
- Каждому из фиксируемых значений выходного напряжения (согласно требованиям задания) ставится в соответствие определенный двоичный код.
- Комбинация из нулей и единичек определяет нужное число обмоток, подключаемых к выходу трансформатора блока питания.
- За счет их изменения и происходит управление выходными цепями.
- За смену кода ответственен специальный контроллер, управляющий работой всей схемы.
Дополнительная информация! Особенностью данного метода является то, что электронный модуль не измеряет текущее выходное напряжение, а только индицирует его расчетное значение.
Применение в управляющей схеме современного микроконтроллера позволяет существенно сократить общее число комплектующих изделий. Это не только заметно упрощает проектирование и изготовление печатных плат, но и облегчает все процедуры, связанные с наладкой устройства в целом. На приведенном выше рисунке представлена схема управления выходным каскадом блока, выполненная на микроконтроллере PIC16F628A-1/P (DD1). Дополнительный узел – регистр сохранения данных ЭКР1554ИР22 (DD2).
Конечно, для реализации этого принципа управления можно было обойтись простейшим и более дешевым микроконтроллером PIC12F629. Он обычно применяется в сочетании с двумя сдвиговыми регистрами, преобразующими последовательный код в его параллельную копию. Но при этом дешевое устройство не обеспечивало бы требуемую устойчивость к воздействию импульсных помех, которые, как известно, всегда присутствуют при коммутации индуктивных цепей.
Обратите внимание! Указанное замечание непосредственно касается нашего случая, когда схемное решение предполагает использование обладающих большой индуктивностью трансформаторных обмоток.
В заключительной части тематического обзора отметим, что все известные способы переключения выходных обмоток трансформатора делятся на механические (с использованием галетного переключателя, например) и автоматические. Второй способ управления успешно реализуется за счет появления быстродействующих электронных элементов и комплектующих. При их использовании не только повышается скорость предполагаемых коммутаций, но и возрастает уровень защищенности схемы от воздействия паразитных импульсных помех.
Регулируемый источник питания является обязательным атрибутом на столе радиолюбителя, но из-за их немалой стоимости многие предпочитают сделать лабораторный блок питания своими руками.
Блоки питания бывают линейными и импульсными, основное преимущество импульсных схем — это их высокий КПД (>90%). Линейные схемы имеют низких КПД, но обеспечивают более чистое выходное напряжение, которые свойственны импульсным источникам питания.
Линейные источники питания лучше, но при конструировании таких источников питания большой мощности возникают проблемы с охлаждением силовых транзисторов.
В чем же заключается основная сложность?. Допустим мы собрали блок питания с регулировкой напряжения от нуля до 30 Вольт и ток от нуля до 5 Ампер. И если мы выставим на выходе малое напряжение и большой ток, например 3 Вольта и 5 Ампер, на выходе получим мощность около 9 Ватт, при этом на транзисторе будет падение напряжения как минимум 27 Вольт, с учетом тока в 5 ампер, получаем около 140 ватт мощности в виде бесполезного тепла, которое нужно отводить.
Есть два основных варианта решения этой проблемы:
- Громадный радиатор с вентилятором для охлаждения силового транзистора;
- Система переключения обмоток трансформатора.
Второй вариант наиболее предпочтителен, и позволит избавиться от массивных радиаторов и шумного вентилятора.
Принцип работы очень прост — при малых выходных напряжениях на вход также подается малое напряжение. Таким образом мощность рассеиваемая на транзисторе будет гораздо меньше, КПД увеличивается в разы.
Но для того, чтобы задействовать коммутатор, нужно иметь трансформатор с несколькими вторичными обмотками, желательно с полностью одинаковыми параметрами, например три обмотки по 12 Вольт.
Перед вами сейчас самая простая и безотказная схема релейного коммутатора.
Имеем пару стабилитронов на одинаковое напряжения и пару реле, которыми управляют маломощные транзисторы обратной проводимости. Точка «А» подключается к выходу лабораторного блока питания. Масса питания общая. Схема коммутатора питается от отдельной, маломощной обмотки.
Схема работает следующим образом, если напряжение на выходе лабораторного блока питание ниже 12 Вольт, стабилитрон закрыт. Если напряжение на выходе лабораторного блока питания больше 12 Вольт первый стабилитрон моментально откроется, сигнал поступит на базу первого транзистора, отпирая его, через открытый переход поступит питание на обмотку реле, как следствие — реле также сработает, коммутируя соответствующую обмотку. Теперь на вход стабилизатора поступает напряжение 24 Вольта.
При увеличении выходного напряжения блока питания до порогового значения, а это сумма напряжений обеих стабилитронов, точно таким же образом откроется второй стабилитрон, что приведёт к отпиранию второго транзистора и сработкет второго реле, и на вход стабилизатора поступит полное напряжение со всех трех последовательно соединенных обмоток трансформатора.
В этот момент первое реле тоже находится во включенном состоянии, но так как питание поступает по второму реле, на выходное напряжение это не влияет. Добавив в схему еще один транзистор со стабилитроном, в эти моменты можно отключать его.
Если напряжение на выходе источника питания больше значения суммы напряжений стабилизации стабилитронов откроется третий транзистор, шунтируя базу транзистора, который управляет первой реле на массу питания, тот закроется и отключит реле.
Стоит заметить, что через стабилитроны и переходы база эмиттер протекают ничтожно малые токи.
В схеме использованы реле с напряжением катушки 12 Вольт.
Диоды предназначены для защиты от пробоя управляющих транзисторов напряжением самоиндукции с обмоток реле во время их отключения.
Ток коммутации реле зависит от вашего блока питания, если конструируете лабораторный блок питания на 5 Ампер, реле желательно взять с двукратным запасом, например 10-12 Ампер.
Базовые ограничительные резисторы для транзисторов могут иметь сопротивление от 6,8 до 15 кОм. Сами транзисторы обратной проводимости, можно взять любые малой и средней мощности.
К недостаткам схемы можно отнести использование электромагнитного реле. Должен сказать, что во многих промышленных блоках питания применяется именно такое решение. Реле издают звук во время переключения, а контакты не вечные.
Есть системы, где переключающим элементом является симистор, но такие коммутаторы также не идеальны, часто возникают проблемы с управлением, а на самих симисторах будут потери, следовательно и нагрев, к тому же симисторные схемы довольно сложны.
Питать схему коммутации можно как от отдельной обмоткой, которая намотана на основном трансформаторе, так и от отдельного маломощного блока питания. Напряжение этого источника должно быть от 18 до 20 вольт, при токе в 200-300мА.
Существует очень много различных схем для переключения отводов вторичных обмоток трансформатора в лабораторных блоках питания, для уменьшения рассеиваемой мощности выходных транзисторов БП, и для повышения КПД блоков питания при небольших выходных напряжений. Симисторы ко вторичной обмотке силового трансформатора подключаются у такого переключателя следующим (или подобным) образом. У всех этих схем имеются какие то свои определённые недостатки. Ниже Вашему вниманию предлагается схема электронного переключателя вторичных обмоток трансформатора, выполненного на тиристорах и лишённого этих недостатков. Её например можно применить в лабораторном блоке питания с выходным напряжением 0-35 вольт. Сразу скажу, что эта идея не моя, а предложенная kotosob-ом с форума сайта «Паяльник», я лишь предлагаю свой вариант реализации данной идеи. Для данной схемы абсолютно все равно, в какой момент полупериода включаться тиристоры и в какое время напряжение на выпрямителе станет больше или меньше. В этой схеме тиристоры играют роль управляемых выпрямительных диодов, которые при их включении замещают и запирают выпрямительные диоды мостика, или открывшиеся тиристоры с меньшим выходным напряжением.
Схема электронного коммутатора вторичных обмоток. Схема работает следующим образом; Пороги переключений здесь выбраны при следующих выходных напряжениях блока питания — 7,5; 15; 22,5 вольт, и зависят от применяемых стабилитронов. Соответственно напряжения подаваемые на вход блока питания равны 8, 16, 24, 32 вольт (без учёта падания напряжение на элементах выпрямителя). Схема рассчитана на применение в ней тиристоров. При применении симисторов, чтобы схема работала должным образом, необходимо соблюсти следующее; Симисторы включаются вместо тиристоров следующим образом — 2-й анод симистора по даташиту — на место анода тиристора по схеме, -1-й анод симистора по даташиту — на место катода тиристора по схеме. Схема питается от дополнительного источника с выходным напряжением 5 вольт. Можно использовать дополнительный источник с выходным напряжением 5-24 вольт, но в этом случае необходимо будет подобрать резисторы в коллекторных цепях транзисторов так, что бы при открытии транзистора, ток через светодиод оптрона не превышал 10-15 мА. Да, описанная схема обладает гистерезисом, так как стабилитроны здесь открываются плавно. Для простых БП это вполне приемлемо, а там, где необходим БП со стабилизацией тока и быстрых изменений напряжения на нагрузке, схему на стабилитронах лучше всего заменить схемой на компараторах и выставить гистерезис в пределах до 0,5 вольт.
|
Блок управления лабораторным трансформатором — RadioRadar
Радиолюбителю часто требуется регулируемое переменное напряжение. Обычно его получают с помощью лабораторного регулируемого автотрансформатора (ЛАТР). К сожалению, выход ЛАТР имеет гальваническую связь с сетью, а его подвижный электрод (ползунок) часто обгорает. Помимо порчи самого ползунка, это чревато и выходом из строя обмотки. Да и цена хорошего ЛАТР весьма высока, а изготовить его самостоятельно под силу немногим.
Есть давно известный способ регулировать напряжение на нагрузке, используя не автотрансформатор, а обычный трансформатор с несколькими вторичными обмотками, коммутируемыми переключателями. Такой трансформатор описан, например, в статье А. Терскова «С шагом в один вольт» («Радио», 1993, № 9, с. 24, 25). Его выход гальванически не связан с сетью, а выходное напряжение можно регулировать с шагом 1 В от 0 до 255 В.
К сожалению, постоянная необходимость расчётов для правильной коммутации вторичных обмоток такого трансформатора на нужное напряжение затрудняет его использование. О монотонном увеличении или уменьшении напряжения мелкими ступенями при этом и говорить не приходится. Но самый главный недостаток такого решения — установка всего одного переключателя в неправильное положение может вывести нагрузку, особенно низковольтную, из строя.
Чтобы не допустить подобных неприятностей, а также упростить пользование трансформатором, разработано устройство, представленное ниже. Ставилась цель использовать детали, которые наверняка найдутся в запасах радиолюбителя. Блок можно и упростить, но об этом будет сказано далее.
Схема лабораторного трансформатора (без блока управления) изображена на рис. 1. От схемы из упомянутой выше статьи А. Терскова она отличается только тем, что ручные переключатели заменены электромагнитными реле. Их контактные группы K1.1-K8.1 соединены так, что при обесточенных обмотках всех реле напряжение на выходе отсутствует. Так сделано для того, чтобы при переходных процессах, возникающих при включении трансформатора в сеть, на выходе не появилось напряжение. Максимальное напряжение (255 В) на выходе будет только в том случае, если сработали все реле.
Рис. 1. Схема лабораторного трансформатора (без блока управления)
В отличие от оригинала, трансформатор T1 имеет дополнительную обмотку X с диодным выпрямительным мостом VD1 для питания обмоток реле и интегральным стабилизатором напряжения DA1 питания микросхем блока управления.
Блок управления, схема которого изображена на рис. 2, ставит в соответствие каждому из возможных значений выходного напряжения (от 0 до 255 В с шагом 1 В) восьмиразрядный (по числу реле, переключающих обмотки) двоичный код. Единица в любом разряде этого кода означает, что соответствующее реле должно сработать, ноль означает, что оно должно отпустить якорь.
Рис. 2. Схема блока управления
При напряжении на первичной обмотке трансформатора 230 В выходное напряжение в вольтах равно числу, установленному нажатиями на кнопки SB1 и SB2 на индикаторах HG1-HG3. Необходимость в процессе эксплуатации думать о правильной коммутации вторичных обмоток отпадает, что повышает удобство и оперативность установки нужного выходного напряжения.
Следует, правда, отметить, что блок управления не измеряет выходное напряжение, а только показывает на индикаторе его «теоретическое» значение. По этой причине, при отличии напряжения в сети от номинального и под влиянием нагрузки, фактическое выходное напряжение может отличаться от того значения, что показывают индикаторы.
Условно блок управления можно разделить на несколько функциональных узлов. Это — реверсивный счётчик на микросхемах DD2-DD4 с управляющей им логикой на микросхеме DD1, преобразователь кода на микросхеме РПЗУ DS1, блок индикации на микросхемах DD5-DD7.
На логическом элементе DD1.1 построен генератор импульсов частотой около 2 Гц. Элемент DD1.4 инвертирует сигнал генератора. Инверсия нужна для того, чтобы счётчики DD2-DD4 изменяли состояние при нажатии, а не при отпускании кнопок SB1 и SB2.
Регулируют напряжения кнопками SB1 (в сторону уменьшения) и SB2 (в сторону увеличения). Цепи R1C3и R3C4 подавляют дребезг контактов кнопок. Пока ни одна из кнопок не нажата, на управляющем входе генератора (выводе 1 DD1) установлен низкий логический уровень. При нажатии на кнопку SB1 на этот вход через резистор R9 и развязывающий диод VD4 поступает напряжение высокого уровня. Через некоторое время генератор запускается. Если на кнопку нажимать кратковременно, генератор не заработает, но на его выходе в ответ на каждое нажатие появится одиночный импульс. С каждым импульсом содержимое счётчика уменьшается на единицу.
Чтобы по достижении счётчиками нулевого состояния избежать их резкого перехода в состояние 999, при достижении нуля работу генератора блокирует через диод VD6 низкий логический уровень сигнала переполнения с вывода 7 счётчика DD4. Далее запуск генератора возможен только кнопкой SB2. Работа этой кнопки аналогична, но, помимо запуска генератора, она подаёт высокий уровень на входы управления направлением счёта (выводы 10) счётчиков DD2-DD4. По достижении максимального значения 255 уровень напряжения на выходе элемента DD1.3 становится низким и через диод VD3 блокирует работу генератора.
Поскольку устройство не должно реагировать на одновременное нажатие обеих кнопок, в него введён узел блокировки (резисторы R2, R6, R7). Напряжение с резистора R2 подано на вход разрешения счёта (вывод 5) счётчика DD2. Если нажаты обе кнопки, уровень этого напряжения становится высоким, что запрещает счёт импульсов.
Цепь R11C12 служит для обнуления счётчиков DD2-DD4 при подаче напряжения питания. Можно обнулить их в любой момент и нажатием на кнопку SB3. Поскольку выводы 9 счётчиков соединены с общим проводом, счётчики работают в десятичном режиме, формируя на выходах трёхзначное десятичное число в двоично-десятичном коде — заданное значение выходного напряжения. Это число поступает на адресные входы ППЗУ DS1. Каждому значению выходного напряжения в нём соответствует ячейка памяти, в которой записан двоичный эквивалент двоичнодесятичного числа. Например, по адресу 10 0011 0000 (двоично-десятичное представление числа 230) находится код 11100110 (двоичное число, равное десятичному 230).
Код с выходов РПЗУ DS1 подан на электронные ключи, собранные на транзисторах VT1 -VT8 и управляющие реле K1-K8. На рис. 2 представлена схема только одного ключа, остальные идентичны. Ключи на дискретных транзисторах можно заменить микросхемой КР1109КТ63 (ULN2803A), содержащей восемь таких ключей.
Число с выходов счётчиков поступает и на узел индикации, состоящий из преобразователей двоично-десятичного кода в «семиэлементный» DD5-DD7 и светодиодных индикаторов HG1-HG3. Индикатор HG3 показывает единицы, HG2 — десятки, а HG1 — сотни вольт.
На транзисторе VT9 выполнен узел гашения незначащего нуля в старшем разряде индикатора. Коллектор этого транзистора соединён с входом гашения индикации преобразователя кода DD7. Если счётчик DD4 содержит число 1 или 2, то в базовую цепь транзистора VT9 через диод VD18 или VD19 поступает напряжение высокого уровня, транзистор открыт, индикатор HG1 включён.
Аналогично на транзисторе VT10 построен узел гашения незначащего нуля на индикаторе HG2. Если число в счётчике DD3 отлично от нуля, на базу транзистора VT10 через диоды VD20- VD23 поступает напряжение высокого уровня. Низкий логический уровень на коллекторе VT10 разрешает работу преобразователя кода DD6 и индикатора HG2. Если в счётчике DD3 ноль, но открыт транзистор VT9 (в счётчике DD4 1 или 2), то на вход гашения индикации преобразователя кода DD6 напряжение низкого уровня поступает через диод VD24 с коллектора транзистора VT9.
От диодов VD18-VD23 можно было отказаться, подав в базовые цепи транзисторов VT9 и VT10 сигналы с выходов переполнения соответствующих счётчиков, но в этом случае погашенные незначащие нули будут вспыхивать при нажатиях на кнопку SB2.
При желании узел индикации можно исключить, а к выходу трансформатора подключить вольтметр переменного тока с пределом измерения 300 В. В этом случае можно удалить также микросхему РПЗУ и счётчик DD4, а оставшиеся два переключить на работу в двоичном режиме. Сигналы на транзисторные ключи, управляющие реле, в этом случае следует подавать с выходов счётчиков. Точность установки выходного напряжения при таком упрощении будет зависеть от погрешности вольтметра.
Печатная плата для блока управления не разрабатывалась, однако часть узлов можно разместить на печатных платах, представленных на рис. 3 и рис. 4. Они в своё время разработаны для других устройств, но подойдут и для представленного в статье. Остальные элементы можно смонтировать на макетной плате, соединив их выводы монтажным проводом. Блокировочные конденсаторы C5-C10 устанавливают непосредственно на выводах питания микросхем. Обратите внимание, что на рис. 3 выделены цветом номера точек подключения платы индикации к выходам счётчиков. Эти номера совпадают с номерами проводов соответствующего жгута на схеме рис. 2.
Рис. 3. Печатная плата блока управления
Рис. 4. Печатная плата блока управления
В устройстве применены резисторы МЛТ, все конденсаторы — импортные. Вместо транзисторов КТ315Г можно применить любые транзисторы той же серии. Кроме того, транзисторы КТ315Г (VT1-VT8) можно заменить на 2SС945, а остальные — на любые маломощные n-p-n транзисторы. Диоды КД522А можно заменить на КД521, КД510 с любыми буквенными индексами или на 1N4148. Замена диодов КД243В — широко распространённые диоды 1N4007. Возможность замены микросхем серий К176 и К561 их импортными аналогами не проверялась. Микросхему КР573РФ5 перед установкой в устройство необходимо запрограммировать. Допускается её замена на импортную серии 2716 или 27С16.
Кнопки и переключатели могут быть любыми. Реле использованы импортные RAS-1215, их можно заменить другими с рабочим напряжением обмотки 12 В и с контактами на переключение, способными коммутировать нужный ток нагрузки. Сопротивление обмотки применённых реле — 400 Ом.
Трансформатор T1 может быть намотан по рекомендациям А. Терскова, но с дополнительной обмоткой X на напряжение 10 В, намотанной проводом диаметром не менее 0,4 мм. Но вместо магнитопровода ПЛ 25x50x100 лучше применить магнитопровод ШЛ близкого сечения — гораздо проще наматывать обмотки не на двух, а на одном каркасе.
Налаживание устройства состоит в подборке, если нужно, частоты генератора на элементе DD1.1. При указанных на схеме номиналах элементов она — около 2 Гц. Слишком высокой эту частоту устанавливать не следует, поскольку будут сильно искрить и подгорать контакты реле. Желательно также проверить правильность программирования ПЗУ. При установке на индикаторах HG1-HG3 значения выходного напряжения на выходах РПЗУ DS1 должен появляться двоичный код этого числа.
Если необходимо, можно ускорить установку напряжения, введя дополнительный переключатель SA1 и кнопку SB4 согласно схеме, показанной на рис. 5. При показанном на ней положении переключателя SA1 устройство работает как обычно. При включении режима быстрой установки все реле будут выключены, что сделает напряжение на выходе трансформатора нулевым. Кнопкой SB4 подключают параллельно резистору R5 резистор R35, увеличивая этим частоту генератора приблизительно в пять раз. Теперь можно быстро установить на индикаторе нужное значение, а затем, вернувшись в обычный режим, получить на выходе требуемое напряжение.
Рис. 5. Схема включения переключателя SA1 и кнопки SB4
Эксплуатацию трансформатора с описанным блоком управления сопровождает такое неприятное явление, как подгорание контактов реле (чему, впрочем, подвержены и ползунок ЛАТР, и переключатели). Если нагрузка трансформатора содержит индуктивную составляющую (например, двигатель или другой трансформатор), то может потребоваться зашунтировать контакты реле защитными RC-цепями (на схеме рис. 1 не показаны). Как вариант, можно устанавливать напряжение без нагрузки, а нагрузку подключать после, тогда подгорания контактов не будет.
В заключение отмечу, что применение описанного блока управления не ограничено только лабораторным трансформатором, его можно использовать, например, в блоке питания. В этом случае на трансформаторе следует оставить только первичную обмотку, вторичные обмотки II-VII и X и пять реле (K1 — K5). Можно будет устанавливать напряжение от 1 до 31 В с шагом 1 В, чего для большинства лабораторных блоков питания вполне достаточно.
Файлы программирования РПЗУ DS1 в нескольких форматах с одинаковым содержимым можно скачать здесь.
Автор: Е. Герасимов, станица Выселки Краснодарского края
Цепи трансформаторов напряжения, монтаж | Общие испытания и проверка вторичной коммутации РЗА | РЗиА
Страница 2 из 2
Цепи трансформаторов напряжения (TV).
В цепях напряжения обращают внимание на заземление обмоток трансформатора напряжения и наличие защиты от КЗ. Место защитного заземления должно быть выбрано вблизи места установки TV. Заземление обмоток TV, соединенных в звезду и разомкнутый треугольник, производится непосредственно на трансформаторе или на ближайшей сборке зажимов отдельными заземлителями. Защита от КЗ должна выполняться, как правило, автоматическими выключателями, в том числе в цепи 3U0. Цепи напряжения должны быть проложены симметрично.
Чтобы предотвратить наведение в близко расположенных цепях напряжений, которые могут исказить значение и фазу сигналов и вызвать неправильное действие защиты, все проводные связи одного и того же назначения следует выполнять в одном и том же кабеле. Например, трех- или четырехпроводные цепи от основных вторичных обмоток трансформатора должны подаваться на щит одним кабелем. Двухпроводная цепь от обмотки однофазного трансформатора или от дополнительных обмоток (цепь 3U0) также не должна разделяться по разным кабелям. Кабели от основных и дополнительных обмоток ТА до щита следует прокладывать рядом по всей длине. Не допускается раздельная разводка заземленных и незаземленных вторичных цепей TV жилами разных кабелей, так как при этом сумма токов в жилах каждого в отдельности кабеля не равна нулю; в результате возрастает индуктивное сопротивление кабеля и искажаются векторные диаграммы напряжений, подводимых к реле защиты.
Если требуется, измеряют полное (комплексное) сопротивление вторичных цепей переменному току методом амперметра — вольтметра. Это позволяет учесть не только активную, но и индуктивную составляющую сопротивления, которая может быть значительной (длинные соединительные провода, катушки расцепителей и др.). В проверяемую цепь должны входить все элементы схемы. В цепях обмоток, соединенных «звездой», измеряют сопротивление каждой пары фаз и каждой фазы с нулевым проводом и вычисляются средние значения сопротивления фазы и нулевого провода.
Потери напряжения во вторичных цепях TV можно измерить непосредственно, если расстояние от трансформатора до панели реле или измерительных приборов невелико. При больших расстояниях рекомендуется определять эту величину расчетным путем, пользуясь результатами измерения нагрузки и сопротивления цепей. С этой целью измеряется угол сдвига фаз между током наиболее нагруженной фазы и ее напряжением и рассчитывается потеря линейного напряжения AU = л/З I Rcos φ или, не прибегая к определению cos φ, с некоторым расчетным запасом принимают AU * V3IR, где I и R — ток нагрузки и активное сопротивление фазы. Если нагрузка питается только по двум фазам без нулевого провода, то потерю напряжения можно принять равной 2IR. Измерения и расчеты следует производить при максимально возможном значении тока нагрузки. Измеренные или вычисленные значения потерь напряжения не должны превышать: от TV до счетчиков 0,5; до щитовых приборов 1,5; до реле защиты 3 %.
Одновременно измеряют нагрузку всех фаз трансформатора напряжения. Амперметр включают в каждый кабель, подключенный к релейному щиту, или в ближайшем к трансформатору шкафу так, чтобы он учитывал всю нагрузку TV; класс точности прибора — 0,5. Поскольку нагрузка в цепях устройств РЗА неравномерна по фазам и при срабатывании этих устройств изменяется по-разному, необходимо внимательно проанализировать работу РЗА и выявить режим, в котором создается наибольшая нагрузка на TV.
Для всех TV обязательна проверка работы максимальной токовой зашиты в опыте короткого замыкания во вторичных цепях с измерением тока КЗ. Выбирается такой вид КЗ, при котором значение тока будет минимальным, а место КЗ — в конце участка, защищаемого данным автоматом или предохранителем. Включение на КЗ производится дополнительным автоматическим выключателем. Кратность срабатывания электромагнитных расцепителей принимается обычно равной 3,5 номинального тока. В цепях схемы «разомкнутый треугольник» устанавливают автомат на номинальный ток 2,5 А.
Вместе с тем токовая защита вторичных цепей трансформатора напряжения не должна срабатывать от кратковременных бросков емкостного тока линии электропередачи, к которой он подключен, а также от пусковых токов
нагрузки. Чтобы проверить отстройку от зарядного тока, несколько раз включают и отключают линию. Значительные пусковые токи возникают в связи с тем, что питающиеся от TV электромагнитные аппараты имеют меньшее сопротивление и, соответственно, потребляют больший ток при включении, когда якорь (сердечник) отпущен, чем в рабочем режиме, когда он подтянут. Чтобы проверить отстройку максимальной защиты от пусковых токов, рубильником или проверяемым автоматом несколько раз включают полную нагрузку трансформатора и убеждаются, что защита при этом не срабатывает.
На всех шинках, рядах зажимов, к которым подключены цепи напряжения, измеряют линейные и фазные напряжения, а также напряжения всех проводов относительно земли. Измеряют напряжение небаланса 3U0, которое должно составлять 1 3 В. Это значение, а также симметрия линейных и фазных напряжений схем «звезда» и «треугольник» подтверждают правильность монтажа вторичных цепей. Там же проверяют чередование фаз и маркировку проводов, затем поочередно подключают к цепям напряжения аппаратуру панелей, щитов, ячеек.
Фазировку производят на щитах, панелях, входных зажимах или между рядами зажимов разных ячеек РУ с трансформаторами напряжения. При этом вторичные цепи последних должны быть связаны электрически, например, заземлением их одноименных точек. Вольтметром проверяют напряжение между каждым зажимом той и другой цепей: напряжение между одинаковыми фазами должно быть близко к нулю, между разноименными — двойному линейному напряжению. Поэтому следует выбирать вольтметр с верхним пределом измерения не ниже 200 В и переходить на меньшие пределы, лишь убедившись в правильности сборки схемы.
В цепях управления выключателями прослеживают работу схемы в различных положениях ключа управления и блокировки от «прыгания» (многократного включения — отключения выключателя), в цепях сигнализации проверяют выбор добавочных сопротивлений, правильность подключения сигнальных реле и максимальное количество одновременно подаваемых сигналов.
Монтаж вторичных цепей.
Внешним осмотром проверяется качество выполнения монтажа и составляется дефектная ведомость. Она передается монтажной организации для устранения недоделок и ремонта или замены оборудования, которое не соответствует проекту, параметрам объекта или находится в состоянии, препятствующем его нормальной эксплуатации.
Монтаж схем вторичной коммутации можно подразделить на два вида: внутренний и внешний. Внутренний — вторичная коммутация релейных панелей, щитов управления и сигнализации, приводов выключателей, камер КСО, КРУ, КТП — выполняется на заводах-изготовителях. Ошибки и дефекты монтажа здесь маловероятны и, если встречаются, носят обычно массовый характер, т. е. повторяются во всех экземплярах данного типа оборудования, установленного на подстанции. Чаще требуют проверки внешние связи — между панелями, щитами, камерами и пр. При однослойном простом монтаже проверка может выполняться визуально, путем просмотра каждого отдельного провода. Скрытый монтаж проводов (жгуты, многослойный монтаж, прокладка в перфорации, трубах), кабельные связи проверяются «прозвонкой» — с помощью «пробников», телефонных гарнитур, телефонной и радиосвязи (в разных помещениях). Прозванивают выборочно те цепи, исправность которых вызывает обоснованные сомнения, полная же прозвонка всех цепей схемы нецелесообразна из-за чрезмерной затраты времени и не всегда возможна (печатный монтаж, например).
Использование трансформатора в качестве переключателя
Электрический трансформатор — это устройство согласования импеданса. Это общеизвестный факт. Вот интересное приложение, использующее этот факт.
Если вы нагружаете вторичную обмотку трансформатора нулевым (0) Ом (короткое замыкание), полное сопротивление первичной обмотки также равно нулю (0) Ом. И наоборот, если нагрузка на вторичной обмотке трансформатора бесконечна (разомкнутая цепь), полное сопротивление первичной обмотки также будет бесконечным.
Теперь, если вы включите первичную обмотку трансформатора последовательно с любой нагрузкой на источнике напряжения, вы можете включать и выключать напряжение нагрузки. Если вы закорачиваете вторичную обмотку, источник напряжения прикладывается непосредственно к нагрузке, поскольку полное сопротивление первичной обмотки трансформатора равно нулю (0) Ом, и все напряжение полностью падает на нагрузку. И, если вы разомкнете вторичную цепь, напряжение источника теперь полностью падает на бесконечном первичном импедансе, и нулевое (0) вольт достигает нагрузки.
К сожалению, электрические трансформаторы не идеальные переключатели из-за неэффективности.Первичная и вторичная обмотки имеют некоторое сопротивление, которое присутствует даже при коротком замыкании вторичной обмотки. Кроме того, для функционирования трансформатора необходимо наличие импеданса возбуждения, который не позволяет сопротивлению первичной обмотки достигать бесконечности, даже когда вторичная обмотка разомкнута.
Но, когда разработчик знает импеданс нагрузки и фактическое сопротивление холостого хода и короткого замыкания трансформатора, он очень часто может использовать это приложение в качестве эффективного переключателя.Хорошим применением такого переключателя может быть ситуация, когда фактическое переключение выполняется в цепи высокого напряжения, но распознавание действия переключения требуется в цепи управления низкого напряжения. Система изоляции трансформатора изолирует высоковольтный выключатель от низковольтного управления.
Ваш браузер не поддерживает видео тег.
Ваш браузер не поддерживает видео тег.
Ваш браузер не поддерживает видео тег.
Ваш браузер не поддерживает видео тег.
Ваш браузер не поддерживает видео тег.
Давайте поговорим о вашем проекте.
Свяжитесь с нами
Конфигурации обмоток| Трансформеры | Учебник по электронике
Трансформаторы с несколькими вторичными обмотками
Трансформаторы — очень универсальные устройства. Базовая концепция передачи энергии между взаимными индукторами достаточно полезна между одной первичной и одной вторичной обмотками, но трансформаторы не обязательно должны быть сделаны с двумя наборами обмоток.Рассмотрим схему трансформатора:
Трансформатор с несколькими вторичными обмотками обеспечивает несколько выходных напряжений.
Здесь три катушки индуктивности имеют общий магнитный сердечник, магнитно «связывая» или «связывая» их вместе. Связь между коэффициентами витков обмотки и отношениями напряжений, наблюдаемая с одной парой взаимных индукторов, все еще сохраняется здесь для нескольких пар катушек.
Вполне возможно собрать трансформатор, подобный приведенному выше (одна первичная обмотка, две вторичные обмотки), в котором одна вторичная обмотка является понижающей, а другая — повышающей.
На самом деле, такая конструкция трансформатора была довольно распространена в схемах питания электронных ламп, которые требовались для подачи низкого напряжения на нити ламп (обычно 6 или 12 вольт) и высокого напряжения для пластин ламп (несколько сотен вольт). от номинального первичного напряжения 110 вольт переменного тока.
С таким трансформатором возможны не только напряжения и токи совершенно разных величин, но все цепи электрически изолированы друг от друга.
Фотография многообмоточного трансформатора с шестью обмотками, первичной и пятью вторичными обмотками.
Трансформатор на рисунке выше предназначен для обеспечения как высокого, так и низкого напряжения, необходимого в электронной системе с использованием электронных ламп. Низкое напряжение требуется для питания нитей вакуумных трубок, в то время как высокое напряжение требуется для создания разности потенциалов между пластиной и катодными элементами каждой трубки.
Одного трансформатора с несколькими обмотками достаточно, чтобы обеспечить все необходимые уровни напряжения от одного источника 115 В.Провода для этого трансформатора (их 15!) На фотографии не показаны, они скрыты от глаз.
Если электрическая изоляция между вторичными цепями не имеет большого значения, аналогичный эффект может быть получен путем «постукивания» одной вторичной обмотки в нескольких точках по ее длине, как показано на рисунке ниже.
Вторичная обмотка с одним ответвлением обеспечивает несколько напряжений.
Многополюсный коммутирующий трансформатор
Ответвитель — это не что иное, как соединение проводов, сделанное в некоторой точке обмотки между концами.Неудивительно, что соотношение витков обмотки / величины напряжения обычного трансформатора сохраняется для всех сегментов обмотки с ответвлениями. Этот факт можно использовать для производства трансформатора с несколькими передаточными числами:
Вторичная обмотка с ответвлениями, использующая переключатель для выбора одного из многих возможных напряжений.
Переменный трансформатор
Продолжая концепцию отводов обмотки, мы получаем «переменный трансформатор», в котором скользящий контакт перемещается по длине открытой вторичной обмотки и может соединяться с ней в любой точке по ее длине.Эффект эквивалентен наличию отвода обмотки на каждом витке обмотки и переключателя с полюсами на каждом положении отвода:
Скользящий контакт на вторичной обмотке непрерывно изменяет вторичное напряжение.
Одним из потребительских применений переменного трансформатора является регулирование скорости для модельных поездов, особенно поездов 1950-х и 1960-х годов. Эти трансформаторы были по существу понижающими блоками, причем максимальное напряжение, получаемое от вторичной обмотки, было существенно меньше, чем первичное напряжение от 110 до 120 вольт переменного тока.
Контакт с регулируемой разверткой обеспечивает простое средство управления напряжением с небольшими потерями энергии, намного более эффективное, чем управление с помощью переменного резистора!
Подвижно-скользящие контакты слишком непрактичны для использования в крупных промышленных силовых трансформаторах, но многополюсные переключатели и отводы обмотки являются обычным явлением для регулировки напряжения. В энергосистемах необходимо периодически вносить корректировки, чтобы приспособиться к изменениям нагрузок в течение месяцев или лет во времени, и эти схемы переключения обеспечивают удобное средство.
Обычно такие «переключатели ответвлений» не предназначены для работы с током полной нагрузки, а должны срабатывать только тогда, когда трансформатор обесточен (отсутствует питание).
Автотрансформатор
Учитывая, как мы можем отвести любую обмотку трансформатора, чтобы получить эквивалент нескольких обмоток (хотя и с потерей гальванической развязки между ними), имеет смысл полностью отказаться от гальванической развязки и построить трансформатор из одной обмотки.Действительно, это возможно, и получившееся устройство называется автотрансформатором :
.Этот автотрансформатор повышает напряжение с помощью одинарной ответвленной обмотки, экономя медь и жертвуя изоляцией.
Автотрансформатор, изображенный выше, выполняет функцию повышения напряжения. Понижающий автотрансформатор будет выглядеть примерно так, как показано на рисунке ниже.
Этот автотрансформатор понижает напряжение с помощью одной обмотки с ответвлениями, экономящей медь.
Автотрансформаторынаходят широкое применение в приложениях, требующих небольшого повышения или понижения напряжения на нагрузке.
Альтернативой нормальному (изолированному) трансформатору может быть либо правильное соотношение первичной / вторичной обмоток, предназначенное для работы, либо использование понижающей конфигурации с вторичной обмоткой, подключенной последовательно («повышающая») или последовательно. -противоположная мода.
Первичное, вторичное напряжение и напряжение нагрузки приведены, чтобы проиллюстрировать, как это будет работать.
Конфигурации автотрансформатора
Во-первых, «повышающая» конфигурация. На рисунке ниже полярность вторичной катушки ориентирована так, что ее напряжение напрямую складывается с первичным напряжением.
Обычный трансформатор, подключенный как автотрансформатор для повышения сетевого напряжения.
Далее «раскладывающаяся» конфигурация. На рисунке ниже полярность вторичной катушки ориентирована так, что ее напряжение напрямую вычитается из первичного напряжения:
Обычный трансформатор, подключенный как автотрансформатор для понижения напряжения в сети.
Основным преимуществом автотрансформатора является то, что та же функция повышения или понижения достигается только с одной обмоткой, что делает его более дешевым и легким в производстве, чем обычный (изолирующий) трансформатор, имеющий как первичную, так и вторичную обмотки.
Пневматический автотрансформатор
Как и у обычных трансформаторов, обмотки автотрансформатора могут иметь ответвления для изменения коэффициента передачи. Кроме того, их можно сделать бесступенчато регулируемыми с помощью скользящего контакта, чтобы постучать по обмотке в любой точке по ее длине.
Последняя конфигурация достаточно популярна, чтобы заслужить собственное имя: Variac . (рисунок ниже)
Вариак — автотрансформатор со скользящим ответвлением.
Маленькие вариаторы для настольного использования — это популярное оборудование для экспериментаторов в области электроники, поскольку они могут понижать (а иногда и повышать) напряжение переменного тока в домашних условиях с широким и точным диапазоном регулировки простым поворотом ручки.
ОБЗОР:
- Трансформаторы могут быть оснащены более чем одной парой первичной и одной вторичной обмоток. Это позволяет использовать несколько коэффициентов повышения и / или понижения в одном устройстве. Обмотки трансформатора
- также можно «отводить»: то есть пересекаться во многих точках для разделения одной обмотки на секции.
- Переменные трансформаторы могут быть изготовлены с помощью подвижного плеча, который перемещается по длине обмотки, контактируя с обмоткой в любой точке по ее длине.Обмотка, разумеется, должна быть оголенной (без изоляции) в области движения плеча.
- Автотрансформатор — это одинарная катушка индуктивности с ответвлениями, используемая для повышения или понижения напряжения, как трансформатор, за исключением гальванической развязки.
- A Variac — регулируемый автотрансформатор.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Вторичная обмотка трансформатора — обзор
Влияние сдвига фаз соединения обмоток на напряжения и токи последовательности
Теперь будет рассмотрено влияние сдвига фаз трехфазного трансформатора на токи и напряжения последовательности.Наличие фазового сдвига между первичным и вторичным напряжениями и токами трансформатора зависит от соединения первичной и вторичной обмоток трансформатора. Для трансформаторов с соединением обмоток звезда-звезда или треугольник-треугольник первичные и вторичные токи и напряжения в каждой из трех фаз совпадают по фазе или не совпадают по фазе, т. Е. Обмотки соединены таким образом, что сдвиги фаз либо 0 °, либо ± 180 °. Первый случай показан на рис. 14.4 (a) и (b). В британской практике и в практике Международной электротехнической комиссии используются номер и символ «векторной группы».В символе Yd1 заглавные и строчные буквы Y и d обозначают соединения звездой обмотки ВН и треугольником обмотки НН соответственно, а цифра 1 указывает сдвиг фазы на -30 ° при использовании опорного тактового сигнала 12 × 30 °. Например, 0 ° означает 12 часов, 180 ° означает 6 часов, -30 ° означает 1 час и + 30 ° означает 11 часов.
На рисунке 4.14 фазовый сдвиг 0 ° достигается за счет того, что параллельные обмотки, то есть одинаковые фазовые обмотки, связаны одним и тем же магнитным потоком. Рисунок 4.14 также показывает, что отсутствие фазовых сдвигов в фазных токах и напряжениях также преобразуется в PPS и NPS, токи и напряжения. Следовательно, наличие таких трансформаторов в трехфазной сети не требует специальной обработки в сформированных сетях PPS и NPS в сбалансированных или несбалансированных условиях. Следует отметить, что для обмотки треугольником, хотя физическая нейтральная точка не существует, напряжение от каждого вывода фазы к нейтрали все еще существует, потому что сеть, к которой подключена обмотка треугольником, на практике будет содержать нейтральную точку.
Рисунок 4.14. Фазовые сдвиги напряжения PPS и NPS для подключенных трансформаторов Yy0 и Dd0
В случае трансформаторов с обмотками, соединенными по схеме звезда-треугольник (или треугольник-звезда), напряжения и токи на стороне обмотки звезды будут сдвинуты по фазе на ± 30 °. угол по отношению к тем, что на стороне треугольника (или наоборот, в зависимости от выбранной ссылки). Согласно британской практике, Yd11 приводит к тому, что напряжения PPS между фазой и нейтралью на стороне звезды отстают на 30 ° от соответствующих напряжений на стороне треугольника.Кроме того, Yd1 приводит к тому, что напряжения PPS между фазой и нейтралью на стороне звезды опережают на 30 ° соответствующие напряжения на стороне треугольника. Примеры векторных диаграмм, показанных на рисунке 4.15 для Yd1 и Yd1 1, иллюстрируют этот эффект.
Рисунок 4.15. Фазовые сдвиги напряжения PPS и NPS для трансформаторов Yd1 и Yd11
Для последовательности или чередования фаз RB Y / rby NPS на рисунке 4.15 также показано влияние Yd1 и Yd11 на фазовые сдвиги напряжения NPS и показано, что теперь они поменялись местами. Эти фазовые сдвиги также применимы к токам PPS и NPS в этих обмотках, поскольку фазовые углы токов относительно связанных с ними напряжений определяются только сбалансированным импедансом нагрузки.Таким образом, если напряжения и токи PPS сдвинуты на + 30 °, соответствующие напряжения и токи NPS сдвинуты на -30 ° и наоборот, в зависимости от указанного соединения и фазового сдвига, то есть Yd1 или Yd11. Математически это выводится для трансформатора Yd1, показанного на рис. 4.15, где n — это отношение витков, как показано ниже. Ток красной фазы в амперах, вытекающий из фазы r обмотки d, равен I r = n ( I R — I B ).Используя уравнение (2.9a) из главы 2 для фазных токов и отмечая, что IRZ = 0, поскольку синфазные токи ZPS не могут выйти из обмотки d, мы можем записать
Ir = n [(1-h) IRP + (1-h3 ) IRN] = n3IRPe-j30o + n3IRNej30o
или
Ir = IrP + IrN
, где
(4,18a) IrP = n3IRPe-j30oandIrN = n3IRNej30o
Irn = n3IRNej30oIr илиIRNej30or или
IrNej = 1 j30oили in на единицу, где n = 13,
(4.18c) IRP = Irpej30o иIRN = IrN = IrNe-j30o
Аналогично, из рисунка 4.15, напряжение между фазой и нейтралью в вольтах на фазе R звездообразной обмотки составляет
VR = n (Vr-Vy)
и, используя уравнение (2.9b) для напряжений фаз r и y, мы имеем
VR = n [(1-h3) VrP + (1-h) VrN] = n3VrPej30o + n3VrNe-j30 °
или
VR = VRp + VRN
, где
(4.19a) VRP-n3Vrpej303 и VrNe = n3Vrpej303 и VrNe или
(4.19b) VrP = 1n3VRpe-j30oandVrN = 1n3VRNej30o
или в единицах, где n = 13,
(4.19c) VRP = Vrpej30o и VRN = VrNe-j30o
. трансформатор ярд11.
Американский стандарт для обозначения выводов обмоток на трансформаторах звезда-треугольник требует, чтобы напряжения фаза-нейтраль PPS (NPS) на обмотке высокого напряжения опережали (отставали) соответствующие напряжения фаза-нейтраль PPS (NPS). обмотка низкого напряжения. Это так, независимо от того, находится ли обмотка звезды или треугольника на стороне высокого напряжения. С точки зрения анализа последовательности это означает, что при переходе от низкого напряжения к стороне высокого напряжения трансформатора звезда-треугольник или треугольник-звезда, напряжения и токи PPS должны увеличиваться на 30 °, тогда как напряжения и токи NPS должны отставать на 30 °.Интересно отметить следующее наблюдение относительно британских и американских стандартов. В американской практике, когда звездой в трансформаторе звезда-треугольник является обмотка высокого напряжения, это соответствует, с точки зрения сдвига фаз, Yd1 в британской практике. Однако, когда в американской практике обмотка треугольником в трансформаторе звезда-треугольник является обмоткой высокого напряжения, это будет соответствовать с точки зрения сдвига фаз Yd11 в британской практике.
С точки зрения анализа неисправностей в сетях энергосистем, использующих сети PPS и NPS, обычно изначально «игнорируют» фазовые сдвиги, вносимые всеми трансформаторами звезда-треугольник, принимая их за эквивалентные трансформаторы звезда-звезда, и рассчитывают последовательность напряжений и токов на этой основе.Затем, отметив расположение в сети таких трансформаторов звезда-треугольник, можно легко применить соответствующие фазовые сдвиги, используя приведенные выше уравнения, которые подходят для указанного трансформатора Yd.
Основные операции трансформатора
- Изучив этот раздел, вы сможете описать:
- • Принцип работы трансформатора.
- • Передаточное число.
- • Коэффициент мощности.
- • Коэффициент трансформации.
- • Потери в трансформаторе: медь, гистерезис и вихревые токи.
- • КПД трансформатора и ток холостого хода.
Трансформаторы.
Трансформатор использует принципы электромагнетизма для переключения одного уровня переменного напряжения на другой. Работа Фарадея в 19 веке показала, что изменяющийся ток в проводнике (например,грамм. первичная обмотка трансформатора) создает изменяющееся магнитное поле вокруг проводника. Если в это изменяющееся магнитное поле поместить другой проводник (вторичная обмотка), в этой обмотке будет индуцироваться напряжение.
Передаточное число.
Фарадей также рассчитал, что напряжение, индуцированное во вторичной обмотке, будет иметь величину, которая зависит от ОТНОШЕНИЯ ОБОРОТОВ трансформатора. т.е. если вторичная обмотка имеет половину числа витков первичной обмотки, то вторичное напряжение будет вдвое меньше напряжения на первичной обмотке.Аналогичным образом, если вторичная обмотка имеет в два раза больше витков первичной обмотки, вторичное напряжение будет в два раза больше первичного напряжения.
Коэффициент мощности.
Поскольку трансформатор является пассивным компонентом (у него нет внешнего источника питания), он не может выдавать больше мощности из вторичной обмотки, чем подается на первичную обмотку. Следовательно, если вторичное напряжение больше первичного напряжения на определенную величину, вторичный ток будет меньше первичного тока на аналогичную величину, т.е.е. Если напряжение увеличится вдвое, ток уменьшится вдвое.
Рис. 11.1.1 Основные операции трансформатора.
Коэффициент трансформации.
Функционирование базового трансформатораможно описать двумя формулами, связывающими коэффициент трансформации с числом витков обмоток трансформатора.
- В P = первичное напряжение.
- I P = первичный ток.
- В S = вторичное напряжение.
- I S = вторичный ток.
- N P = количество витков в первичной обмотке.
- N S = количество витков вторичной обмотки.
Потери трансформатора.
Формулы на рис. 11.1.1 относятся к идеальному трансформатору, то есть трансформатору без потерь мощности, в котором первичный вольт-ампер = вторичный вольт-ампер.
Хотя практические трансформаторы могут быть чрезвычайно эффективными, некоторые потери будут происходить, потому что не весь магнитный поток, создаваемый первичной обмоткой, будет связываться со вторичной обмоткой.Потери мощности, возникающие в трансформаторе, бывают трех типов;
1. Потери меди.
Эти потери также можно назвать потерями в обмотке или потерями I2R, поскольку они могут возникать в обмотках, сделанных не из меди, а из других металлов. Потери проявляются в виде тепла, выделяемого в обмотках (медных) проводов, поскольку они рассеивают мощность из-за сопротивления провода.
Потери мощности в обмотке трансформатора можно рассчитать, используя ток в обмотке и ее сопротивление в формуле для мощности P = I 2 R.Эта формула является причиной того, что потери в меди иногда называют потерями I 2 R. Чтобы свести к минимуму потери, сопротивление обмотки должно быть низким с использованием провода подходящей площади сечения и низкого удельного сопротивления.
2. Гистерезисные потери.
Каждый раз, когда переменный ток меняет направление на противоположное (один раз в каждом цикле), крошечные «магнитные домены» в материале сердечника меняются местами. Это физические изменения в основном материале, отнимающие некоторую энергию. Количество используемой энергии зависит от «сопротивления» материала сердечника; в больших сердечниках силовых трансформаторов, где потери на гистерезис могут быть проблемой, они в значительной степени решаются за счет использования специальной стали с низким сопротивлением «ориентированной зернистостью» в качестве материала сердечника.
3. Вихретоковые потери.
Поскольку железный или стальной сердечник является электрическим проводником, а также магнитной цепью, изменяющийся ток в первичной обмотке будет иметь тенденцию создавать ЭДС внутри сердечника, а также во вторичной обмотке. Токи, индуцируемые в сердечнике, будут противодействовать изменениям магнитного поля, происходящим в сердечнике. По этой причине эти вихревые токи должны быть как можно меньше. Это достигается разделением металлического сердечника на тонкие листы или «пластинки», каждый из которых изолирован от других изолирующим слоем лака или оксида.Ламинированные сердечники значительно уменьшают образование вихревых токов, не влияя на магнитные свойства сердечника.
Ферритовые сердечники.
В высокочастотных трансформаторах потери на вихревые токи уменьшаются за счет использования сердечника из керамического материала, содержащего большую часть мельчайших металлических частиц, железной пыли или марганцево-цинка. Керамика изолирует металлические частицы друг от друга, давая эффект ламината и лучше работая на высоких частотах.
Благодаря способам уменьшения потерь, описанным выше, практические трансформаторы по своим характеристикам почти полностью приближаются к идеальным.В мощных силовых трансформаторах может быть достигнут КПД около 98%. Поэтому для большинства практических расчетов можно считать трансформатор «идеальным», если не указаны его потери. Фактические вторичные напряжения в практическом трансформаторе будут лишь немного меньше, чем рассчитанные с использованием теоретического коэффициента трансформации.
Ток выключения.
Поскольку трансформатор работает почти идеально, мощность как в первичной, так и во вторичной обмотках одинакова, поэтому, когда на вторичную обмотку не подается нагрузка, вторичный ток не течет, а мощность во вторичной обмотке равна нулю (V x I = 0).Следовательно, несмотря на то, что к первичной обмотке приложено напряжение, ток не будет течь, поскольку мощность в первичной обмотке также должна быть равна нулю. В практических трансформаторах «ток холостого хода» в первичной обмотке на самом деле очень низкий.
Вольт на оборот.
Трансформатор с первичной обмоткой на 1000 витков и вторичной обмоткой на 100 витков имеет соотношение витков 1000: 100 или 10: 1. Следовательно, 100 вольт, приложенное к первичной обмотке, создаст вторичное напряжение 10 вольт.
Другой способ измерения напряжения трансформатора — вольт / виток; если 100 вольт, приложенное к 1000 витков первичной обмотки, дает 100/1000 = 0.1 вольт на виток, тогда каждый отдельный виток 100-витковой вторичной обмотки будет производить 0,1 В, поэтому общее вторичное напряжение будет 100 × 0,1 В = 10 В.
Тот же метод можно использовать для определения значений напряжения, возникающего на отдельных ответвлениях автотрансформатора, если известно количество витков на ответвление.
Просто разделите общее напряжение всей обмотки на общее количество витков и умножьте этот результат на количество витков в конкретном ответвлении.
Как рассчитать обмотку трансформатора
Обновлено 28 декабря 2020 г.
Автор С. Хуссейн Атер
Если вы когда-нибудь задумывались, как дома и здания используют электроэнергию от электростанций, вы должны узнать о трансформаторах в силовых установках. распределительные сети, которые преобразуют токи высокого напряжения в те, которые вы используете в бытовых приборах. Эти трансформаторы имеют простую конструкцию для большинства типов трансформаторов, но могут сильно различаться по степени изменения входного напряжения в зависимости от конструкции.
Формула обмотки трансформатора
Трансформаторы, которые используются в системах распределения электроэнергии, имеют простую конструкцию, в которой в различных областях используются катушки, намотанные на магнитный сердечник.
Эти катушки с проводом принимают входящий ток и изменяют напряжение в соответствии с коэффициентом витков трансформатора , который равен
\ frac {N_P} {N_S} = \ frac {V_P} {V_S}
для числа обмотки первичной обмотки и вторичной обмотки N p и N s соответственно, а напряжение первичной обмотки и вторичной обмотки V p и V s соответственно.
Эта формула обмотки трансформатора сообщает вам долю, на которую трансформатор изменяет входящее напряжение, и что напряжение обмоток катушки прямо пропорционально количеству обмоток самих катушек.
Имейте в виду, что, хотя эта формула называется «соотношением», на самом деле это дробь, а не соотношение. Например, если у вас есть одна обмотка в первичной обмотке и четыре обмотки во вторичной обмотке трансформатора, это будет соответствовать доле 1/4, что означает, что трансформатор снижает напряжение на значение 1/4.Но соотношение 1: 4 означает, что для одного из чего-то есть четыре из чего-то другого, что не всегда означает то же самое, что и дробь.
Трансформаторы могут повышать или понижать напряжение и известны как повышающие трансформаторы , или понижающие трансформаторы , , в зависимости от того, какое действие они выполняют. Это означает, что коэффициент трансформации трансформатора всегда будет положительным, но может быть больше единицы для повышающих трансформаторов или меньше единицы для понижающих трансформаторов.
Формула обмотки трансформатора верна только тогда, когда углы первичной и вторичной обмоток совпадают по фазе друг с другом. Это означает, что для данного источника питания переменного тока (AC), который переключается вперед и назад между прямым и обратным током, ток в первичной и вторичной обмотках синхронизируется друг с другом во время этого динамического процесса.
Могут быть трансформаторы с коэффициентом трансформации 1, которые не изменяют напряжение, а вместо этого используются для разделения различных цепей друг от друга или для небольшого изменения сопротивления цепи.
Калькулятор конструкции трансформатора
Вы можете понять свойства трансформаторов, чтобы определить, что калькулятор конструкции трансформатора будет учитывать в качестве метода определения того, как сконструировать трансформаторы.
Хотя первичная и вторичная обмотки трансформатора отделены друг от друга, первичная обмотка индуцирует ток во вторичных обмотках с помощью метода индуктивности. Когда источник питания переменного тока подается через первичные обмотки, ток течет по виткам и создает магнитное поле с помощью метода, называемого взаимной индуктивностью.
Формула обмотки трансформатора и магнетизм
Магнитное поле описывает, в каком направлении и насколько сильный магнетизм будет действовать на движущуюся заряженную частицу. Максимальное значение этого поля составляет dΦ / dt , скорость изменения магнитного потока Φ за небольшой промежуток времени.
Поток — это измерение того, сколько магнитного поля проходит через определенную площадь поверхности, например прямоугольную. В трансформаторе силовые линии магнитного поля направляются наружу от магнитной катушки, вокруг которой намотаны провода.
Магнитный поток связывает обе обмотки вместе, а сила магнитного поля зависит от величины тока и количества обмоток. Это может дать нам калькулятор расчета трансформатора , который учитывает эти свойства.
Закон индуктивности Фарадея, который описывает, как магнитные поля индуцируются в материалах, диктует, что напряжение любой из обмоток индуцирует
либо для первичной обмотки, либо для вторичной обмотки. Обычно это называется наведенной электродвижущей силой (ЭДС , ЭДС ).
Если бы вы измеряли изменение магнитного потока за небольшой период времени, вы могли бы получить значение dΦ / dt и использовать его для расчета эдс . Общая формула для магнитного потока:
\ Phi = BA | cos {\ theta}
для магнитного поля B , площадь поверхности плоскости в поле A и угол между магнитным полем линии и направление, перпендикулярное площади θ .
Вы можете учесть геометрию обмоток вокруг магнитного сердечника трансформатора, чтобы измерить поток. ) и Φ макс. — это максимальный поток.В этом случае частота f относится к количеству волн, которые проходят через заданное место каждую секунду. Инженеры также называют произведение тока на количество витков обмоток как « ампер-витков, », как показатель силы намагничивания катушки.
Примеры калькулятора обмоток трансформатора
Если вы хотите сравнить экспериментальные результаты того, как обмотки трансформаторов влияют на их использование, вы можете сравнить наблюдаемые экспериментальные свойства с характеристиками калькулятора обмоток трансформатора.
Компания-разработчик программного обеспечения Micro Digital предлагает онлайн-калькулятор обмотки трансформатора для расчета стандартного калибра проводов (SWG) или американского калибра проводов (AWG). Это позволяет инженерам изготавливать провода соответствующей толщины, чтобы они могли нести заряды, необходимые для их целей. Калькулятор оборотов трансформатора подскажет вам индивидуальное напряжение на каждом витке обмотки.
Другие калькуляторы, такие как калькулятор от компании-производителя Flex-Core, позволяют рассчитать сечение провода для различных практических применений, если вы вводите номинальную нагрузку, номинальный вторичный ток, длину провода между трансформатором тока и измерителем и входную нагрузку. метра.
Трансформатор тока создает напряжение переменного тока во вторичной обмотке, пропорциональное току в первичной обмотке. Эти трансформаторы снижают токи высокого напряжения до более низких значений, используя простой метод контроля фактического электрического тока. Нагрузка — это сопротивление самого измерительного прибора пропускаемому через него току.
Hyperphysics предлагает онлайн-интерфейс расчета мощности трансформатора, который позволяет использовать его в качестве калькулятора конструкции трансформатора или в качестве калькулятора сопротивления трансформатора.Чтобы использовать его, вам необходимо ввести частоту напряжения питания, индуктивность первичной обмотки, индуктивность вторичной обмотки, количество катушек первичной обмотки, количество катушек вторичной обмотки, вторичное напряжение, сопротивление первичной обмотки, сопротивление вторичной обмотки, сопротивление нагрузки вторичной обмотки и взаимная индуктивность.
Взаимная индуктивность M учитывает влияние изменения нагрузки на вторичную обмотку на ток через первичную обмотку с ЭДС:
ЭДС = -M \ frac {\ Delta I_1} {\ Delta t }
для изменения тока через первичную обмотку ΔI 1 и изменения во времени Δt .
Любой онлайн-калькулятор обмотки трансформатора делает предположения о самом трансформаторе. Убедитесь, что вы знаете, как каждый веб-сайт рассчитывает заявленные ценности, чтобы вы могли понять теорию и принципы, лежащие в основе трансформаторов в целом. Насколько они близки к формуле обмотки трансформатора, вытекающей из физики трансформатора, зависит от этих свойств.
Однофазные трансформаторы (часть 3)
Автотрансформаторы
Автотрансформаторы — это однообмоточные трансформаторы.Они используют одну и ту же обмотку как для первичного, так и для вторичного. Первичная обмотка между точками B и N, и к нему приложено напряжение 120 В. Если витки провода отсчитываются между точками B и N, видно, что имеется 120 витков проволоки. Теперь предположим, что селекторный переключатель установлен в положение D. Нагрузка теперь подключен между точками D и N. Вторичная обмотка этого трансформатора содержит 40 витков провода. Если величина напряжения, приложенного к нагрузке подлежит вычислению, можно использовать следующую формулу:
120 витков ES = 4800 В-витков
ES = 40 В
+++++ 33 Реакторы используются для предотвращения включения пускового тока. чрезмерно при первом включении питания.Коммутационный реактор Низкоомная нагрузка
+++++ 34 Магнитный домен в нейтральном положении.
+++++ 38 Разделительный трансформатор.
+++++ 35 Домен, находящийся под влиянием северного магнитного поля.
+++++ 36 Домен, находящийся под влиянием южного магнитного поля.
+++++ 37 Сердечник индуктора содержит воздушный зазор.
+++++ 41 У автотрансформатора только одна обмотка используется для обеих первичных обмоток. и вторичный.
Предположим, что нагрузка, подключенная к вторичной обмотке, имеет импеданс 10 Ом.Количество тока, протекающего во вторичной цепи, можно рассчитать. по формуле:
I = 4A
Первичный ток можно рассчитать по той же формуле, что и используется для расчета первичного тока для типа изоляции трансформатора:
Количество потребляемой и выходной мощности автотрансформатора должно быть равным такие же, как и в изолирующем трансформаторе:
Первичное Среднее
120 В x 1.333 А = 160 ВА
40 В x 4 А = 160 ВА
Теперь предположим, что поворотный переключатель подключен к точке A. Нагрузка сейчас подключено по 160 витков провода. Напряжение, приложенное к нагрузке, может рассчитываться по
Обратите внимание, что автотрансформатор, как и изолирующий трансформатор, может быть либо повышающий, либо понижающий трансформатор.
Если показанный поворотный переключатель нужно было снять и заменить скользящим ответвитель, который контактировал непосредственно с обмоткой трансформатора, отношение витков можно регулировать непрерывно.Этот тип трансформатора обычно называют как Variac или Powerstat в зависимости от производителя. Вид в разрезе переменного автотрансформатора.
Обмотки намотаны на обмотанный лентой тороидальный сердечник внутри пластикового кейс. Вершины обмоток имеют фрезеровку в виде коллекторов.
Угольная щетка контактирует с обмотками.
+++++ 42 Powerstat в разрезе. Вал Щеткодержатель Угольная щетка Змеевик Powerkote Сердечник Основание Подшипники вала Торцевые формы Радиатор Позолоченный коммутатор Клеммная колодка
Автотрансформаторы часто используются энергетическими компаниями для обеспечения малых
увеличение или уменьшение линейного напряжения.Они помогают регулировать напряжение к крупным линиям электропередач. Показан трехфазный автотрансформатор.
Этот трансформатор находится в корпусе, заполненном трансформаторным маслом, который действует как охлаждающая жидкость и предотвращает образование влаги в обмотках.
У автотрансформатора есть один недостаток. Поскольку нагрузка подключена с одной стороны линии электропередачи, между входящими мощность и нагрузка. Это может вызвать проблемы с некоторыми типами оборудования. и это необходимо учитывать при проектировании энергосистемы.
Полярность трансформатора
Чтобы понять, что подразумевается под полярностью трансформатора, создаваемое напряжение через обмотку необходимо учитывать в какой-то момент времени. В 60-герц В цепи переменного тока напряжение меняет полярность 60 раз в секунду. При обсуждении полярность трансформатора, необходимо учитывать соотношение между разные обмотки в один и тот же момент времени. Поэтому предполагается что в этот момент времени создается пиковое положительное напряжение поперек обмотки.
+++++ 43 Автотрансформатор трехфазный.
Обозначения полярности на схемах:
Когда трансформатор на принципиальной схеме, обычно указывают полярность обмоток трансформатора, поставив точку рядом с одним концом каждой обмотки. Эти точки означают, что полярность одинакова. момент времени для каждой обмотки. Например, предположим, что приложенное напряжение к первичной обмотке имеет максимальное положительное значение на указанной клемме. точкой.Напряжение на точечном выводе вторичной обмотки будет на уровне в то же время его пиковое положительное значение.
Этот же тип обозначения полярности используется для трансформаторов, имеющих более одной первичной или вторичной обмотки. Пример трансформатора с мультисредством.
+++++ 44 точки полярности трансформатора.
+++++ 45 знаков полярности для нескольких вторичных обмоток.
Аддитивная и вычитающая полярности:
Полярность обмоток трансформатора можно определить, подключив их в качестве автотрансформатора и тестирования на аддитивную или вычитающую полярность, часто называют повышающим или понижающим соединением.Это делается путем подключения один вывод вторичной обмотки к одному выводу первичной обмотки и измерение напряжение на обеих обмотках. Трансформатор, показанный в примере, имеет номинальное первичное напряжение 120 вольт и номинальное вторичное напряжение 24 вольта. Эта же схема была перерисована, чтобы показать соединение более подробно. четко. Обратите внимание, что вторичная обмотка подключена последовательно. с первичной обмоткой. Трансформатор теперь содержит только одну обмотку. и поэтому является автотрансформатором.При подаче 120 вольт на первичная обмотка, вольтметр, подключенный к вторичной обмотке, показывает либо сумма двух напряжений, либо разница между двумя напряжениями. Если этот вольтметр показывает 144 В (120 В + 24 В = 144 В), обмотки соединяются добавочные (повышающие) и могут быть размещены точки полярности. Уведомление в этой связи вторичное напряжение добавляется к первичному напряжению.
Если вольтметр, подключенный к вторичной обмотке, показывает напряжение 96 В (120 х 2 24 В = 96 В), обмотки подключены вычитательно (доллар) и точки полярности.
+++++ 46 Соединение вторичной и первичной обмоток образует автотрансформатор.
+++++ 47 Перерисовка соединения.
+++++ 48 Размещение точек полярности для обозначения аддитивной полярности.
+++++ 49 Точки полярности указывают на вычитающую полярность.
+++++ 50 стрелок указывают расположение точек полярности.
Использование стрелок для расстановки точек:
Чтобы помочь в понимании аддитивной и вычитающей полярности, стрелки может использоваться для указания направления значений больше или меньше.… Стрелки были добавлены, чтобы указать направление, в котором точка быть размещенным. В этом примере трансформатор подключен аддитивно, или повышается, и обе стрелки указывают в одном направлении. Обратите внимание, что стрелка указывает на точку. … Видно, что значения двух стрелок складываются, чтобы получить 144 вольт.
… стрелки были добавлены к вычитающей или понижающей связи. В этом Например, стрелки указывают в противоположных направлениях, и напряжение одного пытается отменить напряжение другого.В результате чем меньше значение удаляется, а большее значение уменьшается.
+++++ 51 Значения стрелок складываются, чтобы указать аддитивную полярность (усиление связь).
+++++ 52 Стрелки указывают на вычитающую полярность.
+++++ 53 Значения стрелок вычитаются (понижающее соединение).
+++++ 54 На холостом ходу первичный ток отстает от напряжения на 90 град. Применяемый напряжение — Первичный ток
+++++ 55 Вторичное напряжение отстает от первичного тока на 90 град.Вторичный Напряжение; Первичный ток
Взаимосвязь напряжения и тока в трансформаторе
Когда первичная обмотка трансформатора подключена к источнику питания, но нет нагрузка подключена к вторичной обмотке, ток ограничен индуктивным сопротивлением первичной. В настоящее время трансформатор представляет собой индуктор. и ток возбуждения отстает от приложенного напряжения на 90 градусов. Первичный ток вызывает напряжение во вторичной обмотке.Этот индуцированный вольт возраст пропорционален скорости изменения тока. Вторичное напряжение максимальна в те периоды, когда первичный ток изменяет большинство (0 градусов, 180 градусов и 360 градусов), и оно будет равно нулю, когда первичный ток не меняется (90 градусов и 270 градусов). Участок первичного тока и вторичного напряжения показывает, что вторичное напряжение отстает по первичному току на 90 градусов. Поскольку вторичное напряжение отстает первичный ток на 90 градусов, а приложенное напряжение опережает первичный ток на 90 градусов, вторичное напряжение на 180 градусов не совпадает по фазе с приложенным напряжением и в фазе с индуцированным напряжением в первичной обмотке.
+++++ 56 Соотношение напряжения и тока первичной и вторичной обмоток обмотки.
Приложенное напряжение Вторичный ток Первичный ток Вторичное напряжение
+++++ 57 Проверка трансформатора омметром.
Добавление нагрузки к вторичному:
Когда нагрузка подключена к вторичной обмотке, ток начинает течь. Потому что трансформатор является индуктивным устройством, вторичный ток отстает от вторичное напряжение на 90 градусов.Поскольку вторичное напряжение отстает от первичный ток на 90 градусов, вторичный ток на 180 градусов выходит фазы с первичным током.
Ток вторичной обмотки вызывает противодавление во вторичной обмотке. обмотки, противодействующей противодавлению, наведенному в первичной обмотке.
Противодавление вторичной обмотки ослабляет противодавление первичный и пропускает больше первичного тока. Как вторичный ток увеличивается, первичный ток увеличивается пропорционально.
Поскольку вторичный ток вызывает уменьшение противодавления производится в первичной обмотке, ток первичной обмотки ограничен меньше индуктивное сопротивление и многое другое за счет сопротивления обмоток как нагрузки добавляется к вторичному. Если к первичной обмотке был подключен ваттметр, вы увидите, что истинная мощность будет увеличиваться по мере добавления нагрузки к вторичный.
Новый твердотельный преобразователь на основе двойного вторичного линейного трансформатора…: Ingenta Connect
Твердотельный трансформатор (SST) — единственная из большинства новых технологий для интеграции возобновляемых источников энергии. Для приложений SST в источниках питания, таких как ветряные мельницы, генераторы или фотоэлектрические системы, эффективность сильно снижается, особенно для двойного активного моста (DAB) из-за широкого диапазон напряжений и мощностей этих источников питания. Таким образом, мотивация данной работы — повышение эффективности DAB внутри SST для источников питания. Для этого представлена новая топология SST, которая включает выпрямитель, инвертор, линейный трансформатор с двумя вторичными обмотками.От них Две вторичные обмотки низкого напряжения переменного тока на выходе обеспечиваются двумя разными моделями преобразователей мощности. Были разработаны две отдельные модели с H-мостовым инвертором и многоуровневым инвертором с двумя уровнями соответственно. Кроме того, используется преобразователь DAB с высокой амплитудой. Этим топологии достигается очень меньшее количество потерь на переключение. Предлагаются результаты моделирования и экспериментов для подтверждения теоретического анализа.
Нет доступной справочной информации — войдите в систему для доступа.
Информация о цитировании недоступна — войдите в систему, чтобы получить доступ.
Нет дополнительных данных.
Нет статьи СМИ
Без показателей
Ключевые слова: AC; ОКРУГ КОЛУМБИЯ; Двойной вторичный мост; H-мостовой инвертор; Многоуровневый инвертор; Вторичные обмотки; Твердотельный трансформатор (SST)
Тип документа: Исследовательская статья
Филиал: 1: Карунский институт технологий и наук, Коимбатур 641114, Тамилнад, Индия 2: Инженерный колледж NSS, Палаккад 678008, Керала, Индия
Дата публикации: 1 марта 2021 г.
Подробнее об этой публикации?Журнал вычислительной и теоретической нанонауки — это международный рецензируемый журнал с широким охватом, объединяющий исследовательскую деятельность по всем аспектам вычислительной и теоретической нанонауки в едином справочном источнике.Этот журнал предлагает ученым и инженерам рецензируемые исследовательские работы по всем аспектам вычислительной и теоретической нанонауки и нанотехнологий в химии, физике, материаловедении, инженерии и биологии для публикации оригинальных полных статей и своевременных обзоров современного состояния и коротких сообщений. охватывающий фундаментальные и прикладные исследования.
- Редакция журнала
- Информация для авторов
- Отправить статью
- Подписаться на Название
- Положения и условия
- Ingenta Connect не несет ответственности за содержание или доступность внешних веб-сайтов